
WEAK CONVERGENCE OF HYBRID FILTERING PROBLEMS
INVOLVING NEARLY COMPLETELY DECOMPOSABLE HIDDEN

MARKOV CHAINS∗

G. YIN† AND S. DEY‡

SIAM J. CONTROL OPTIM. c© 2003 Society for Industrial and Applied Mathematics
Vol. 41, No. 6, pp. 1820–1842

Abstract. Concentrating on a class of hybrid discrete-time filtering problems that are modulated
by a Markov chain, this work aims to reduce the complexity of the underlying problems. Since the
Markov chain has a large state space, the solution of the problem relies on solving a large number of
filtering equations. Exploiting the hierarchical structure of the system, it is noted that the transition
probability matrix of the Markov chain can be viewed as a nearly decomposable one. It is shown that
a reduced system of filtering equations can be obtained by aggregating the states of each recurrent
class into one state. Extensions to inclusion of transient states and nonstationary cases are also
treated.
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1. Introduction. In this work, we concern ourselves with hybrid filtering prob-
lems in discrete time. Since a wide variety of problems arising in target tracking,
speech recognition, telecommunication, and manufacturing requires solutions of fil-
tering problems involving a hidden Markov chain, in addition to the usual random
system disturbances and observation noise, we assume that the system under consid-
eration is influenced by a hidden Markov chain with finite state space. Due to the
rapid advances in science and technology, various systems tend to be rather complex
and large-scale in nature. As a result, although the state space of the Markov chain is
finite, it inevitably contains a large number of states. Our main effort is devoted to re-
ducing the complexity of such filtering problems involving large-scale hidden Markov
chains.

In a recent paper, linear systems with coefficients driven by a hidden Markov
chain were considered [21]. Discrete-time systems were studied in [1, 6, 12, 28] among
others. In [33], Zhang studied hybrid filters in continuous time and treated problems
involving non-Gaussian noise. Our study is motivated by these recent developments
and stems from the needs in many applications mentioned above.

In the seminal paper [26], Simon and Ando pointed out that various large-scale
systems have hierarchical structures. Some of the states vary rapidly, and others
change slowly. In addition, these states are also naturally decomposable into different
layers or a hierarchy. Such a hierarchy allows one to take advantage and to organize
and reorganize the systems accordingly. Based on such ideas, Courtois dealt with
the so-called nearly completely decomposable Markov chain models [7]. Recently, Dey
derived reduced-complexity filtering results for hidden Markov models, in which the
underlying Markov chains are nearly completely decomposable [9]. Such hierarchical
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Markov chains have numerous applications in queueing and computer systems [7],
multiple time-scale heterogeneous traffic modelling (e.g., variable bit rate video traffic
[27]), manufacturing systems, operations research, and many other biological and
physical systems in which a multiple time-scale or hierarchical behavior is involved;
see also related work in [3, 5, 14, 18, 22, 23, 25] and the references therein. Taking
the approaches of [7] and [9] as our point of departure, to reduce the complexity of
the underlying problem, we introduce a small parameter ε > 0 into the system. Note
that the small parameter is used to reflect the high contrast of the transition rates
of the Markov chain. For the subsequent asymptotic analysis, to obtain the desired
results, it is necessary to send ε → 0, which can serve as a guideline for various
applications and for approximation and heuristics. In real applications, however, ε
might be a fixed constant, and only the relative order of magnitude of this parameter
matters. In our setup, we also consider a nearly completely decomposable Markovian
model, in which the hidden Markov chain has a large state space. The transition
probability matrix is a sum of a completely decomposable transition matrix and a
generator of a continuous-time Markov chain. Following our systematic studies on
singularly perturbed Markov chains in both continuous time and discrete time [16,
29, 30, 31, 34], we investigate the asymptotic properties of the filtering problem by
means of weak convergence methods. We show that a limit filtering problem can be
derived in which the underlying Markov chain is replaced by an averaged chain and
the system coefficients are averaged out with respect to the stationary measures of
each ergodic class. The reduction of complexity is particularly pronounced when the
transition matrix of the Markov chain consists of only one ergodic class. In this case,
the limit filtering problem becomes a standard Kalman filter free of Markovian jump
processes.

The rest of the paper is arranged as follows. Section 2 presents the precise for-
mulation of the problem and a number of preliminary results that are to be used in
our study. Section 3 is concerned with weak convergence analysis and the derivation
of limit filtering problems or reduced systems. In order not to disrupt the flow of
presentation, all proofs are placed in an appendix. Section 4 proceeds with numerical
experiments and simulation studies that demonstrate the relationship between the
original system and that of a reduced system. Section 5 gives remarks and a few
extensions.

Throughout the paper, we use K to denote a generic positive constant, whose
values may be different for different usage. For any z ∈ R

�1×�2 with some positive
integers �1 and �2, z

′ denotes its transpose. For a suitable function f , fx and fxx
denote its first-order and second-order partial derivatives with respect to x.

2. Formulation and preliminaries. This section gives the precise formulation
of the problem to be studied. It also presents some preliminary results needed in the
analysis to follow.

2.1. Hybrid filtering problem. Let ε > 0 be a small parameter, and let {αε
n}

be a (time) homogeneous singularly perturbed Markov chain in discrete time with a
finite state space M having m elements and a transition matrix

P ε = P̃ + εQ,(2.1)

where P̃ is an m×m transition matrix and Q = (qι�) is a generator of a continuous-
time homogeneous Markov chain, i.e., qι� ≥ 0 for ι �= � and

∑
� qι� = 0 for each

ι.
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Suppose that, for some T > 0 and 0 ≤ n ≤ 
T/ε� (where 
z� denotes the largest
integer part of z), xεn ∈ R

r is the state to be estimated, yεn is the corresponding
observation, and A(ι), C(ι), σw(ι), and σv(ι) are well defined for each ι ∈ M (i.e.,
they are finite for each ι ∈ M). With initial data x0 and y0, the hybrid filtering
problem is concerned with the linear system of equations

xεn+1 = xεn + εA(αε
n)x

ε
n +

√
εσw(α

ε
n)wn,(2.2)

yεn+1 = yεn + εC(αε
n)x

ε
n +

√
εσv(α

ε
n)vn,

where {wn} and {vn} are the system disturbance and the observation noise, respec-
tively. For ease of presentation, in what follows, we will suppress the floor-function
notation 
·� and write it as 0 ≤ n ≤ T/ε throughout. The use of the

√
ε in the

noise terms stems from the central limit scaling. Precise conditions on the noises will
be provided later. In what follows, we will show that, as ε → 0, the above filtering
problem has a limit. The limit filtering problem is still modulated by a Markov chain.
However, the total number of states of the limit Markov chain is equal to the number
of recurrent groups or clusters l. As mentioned before, typically l � m, and by consid-
ering this limit filtering problem, substantial computational savings can be obtained.
Although (2.2) is a discrete-time filtering problem, the limit under appropriate scaling
is a continuous-time hybrid filtering problem. In the rest of the paper, our main effort
is devoted to deriving the limit filtering problem. For solutions of continuous-time
hybrid filtering problems involving jump Markov processes, see [4, 8, 11, 12, 21]; see
also [2, 10] and the references therein for discrete-time results.

2.2. Nearly completely decomposable Markov chain αε
n. In view of (2.1),

the transition probabilities of αε
n are dominated by P̃ . The structure of P̃ is thus

important. Since αε
n is a finite-state Markov chain, the Markov chain corresponding

to the transition matrix P̃ either consists of all recurrent states or includes transient
states in addition to recurrent states (see [15]). We first consider the case of inclusion
of recurrent states only. Later we will discuss a generalization to the case in which
transient states are also included. Suppose that the matrix P̃ is given by

P̃ = diag(P̃ 1, . . . , P̃ l) =


P̃ 1

. . .

P̃ l

 ,(2.3)

where each P̃ i ∈ R
mi×mi is itself a transition matrix and

∑l
i=1 mi = m. Here and

henceforth, by diag(Z1, . . . , Zl), we mean a diagonal block matrix with matrix entries
Z1 through Zl of appropriate dimensions. It is clear that, for sufficiently small ε > 0,
P ε is close to P̃ , and so P ε is a nearly completely decomposable transition matrix
(see [7]). Note that, typically for large scale Markovian systems, l � m, and therein
lies the motivation for reducing computational complexity. Concerning the Markov
chain, we assume the following condition.
(A1) The transition probability matrix of the Markov chain αε

n is given by (2.1)

with P̃ specified in (2.3), and the state space of the Markov chain is

M =M1 ∪M2 ∩ · · · ∪Ml(2.4)

= {s11, . . . , s1m1
} ∪ · · · ∪ {sl1, . . . , slml

}.
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For each i = 1, . . . , l, Mi = {si1, . . . , simi
} is the state space corresponding

to the transition matrix P̃ i, and P̃ i is irreducible and aperiodic.
Note that the probability vector

pεn = (P (α
ε
n = s11), . . . , P (α

ε
n = s1m1), . . . , P (α

ε
n = sl1), . . . , P (α

ε
n = slml

)) ∈ R
1×m

satisfies

pεn+1 = pεnP
ε, pε0 = p0,(2.5)

such that p0 is the initial probability distribution. By (A1), the result in [30] yields
the following lemma.

Lemma 2.1. Assume condition (A1). Then the following assertions hold:
(1) Denote by νi the stationary distribution corresponding to the transition matrix

P̃i for each i = 1, . . . , l. Then, for some 0 < λ < 1,

pεn = θ(t) diag(ν1, . . . , νl) +O(ε+ λn),(2.6)

where θ(t) = (θ1(t), . . . , θl(t)) ∈ R
1×l (with t = εn) satisfies

dθ(t)

dt
= θ(t)Q, θi(0) = xi01mi

,

with

Q = diag(ν1, . . . , νl)Q1̃,(2.7)

1̃ = diag(1m1 , . . . ,1ml
),

where 1� denotes an �-dimensional column vector with all entries being 1.
(2) For n ≤ T/ε, the n-step transition probability matrix (P ε)n satisfies

(P ε)n = Φ(t) +O (ε+ λn) ,(2.8)

where

P 0Φ(t) = 1̃Θ(t) diag(ν1, . . . , νl),(2.9)

dΘ(t)

dt
= Θ(t)Q, Θ(0) = I.

Remark 2.2. Since we are primarily concerned with the form of the limit distri-
bution, only the leading terms are presented in the lemma, although a full asymptotic
expansion can be obtained. See [30] for more details.

Starting from the Markov chain αε
n, define an aggregated process α

ε
n by setting

αε
n = i if αε

n ∈ Mi. Define piecewise constant interpolated processes α
ε(·) and αε(·)

by

αε(t) = αn, α
ε(t) = αε

n, t ∈ [nε, nε+ ε).

Lemma 2.1 is mainly deterministic, whereas the following lemma is a weak convergence
result on the aggregated process. Its proof is provided in [32]; a continuous-time
counterpart can be found in [29, pp. 170–171].
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Lemma 2.3. Under (A1), as ε → 0, αε(·) converges weakly to α(·), which is a
continuous-time Markov chain with state spaceM = {1, . . . , l} and generator Q given
by (2.7). Moreover, for the occupation measures defined by

oεn,ij = ε

n∑
k=0

[I{αε
k
=sij} − νijI{αε

k
∈Mi}] for each i = 1, . . . , l, j = 1, . . . ,mi,

the following mean square estimates hold:

sup
0≤n≤T/ε

E|oεn,ij |2 = O(ε).(2.10)

To proceed, we give additional conditions needed for the filtering problem.

(A2) E|x0|2 < ∞ and E|y0|2 < ∞. For each ι ∈ M, A(ι), C(ι), σw(ι), and σv(ι)
are finite; σw(ι)σ

′
w(ι) and σv(ι)σ

′
v(ι) are positive definite matrices.

(A3) The sequences {wn} and {vn} are independent of {αε
n} and independent of

each other. The {wn} and {vn} are stationary martingale difference sequences
(with zero mean) such that

Ewnw
′
n = I, Evnv

′
n = I,

E|wn|2+∆ < ∞, and E|vn|2+∆ < ∞ for some ∆ > 0.

Remark 2.4. For simplicity and ease of presentation, we assume that the noises
are stationary martingale difference sequences and that the covariance of wn and vn
is the identity matrix. Even though no Gaussian assumption is used, as a result of the
scaling, these noise processes will be asymptotically normal thanks to the functional
central limit theorem.

In what follows, we use the weak convergence method to establish the desired
results. Further details on the weak convergence method, which is an extension of
convergence in distribution, can be found in, for example, [13, Chapter 3] or [19,
Chapters 7 and 8].

3. Limit filtering problem. This section is devoted to the derivation of the
limit filtering problem. In lieu of treating the discrete-time iterates, our analysis
focuses on suitable continuous-time interpolations of piecewise constant processes.

For 0 ≤ n ≤ T/ε, define the interpolations xε(·) and yε(·) as

xε(t) = xεn, yε(t) = yεn, t ∈ [nε, nε+ ε),(3.1)

where xεn and yεn are given in (2.2). Then xε(·) and yε(·) ∈ Dr[0, T ], which is the
space of R

r-valued functions that are right continuous and have left limits, endowed
with the Skorohod topology [13, p. 122]. Using weak convergence methods, we will
show that the interpolated processes converge weakly to x(·) and y(·), which satisfy
continuous-time hybrid Kalman filtering equations. Following the approach of weak
convergence methods [13, 17], we first show that the sequences of interests are tight,
and then we characterize the limit processes by using martingale averaging techniques.

Owing to the assumption on the system and observation noise and
√
ε scaling,

the following lemma, known as the functional central limit theorem or Donsker’s
invariance theorem, holds. Its proof is standard; see, for example, [13, Theorem 3.1,
p. 351].
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Lemma 3.1. Define

wε(t) =
√
ε

t/ε−1∑
j=0

wj and vε(t) =
√
ε

t/ε−1∑
j=0

vj .(3.2)

Under (A3), wε(·) and vε(·) converge weakly to standard r-dimensional Brownian
motions w(·) and v(·), respectively.

In fact, correlated ϕ-mixing noises may be dealt with, and the corresponding
central limit result can be obtained, but the notation will be much more complex
for the subsequent averaging. Thus we decide to work with the martingale difference
sequences {wn} and {vn}. In the analysis to follow, we need the a priori bounds on
{xεn} and {yεn}, which are presented in the form of the following lemma. The proof is
provided in the appendix.

Lemma 3.2. Assume (A1)–(A3). For {xεn} and {yεn} defined in (2.2), the follow-
ing bounds hold:

sup
0≤n≤T/ε

E|xεn|2 < ∞ and sup
0≤n≤T/ε

E|yεn|2 < ∞.(3.3)

3.1. Tightness and weak convergence. To proceed, let Fn be the σ-algebra
generated by {αε

j , wj , vj : j ≤ n}, and let En be the conditional expectation with
respect to Fn; let Fε

t be the σ-algebra generated by {αε(s), wε(s), vε(s) : s ≤ t},
and let Eε

t be the conditional expectation with respect to Fε
t . We are to derive the

tightness of {xε(·)} and {yε(·)}. This is a compactness result, which is established by
verifying a tightness criterion; the proof is in the appendix.

Theorem 3.3. Assume (A1)–(A3). Then {xε(·)} is tight in Dr[0, T ], and so is
{yε(·)}, where Dr[0, T ] is the space of R

r-valued functions that are right continuous
and have left limits, endowed with the Skorohod topology.

We are now in a position to obtain the weak convergence of the sequences {xε(·)}
and {yε(·)}. To prove the assertion, we use a martingale problem formulation. Thus
our task becomes to figure out the limit by characterizing the operator of the limit
martingale problem. The technique used is essentially an averaging approach. Differ-
ent from the diffusion approximation in wideband noise systems [17], the limit αε(·)
also contributes to the limit process and adds further complication. The result is
recorded in the following theorem, whose proof is in the appendix as well.

Theorem 3.4. Suppose the conditions of Theorem 3.3 hold. Then xε(·) and yε(·)
converge weakly to x(·) and y(·), respectively, such that x(·) and y(·) are solutions of
the filtering equations

dx = A(α(t))xdt+ σw(α(t))dw,(3.4)

dy = C(α(t))xdt+ σv(α(t))dv,

where w(·) and v(·) are the independent r-dimensional standard Brownian motions
given by Lemma 3.1,

A(i) =

mi∑
j=1

νijA(sij), B(i) =

mi∑
j=1

νijB(sij) for each i ∈ M,(3.5)
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and, for each i ∈ M, σw(i) and σv(i) satisfy

σw(i)σ
′
w(i) =

mi∑
j=1

νijσw(sij)σ
′
w(sij),(3.6)

σv(i)σ
′
v(i) =

mi∑
j=1

νijσv(sij)σ
′
v(sij).

3.2. Markov chains with one ergodic class. The reduction of complexity
is particularly pronounced if the transition matrix (2.3) consists of only one ergodic
class (i.e., P in (2.3) consists of only one block). That is, P ε = P + εQ such that
P is irreducible and aperiodic. It is easily seen that, for sufficiently small ε > 0, P ε

is also irreducible. Consider the filtering problem (2.2). Similarly to the previous
case, define xε(·) and yε(·) as the piecewise constant interpolations of xεk and yεk,
respectively. Replace A(·) and σw(·) by

A
0
=

m∑
j=1

A(j)νj and σw
0(σw

0)′ =
m∑
j=1

νjσw(j)σ
′
w(j),(3.7)

with ν = (ν1, . . . , νm) denoting the stationary distribution of P . Similarly replace

C(·) and σv(·) by C0
and σ0

v, respectively. The weak convergence of (x
ε(·), yε(·)) will

still be obtained. The proofs are similar to the previous case. In fact, it is readily
seen that Lemma 3.2 and Theorem 3.3 continue to hold. Lemma 2.1 still holds with
obvious modifications, and (2.10) (in Lemma 2.3) is changed to

sup
0≤n≤T/ε

E

[
ε

n∑
k=0

[I{αε
k
=j} − νj ]

]2

= O(ε).

Using this mean square estimate and similar arguments as before, we can show that
Theorem 3.4 continues to hold. It is interesting to note that the limit filtering prob-
lem becomes a standard Kalman filter, in which the jump process effect has been
completely averaged out. We state this as the following result.

Corollary 3.5. Consider the filtering problem (2.2) such that P is irreducible
and aperiodic. Then (xε(·), yε(·)) converges weakly to (x(·), y(·)), that is, the solution
of the filtering problem

dx(t) = A
0
x(t)dt+ σw

0dw(t),(3.8)

dy(t) = C
0
x(t)dt+ σv

0dv(t).

4. Simulation studies. In this section, we demonstrate the relationship be-
tween the full-order discrete-time system (2.2) and the reduced-order limit filtering
equations (3.4) through simulation examples. All results are averaged over 50 trials.

For (2.2), we simulate a discrete-time Markov chain with four states (with two
blocks, m1 = m2 = 2) for which the transition probability matrices are

P̃ 1 =

0.9 0.1

0.2 0.8

 , P̃ 2 =

0.25 0.75

0.68 0.32


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Fig. 4.1. Absolute error between the piecewise constant interpolated full-order system and the
reduced-order limit filtered system, ε = 0.05.
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Fig. 4.2. Absolute error between the piecewise constant interpolated full-order system and the
reduced-order limit filtered system, ε = 0.005.
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and the generator is

Q =


−0.6 0.4 0.1 0.1

0.05 −0.4 0.05 0.3

0.1 0.2 −0.7 0.4

0.15 0.05 0.1 −0.3

 .

We take (A(1) A(2) A(3) A(4)) = (−4.0 −1.0 −2.0 −3.0), (C(1) C(2) C(3) C(4)) =
(0.2 0.5 0.1 1.0). Also, (σw(1) σw(2) σw(3) σw(4)) = (0.2 0.5 0.1 1.0), σv(i) = σw(i),
for i = 1, 2, 3, 4. The noise sequences {wn} and {vn} are simulated as Gaussian ran-
dom variables with zero mean and unity variance. The piecewise constant interpolated
processes xε(t) and yε(t) are constructed from (3.1). The time horizon is taken to be
T = 10. To simulate (3.4), a continuous-time Markov chain is used with a generator
Q. This is then discretized with a discretization interval h = 0.001. Figures 4.1 and
4.2 show the difference |xε(·) − x(·)| and |yε(·) − y(·)| for ε = 0.05 and ε = 0.005,
respectively.

5. Remarks and extensions. This section is devoted to several remarks re-
garding the approximation issue. They include reduction of complexity as well as
ramifications of the results we have obtained thus far.

Reduction of complexity. One of the main motivations of the current study is
the effort of reduction of complexity. Regarding (2.2), note that the time horizon we
are working with is 0 ≤ n ≤ 
T/ε�. As pointed out in [24], if we treat the discrete-
time case directly, it can be reduced to an m�T/ε�-dimensional recursive system of
equations, where m is the total number of states of the Markov chain. For us, m is
a fairly large number. As a result, the amount of computation becomes practically
untrackable. One cannot complete the computation in polynomial time. By weak
convergence methods, we have obtained a reduced or limit system of filtering equa-
tions. This limit system of equations allows us to find nearly optimal filtering, and
the limit system has reduced complexity. In particular, if the transition matrix P
given in (2.1) is irreducible, the limit becomes a Kalman filter (see Proposition 3.5).

For continuous-time Kalman filter problems with Markovian switching, it has been
recognized (see [4, 11, 21]) that, in general, the problem is an infinite-dimensional one
just as in the nonlinear filter case [20]. Nevertheless, Björk [4] proved that a finite-
dimensional filter exists for a linear hybrid system if and only if the observation is
independent of the state variable. For the filtering problem considered in this paper,
this requires the observation process in the limit problem being independent of state.
Corresponding to such a requirement, we can consider

xεn+1 = xεn + εA(αε
n)x

ε
n +

√
εσw(α

ε
n)wn,(5.1)

yεn+1 = yεn + εC(αε
n) +

√
εσvvn.

Similar to the derivation of Theorem 3.4, we obtain the limit filtering equations

dx = A(α(t))xdt+ σw(α(t))dw,(5.2)

dy = C(α(t))dt+ σvdv.

Note that the calculation of (5.1) leads to recursive filters of dimension m�T/ε�,
whereas (5.2) yields a finite-dimensional filtering problem.
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Inclusion of transient states. In the previous sections, the main ingredient
is the aggregation of states in each recurrent classes. The results obtained can be
extended to the case in which the Markov chain has finite state space with inclusion
of transient states. To be more specific, Let the transition probability be of the form
(2.1). However, in lieu of (2.3), suppose the transition matrix P̃ in (2.1) is given by

P̃ =


P̃ 1

. . .

P̃ l

P̃ 1
∗ · · · P̃ l

∗ P̃∗

 .(5.3)

In lieu of (A1), assume (A1’).
(A1’) αε

n is a Markov chain with a transition probability matrix given by (2.1) and
(5.3), and with state space

M =M1 ∪M2 ∩ · · · ∪Ml ∪M∗(5.4)

= {s11, . . . , s1m1
} ∪ · · · ∪ {sl1, . . . , slml

} ∪ {s∗1, . . . , s∗m∗},
where, for each i = 1, . . . , l, Mi = {si1, . . . , simi} is the state space corre-
sponding to the transition matrix P̃ i and where the subspaceM∗ = {s∗1, . . . ,
s∗m∗} collects the transient states. Moreover, P̃ i is irreducible for each

i = 1, . . . , l, and all eigenvalues of P̃∗ are inside the unit disk.
To obtain the desired asymptotics, we still use aggregations. However, we aggre-

gate only the states in each recurrent class. Partition the matrix Q as

Q =

Q11 Q12

Q21 Q22

 ,(5.5)

where

Q11 ∈ R
(m−m∗)×(m−m∗), Q12 ∈ R

(m−m∗)×m∗ ,

Q21 ∈ R
m∗×(m−m∗), and Q22 ∈ R

m∗×m∗ .

Set

Q∗ = diag(ν
1, . . . , νl)(Q111̃+Q12A∗),(5.6)

with

A∗ = (a1, . . . , al) ∈ R
m∗×l and(5.7)

ai = −(P̃∗ − I)−1P̃ i
∗1mi for i = 1, . . . , l.

Let U be a random variable uniformly distributed over [0, 1]. For each j = 1, . . . ,m∗,
define an integer-valued random variable ξj by

ξj = I{0≤U≤am1,j} + 2I{a1,j<U≤a1,j+a2,j} + · · ·+ lI{a1,j+···+al−1,j<U≤1}.

Define the aggregated process and its interpolation by

αε
n =

{
i if αn ∈ Mi,

Uj if αε
n = s∗j ,

(5.8)

αε(t) = αε
n for t ∈ [nε, nε+ ε).
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Then we can show that αε(·) converges weakly to α(·) and that the limit is still a
Markov chain with state space M. Furthermore, we can obtain similar limit results
for the filtering problems. The notation is more involved, but the main idea and
the averaging techniques are as in the previous case. Loosely, the transient states
are asymptoticly negligible. In the limit (reduced) system, only the states in the
recurrent states are important. The limit is still an average with respect to the
stationary measures of each recurrent class.

Theorem 5.1. Assume (A1’), (A2), and (A3). Then the conclusions of Theorems
3.3 and 3.4 continue to hold with Q replaced by Q∗ defined in (5.6).

Nonstationary Markov chains. Generally, nonstationary or time-inhomoge-
neous cases are much more difficult to deal with. However, for a class of problems, it
can be worked out. The main setup is similar to that of [30]. In lieu of (2.1), assume
that the transition probability matrix is nonstationary and given by

P ε(εn) = P̃ (εn) + εQ(εn),

where P̃ (εn) is the dominating part of the transition matrix. In this case, we can
carry out the analysis as in the previous case, although the details and notation are
more involved.

Continuous-time problems. So far, we have considered discrete-time filtering
problems exclusively. There is also a continuous-time analogue of the hybrid filtering
problems. In place of (2.2), for t ∈ [0, T ], consider

dxε(t) = A(αε(t))xε(t)dt+ σw(α
ε(t))dw,(5.9)

dyε(t) = C(αε(t))xε(t)dt+ σv(α
ε(t))dv,

where w(·) and v(·) are independent standard Brownian motions, and where αε(·) is
a continuous-time singularly perturbed Markov chain with finite state space M and
with generator

Qε(t) =
Q̃(t)

ε
+ Q̂(t),(5.10)

where both Q̃(t) and Q̂(t) are generators. The state space M can be of the form
of either (2.4) (with recurrent states only) or (5.4) (inclusion of transient states).
We can follow our approach of averaging and aggregation to reduce the complexity
of the underlying system and obtain a limit system with much reduced state space.
Various results on the asymptotic properties of αε(·) can be found in [29, 31] among
others. The proof of the following result is similar to the discrete-time case; we omit
the details. Note that, since the problem is in continuous time, no interpolations are
needed, however. For definiteness, we state the result for decomposition of the form
(5.4). The matrix Q̃(t) has the form

Q̃(t) =


Q̃1(t)

. . .

Q̃l(t)

Q̃1
∗(t) · · · Q̃l

∗(t) Q̃∗(t)

 .(5.11)

For each i ∈ {1, . . . , l}, let Q̃i
∗(t) = B(t)Q̃i

∗,c, Q̃∗(t) = B(t)Q̃∗,c, where B(t) is

an R
m∗×m∗ matrix-valued function, and Q̃i

∗,c ∈ R
m∗×mi and Q̃∗,c ∈ R

m∗×m∗ are
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constant matrices. It is readily seen that B(t) is invertible for each t ∈ [0, T ], and, for
each i,

ai(t)
def
= −Q̃−1

∗ (t)Q̃i
∗(t)1mi = −Q̃−1

∗,cQ̃
i
∗,c1mi = ai(5.12)

is a time-independent vector. Define Q∗(t) and αε(t) as in (5.6) and (5.8) with Qι�

(the partition of Q) replaced by Q̂ι�(t) (the partition of Q̂(t)) and with ai in (5.7)
replaced by (5.12). Then we have the following theorem and its corollary.

Theorem 5.2. Suppose that, for each i ∈ {1, . . . , l}, Q̃i(t) is weakly irreducible
(see [29, pp. 21–22] for a definition of weak irreducibility and quasi-stationary distri-

bution), that Q̃∗(t) has all of its eigenvalues on the left half of the complex plan, that
Q̃(·) and Q̂(·) are bounded and Borel measurable, and that Q̃(·) is Lipschitz continuous
on [0, T ]. Then (xε(·), yε(·)) converges weakly to (x(·), y(·)) such that (x(·), y(·)) is a
solution of the averaged filtering equations (3.4), where A(·), σw(·), C(·), and σv(·)
are defined as before with time-dependent quasi-stationary distributions νi(t) used.

Corollary 5.3. Suppose that Qε(t) is given by (5.10) such that Q̃(t) is weakly
irreducible. Suppose that all other conditions in Theorem 5.2 are satisfied. Then
(xε(·), yε(·)) converges weakly to (x(·), y(·)), satisfying

dx(t) = A
0
(t)x(t)dt+ σw

0(t)dw(t),(5.13)

dy(t) = C
0
(t)x(t)dt+ σv

0(t)dv(t),

where A
0
, C

0
, σw

0, and σv
0 are defined as in (3.7) with the time-dependent quasi-

stationary distribution ν(t) = (ν1(t), . . . , νm(t)) used.

Appendix. Proofs of results.

Proof of Lemma 3.2. We first work with xεn. Iterating on the first equation in
(2.2), for 0 ≤ n ≤ T/ε,

xεn+1 = xε0 + ε

n∑
j=0

A(αε
j)x

ε
j +

√
ε

n∑
j=0

σw(α
ε
j)wj .

Note that, for any z ∈ R
r, |z|2 = tr(zz′), where tr(zz′) denotes the trace of zz′.

Consequently (recall that K is a generic positive constant),

E|xεn+1|2 ≤ K

E|xε0|2 + ε2E

∣∣∣∣∣∣
n∑

j=0

A(αε
j)x

ε
j

∣∣∣∣∣∣
2

+ εE

∣∣∣∣∣∣
n∑

j=0

σw(α
ε
j)wj

∣∣∣∣∣∣
2
(A.1)

≤ KE|xε0|2 +Kε

n∑
j=0

E|xεj |2 + εK

n∑
j=0

n∑
k=0

Etr
(
σw(α

ε
j)wjw

′
kσ

′
w(α

ε
k)
)
.

Using the independence of {αε
n} and {wn} and the boundedness of σw(ι) for each
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ι ∈ M and noting that Ewjw
′
k = 0 if j �= k,

ε
n∑

j=0

n∑
k=0

tr
(
Eσw(α

ε
j)wjw

′
kσ

′
w(α

ε
k)
)

(A.2)

≤ εK

∣∣∣∣∣∣
n∑

j=0

n∑
k=0

E{σw(αε
j)[Ewjw

′
k]σ

′
w(α

ε
k)}

∣∣∣∣∣∣
≤ εK

n∑
k=0

|Ewkw
′
k|

≤ εK
T

ε
≤ K < ∞.

Combining this with (A.1), an application of Gronwall’s inequality yields

E|xεn+1|2 ≤ K +Kε

n∑
j=0

E|xεj |2 ≤ K exp(Kεn) ≤ K < ∞.

Moreover, the bound holds uniformly in n for 0 ≤ n ≤ T/ε.
As for yεn, using the bound of sup0≤n≤T/εE|xεn|2, we have

E|yεn+1|2 ≤ K

E|yε0|2 + ε2E

∣∣∣∣∣∣
n∑

j=0

C(αε
j)x

ε
j

∣∣∣∣∣∣
2

+ εE

∣∣∣∣∣∣
n∑

j=0

σv(α
ε
j)vj

∣∣∣∣∣∣
2


≤ KE|yε0|2 +Kε

n∑
j=0

E|xεj |2 + εK

n∑
j=0

n∑
k=0

Etr
(
σv(α

ε
j)vjv

′
kσ

′
v(α

ε
k)
)

(A.3)

≤ K < ∞.

Moreover, the bound holds uniformly in 0 ≤ n ≤ T/ε.
Proof of Theorem 3.3. Let us first deal with the sequence {xε(·)}. For any δ > 0,

t > 0, and s > 0 with s ≤ δ, consider

Eε
t |xε(t+ s)− xε(t)|2 = Eε

t

∣∣∣∣∣∣ε
(t+s)/ε−1∑

j=t/ε

A(αε
j)x

ε
j +

√
ε

(t+s)/ε−1∑
j=t/ε

σw(α
ε
j)wj

∣∣∣∣∣∣
2

= ε2
(t+s)/ε−1∑

j=t/ε

(t+s)/ε−1∑
k=t/ε

Eε
t tr[A(α

ε
j)x

ε
jx

ε
k
′A′(αε

k)]

+ 2
√
ε3

(t+s)/ε−1∑
j=t/ε

(t+s)/ε−1∑
k=t/ε

Eε
t tr[A(α

ε
j)x

ε
jw

′
kσ

′
w(α

ε
k)](A.4)

+ ε

(t+s)/ε−1∑
j=t/ε

(t+s)/ε−1∑
k=t/ε

Eε
t tr[σw(α

ε
j)wjw

′
kσ

′
w(α

ε
k)]

def
= Iε1(t, s) + Iε2(t, s) + Iε3(t, s),(A.5)

where Iε� (t, s) for � = 1, 2, 3 are defined in an obvious manner.
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Consider each of the terms on the right-hand side of (A.4) separately as follows.
First, by the finiteness of A(ι) for each ι ∈ M,

Iε1(t, s) = ε2
(t+s)/ε−1∑

j=t/ε

(t+s)/ε−1∑
k=t/ε

tr
(
Eε

t [A(α
ε
j)x

ε
jx

ε,′
k A′(αε

k)]
)

≤ Kε2
(t+s)/ε−1∑

j=t/ε

(t+s)/ε−1∑
k=t/ε

Eε
t |xεj ||xεk|.

By virtue of Lemma 3.2, an application of the Cauchy–Schwarz inequality then yields

EIε1(t, s) ≤ Kε2
(t+s)/ε−1∑

j=t/ε

(t+s)/ε−1∑
k=t/ε

E1/2|xεj |2E1/2|xεk|2

≤ Kε2
(
t+ s

ε
− t

ε

)2

≤ Ks2 = O(δ2).

Thus

lim
δ→0

lim sup
ε→0

EIε1(t, s) = lim
δ→0

O(δ2) = 0.(A.6)

As for the second term on the right-hand side of (A.4), note that xεj and A(αε
j)

are Fj-measurable. Since, for j < k, Ejwk = 0, the independence of {αε
n} and {wn}

in (A3) and the finiteness of A(ι) and σw(ι) for each ι ∈ M lead to

Iε2(t, s) = 2
√
ε3

(t+s)/ε−1∑
j=t/ε

(t+s)/ε−1∑
k=t/ε

trEε
t [A(α

ε
j)x

ε
jw

′
kσ

′
w(α

ε
k)]

≤ K
√
ε3

(t+s)/ε−1∑
j=t/ε

∑
k≥j

∣∣tr [Eε
tA(α

ε
j)x

ε
j(Ejw

′
k)(Ejσ

′
w(α

ε
k))
]∣∣

≤ K
√
ε3

(t+s)/ε−1∑
k=t/ε

√
Eε

t |xεk|2
√
Eε

t |wk|2.

Therefore, an application of the Cauchy–Schwarz inequality yields

lim
δ→0

lim sup
ε→0

EIε2(t, s) = lim
δ→0

lim sup
ε→0

O(
√
ε) = 0.(A.7)

Next, we consider the last term of (A.4). Using the martingale difference property,
the independence of {αε

n} and {wn}, and Ejwk = 0 for j < k and Ekwj = 0 for k < j,
we obtain

Iε3(t, s) = ε

(t+s)/ε−1∑
j=t/ε

(t+s)/ε−1∑
k=t/ε

tr
(
Eε

t σw(α
ε
j)wjw

′
kσ

′
w(α

ε
k)}

)

= ε

(t+s)/ε−1∑
k=t/ε

|tr[Eε
t σw(α

ε
k)wkw

′
kσ

′
w(α

ε
k)]| ,
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and so

EIε3(t, s) ≤ Kε

(
t+ s

ε
− t

ε

)
= O(δ).

As a result,

lim
δ→0

lim sup
ε→0

EIε3(t, s) = lim
δ→0

O(δ) = 0.(A.8)

Combining (A.6), (A.7), and (A.8), we obtain

lim
δ→0

lim sup
ε→0

E|xε(t+ s)− xε(t)|2 = 0.

The criteria due to Kurtz [17, p. 47] then yields that {xε(·)} is tight in Dr[0, T ].
As far as the estimates of yε(·) are concerned, we merely note that

Eε
t |yε(t+ s)− yε(t)|2

= Eε
t

∣∣∣∣∣∣ε
(t+s)/ε−1∑

k=t/ε

C(αε
k)x

ε
k +

√
ε

(t+s)/ε−1∑
k=t/ε

σv(α
ε
k)vk

∣∣∣∣∣∣
2

≤ KEε
t

∣∣∣∣∣∣ε
(t+s)/ε−1∑

k=t/ε

C(αε
k)x

ε
k

∣∣∣∣∣∣
2

+KEε
t

∣∣∣∣∣∣√ε
(t+s)/ε−1∑

k=t/ε

σv(α
ε
k)vk

∣∣∣∣∣∣
2

.

The rest of the estimates are all similar to the previous case. Thus we also have that
{yε(·)} is tight in Dr[0, T ].

Proof of Theorem 3.4. Consider {xε(·)} first. In fact, we work with the pair
(xε(·), αε(·)). Owing to the tightness of {xε(·)} and the weak convergence of {αε(·)},
{(xε(·), αε(·))} is tight. By virtue of the Prohorov theorem [13, p. 104], we can extract
a weakly convergent subsequence. Select such a subsequence, and still denote it by
{(xε(·), αε(·))} for simplicity. Denote the limit of the sequence by (x(·), α(·)). By
the Skorohod representation [13, p. 102], we may assume without loss of generality
that (xε(·), αε(·)) converges to (x(·), α(·)) with probability one (w.p.1). Moreover, the
convergence is uniform on each bounded time interval. We proceed to use martingale
averaging techniques to figure out the limit.

To obtain the desired limit, it suffices to show that the limit (x(·), α(·)) is the
solution of a martingale problem with operator L given by

Lf(x, i) = f ′
x(x, i)A(i)x+

1

2
tr[fxx(x, i)σw(i)σw

′(i)] +Qf(x, ·)(i), i ∈ M,(A.9)

where

Qf(x, ·)(i) =
∑
j∈M

qijf(x, j) =
∑

j∈M, j �=i

qij(f(x, j)− f(x, i))

for each i ∈ M, and f(·, i) ∈ C2
0 (twice continuously differentiable function with

compact support). Since the filtering equation is linear in the state variable, by using
a similar argument to that in [29, Lemma 7.18], the corresponding martingale problem
with operator L given in (A.9) has a unique solution.
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To obtain the desired results, it suffices to show (see [19, Chapters 7 and 8]), for
any positive integer k0, any bounded and continuous function hκ(·) with κ ≤ k0, any
t, s > 0, and tκ ≤ t ≤ t+ s, that the following equation holds:

E

k0∏
κ=1

hκ(x(tκ), α(tκ))

(
f(x(t+ s), α(t+ s))− f(x(t), α(t))

−
∫ t+s

t

Lf(x(u), α(u))du
)
= 0.(A.10)

To obtain (A.10), we begin with the pair (xε(·), αε(·)). For each x, define f̌ by

f̌(x, α) =
l∑

i=1

f(x, i)I{α∈Mi} for each α ∈ M.(A.11)

Note that, for each α = sij ∈ Mi, f̌(x, α) takes a constant value f(x, i). Note also
that, at any time instant t, αε(t) = αε

t/ε takes on one of the m possible values from
M.

Note that f̌(xεk, α
ε
k) = f(xεk, α

ε
k) for each k. Choose a sequence of positive integers

{nε} such that nε → ∞ but δε = εnε → 0 as ε → 0. The piecewise constant
interpolation implies that

f̌(xε(t+ s), αε(t+ s))− f̌(xε(t), αε(t))

=
∑

l:t≤lδε≤(t+s)−ε

[f̌(xεlnε+nε
, αε

lnε+nε
)− f̌(xεlnε+nε

, αε
lnε
)](A.12)

+
∑

l:t≤lδε≤(t+s)−ε

[f̌(xεlnε+nε
, αε

lnε
)− f̌(xεlnε

, αε
lnε
)],

and hence

lim
ε→0

E

k0∏
κ=1

hκ(x
ε(tκ), α

ε(tκ))[f̌(x
ε(t+ s), αε(t+ s))− f̌(xε(t), αε(t))]

= lim
ε→0

E

k0∏
κ=1

hκ(x
ε(tκ), α

ε(tκ))
∑

l:t≤lδε≤(t+s)−ε

[f̌(xεlnε+nε
, αε

lnε+nε
)− f̌(xεlnε+nε

, αε
lnε
)]

+ lim
ε→0

E

k0∏
κ=1

hκ(x
ε(tκ), α

ε(tκ))
∑

l:t≤lδε≤(t+s)−ε

[f̌(xεlnε+nε
, αε

lnε
)− f̌(xεlnε

, αε
lnε
)]

def
= lim

ε→0
E

k0∏
κ=1

hκ(x
ε(tκ), α

ε(tκ))[g
ε
1 + gε2].

(A.13)

In the above,
∑

l:t≤lδε≤(t+s)−ε can also be written as
∑((t+s)/ε)−1

lnε=t/ε . We proceed to

obtain the desired limit by examining gεi (i = 1, 2) in (A.13).
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By virtue of a Taylor expansion, rewrite gε2 as

gε2 =
∑

l:t≤lδε≤(t+s)−ε

f̌ ′
x(xlnε

, αε
lnε
)[xεlnε+nε

− xεlnε
]

+
1

2

∑
l:t≤lδε≤(t+s)−ε

[xεlnε+nε
− xεlnε

]′f̌xx(x+
lnε

, αε
lnε
)[xεlnε+nε

− xεlnε
]

=
∑

l:t≤lδε≤(t+s)−ε

lnε+nε−1∑
k=lnε

f̌ ′
x(x

ε
lnε

, αε
lnε
)[εA(αε

k)x
ε
k +

√
εσw(α

ε
k)wk]

+
1

2

∑
l:t≤lδε≤(t+s)−ε

lnε+nε−1∑
k=lnε

[εA(αε
k)x

ε
k +

√
εσw(α

ε
k)wk]

′f̌xx(x+
lnε

, αε
lnε
)(A.14)

×
lnε+nε−1∑
k1=lnε

[εA(αε
k1
)xεk1

+
√
εσw(α

ε
k1
)wk1

]

def
=

[
gε2,1 +

1

2
gε2,2

]
,(A.15)

where x+
lnε
is on the line segment joining xεlnε

and xεlnε+nε
.

Then we have

E

k0∏
κ=1

hκ(x
ε(tκ), α

ε(tκ))

[
√
ε

∑
l:t≤lδε≤(t+s)−ε

f̌ ′
x(x

ε
lnε

, αε
lnε
)

lnε+nε−1∑
k=lnε

σw(α
ε
k)wk

]

= E

k0∏
κ=1

hκ(x
ε(tκ), α

ε(tκ))

[
√
ε

∑
l:t≤lδε≤(t+s)−ε

f̌ ′
x(xlnε , α

ε
lnε
)

×
lnε+nε−1∑

k=lnε

Elnε
σw(α

ε
k)Elnε

wk

]
.

In the above, the second line is a consequence of the independence of {αε
n} and

{wn} and the measurability of xεlnε
and αε

lnε
with respect to Flnε . In view of the

boundedness of hκ(·) and f̌x(·) and the finiteness of σw(αε
k), we obtain

E

k0∏
κ=1

hκ(x
ε(tκ), α

ε(tκ))

√ε ∑
l:t≤lδε≤(t+s)−ε

lnε+nε−1∑
k=lnε

f̌ ′
x(xlnε , α

ε
lnε
)Elnεσw(α

ε
k)Elnεwk


→ 0 as ε → 0.

(A.16)

Next, let us treat the term on the second line of (A.14). First note that

E

∣∣∣∣∣∣ε
l∑

i=1

mi∑
j=1

lnε+nε−1∑
k=lnε

A(sij)x
ε
k[I{αε

k
=sij} − νijI{αε

k
∈Mi}]

∣∣∣∣∣∣
≤ K

l∑
i=1

mi∑
j=1

E

∣∣∣∣∣ε
lnε+nε−1∑

k=lnε

A(sij)x
ε
k[I{αε

k
=sij} − νijI{αε

k
∈Mi}]

∣∣∣∣∣ .
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Thus we need only examine the terms with fixed indices i and j. By a partial sum-
mation,

E

∣∣∣∣∣ε
lnε+nε−1∑

k=lnε

A(sij)x
ε
k[I{αε

k
=sij} − νijI{αε

k
∈Mi}]

∣∣∣∣∣
≤ KE

∣∣∣∣∣εA(sij)xεlnε+nε−1

lnε+nε−1∑
k=0

[I{αε
k
=sij} − νijI{αε

k
∈Mi}]

∣∣∣∣∣
+ KE

∣∣∣∣∣εA(sij)xεlnε−1

lnε−1∑
k=0

[I{αε
k
=sij} − νijI{αε

k
∈Mi}]

∣∣∣∣∣
+ KE

∣∣∣∣∣ε
lnε+nε−2∑

k=lnε

(xεk − xεk+1)

k∑
k0=0

[I{αε
k0

=sij} − νijI{αε
k0

∈Mi}]

∣∣∣∣∣ .
Using the mean square estimates on the occupation measures (2.10) and Lemma 3.2,

E

∣∣∣∣∣εA(sij)xεlnε+nε−1

lnε+nε−1∑
k=0

[I{αε
k
=sij} − νijI{αε

k
∈Mi}]

∣∣∣∣∣
≤ KE1/2

∣∣xεlnε+nε−1

∣∣2 E1/2

∣∣∣∣∣ε
lnε+nε−1∑

k=0

[I{αε
k
=sij} − νijI{αε

k
∈Mi}]

∣∣∣∣∣
2

= O(
√
ε)→ 0 as ε → 0.

Similarly,

E

∣∣∣∣∣εA(sij)xεlnε−1

lnε−1∑
k=0

[I{αε
k
=sij} − νijI{αε

k
∈Mi}]

∣∣∣∣∣→ 0 as ε → 0.

Using (2.2), the Cauchy–Schwarz inequality, and the mean square estimates (2.10),

E

∣∣∣∣∣ε
lnε+nε−2∑

k=lnε

(xεk − xεk+1)

k∑
k0=0

[I{αε
k0

=sij} − νijI{αε
k0

∈Mi}]

∣∣∣∣∣
≤

lnε+nε−2∑
k=lnε

E1/2|xεk − xεk+1|2E1/2

∣∣∣∣∣ε
k∑

k0=0

[I{αε
k0

=sij} − νijI{αε
k0

∈Mi}]

∣∣∣∣∣
2

≤
lnε+nε−2∑

k=lnε

E1/2|εA(αε
k)x

ε
k +

√
εσw(α

ε
k)wk|2

× E1/2

∣∣∣∣∣ε
k∑

k0=0

[I{αε
k0

=sij} − νijI{αε
k0

∈Mi}]

∣∣∣∣∣
2

→ 0 as ε → 0.
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Using the above estimates and the continuity of f̌x(·, α) for each α ∈ M,

E

k0∏
κ=1

hκ(x
ε(tκ), α

ε(tκ))

ε ∑
l:t≤lδε≤(t+s)−ε

f̌ ′
x(x

ε
lnε

, αε
lnε
)

lnε+nε−1∑
k=lnε

A(αε
k)x

ε
k


= E

k0∏
κ=1

hκ(x
ε(tκ), α

ε(tκ))

 ∑
l:t≤lδε≤(t+s)−ε

l∑
i=1

mi∑
j=1

f̌ ′
x(xlnε , α

ε
lnε
)

× δε
nε

lnε+nε−1∑
k=lnε

A(sij)x
ε
lnε

νijI{αε
k
∈Mi}

]
+ o(1),(A.17)

where o(1)→ 0 as ε → 0. Then, as ε → 0, letting εlnε → u, and using the techniques
of [19, Chapter 8], (A.17) together with (A.16) leads to

E

k0∏
κ=1

hκ(x
ε(tκ), α

ε(tκ))g
ε
2,1

→ E

k0∏
κ=1

hκ(x(tκ), α(tκ))

(∫ t+s

t

f ′
x(x(u), α(u))A(α(u))x(u)du

)
as ε → 0.(A.18)

As for gε2,2, we have, by the continuity of fxx(·, α) for each α ∈ M, x+
lnε

−xεlnε
→ 0

in probability as ε → 0. Consequently,

E

k0∏
κ=1

hκ(x
ε(tκ), α

ε(tκ))g
ε
2,2

def
= g̃ε2,2 + o(1),

where o(1)→ 0 as ε → 0 uniformly in t, and

g̃ε2,2 = E

k0∏
κ=1

hκ(x
ε(tκ), α

ε(tκ))

×
 ∑
l:t≤lδε≤(t+s)−ε

lnε+nε−1∑
k=lnε

[εA(αε
k)x

ε
k +

√
εσw(α

ε
k)wk]

′f̌xx(xεlnε
, αε

lnε
)

×
lnε+nε−1∑
k1=lnε

[εA(αε
k1
)xεk1

+
√
εσw(α

ε
k1
)wk1

]

]
.
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It then follows that

g̃ε2,2 = E

k0∏
κ=1

hκ(x
ε(tκ), α

ε(tκ))

×
ε2 ∑

l:t≤lδε≤(t+s)−ε

lnε+nε−1∑
k=lnε

(A(αε
k)x

ε
k)

′f̌xx(xεlnε
, αε

lnε
)

lnε+nε−1∑
k1=lnε

A(αε
k1
)xεk1

+
√
ε3

∑
l:t≤lδε≤(t+s)−ε

lnε+nε−1∑
k=lnε

(A(αε
k)x

ε
k)

′f̌xx(xεlnε
, αε

lnε
)

lnε+nε−1∑
k1=lnε

σw(α
ε
k1
)wk1

+
√
ε3

∑
l:t≤lδε≤(t+s)−ε

lnε+nε−1∑
k=lnε

(σw(α
ε
k)wk)

′f̌xx(xεlnε
, αε

lnε
)

lnε+nε−1∑
k1=lnε

A(αε
k1
)xεk1

+ ε
∑

l:t≤lδε≤(t+s)−ε

lnε+nε−1∑
k=lnε

(σw(α
ε
k)wk)

′f̌xx(xεlnε
, αε

lnε
)

lnε+nε−1∑
k1=lnε

σw(α
ε
k1
)wk1


= E

k0∏
κ=1

hκ(x
ε(tκ), α

ε(tκ))

×
ε ∑

l:t≤lδε≤(t+s)−ε

lnε+nε−1∑
k=lnε

(σw(α
ε
k)wk)

′f̌xx(xεlnε
, αε

lnε
)σw(α

ε
k)wk

+ o(1),

where o(1) → 0 as ε → 0. Furthermore, using the idea of the estimates leading to
(A.17) and the mean square estimates (2.10), it can be shown that

ε
∑

l:t≤lδε≤(t+s)−ε

lnε+nε−1∑
k=lnε

(σw(α
ε
k)wk)

′f̌xx(xεlnε
, αε

lnε
)σw(α

ε
k)wk

=
∑

l:t≤lδε≤(t+s)−ε

l∑
i=1

mi∑
j=1

δε
nε

lnε+nε−1∑
k=lnε

tr[f̌xx(x
ε
lnε

, sij)σw(sij)wkw
′
kσ

′
w(sij)]I{αε

k
=sij}

=
∑

l:t≤lδε≤(t+s)−ε

l∑
i=1

mi∑
j=1

δε
nε

lnε+nε−1∑
k=lnε

tr[f̌xx(x
ε
lnε

, αε
lnε
)σw(sij)wkw

′
kσ

′
w(sij)]

×νijI{αε
k
∈Mi} + o(1),

where o(1)→ 0 in probability as ε → 0 uniformly in t. It then follows that

lim
ε→0

E

k0∏
κ=1

hκ(x
ε(tκ), α

ε(tκ))(A.19)

×
ε ∑

l:t≤lδε≤(t+s)−ε

lnε+nε−1∑
k=lnε

(σw(α
ε
k)wk)

′f̌xx(xεlnε
, αε

lnε
)σw(α

ε
k)wk


= E

k0∏
κ=1

hκ(x(tκ), α(tκ))

[∫ t+s

t

tr[fxx(x(u), α(u))σw(α(u))σ
′
w(α(u))]du

]
.

Next, we consider the term gε1. Using the continuity of f̌(·, α) for each α ∈ M, the
Markov property of αε

n, the mean square estimate (2.10) of the occupation measures,
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(2.1), and Lemma 2.1, we have

E

k0∏
κ=1

hκ(x
ε(tκ), α

ε(tκ))g
ε
1(A.20)

= E

k0∏
κ=1

hκ(x
ε(tκ), α

ε(tκ))

 ∑
l:t≤lδε≤(t+s)−ε

(f̌(xεlnε
, αε

lnε+nε
)− f̌(xεlnε

, αε
lnε
))


= E

k0∏
κ=1

hκ(x
ε(tκ), α

ε(tκ))

 ∑
l:t≤lδε≤(t+s)−ε

lnε+nε−1∑
k=lnε

l∑
i1=1

mi1∑
j1=1

 l∑
i=1

mi∑
j=1

f̌(xεlnε
, sij)

× P (αε
k+1 = sij |αε

k = si1j1)− f̌(xεlnε
, si1j1)

 I{αε
k
=si1j1}


= E

k0∏
κ=1

hκ(x
ε(tκ), α

ε(tκ))

ε ∑
l:t≤lδε≤(t+s)−ε

lnε+nε−1∑
k=lnε

(P − I + εQ)f̌(xεlnε
, ·)(αε

k)


= E

k0∏
κ=1

hκ(x
ε(tκ), α

ε(tκ))

ε ∑
l:t≤lδε≤(t+s)−ε

lnε+nε−1∑
k=lnε

Qf̌(xεlnε
, ·)(αε

k)


→
∫ t+s

t

Qf(x(u), α(u))du as ε → 0.

Combining (A.18), (A.19), and (A.20),

lim
ε→0

E

k0∏
κ=1

hκ(x
ε(tκ), α

ε(tκ))
[
f̌(xε(t+ s), αε(t+ s))− f̌(xε(t), αε(t))

]
(A.21)

= E

k0∏
κ=1

hκ(x(tκ), α(tκ))

[∫ t+s

t

Lf(x(u), α(u))du
]
.

On the other hand, by the weak convergence of (xε(·), αε(·)) to (x(·), α(·)), the Sko-
rohod representation, and the definition of f̌(·), we have

lim
ε→0

E

k0∏
κ=1

hκ(x
ε(tκ), α

ε(tκ))[f̌(x
ε(t+ s), αε(t+ s))− f̌(xε(t), αε(t))](A.22)

= E

k0∏
κ=1

hκ(x(tκ), α(tκ))[f(x(t+ s), α(t+ s))− f(x(t), α(t))].

By (A.21) and (A.22), (A.10) holds. Using the same techniques, detailed estimates
yield the second equation in (3.4). Thus the desired results follow.

REFERENCES

[1] Y. Bar-Shalom and X. R. Li, Estimation and Tracking: Principles, Techniques, and Software,
Artech House Publishers, Norwood, MA, 1996.

[2] D. P. Bertsekas, Dynamic Programming and Stochastic Control, Academic Press, New York,
1976.



LIMIT RESULTS IN DISCRETE-TIME HYBRID FILTERS 1841

[3] T. R. Bielecki and L. Stettner, Ergodic control of a singularly perturbed Markov process
in discrete time with general state and compact action spaces, Appl. Math. Optim., 38
(1998), pp. 261–281.

[4] T. Björk, Finite-dimensional optimal filters for a class of Itô processes with jumping param-
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