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Kalman Filtering with Markovian Packet Losses
and Stability Criteria

Minyi Huang and Subhrakanti Dey

Abstract— We consider Kalman filtering in a network with
packet losses, and use a two state Markov chain to describe the
normal operating condition of packet delivery and transmission
failure. We analyze the behavior of the estimation error
covariance matrix and introduce the notion of peak covariance,
which describes the upper envelope of the sequence of error
covariance matrices {Pt, t ≥ 1} for the case of an unstable
scalar model. We give sufficient conditions for the stability of
the peak covariance process in the general vector case; for
the scalar case we obtain a sufficient and necessary condition,
and derive upper and lower bounds for the tail distribution
of the peak variance. For practically verifying the stability
condition, we further introduce a suboptimal estimator and
develop a numerical procedure to generate tighter estimate for
the constants involved in the stability criterion.

I. INTRODUCTION

The problem of state estimation is of great importance
in various applications ranging from tracking, detection and
control, and in linear stochastic dynamical systems, Kalman
filtering [12], [11] plays an essential role. Recently there
has been an increased research attention for filtering in
distributed systems where sensor measurements and final
signal processing take place in geographically separate lo-
cations and the usage of wireless or wireline communication
channels is essential for data communication. In contrast to
traditional filtering problems, an important feature in these
networked systems is that the delivery of measurements to
the estimator is not always reliable and losses of data may
occur.

In this paper, we consider the optimal filtering of a linear
system with random packet losses. We focus on the n
dimensional linear time-invariant system

xt+1 = Axt + wt, t ≥ 0,

where the initial state is x0 at t = 0. The sensor measure-
ments are obtained starting from t ≥ 1 in the form

y0
t = Cxt + vt t ≥ 1,

where C ∈ R
m×n, and then y0

t is transmitted by a channel.
Here {wt, t ≥ 1} and {vt, t ≥ 1} are two mutually inde-
pendent sequences of i.i.d. Gaussian noises with covariance
matrices Q and R > 0, respectively. The two noise sequences
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are also independent of x0, which is a Gaussian random
vector with mean x̄0 = Ex0 and covariance matrix Px0

. The
underlying probability space is denoted as (Ω, F, P ) where
F is the σ-algebra of all events.

We consider a communication channel such that y0
t is

exactly retrieved or the packet containing y0
t is lost due

to corrupted data or substantial delay. When the packet is
successfully received, one obtains the observation

yt = y0
t ,

and if there is a packet loss, by our convention, the obser-
vation obtained by the receiver is

yt ≡ 0.

Under this assumption, the underlying communication link
may be looked at as an erasure channel at the packet level.

We use γt ∈ {0, 1} to indicate the arrival (with value
1) or loss (with value 0) of packets. Here γt may be
interpreted as resulting from the physical operating condition
of a network and is assumed to be known at the filter.
Specifically, the state 0 for γt may correspond to channel
error or network congestion which causes a straight packet
loss or long delay resulting in packet dropping at the receiver.
For facilitating the presentation, 0 and 1 shall be called the
failure state and normal state, respectively. To capture the
temporal correlation of the channel variation (e.g, in bursty
error conditions), γt is modelled by a two state Markov chain
with the transition matrix

α =

[
1 − q q

p 1 − p

]
, (1)

where p and q, respectively, are called the failure rate and
recovery rate and p, q > 0. For instance, 1 − p denotes the
probability of the channel remaining at the normal state 1
after one step transition if it starts with state 1. This is usually
called the Gilbert-Elliott channel model [5], [2]. Obviously,
a small value (close to 0) for p and large value (close to 1)
for q mean the channel is more reliable.

Based on the history Ft = σ(yi, γi, i ≤ t), which is
the σ-algebra generated by the available information up
to time t (i.e., all events that can be generated by these
random variables), one can write a set of filtering and
prediction equations corresponding to the optimal estimate
x̂t = E[xt|Ft] and x̂t+1|t = E[xt+1|Ft], t ≥ 0, respectively,
by the same method as in [16] which dealt with i.i.d. packet
losses. The details for the recursion of x̂t and x̂t+1|t will not
be repeated here. In this paper we focus on the estimation
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error of x̂t+1|t with an associated covariance matrix

Pt+1|t
�
= E(xt+1 − x̂t+1|t)(xt+1 − x̂t+1|t)

′.

We also write Pt+1|t = Pt+1. To characterize the filtering
covariance conditioned on the past history, one can easily
derive the following random Riccati equation

Pt+1 = APtA
′ + Q − γtAPtC

′(CPtC
′ + R)−1CPtA

′,

t ≥ 1, (2)

where M ′ denotes the transpose of a vector or matrix M .
The initial condition in (2) is P1 = V ar(x1) = APx0

A′+Q.
Note that γt appears as a random coefficient in the recursion.

Under a Bernoulli i.i.d. packet loss modelling, the filtering
stability can be efficiently studied by a modified algebraic
Riccati equation (MARE), which is obtained by replacing
γt in equation (2) by the arrival rate λ. Subsequently,
the analysis amounts to identifying a critical value λc (as
a threshold) such that stability holds if and only if the
arrival rate is greater than λc (see Section IV for additional
discussion) [16]. In contrast, when the channel model is
given by the Markov chain γt, such a conversion into a
deterministic MARE is no longer feasible, and since the
channel is described by several independent parameters, the
usual threshold argument is not applicable.

A. Background and Related Work

Nowadays, filtering and estimation constitute an impor-
tant aspect in sensor network deployment for monitoring,
detection or tracking [1], [21], [20], as well as multi-vehicle
coordination [19], since in reality sensors can only obtain
noisy information about a physical activity in its vicinity.
And for many linear stochastic models, a useful tool is the
standard Kalman filtering theory which has been widely used
in various estimation and control scenarios. Recently there is
an increased attention for its application in distributed net-
works while new theoretical questions and implementation
issues emerge. In close relation to estimation in lossy sensor
networks, there also has been a long history of research on
filtering with missing signals at certain points of time, i.e.,
the output does not necessarily contain the signal in question
and it may be only a noise component. Such models were
referred to as systems with uncertain observations [15], [10],
[7], [18], where a typical method for stability analysis is to
construct a deterministic recursion utilizing the statistics of
the uncertainty sequence indicating the availability of signals.

In the more recent research on network models, the work
[17] and [3] considered state estimation with lossy mea-
surements resulting from time-varying channel conditions. In
particular, the authors in [17] developed a suboptimal jump
linear estimator for complexity reduction in computing the
corrector gain using finite loss history where the loss process
is modelled by a two state Markov chain. The work [3] intro-
duced a more general multiple state Markov chain to model
the loss and non-loss channel states, and the asymptotic mean
square estimation error for suboptimal linear estimators is
analyzed and optimized by a linear matrix inequality (LMI)

approach. The MARE based analysis in [16] for i.i.d. packet
losses was extended to the two sensor situation in [14]. In
these results, the occurrence of packet losses is known at
the estimator and this leads to a random Riccati equation
involving the loss indicator sequence. Control problems with
packet losses have been examined in [8], [13], [6].

B. Contributions and Organization

In this paper we consider a Markovian packet loss model
which captures the temporal correlation nature of practi-
cal channels, and we develop new analytic techniques for
filtering stability analysis. In Section II, we introduce the
notion of peak covariance. The general sufficient condition
in Section III was initially obtained in our earlier work [9].
In Section IV we examine the stability property for the
scalar model, and present a tail distribution analysis for the
peak variance. To find practically more verifiable sufficient
conditions than in [9], in Section V we introduce an appropri-
ately parameterized suboptimal estimator, and optimize the
parameter in the suboptimal estimator to produce a tighter
selection of the constants in the stability criteria. Section VI
presents some simulation and computational examples.

II. EVOLUTION OF THE COVARIANCE

In order to simplify the analysis, in the following we
assume the initial state for γt is γ1 = 1. Note that this
assumption imposes no essential restriction and the other
case with γ1 = 0 may be treated in the same manner. Based
on equation (2), we write two separate equations

Pt+1 = APtA
′ + Q − APtC

′(CPtC
′ + R)−1CPtA

′,

γt = 1 (3)

Pt+1 = APtA
′ + Q, γt = 0 (4)

depending on the value of γt. The covariance process Pt, as a
random process, may be regarded as being governed by a bi-
modal hybrid system where the evolution of the continuum
component is driven by a two state Markov chain. Such a
bi-modal structure is especially useful and will be exploited
in the stability analysis.

To make the model nontrivial, throughout this paper we
make the following assumptions:

(H1) The failure and recovery rate p, q are both in (0, 1).
(H2) The system [A,C] is observable, i.e, the rank of the

matrix [C ′, A′C ′, · · · , (An−1)′C ′] is n.

For the reader’s convenience, we introduce the basic
definition of stopping times although it is easily found in
textbooks (see, e.g., [4]). A stopping time τ (associated with
the Markov chain γt, t ≥ 1) is a measurable map from Ω to
the set {1, 2, · · · ,∞} such that {τ ≤ k} depends on γ up to
time k. In our filtering context, the two sequences of stopping
times introduced during the analysis simply describe the
random switch time of the filter, or equivalently, the jump
time of the Markov chain γt.

Given the initial condition γ1 = 1, we introduce the
following stopping time: τ1 = inf{t > 1, γt = 0}. We
make the usual convention that the infimum of an empty set
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is +∞. Thus τ1 is the first time when a packet loss occurs.
Furthermore, we define β1 = inf{t, t > τ1, γt = 1}. It
is clear β1 is the first time the channel recovers from the
first failure. The above procedure is repeated to define two
sequences

τ1, τ2, τ3, · · · ,

β1, β2, β3, · · · ,

which gives the value of γt at the switch times:

γt =

{
0, if t = τi < ∞,
1, if t = βi < ∞.

(5)

Obviously the following order relationship holds:

1 < τ1 < β1 < · · · < τk < βk < τk+1 < · · · , (6)

whenever each of the entries is finite on the associated
sample point ω ∈ Ω.

Lemma 1: Under condition (H1), with probability one, the
two sequences {τi, i ≥ 1} and {βi, i ≥ 1} have finite values
for each of their entries.

Lemma 1 forms the basis for the peak covariance notion
to be introduced later.

Define

τ∗
i = τi − βi−1, i ≥ 1

β∗
i = βi − τi, i ≥ 1

where we adopt the convention β0 = 1. Here τ∗
i and β∗

i

denote the sojourn times (i.e., the length of a continuous
stay) at the success state 1 and failure state 0, respectively.

Lemma 2: Under (H1), we have
(i) the random variables {τ∗

i , i ≥ 1} are i.i.d., and τ∗
i − 1

is geometrically distributed with P (τ∗
i −1 = k) = (1−

p)kp, k ≥ 0.
(ii) the random variables {β∗

i , i ≥ 1} are i.i.d., and β∗
i − 1

is geometrically distributed with P (β∗
i − 1 = k) =

(1 − q)kq, k ≥ 0.
(iii) The two sequences of random variables {τ∗

i , i ≥ 1} and
{β∗

i , i ≥ 1} are independent of each other.
Now we define

β−
k = βk − 1. (7)

In fact, β−
k is the last time of visit of γt, to the failure state

0 since τk. The time β−
k is useful for analyzing the filtering

performance in that it provides a basis for estimating to
what extent the covariance process may deteriorate resulting
from successive packet losses. Immediately from βk, a new
packet will arrive at the observer, and the state prediction for
the next step will start to improve. The period [τi, β

−
i ] and

[βi, τi+1−1] shall be called the loss cycle and normal cycle,
respectively.

Labelling a subsequence of the covariance process Pk by
the sequence of times βk, we denote

Mk = Pβk
. (8)

Mk denotes the prediction error covariance Pβk|βk−1 com-
puted by (4) at t = β−

k . For an unstable scalar model,

starting from τk + 1, Pt monotonically increases to reach a
maximum Mk = Pβk

at time βk before turning downward;
the sequence {Mk, k ≥ 1} gives the upper envelope of the
covariance sequence. For this reason, we shall call Mk the
peak covariance process. In the multi-dimensional (vector)
case, Pt does not necessarily change monotonically before
or after reaching Mk according to the packet arrival or loss;
to facilitate our presentation, however, we shall still refer to
Mk as the peak covariance process.

Definition 3: We say the sequence {Mk, k ≥ 1} is stable
if supk≥1 E‖Mk‖ < ∞. Accordingly, we say the (filtering)
system satisfies peak covariance stability.

III. SUFFICIENT CONDITION FOR PEAK COVARIANCE

STABILITY

Let Sn denote the set of all n × n nonnegative definite
real matrices. Based on Kalman filtering, define the map

F (P ) = APA′ + Q − APC ′(CPC ′ + R)−1CPA′, (9)

where P ∈ Sn. It is easy to show F (P ) ∈ Sn. To analyze
the map F , we introduce the following definition.

Definition 4: For the observable linear system [A,C], the
observability index is the smallest integer Io such that
[C ′, A′C ′, · · · , (AIo−1)′C ′] has rank n.

Under the observability assumption (H2), the integer Io

specified in Definition 4 obviously exists. For a deterministic
system, Io specifies the minimum number of observations
which are required in order to reconstruct the initial condition
of an observable system.

Define Sn
0 = {P : 0 ≤ P ≤ AP̃A′+Q, for some P̃ ≥ 0},

which is a convex subset of Sn.
Lemma 5: Letting F be defined by (9), there exists a

constant K > 0 such that (i) for any P̄ ∈ Sn
0 , F k(P̄ ) ≤ KI

for all k ≥ I0; (ii) for any P̄ ∈ Sn, F k+1(P̄ ) ≤ KI for all
k ≥ I0, where I is the n × n identity matrix.

The strategy to prove the lemma is to run an auxiliary
Kalman filer; see [9] for details.

Remark: The observability condition may be relaxed to
detectability, and one can identify an associated index Io

such that Lemma 5 holds. Then the subsequent analysis in
this paper can be extended to the detectable model in a
straightforward manner.

We introduce a few constants. For 1 ≤ i ≤ (Io − 1) ∨ 1,
let C

(0)
i and C

(1)
i satisfy the following inequality

‖F i(P )‖ ≤ C
(1)
i ‖P‖ + C

(0)
i , ∀ P ∈ Sn

0 , (10)

where ‖·‖ denotes the induced norm for matrices. By the fact
F (P ) ≤ APA′ + Q, it is clear the above pair (C

(0)
i , C

(1)
i )

always exists. For the case I0 = 1, we may take C
(1)
1 = 0.

Theorem 6: [9] The peak covariance process is stable if
the following two conditions hold:
(i) |λA|

2(1 − q) < 1,

(ii) pqC
(1)
1

[
1 +

∑Io−1
i=1 C

(1)
i (1 − p)i

] ∑∞
j=1 ‖A

j‖2(1 −

q)j−1 < 1,
where λA is an eigenvalue of A with the largest absolute
value.
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We give a brief discussion on condition (ii). Notice that
under condition (i), the infinite series in condition (ii) con-
verges. Now let the pair A and q be fixed such that (i) holds.
Then it is easy to check that for the given pair (A, q), if p
is sufficiently small, condition (ii) is always satisfied.

Corollary 7: If C is invertible, condition (ii) in Theorem
6 vanishes and the peak covariance stability holds under
condition (i).

IV. STABILITY OF THE SCALAR MODEL

For the scalar case, condition (ii) in Theorem 6 vanishes
since in this case C

(1)
1 = 0. The reason is that for the scalar

Riccati equation, once there is an arrival of one packet at t,
Pt+1 becomes bounded by a fixed constant, regardless of the
value of Pt. Furthermore we can show that condition (i) in
Theorem 6 is also necessary. This leads to a sufficient and
necessary condition. Note that this condition only depends
on the recovery rate of the Markov chain {γt, t ≥ 1}.

For the scalar case, we set the coefficients A and C in the
dynamics to their lower case form, i.e., A = a and C = c 	=
0. The term covariance is also replaced by variance.

A. The Sufficient and Necessary Condition for Stability

Theorem 8: Letting r ≥ 1, we have supk E|Pβk
|r < ∞

if and only if |a|2r(1 − q) < 1.
It is clearly seen from Theorem 8 that, with a given

|a| > 1, for obtaining higher order stability results, we need
to put a more stringent condition on the recovery rate q.
By taking r = 1 in Theorem 8, we conclude that in the
scalar model a sufficient and necessary condition for peak
covariance stability is a2(1 − q) < 1.

In the following we establish the stability on the standard
variance process Pt. To simplify the estimates, we only
analyze the symmetric case with p = q, in which the
distribution of the random variable τk − 2k + 1 is the
convolution of 2k − 1 i.i.d. geometric distributions, and this
substantially simplifies the calculations. For the general case
with p 	= q, the calculation is much more involved.

Theorem 9: For the scalar model with p = q, if a2(1 −
q) < 1, then the variance process has the usual stability
property, i.e., supt≥1 EPt < ∞.

B. The Relation between Different Stability Notions

For illuminating the relationship between our peak co-
variance stability with other existing stability results in the
literature, we specialize to the scalar model with i.i.d. packet
losses. In this case, the transition matrix of the channel given

by (1) reduces to

[
1 − q q
1 − q q

]
, with an associated packet

loss probability p = 1−q. It is shown in [16] (Theorem 2 and
Sec. IV) that for the scalar model with i.i.d. packet losses,
supt≥1 E|Pt| < ∞ (we term this as the usual stability of Pt)
if and only if the packet arrival rate λ > λc = 1 − 1/a2, or
equivalently,

q > 1 − 1/a2. (11)

Recalling Theorem 8, (11) is also a necessary and sufficient
condition for the peak variance stability for the special case

of i.i.d. packet losses. Then we can immediately claim the
following relationship.

Corollary 10: For the scalar model with i.i.d. packet
losses, the peak variance stability is equivalent to the usual
stability (i.e., supt≥1 E|Pt| < ∞).

For the scalar model with i.i.d. packet losses, it is of
interest to note that the peak variance stability is seemingly
stronger than the usual stability as the former characterizes
a certain boundedness property along the upper envelope of
the variance trajectories, but actually it is not, as stated in
Corollary 10.

For the vector case when Pt is a matrix, the relation
between the two stability notions as discussed above is
much more complicated as the stability condition is not just
reduced to the inequality (11).

C. Tail Distribution of the Peak Variance

Now we examine the tail distribution of the peak variance
when it is stable, i.e., a2(1− q) < 1. We restrict to the case
|a| > 1 and Q > 0. For M > 0, define the tail distribution
of Pβk

, k ≥ 1, as Ptail(M) = P{Pβk
≥ M}.

It is easy to show that Q ≤ Pτk
≤ a2R/c2 + Q

�
= P̄ .

Below we restrict to M ≥ P̄ ∨ (a2Q). It can be verified that
{Pβk

≥ M} ⊃ {β∗
k − 1 ≥ ln(M/Q)

ln a2 − 1}. Denote by �x� the
smallest integer no less than x. Hence

P{Pβk
≥ M} ≥ (1 − q)�

ln(M/Q)

ln a2 −1� ≥ (1 − q)
ln(M/Q)

ln a2 .

Denote κ = ln(1−q)−1

ln a2 > 1, where |a| > 1. We have
Ptail(M) ≥ QκM−κ.

In a similar manner, we have

{Pβk
≥ M} = {F β∗

k (Pτk
) ≥ M}

⊂ {β∗
k − 1 ≥

ln(M/P̄ )

ln a2
+

ln(a2 − 1)

ln a2
− 2}.

Hence P{Pβk
≥ M} ≤ (1 − q)

ln(M/P̄ )

ln a2 +
ln(a2

−1)

ln a2 −2, which

gives Ptail(M) ≤ ζ0P̄
κM−κ, where ζ0 = (1−q)

ln(a2
−1)

ln a2 −2.
For M ≥ P̄ ∨ (a2Q), it follows that

QκM−κ ≤ Ptail(M) ≤ ζ0P̄
κM−κ

which gives the lower and upper bound estimates. It is seen
that the decaying rate of the tail distribution depends on
the ratio κ which in turn is related to the stability margin
associated with the condition a2(1 − q) < 1 and |a| > 1.

V. STABILITY CHECK BY LINEAR SUBOPTIMAL

ESTIMATORS

Theorem 6 gives a criterion for checking the stability
of the peak covariance process. In particular, condition (ii)
depends on some constants related to the operator F defined
by (10). In general, it is difficult to explicitly compute
these constants, and a rough selection may lead to very
conservative conditions for the pair (p, q). In this section,
we combine the analytic technique in Section III with a
numerical procedure to give a practically useful selection
of these constants. The basic idea is as follows. First we
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construct a suboptimal estimator and introduce its prediction
error covariance P s

k , where s indicates it is yielded by
the suboptimal estimator. Next, it is easy to establish a
dominance relationship between Pk and P s

k , i.e., Pk ≤ P s
k ,

Subsequently, if the system dynamics together with the
channel statistics ensure stability of P s

βk
, then the stability of

Pβk
naturally follows. Below we restrict to linear suboptimal

estimators where the filtering corrector gain L for the case
of a packet arrival is a constant matrix to be selected.

We construct the following suboptimal estimator:

x̂s
k|k = x̂s

k|k−1 + 1{γk=1}L(yk − Cx̂s
k|k−1)

x̂s
k|k−1 = Ax̂s

k−1|k−1.

The prediction error covariance P s
t+1

�
= P s

t+1|t, t ≥ 0, is
described by

P s
t+1 ={A(I − LC)P s

t (I − LC)′A′ + ALRL′A′}1{γt=1}

+ AP s
t A′1{γt=0} + Q.

For the case γt = 1, we get

P s
t+1 = A(I − LC)P s

t (I − LC)′A′ + ALRL′A′ + Q. (12)

Based on (12) we introduce the operator

FL(P ) = A(I − LC)P (I − LC)′A′ + ALRL′A′ + Q.

For the Kalman filter and the suboptimal estimator, we
have the following dominance relationship .

Theorem 11: Let the common initial condition Px0
≥ 0

be given for the Kalman filter and the suboptimal estimator.
With probability one, we have

P s
k ≥ Pk, ∀k ≥ 1. (13)

Proof. By using Kalman filtering without packet losses,
we can establish the relation F (P ) ≤ FL(P ) for all P ≥ 0.
We assume P = V ar(x1); then for any matrix H , Hx̂2|1 is
the minimum covariance estimate of Hx2. Thus,

H(x2 − x̂2|1)(x2 − x̂2|1)
′H ′ ≤ H(x2 − x̂s

2|1)(x2 − x̂s
2|1)

′H ′

which means HF (P )H ′ = HP2|1H
′ ≤ HP s

2|1H
′ =

HFL(P )H ′, and therefore F (P ) ≤ FL(P ). Next, the
Kalman filtering covariance sequence Pk(P1) as a function
of P1 is monotone, i.e., Pk(P1) ≤ Pk(P̄1) if 0 ≤ P1 ≤ P̄1. It
is easy to check that Ψ(P ), standing for FL(P ) or APA′+Q,
also has the same monotone property. Finally, by applying
these monotone properties along the sequence γt, we see that
(13) holds with probability one.

Corollary 12: If {P s
βk

, k ≥ 1} is stable, then the peak
covariance of Pk is also stable.

For the operator FL, in analogy to Section III, we also
define the constants as follows. For 1 ≤ i ≤ (Io − 1)∨ 1, let
C

L,(0)
i and C

L,(1)
i satisfy the following inequality

‖F i
L(P )‖ ≤ C

L,(1)
i ‖P‖ + C

L,(0)
i , ∀ P ∈ Sn

0 . (14)

It is obvious the above pair (C
L,(0)
i , C

L,(1)
i ) always exists.

The following stability result can be proved by the same
method as in proving Theorem 6.

Corollary 13: The covariance process {P s
βk

, k ≥ 1} is
stable if the following two conditions hold:
(i) |λA|

2(1 − q) < 1,

(ii) pqC
L,(1)
1

[
1 +

∑Io−1
i=1 C

L,(1)
i (1 − p)i

] ∑∞
j=1 ‖A

j‖2(1−

q)j−1 < 1,
where λA is an eigenvalue of A with the largest absolute
value.

For a practical application to the stability Theorem 6 for
the Kalman filter, we may choose a suitable L to reduce the
magnitude of C

L,(1)
i . Then by the fact F (P ) ≤ FL(P ), we

may set C
(1)
i = C

L,(1)
i , 1 ≤ i ≤ I0 − 1.

VI. NUMERICAL EXAMPLES

A. Simulations for the Peak Covariance

We first consider a scalar system with parameters [A,C]
�
=

[a, c] = [1.4, 1], Q = R = 1 and P0 = 1.
For this model, in order to guarantee stability, the min-

imum recovery rate is qc = 1 − 1/a2 = 0.489796. Fig. 1
shows a typical sample path with the parameter q = 0.6 > qc,
which ensures stability of the peak variance process. The
horizontal axis in the figure is the discrete time. Along that
sample path, we have τ1 = 3, β1 = 6, τ2 = 23, β2 = 25,
etc. In Fig. 1-top, the curve displays the change of the
variance along that sample path, and Fig. 1-bottom shows
the associated channel state jumping between 0 and 1. A
high peak value for the variance is observed near t = 60,
and this is due to the multiple successive packet losses.

Fig. 2 shows a sample path with q = 0.32 < qc. Since in
this case the recovery rate is low, the variance process has
more chances to reach a high level.

We continue to examine a vector example specified by

A =

[
1.3 0.3
0 1.2

]
, C = [1, 1]. (15)

The covariance of wt is Q = I ∈ R
2×2, and the variance of

vt is R = 1. We have ‖F (P )‖ ≤ ‖AA′‖ · ‖P‖. It is easily
checked that the observability index Io = 2 and we may take

C
(1)
1 = 2.00813, (16)

since AA′ has two eigenvalues λ1 = 1.211879 and λ2 =
2.008121. By condition (i) in Theorem 6, the recovery rate
must satisfy q > 1 − |λA|

−2 = 0.408285. From now
on we take q = 0.65. By numerical calculation, we have∑∞

j=1 ‖A
j‖2(1 − q)j−1 ≈ 6.433363. Then if p < 0.04,

condition (ii) holds. Fig. 3 shows a sample path for this
model with parameters p = 0.03 and q = 0.65; P11(t) and
P12(t) are two entries in the 2×2 matrix Pt, and the channel
state is displayed between t = 1000 and t = 1200. For the
associated channel with (p, q) = (0.03, 0.65), the stationary
distribution of the failure state is P (γt = 0) = 0.044118.
Thus the long term packet loss rate is about 4.41%.

Unlike the scalar case, we only have a sufficient condition
for filtering stability, and condition (ii) in Theorem 6 specify-
ing the region for (p, q) may be conservative. However, this
criterion is still useful since it covers some practical models
with packet loss rate as high as several percents.
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Fig. 1. The variance Pt and channel state γt, q = 0.6.
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Fig. 2. The variance Pt and channel state γt, q = 0.32.

B. Suboptimal Estimator Aided Stability Check

For the two dimensional example given by (15), with
the aid of the suboptimal estimator, we may take C

(1)
1 =

‖(A − ALC)(A − ALC)′‖ by recalling F (P ) ≤ FL(P )
and the structure of FL(P ). Now the task is to find L such

that ‖AL‖
�
= ‖(A − ALC)(A − ALC)′‖ is minimized.

Here we use a numerical method to search for an ideal
value for L = [l1, l2]

T . We compute the value ‖AL‖ for
(l1, l2) on a grid [−0.6, 2] × [−0.7, 2] with a step size 0.05
on both edges, which gives a total of 53 × 55 points. On
the grid, the minimum of 1.22 for ‖AL‖ is attained by
(l1, l2) = (0.5, 0.5). Now we may take C

(1)
1 = 1.22 with

a significant improvement from the rough estimate in (16).
On the other hand, the steady-state solution to the Riccati

equation P = F (P ) is P =

(
15.8733 −18.0630
−18.0630 24.9392

)
.

Accordingly, the steady-state corrector gain for the state
prediction equation in a standard Kalman filter is L0 =
PC ′(CPC+R)−1 = (−0.3851, 1.2092)T . It can be checked
that ‖(A−AL0C)(A−AL0C)′‖ = 4.4106 (> 1.22), which
only gives a very poor bound for C

(1)
1 . This suggests a

careful search of L is important.
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