
Distributed Cross-Layer Optimization
of MANETs in Composite Fading

John Papandriopoulos, Subhrakanti Dey and Jamie S. Evans
ARC Special Research Centre for Ultra-Broadband Information Networks (CUBIN),

Department of Electrical and Electronic Engineering,
University of Melbourne, VIC 3010, Australia

Abstract— Cross-layer design can significantly improve the
performance of mobile ad-hoc networks (MANETs), as indicated
by the flurry of recent results in the literature. Much of this
work stems from the Kelly network utility maximization (NUM)
framework, where convexity is crucial for developing algorithms
that reach the global optimum. Unfortunately many problems are
nonconvex in nature, so convex approximations are abundant.

In this paper, we consider the joint optimization of source
data-rates and link transmitter powers in a MANET, specifically
dealing with the statistical variations of the wireless channel.
In this paradigm we show that the commonly applied high-SIR
convex approximation is unrealistic, so we seek to find solutions
of the unmodified NUM problem. Our first result shows that
the canonical formulation (previously thought to be nonconvex)
is indeed a convex problem for logarithmic TCP-Vegas utilities;
we then derive an algorithm reaching the global optimum. Our
main result caters for the general case of strictly concave utilities,
where we derive an algorithm that provably converges to the
global solution of the underlying nonconvex NUM problem.

I. INTRODUCTION

THE traditional design of communication networks feature
a layered network stack where each slice utilizes only

the services of those below it, and each are optimized inde-
pendently. Recent research efforts have shown that significant
performance benefits exist in undertaking a cross-layer design;
that is, by optimizing functionality across the layers.

Nonlinear optimization has been instrumental in this pro-
cess. For example, in a multi-hop wired network, TCP al-
gorithms are used to address problems of congestion at the
transport layer. These algorithms have recently been shown to
implement approximate solutions to an underlying Network
Utility Maximization (NUM)

max
x≥0

∑
s

Us(xs) (1)

s.t.
∑

s:l∈L(s)

xs ≤ cl, ∀l,

where each source s attains some nonlinear utility Us(xs) by
transmitting at data-rate xs, doing so without overwhelming
the set of intermediate links L(s) along its route, and where
each link contributes a shared capacity of cl. While this
problem has been well studied in the context of wired networks
having fixed link capacities [1], [2], more recent efforts have
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focused on a cross-layer design of source-rate allocation and
capacity provisioning [3].

In a wireless mobile ad-hoc network (MANET), we can
conveniently optimize the link capacities cl through power
control: by increasing the transmitter power on link l, its
capacity also increases and vice-versa. It is therefore of great
benefit to consider maximizing the utility (1) over both source-
rates and link-powers through a cross-layer design. In an
interference limited system such as CDMA, this optimization
becomes non-trivial since the power allocation is coupled
across the entire network.

In [4], Chiang considered such a problem where the link
capacities cl in the basic NUM problem (1) became a function
of the radio link quality, given by the signal-to-interference
ratio (SIR). A high-SIR approximation was taken in order to
formulate a convex problem that was solved via an iterative
algorithm, made distributed through message passing. These
messages carried congestion state and link noise measurements
that were repeatedly broadcast to all or nearby nodes. Nodes
receiving such messages would figure the transferred state into
their own power-allocation.

In his model, Chiang assumed the wireless channel was
fixed or very slowly varying. As such, it becomes conceivable
that such an algorithm is able to track any changes in the
channel, since one would have the luxury of iterating much
faster than the fading dynamics. Now consider a more realistic
scenario where the fading rate is increased, due to mobility of
the nodes and/or environment. The iteration rate would also
need to increase to track of the dynamic fading state. Either
the message passing overhead would become excessive, or the
instantaneous channel state varies too quickly to track properly
– at this point the scheme would collapse.

The focus of this paper is on more realistic situations
where the channel variation falls into this fast-varying dynamic
category. Rather than finding the optimum source rates based
on the instantaneous link capacities, we allow the network to
experience a limited amount of fading-induced congestion, and
by doing so, we avoid the fast-update problems outlined above.
This concept is made rigorous through a rate-outage probabil-
ity: the probability of experiencing fading-induced congestion.
We reformulate the NUM problem to jointly allocate power
and source rates such that the rate-outage probability is within
some arbitrarily small tolerance.

We also do away with the high-SIR assumption. Under the
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rate-outage metric, we show that such an assumption cannot
be justified. Our first contribution involves the underlying
canonical problem, previously thought to be nonconvex. In
Sec. III-C we show that it is actually convex for logarithmic
TCP-Vegas utilities, through a suitable transformation. Our
results can then be directly back-substituted into [4]–[6] and
related work to achieve true global optimality. Sec. IV-A
introduces the resulting optimal algorithm A.

Our second contribution involves a generalization to strictly
concave utilities in Sec. IV-B. There we derive algorithm B
that utilizes a novel scheme to attain the global solution of
the underlying nonconvex problem in a distributed manner.
For the special-case of logarithmic utility, we show that this
scheme preserves the existing TCP-Vegas stack.

II. SYSTEM MODEL

We consider a MANET having L = {1, . . . , L} logical
links, shared by S = {1, . . . , S} sources.

A. Network Stack Decomposition

1) Network Layer: For each source s ∈ S there exists a
destination node and we denote the path (route) from this
source to the destination as an ordered set of links L(s) ⊆ L.
In this work, we assume that this layer is fixed. i.e. static
routes. In practice, routing may be adapted and optimized,
with these improved routes communicated to the transport
layer below. Provided that the time-scale of such updates
is much slower than the relevant time-scale of the cross-
layer optimization presented here, any such adaption will not
adversely interfere with the results provided.

2) Transport Layer: We make the usual assumption that
each source s attains a utility Us(xs) when allocated a data-
rate xs ≥ 0, where Us(·) is an increasing concave function.

3) Physical Layer: We extend the physical-layer model
considered in [4] to incorporate composite fading. This model
utilizes CDMA so that each link in the system may simulta-
neously communicate within the same spectrum allocation, at
the expense of multiple-access interference.

This model has an underlying assumption that nodes
are able to transmit and receive simultaneously. From an
information-theoretic perspective, such a mode of operation is
indeed possible: two-way channels have double the capacity
region of the corresponding one-way channel [7]. Moreover,
real implementations of simultaneous transceivers have been
demonstrated in practice [8], [9], where the self-interference
problem has been mitigated through RF isolators and echo-
cancelers, coupled with base-band digital filtering (e.g. utiliz-
ing a CDMA spreading gain).

The alternative, that we will not consider in this paper
for simplicity, is to emulate full-duplex operation with dis-
tinct transmit and receive transmission modes (time-division
duplex). This is only possible if each node in the network
is globally synchronized through a link-activity schedule and
is akin to a hybrid CDMA-TDMA system. Finding optimal
schedules is a very difficult problem as it is combinatorial in
nature, and the topic is an important area of research in its own

right. Our results can easily be applied to such a paradigm,
through a similar time-slotted system model as outlined in [6],
[10] and references therein.

We consider fixed CDMA spreading sequences sl having
length N and unit energy (i.e. sT

l sl = 1). These sequences are
preassigned to each link l where matched filtering is utilized.
Additionally, we make the simplifying assumption that the
self-interference cancellation at each node is perfect.

The instantaneous capacity of each link l ∈ L is modeled as
cl(P) = W log (1 + KSIRl(P)) where W is the base-band
(unspread) bandwidth of the transmitted signal and K is a
constant ‘SIR gap’ to capacity for a particular modulation and
coding scheme [11].

The signal-to-interference ratio (SIR) is defined as

SIRl(P) =
PlFllHll(sT

l sl)2∑
j �=l

PjFljHlj(sT
l sj)2 + σ2

,

where P = [P1, . . . , PL] is a vector of transmitter powers,
FijHij is the instantaneous channel gain from the transmitter
on link j to the receiver on link i, and we assume thermal
noise power σ2 at each receiver.

Without loss of generality, we will absorb the (sT
i sj)2

terms into the gain terms Hij using the ‘effective gains’
Gij ≡ Hij(sT

i sj)2 to simplify the SIR expression

SIRl(P) =
PlFllGll∑

j �=l

PjFljGlj + σ2
.

B. Fading Model

We can decompose each instantaneous channel gain FijGij

into fast- and slowly-varying components Fij and Gij re-
spectively. We assume Rayleigh fast-fading, where Fij are iid
random variables having an exponential distribution with unit
mean. The terms Gij model slow-fading (such as distance-
dependent path-loss and/or log-normal shadowing) and are
assumed constant over the time-scale of interest.

The independence assumption on each Fij is justified since
they represent the fading on distinct paths between nodes in
the network. The unity mean is without loss of generality, as
any non-unity value can be absorbed into the corresponding
Gij component.

It will be useful to define the ‘average SIR’,

SIRl(P) =
E [PlFllGll]

E
[∑

j �=l PjFljGlj + σ2
] =

PlGll∑
j �=l

PjGlj + σ2

(2)

where we have made use of the unity mean of each Fij . To
simplify the notation, we will occasionally drop this functional
form and denote the average SIR as simply SIRl.

C. Rate-Outage Probability

We define the rate-outage probability as the probability that
the ingress rate Rl to a link l exceeds its randomly time-
varying capacity cl, resulting in fading-induced congestion.
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Mathematically, we write

Pr {Rl > cl(P)} = Pr
{

Fll <
Rth

l

PlGll

[∑
j �=l

PjFljGlj + σ2
]}

where we define the data-rate threshold Rth
l =

[exp (Rl/W ) − 1] /K.
In our Rayleigh model, we can bound the rate-outage

probability above in terms of the average SIR (cf. [12], [13]),

Pr {Rl > cl(P)} ≤ 1 − exp
(−Rth

l /SIRl(P)
)

(3)

where this bound was derived in [12] and has been shown to
be very tight.

III. CROSS-LAYER DESIGN: OPTIMIZATION PROBLEMS

A. Nonconvex Problem Formulation

The joint power and congestion control optimization is
written as the following NUM

min
x,P≥0

(1−ω)
∑
l∈L

Pl − ω
∑
s∈S

Us(xs) (4)

s.t. Pr
{ ∑

s:l∈L(s)

xs > cl(P)
}
≤ Ωl, ∀l ∈ L,

where we jointly optimize over the vector of nonnegative
source rates x = [x1, . . . , xS ] and link transmitter powers
P = [P1, . . . , PL]. The rate-outage probability targets Ωl ∈
(0, 1) for each link l are fixed inputs to the problem. The fixed
scalar weight ω ∈ [0, 1] is included to trade-off the conflicting
goals of maximizing network utility (implying higher source-
rates requiring higher link powers) and low power (to reduce
interference and prolong the life of nodes relying on batteries).

To simplify the analysis, we make use of the bound (3) to
re-formulate the constraint,

Pr
{ ∑

s:l∈L(s)

xs > cl(P)
}
≤

new rate-outage constraint︷ ︸︸ ︷
1 − exp

( −Rth
l

SIRl(P)

)
≤ Ωl .

Taking the logarithm of both sides of this new constraint
and simplifying, we form a new optimization problem:

min
x,P≥0

(1−ω)
∑
l∈L

Pl − ω
∑
s∈S

Us(xs) (5)

s.t.
∑

s:l∈L(s)

xs ≤ W log
(
1 + KlSIRl(P)

)
, ∀l ∈ L,

where we have modified the SIR-gap

Kl = K × Ml(Ωl) (6)

by the positive constant

Ml(Ωl) = − log(1 − Ωl) (7)

that is a function of the fixed rate-outage target Ωl.
This optimization is of the same canonical form as con-

sidered in [4] with ω = 1, however we deal with average
SIR. Here we are not concerned with the instantaneous fading

Fig. 1. Rate outage probability. Margin Ml(Ωl) ensures fading-induced
congestion is avoided with probability Ωl.

(a) No fading margin (b) With fading margin

Fig. 2. High-SIR approx. requires excessively large SIR with fading margins.

state of the channel. Rather, we allocate a fading-margin (7)
for the rate-allocation on each link. This margin is ‘just the
right amount’ in a Rayleigh fading environment to meet the
rate-outage probability target Ωl and is illustrated in Fig. 1.

B. Prior Treatment: High SIR Approximations

The NUM problem above is not jointly convex in {x,P}.
Prior treatment made use of a high-SIR approximation on the
link capacities. Coupled with the transformation P̃n = log Pn,
a convex problem resulted [4]–[6], [14]. Such a procedure is
equivalent to the lower-bound approximation:

lower-bound approximation︷ ︸︸ ︷∑
s:l∈L(s)

xs ≤ W log
(
KlSIRl(P)

) ≤ W log
(
1 + KlSIRl(P)

)
Fig. 2 shows that this approximation is far too loose for

typical operating parameters, where SIR > 15dB is required
to realize a non-zero link rate.1 Without margins, reasonable
approximation accuracy is obtained at SIR > 10dB, jumping
to SIR > 20dB with margins employed. Such high operating
points are undesirable for CDMA systems, as we must limit
the interference by employing extremely large spreading gains,
or complex interference suppression schemes so channels
appear near-orthogonal. The high-SIR approximation clearly
cannot be justified, nor is it required, as we now demonstrate.

C. A New Convex Approach for Logarithmic Utilities

Let us first consider utility functions having the form
Us(xs) = νs log xs. Such functions correspond to the TCP-
Vegas protocol, where νs ≡ αsds is a scaled base round-trip-
time (RTT) of source s [16]. We return to the general case of
concave utilities in Sec. IV-B.

Our development makes use of the convexity results below.
Proofs for Results 1 and 2 are straightforward and are omitted.

1 Ωl = 10%,BER = 10−3, K = −1.5
log(5BER)

(see [11], [14], [15])
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For notational convenience, we write the average SIR as

SIRl(P̃) =
exp(P̃l)Gll∑

j �=l

exp(P̃j)Glj + σ2
,

where P̃n = log Pn is a logarithmic transformation.

Result 1 The function h(x) = − log (log(1 + ex)) is non-
increasing and convex in x ∈ R.

Result 2 The function gl(P̃) = log
(
SIRl(P̃)

)
is concave.

Result 3 The function fl(P̃) = − log
(
log(1 + SIRl(P̃))

)
is

convex.
Proof: Write fl(P̃) = h(gl(P̃)) where h( · ) and gl( · )

are given as in Results 1 & 2. The proof follows immediately
from scalar composition [17, pg.84] and Results 1 & 2.

We now show that the (nonconvex) formulation (5) is really
convex with a transformation of coordinates x̃s = log xs and
P̃l = log Pl. In these new variables, the problem is written

min
x̃,P̃

(1−ω)
∑
l∈L

eP̃l − ω
∑
s∈S

νsx̃s (8)

s.t. log
( 1

W

∑
s:l∈L(s)

ex̃s

)
− log log

(
1 + KlSIRl(P̃)

)
≤ 0,∀l.

The objective is a sum of convex exponentials and linear terms.
Each constraint comprises a convex log-sum-exp term and a
convex function of the powers P̃ (Result 3). Therefore, (8) is
in standard convex form and the high-SIR approximation is
not required.

IV. CROSS-LAYER DESIGN: IMPLEMENTATION

A. Algorithm A: Logarithmic Utilities

The convex optimization problem (8) is readily solved
through its Lagrangian dual formulation, from which an it-
erative algorithm can be derived and convergence proved. We
are assured that the global optimum is attained since there is
no ‘duality gap’: Slater’s condition is satisfied since a strictly
feasible (yet suboptimal) solution is clearly possible.

Due to space limitations, we present only the final algo-
rithm; full details can be found in [18].

1) Link Algorithm – Congestion Price Update: at each
iteration t, link l updates a dual variable λl according to

λ
(t+1)
l =

[
λ

(t)
l + ε$l(x,P)

]+
(9)

where ε is a sufficiently small step size, [ · ]+ = max(0, ·) and

$l(x,P) = log
( 1

W

∑
s:l∈L(s)

x(t)
s

)
− log log

(
1 + KlSIR

(t)

l

)
is a measurable quantity local to each link. In a similar
spirit to other related work in congestion control, these dual
variables λl are interpreted as ‘congestion prices’ [16], here
in logarithmic form, where $l(·, ·) intuitively represents the
change in price. At equilibrium, $l(·, ·) = 0 and the resulting
power and source-rate allocation {P∗,x∗} are optimal.

2) Link Algorithm – Power Update: power is allocated on
each link l according to

P (t+1)
n =

µ
(t)
n

(1 − ω) +
∑
l �=n

GlnΦ(t)
l

(10)

where

µ(t)
n =

λ
(t)
n KnSIR

(t)

n

(1 + KnSIR
(t)

n ) log(1 + KnSIR
(t)

n )
,

and Φ(t)
l = µ

(t)
l

SIR
(t)
n

GllP
(t)
l

∈ R+ are messages comprising

local information from each link l. Note the coupling of the
congestion prices λl into the power allocation for each link n.
They act as the glue between the layers as noted in [4].

This power update is made distributed through message
passing, similar in concept to [4]: each receiver on link l
broadcasts their message Φl. In turn, transmitters on link n
receive it and estimate Gln though training sequences. They
then utilize the quantity to update their power through (10).

3) Source Algorithm – Rate Update: each source updates
its rate according to

x(t+1)
s =

ωνs∑
l∈L(s)

Λ(t)
l

(11)

where Λ(t)
l = λ

(t)
l /

∑
m:l∈L(m) x

(t)
m are congestion prices

normalized by the ingress rate into each link l.
This update is also distributed through message passing: a

reserved field in each acknowledgment (ACK) packet header
(sent from the receiver back to the source) is used to accumu-
late the normalized congestion prices Λl at each intermediate
link l. When the ACK reaches the source, this reserved field
forms the summation in the denominator of (11).

B. Algorithm B: General Concave Utilities

We now develop an optimal scheme catering for any in-
creasing concave utility Us( · ). Under the special-case of
logarithmic utilities, the resulting algorithm makes use of
the existing TCP-Vegas stack, employing delay measurements
at each source for distributed rate-allocation. In turn, power
control is based on the congestion prices, similar to the
development above.

We make no assumptions on the SIR regime and therefore
aim to solve the nonconvex problem (5) for the global opti-
mum, and doing so in a distributed fashion. Analogous results
dealing with concave utilities in [4] are based on a suboptimal
convex approximation in a high-SIR regime.

Taking a slightly different direction to the efforts of Sec. III-
B, we make use of the (new) bound

α log z + β ≤ log(1 + z)
{

α = z0
1+z0

β = log(1+z0) − z0
1+z0

log z0
(12)

that is tight with equality at a chosen value z0 when the
constants {α, β} are chosen appropriately.
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With (12), we can form a new lower-bound approximation
of the constraint in problem (5):

new lower-bound approximation︷ ︸︸ ︷∑
s:l∈L(s)

xs ≤ Wαl log
(
KlSIRl(P)

)
+ Wβl (13)

≤ W log
(
1 + KlSIRl(P)

)
where we have the additional freedom of making the bound
exact for a given z0 = KlSIRl(P) by choosing {αl, βl} as in
(12). With this new bound, optimization (5) becomes

min
x,P≥0

(1−ω)
∑
l∈L

Pl − ω
∑
s∈S

Us(xs) (14)

s.t.
∑

s:l∈L(s)

xs ≤ Wαl log
(
KlSIRl(P)

)
+ Wβl, ∀l.

Taking a logarithmic transformation of co-ordinates P̃l =
log Pl in the link powers only results in an equivalent
convex problem for fixed {αl, βl}: the objective is a sum of
exponentials and negative-concave (thus convex) utilities; the
constraint set is convex by Result 2.

Not surprisingly, we arrive at the same canonical form as
Chiang [4] when {αl = 1, βl = 0}. However, we have choice
over the approximation constants and so the following proce-
dure for adaptation then becomes natural:

1: initialize iteration counter t = 0
2: initialize all α

(t)
l = 1, β

(t)
l = 0 (high-SIR approx.)

3: repeat
4: Minimize: solve (14) for solution {x(t),P(t)}
5: Tighten: update α

(t+1)
l , β

(t+1)
l at z0 = KlSIRl(P(t))

6: increment t
7: until convergence

Proposition 1 Each iteration t results in a monotonically
improving objective. The sequence always converges, at which
point the lower-bound approximation (13) becomes exact.

Proof: See [18]; omitted due to space limitations.
It turns out that each sub-problem need not be minimized

fully: we require only an improved objective at each outer
iteration t. This is the key to the formation of a distributed
algorithm: each link l need not know when ‘sub-problem t’
has converged; each tightens at regular intervals with only
local information of KlSIRl.

A word of caution: our convex lower bounds are constructed
with identical slope at the tightening point as their correspond-
ing nonconvex bounding functions. For the sequence of sub-
problems to converge, each partial minimization should be
‘deeper’ than a simple gradient descent step on the original
nonconvex problem formulation. i.e. a Newton step, or a
number D > 1 of descent steps should be performed at each
minimization step before tightening.

We now summarize the solution to sub-problem (14). Alg. B
comprises the solution procedure above, where only a small
number D > 1 (typically 10) updates of each sub-problem
are executed before the tightening step. The full development
appears in [18].

Fig. 3. MANET topology with four sources.

1) Source Algorithm – Rate Update: Sources adapt their
rate according to the well-known duality-model solution [16]

x(t+1)
s = U ′

s
−1

( ∑
l∈L(s)

λ
(t)
l

)
, (15)

where U ′
s
−1( · ) is the inverse of the first derivative.

For the logarithmic utilities Us(xs) = νs log xs of TCP-
Vegas, the solution becomes: x

(t+1)
s = νs/λs where λs =∑

l∈L(s) λ
(t)
l is the accumulated congestion along each route.

This can be implicitly obtained through delay measurements
and thus explicit message passing becomes unnecessary [16]:
we have effectively preserved the existing TCP-Vegas stack at
each source. Further, it enables a MANET cloud to become
transparently interconnected between other wired internet net-
works that make use of TCP-Vegas, and doing so without
breaking end-to-end semantics.

2) Link Algorithm – Congestion Prices and Power Control:
Congestion prices λl evolve according to the buffer process,
implicitly given by the steepest ascent (9), where instead

$l(x,P) =
∑

s:l∈L(s)

x(t)
s −

approximation of cl︷ ︸︸ ︷
W
[
αl log

(
KlSIRl(P(t))

)
+ βl

]
.

Link transmitter powers are updated with

P (t+1)
n =

Wλnαn

(1 − ω) +
∑
l �=n

GlnΦ(t)
l

(16)

where Φ(t)
l = Wλ

(t)
l αl

SIRl(P
(t))

GllP
(t)
l

∈ R+ are messages passed

via broadcasts as in Sec. IV-A.

Theorem 1 Algorithm B solves the nonconvex problem (5)
for the global optimum power- and rate-allocation.

Proof: See [18]; omitted due to space limitations.

V. ILLUSTRATIVE NUMERICAL EXAMPLE

Consider the network topology of Fig. 3. Each link is
assigned a random CDMA spreading sequence of unit energy
having length N = 32. The composite fading channel is
modeled by a slowly-varying gain Gij = Hij(sT

i sj)2 as
outlined in Section II-B, where Hij = d−4

ij is a loss depending
on distance dij from transmitter on link j to the receiver on
link i, assumed fixed. A transmission bandwidth of 1 MHz
is selected, giving a W = 31.25 kHz baseband on each link.
We model the SIR gap K = −1.5/ log(5BER) for a BER of
10−3 corresponding to MQAM modulation [11].

For a fair comparison of Alg. A and B, we consider
logarithmic utilities throughout. A scaled base-RTT of ν =
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Fig. 4. Numerical results with perfect estimates of slowly-varying channel
gains (fast-varying gains are iid Rayleigh unit-mean and are perfectly averaged
over). Top-left graph shows the convergence of each algorithm. The remaining
three graphs show Alg. B converge to the optimum powers and rates, while the
rate outage-probability converges to the target of 20% (dotted). Each update
occurs at 20ms intervals, corresponding to 250 iterations in total.

20 ms is arbitrarily chosen for each source. We consider an
equal trade-off between power-allocation and network-utility
with ω = 1/2, and rate-outage targets Ωl = 20% for all links.

Fig. 4 summarizes numerical results under the assumption
of perfect knowledge of slowly-varying gains Gij . In all cases,
rate-outage targets are met with equality, see Fig. 4(d). We plot
the objective as a function of the iteration number in Fig. 4(a).
Alg. B converges much faster than Alg. A, and both to the
global optimum within 300 (Alg. A) and 75 (Alg. B) iterations
respectively. This is significant, as we have effectively solved a
nonconvex problem formulation for the global optimum with a
distributed algorithm, preserving the existing TCP-Vegas stack
in the process: no explicit message passing is required for
source rate allocation.

We have assumed perfect knowledge of the slowly varying
gains Gij . In [18] we show that with imperfect channel state
knowledge, these algorithms are found to be robust with
desirable tracking and convergence properties.

VI. CONCLUSION

This paper has introduced a new cross-layer design
paradigm for multi-hop mobile networks in interference-
limited fading environments. Explicitly taking the channel
variation into account, a new NUM problem was formulated
that considered the joint source rate- and link power-allocation,
without any of the high-SIR assumptions commonly found in
the literature. Two schemes were developed that required only
the large-scale fading state, thus avoiding the fast-update re-
quirements and large overheads of message passing associated
with other related work.

The first scheme involved a NUM problem previously
thought to be nonconvex, involving logarithmic utilities. It was

shown that through a suitable transformation, the problem is
actually convex and an optimal algorithm was outlined.

A second scheme was given to solve a more general noncon-
vex NUM problem having concave utilities. At the core was a
series of convex sub-problems requiring only partial solution,
leading to a distributed algorithm without complicated and
centralized branch-and-bound or cutting-plane methods that
are typically used to solve such problems. An algorithm was
provided that provably converges to the globally optimum joint
power- and rate-allocation.

The general results presented in this paper may be directly
back-substituted into other related problems found in the
literature that had previously relied on a convex high-SIR
approximation. Consequently, such problems may now be
solved for the true global optimum with the results herein.
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