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Abstract-In this paper we address a sensor network lifetime
optimization problem, where the network is given a task of
reconstructing a Gaussian source with a specified rate-distortion
constraint. The multiple agents observing the source relay their
information through a multihop network to a sink or a base
station. Although this problem has been addressed by other
authors recently, only upper and lower bounds were obtained to
the optimal lifetime as the nonlinear optimization problem was
approximated by linearized constraints. We show that by a clever
variable substitution, the original nonlinear optimization problem
can be reformulated as a convex optimization problem and can
be solved by sophisticated convex optimization tools. We provide
numerical results comparing our optimal lifetime with the upper
and lower bounds obtained in previous work and demonstrate
that those bounds are not very tight. Some possible future
research directions are mentioned in the concluding remarks.
Keywords-Network Lifetime, Wireless Sensor Network (WSN),
Rate Distortion, CEO problem.

I. INTRODUCTION

Wireless sensor networks (WSN) have become a key tech-
nology for the 21st century due to its widespread applications
in security, health, disaster response, defense, telecommu-
nications, structural health monitoring etc. These networks
usually consist of a collection of sensor nodes connected by
wireless communication links. The sensor nodes usually have
on-board battery, communication and computation capability.
However, due to limited energy resources and a distinct lack of
coordination (compared to cellular networks), the usefulness
of these networks can become limited unless special care is
taken to optimize energy consumption in communication and
computation. Optimizing the lifetime of a WSN is thus an
important problem. In many typical wireless sensor network
applications, a set of nodes or agents measure or collect data
from a source or phenomenon of interest (e.g, temperature
in a bushfire prone area or surveillance pictures of human
movements etc.) and then transmit them over a multi-hop
relay network to a sink or a base station where all data are
collected and decisions or final estimates are made. In such
a network, energy consumption is affected by such diverse
parameters as choice of routes, NIAC protocols, data rates,
transmit power, wireless channel quality and fading etc. Thus,

This work was supported by the Australian Research Council. CUBIN is
an affiliated program of National ICT Australia (NICTA).

to optimize the lifetime of a WSN, one really has to consider
a cross-layer design. This often leads to very complicated
mixed-integer nonlinear optimization problems. Some such
cross-layer issues with joint power and rate control have been
studied in [1], [2]. In particular, [2] studied a joint power and
rate control problem for lifetime optimization in a multi-hop
wireless sensor network with constraints on outage induced
by channel fading. In both [1], [2], non-convex nonlinear
optimization problems were transformed into approximate
convex optimization problems and solved using sophisticated
convex optimization tools.

However, none of these papers considered any specific
application task for the WSN under consideration. On the other
hand, a recent paper [3] considers lifetime maximization in the
context of data distortion. In this paper, the specific task for the
WSN is considered to be a remote random source estimation
or reconstruction. It is well known that data rates and rate
of transmission are intimately related through rate-distortion
theory. While higher data rates may allow high quality data
reconstruction (e.g, in surveillance camera applications), it
may also result in large amount of energy expenditure in a
WSN due to multi-hop transmission. This inherent trade-off
between transmission rates (to achieve a certain pre-specified
distortion threshold) and lifetime of the WSN was studied in
[3] for an interference-free WSN where transmission power
was kept fixed and the only optimization variables were the
data rates in the various links of the WSN. In order to make
their nonlinear optimization problem tractable, the authors of
[3] made some judicious linear approximations and obtained
upper and lower bounds on the optimal network lifetime using
linear programming methods.

In our paper, we consider the same problem as studied
in [3]. We show that with a proper variable substitution, the
nonlinear optimization problem with rate distortion constraints
(and the usual flow conservation and energy constraints) can be
transformed into a nonlinear but convex optimization problem.
With this convex optimization formulation, we use an appro-
priate Barrier method [4] to solve for the exact optimal life-
time. This optimal lifetime solution is compared with the lower
and upper bounds evaluated by the approximations presented
in [3] via numerical studies for a 5-node multi-hop network
for various distortion thresholds. This convex optimization
framework has the potential advantage that more complicated
cross-layer optimization problems (with additional constraints
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such as fading related outage constraints as in [2]) can be
formulated using the same framework. These sorts of cross-
layer issues in WSN lifetime optimization problems with
rate-distortion constraints including power and rate control,
scheduling, routing etc. will be addressed in future work via
this promising nonlinear convex optimization formulation.

II. SYSTEM DESCRIPTION

The WSN we consider in this paper is denoted by a di-graph
Q(V, L), where L represents the set of all directed links, which
are valid when the receiver of the link can interpret correctly
the packets sent by the transmitter with maximum power. The
set V comprises of three categories of nodes: bs is the unique
base station which collects information from the field and
transfers it to end users; A are the sensor agents observing the
phenomenon of interest; set I are all the intermediate nodes
who convey the data generated by sensors to the Base Station
bs. Since agents could also be relay nodes for other sensors
which are closer to the object, the intersection of A and I
may not be a empty set, but the union of the three is set V.

V {bs}UAuI
As defined in [1], three topology matrices T+, T- and T

are used to described the relationships between sensor nodes
and links in this paper.

T+ {I if v is the transmitter of link I
vl l otherwise

T-, {J1 if v is the receiver of link I
vl X0 otherwise

Tv, = Tj+- T-

The energy consumption in this WSN is calculated as
follows. All energy consumption is based on the unit of data
bits. Within the transmitter, energy is consumed due to data
processing at rate ET'C and due to the power amplifier at the
rate ET' The second part is proportional to dn where d is
the distance between the transmitter and the receiver (exponent
n is the propagation loss factor which takes different values
from between 2 and 6 depending on the terrain). Similarly,
ER' denotes the energy consumed for interpreting one bit
of data from received packets. Finally, sensor energy cost per
bit data sensing is denoted by Esense. Thus, for a single link,
transmit and receive powers and the sensing power at node v
are given by

Txz ETxf

Pi
=(E TIxc + EamTxJ

=eecelec +pampel
Rx ERx

= elecfl (2)
svense usenseR

EsenseRv (3)

eTXcn eampln eix and Es,ns' are constant parameters, fi and
R, denote the flow rate on the l-th link (with distance dl) and
the data rate generated at the v-th node respectively.

III. PROBLEM FORMULATION AND ITS SOLUTION

In this section, we define the lifetime maximization problem
as a constrained nonlinear optimization problem, which after a
suitable variable substitution, becomes a convex optimization
problem. The constraints for this problem are of three types:
flow conservation constraints, energy constraints and rate-
distortion constraints.

A. Flow Constraints

Define f as the column vector of the flow rates on all links.
At any sensor node v, the flow conservation constraint is then
given by

Tr+f -T-f =R (4)

where Tv. is the v-th row of the Topology Matrix. Constraint
(4) can appear in different forms when for different types of
nodes. As a pure relay node, the right hand side of (4) is zero.
Since the base station does not send any information through
wireless network, the first part of the left hand side is zero and
the summation of the received flows is the same as the sum
of data rate generated from all the sensors. These two special
cases are then given by the following:

Tj+f -T.f =0 Vv C I\((An )

-Tb-.f = Rb, =-E Rv
vcA

(5)
(6)

1) Energy Constraints: Define the column vectors of trans-
mit powers and received powers of all links as pTX and
pRX. Define also the column vector with the l-th being d7fl
as dao f. In this paper, we are not concerned with the
energy capacity of the base station. Consequently, the power
constraint for the sensor nodes is

(TJtPTx + T-pRX +spense)Lt <Er, Vv C A

Lt is the lifetime of the network, which is defined as the length
of time before the first node runs out of its battery energy. For
a relay node, the sensing power is negligible. Associated with
(1), (2), (3), the energy constraints are then given by

(Tj. (CTxf + ETxd' ° f) + T-. (E§Rx f)
+,sense x Rv)Lt < E, Vv e A

(T+ (C Txi f + EiTx dn a f) + TR,(E4l f))Lt
< Ev, VveC17\ (A4n 7)

(7)

(8)

In this work, we do not consider channel fading or interfer-
ence. Therefore power control is not considered in this paper.

2) Rate Distortion Constraints: In the so-called quadratic
Gaussian CEO problem, a Gaussian source, is of interest
to a base station or a central office (CEO). The flow rates
containing the information about the source go through the
intermediate nodes (relays) to the central office. The given
information is used to decrease the data distortion of the source
in the reconstructed version. Prabhakaran et al. derive the rate
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region with different quality of observations at different data constraints (9) (10), the constrained optimization problem is
collecting agents in [5].

T
L

1))

RD (rl ,...,rA) A{(R RIAI):

S Rk > : rk + 1 log 1
2 D

kCVIV kC VV

-2 log( I + E I 2k )

X kCA\V k

VWCA w # 0}

max Lt
f,R,r

s.t. f,R,r >O

Tj+f-Tv.f=Rv, VveA

T+f-Tv.f =0, VvCI\(AnI)

(Tv (6Tx f + Tx da f) + Tv. (cRx f)
+,sense x Rv)Lt < E, Vv C A

(T (C TIxf +ampdn °f)+TnR(cef))Lt
< E, Vv C 1\ (A4ni1)

(12)

(9)

'x and ao2 are the variance of the source and of the observa-
tion at the k-th agent observing source X, respectively. The
distortion threshold D is the maximum allowable distortion
we want to guarantee in the reconstructed version. In addition,
r1,....rAjl > 0 are auxiliary variables, and

1 1
, Rk > : rk + logw~~~~ D

kCVIV kC VV

+ S 2 ), VW

kCAVV k

2log(12

CAW#0

- e-2rk

(72
¶F(D) =

(rA .rIAI) eIR'l: 1

k( 1E
(10)

Since W in (9) is the set of all the nonempty subset of A, the
total number of the elements in W grows exponentially with
Av, more specifically, 211- 1. This fact dramatically increases
the complexity of the algorithm. In order to reduce computa-
tional complexity, we only choose agents with higher quality
of measurements, i.e. lower measurement noise variance. As
in [3], it is assumed that the inaccuracy of the measurement is
proportional to the square of the distance between the source
and the k-th measuring agent:

(7k = (cr0dk kVeA (1 1)

On the other hand, the variable quality of the sensors also
introduces a trade-off in energy conservation. A node close
to the source can represent the source with a lower data rate,
but it needs more relay nodes to convey the information to
the base station, since it is far away from it. However, if the
sensor node is close to the base station, its accuracy in the
measurement may be degraded and hence it needs higher rate
in order to achieve the same data distortion threshold - D. As
a result, the energy consumption increases with the rate and
the network lifetime is reduced. This trade-off is captured in
the following optimization problem.

B. Problem Formulation

The objective of the optimization problem is to maximize
the network lifetime, defined as the time before the first node
in the network runs out of its battery energy.

Lt=minEvvEAUI Pv

where Pv includes transmission power, receiving power, and
sensing power in this paper. Associated with the flow con-
straints (4) (5), energy constraints (7) (8), and rate distortion

1 1411
72 +I:
X k=l

-e-2rk 1
2 > DD7

C. Solutions

1) Linear Approximation: In [3], Kansal et al give a simple
solution to the above optimization problem by replacing the
nonlinear constraints with linear ones. As a result, they derived
upper and lower bounds of the network lifetime. There are two
kinds of variable substitutions in their solution. First, define
two variables - r' and r" - where

0 < r' = minrk < rk < max = r"
kTA k(A

Therefore, (10) can be rewritten as:

2 +(1 e2r')5 l >

+(1 -2r")E >

In addition, since

0 < 1-e 2rk <1,~ Vk A

the authors of [3] substitute (9) with

5 R> r+2 log _2
>

kCVV kCV D 2-

1 1

kV k=1Vk

-2 log(,2 + S\ I2)
kGA\IV Ok

(13)

(14)

(15)

(16)

Instead of dealing with the nonlinear constraints, they shrink
and expand the feasible area of the original optimization
problem by replacing (10) (9) with (13), (15) or with (14),
(16) respectively. This allows them to convert the lifetime
maximization problem into a linear programming problem
which can be solved efficiently.
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2) Convex Optimization: Although Kansal et al derived the
upper and lower bound to the original problem, it cannot obtain
the exact optimal lifetime, especially when the rate distortion
constraint is not severe. The graph in [3] shows that when the
normalized distortion threshold increases the gap between the
upper and lower bound grows. In this paper, we transform the
above optimization problem to a convex optimization prob-
lem via a clever variable substitution. Thus, the optimization
problem can be solved by sophisticated convex optimization
tools. Without making any linear approximations, we solve the
original problem directly by introducing vector U. Let

eUk < 1 + 1 e2

iCA\Wk

k = 1, ... . 21AI-1 (17)

and

E: Ri > E: rj + 2 log D
iCEWk iVEWk

1
2Uk

k =1... 21AI-1 (18)

As long as the inequalities hold for (17) and (18), the original
constraints will be satisfied, because of the decreasing property
of the function -log(A). In other word,

E: Ri > E: rj + 2 log D
iCEWk iVEWk

1 1
> L ri + 2 log D2 D

i(VVk

1
2Uk

log( 2 + E:
X iCA\Wk

-e 2ri

2)
oi

Therefore, we can substitute the first group of rate distortion
constraints by (17) and (18), which will give an equivalent
result for the optimization problem.
Now, instead of maximizing the network lifetime, we try

to minimize its inverse q [2]. Accordingly, the reformulated
constrained optimization problem can be written as:

min q
f,R,r,U

s.t. f,R,r > 0

Tj+f-Tvf=Rv, VveA

Tv+f-Tv.f=O, VveI\(AnI)
(T±(6 Tx f + 6Tx d' a f) + T- (Rx~velec amp yeelec/

+sense XRV)-qEv <O, Vv e A

(TV (CTx f + cTx dno f) + Tv-.(cRxf))
-qEv<o, VvCI\(AIn)

E rj+log Uk E+Ri<O,
iEWk 2iEWk

1~... . 21A1 - 1

E l e2G

(7
i(A\Wk vi

k=1,... 21AI -I

1 IAI1 e-2rk

T2 -E 2
X k=l k

< 0,

< 0

U_1k

cr

D a

(19)

In (24) and (25)

W = {W1 . ..., W2AV1-1 all the nonempty subsets of A}
It is clear that this reformulated problem is a convex

optimization problem, because:
* (20) and (21) are linear in f;
* (22) and (23) are linear in f and q;
* (24) is linear in R, r, and U;
* (25) is convex in r and U;
* (26) is convex in r.

IV. NUMERICAL RESULTS

The simulations in this paper are based on a simple case
with 5 nodes: nodes I and II monitor the phenomenon of
interest in Source X; intermediate nodes III and IV are in
charge of relaying the information from the sensors to the base
station BS. Totally, there are 8 links in the network. Apart
from taking advantage of relay nodes, sensors I and II can
also transmit data flow to the base station directly by links 7
and 8. The coordinates for each node (including the position
of the source) are shown in Figure 1.

III (40, 40)

(1) X(3)
I (0, 10) (6) (7)

/
7

_A

X (U, U)

W~~~~~~~~~~/
I 5t(8010BS(5) ()(80, 10)

(2) ' 0II (0, -20) IV (409 -20)

Fig. 1. A Monitoring Instance with 5 Nodes and 8 Links

As mentioned in [6], the energy consumption parameters
(20) JTx 6Tx 6Rx and "sense are chosen as 45 x 10 9,elec' amp' elec
(21) 10 x 10-12, 50 x 10-9, and 135 x 10-9 respectively. The

propagation loss factor n is equal to 2. For all sensing agents

(22) and relay nodes, the battery capacity is 18OnJ. The inaccuracy
in the sensor measurements is given by formula (11). We also
suppose (o2= 0.01 as it is in [3].

(23) In Part III-C.2, we mentioned that W' is the set of all the
nonempty subsets of A. For this specific case, A {I, II},

W = {{I}, {II}, {I, II}}

(24) We use the classic MATLAB toolbox and the well-known
Barrier Method with a logarithmic barrier function [4] to
solve the nonlinear convex optimization problem. Equality
constraints (20) (21) are eliminated through linear variable

(25) substitution. The objective function increases by multiplying
10 (,u in [4]) in each round and the back tracking parameters

(26) are chosen as a = 0.1 Q = 0.75 which can be different without
losing the convergence.

c
0-lrj
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0 Upper Bound
Convex Formulation

10 Lower Bound

III

0.0738

R1=0.1022 BS

I X X

* 0.0284X < <0.1353
0.1069 v

R2=0.1069 IV

E

-Z_Z

z 4-

-10 -9 -8 -7 -6 -5 -4 -3 -2
Normalized Distortion Constraint- D(dB) Fig. 3. Solution (Unit: bps) to the Convex Optimization when D =-1 (dB)

Fig. 2. Compare of Convex Optimization and Linear Approximation

The x-axis in Figure 2 represents the rate distortion thresh-
old which is log-normalized by the variance of the source
- 'x2. The graph shows that our optimal lifetime solution
sits in between than the upper and lower bounds illustrated
by Kansal et al (as expected). It also clearly shows that
none of the bounds are particularly tight. The differences
among the three lifetime solutions are considerable when the
rate distortion threshold is not too demanding. The network
lifetime becomes very large when the logarithmic distortion
threshold approaches 0. This fact can be as follows: if D =

'xX, we can simply estimate the source by the mean value of
the source (this information can be received by communication
overhead), and this guess will achieve the required distortion
threshold; in other words, the estimator at the base station
can satisfy the requirement without receiving any information
from the sensors at all. Therefore, no transmission is necessary,
the energy consumption is zero, and then the lifetime goes to
infinity. On the other hand, if the rate distortion constraint
is too demanding, the optimization problem can become
infeasible. The network lifetime becomes zero in that case.
Figures 3 and 4 give the complete solution for routing and rate
allocation when D =1 (dB) and D =-10 (dB) respectively.
It is clear from the graphs that the data rate R1, R2 for the
stricter constraint D =-10(dB) are much greater than those
for D =-(dB).

III 4

91.2772
R1=1.7685

I 0

x0 0.4913

II~@ 1.8497 4
R2=1.8497

1.2772

2 BS

<2.3410

IV

Fig. 4. Solution (Unit: bps) to the Convex Optimization when D -10(dB)
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V. CONCLUSION AND FUTURE WORK

This convex optimization framework is extremely useful as
it allows us to consider other constraints in the optimization
problem imposed by other layers in the network, such as rate
outage and link outage constraints as in [2] and scheduling
or routing constraints etc. In future work, we will study
such cross-layer issues for sensor networks with rate-distortion
constraints as well as data rate constraints when the task of
the network is not just limited to reconstructing a random
source, but the network is responsible for estimating a complex
dynamical system (e.g, the trajectory of a moving target).
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