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Multi-Sensor Diversity in Decentralized Estimation
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Abstract-This paper derives asymptotic expressions for
the expected distortion in the decentralized estimation of a
Gaussian source using multiple sensors, as the number of
sensors becomes large. We consider a diversity scheme where
only the sensor with the best channel sends their measurements
to a fusion center, using the analog amplify and fowarding tech
nique. For comparison, asymptotic expressions for a coherent
multi-access scheme and an orthogonal access scheme are also
derived.

I. INTRODUCTION

Wireless sensor networks have received much recent inter
est in the research community. Many different schemes for
decentralized estimation of sources using multiple sensors
have been proposed. One popular technique is analog amplify
and forward [1], where sensors transmit a scaled version
of their analog measurements to a fusion center, and has
been shown to be optimal in some situations [2]. Analog
forwarding under different multiple access schemes such as
(coherent) multi-access [1], [3] and orthogonal access [4]
have been studied.

In wireless communications theory the concept of multi
user diversity is well known [5], [6]. Multi-user diversity
refers to different users experiencing good channel conditions
at different times, and can be exploited in the following man
ner: For the problem of maximizing the sum rate subject to
average power constraints, the optimal solution is to schedule
the users such that at most only one user transmits, with this
user being the one having the best channel conditions at that
instance.

This paper will study the use of a similar diversity scheme
in the estimation of a Gaussian source. In this scheme, which
we will refer to as the multi-sensor diversity scheme, the
sensor with the best channel will amplify and forward its
measurement to the fusion center, while the other sensors do
not transmit. In this paper we are interested in the asymptotic
behaviour of such a scheme as the number of sensors M goes
to infinity. It is shown that in a symmetric sensor network
the expected distortion decays to a non-zero limit at the rate
1/1n(M).

As a comparison we will also derive the expected dis
tortion of the multi-access and orthognal access schemes,
which decay at the rate 1/M for large M. These results are
similar to the existing asymptotic results for the distortion
in the multi-access scheme [1], [7] and orthogonal access
scheme [4], however the expected distortion is not considered
explicitly in these works.
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The paper is organised as follows. Section II specifies
our model. Section III derives the asymptotic behaviour
for the multi-sensor diversity, multi-access, and orthogonal
access schemes, followed by comparisons and discussions.
Numerical studies are presented in Section IV.

II. SYSTEM MODEL

We wish to estimate a signal Ok modelled as an i.i.d.
Gaussian source with zero mean and variance a~, with k
representing the time index. The Gaussian source is measured
by M sensors with sensor i having measurements

Yi,k = Ok + vi», i = 1, ... , M

with Vi,k being i.i.d. Gaussian with zero mean and noise
variance a;, with Vi,k independent of Vj,k for i =1= j. Let gi,k
be the randomly time-varying channel gains from sensor i
to the fusion center, and ai,k the amplification factors in the
amplify and forward scheme. We assume that gi,k and gj,k
are independent for i =1= j. The transmit power of sensor i at
time k is defined as

'Yi,k = a;,kIE[Y;,k] = a;,k(a~ + a;)

Different multiple access schemes for transmitting the sensor
measurements to a fusion center will now be presented.

A. Multi-sensor diversity scheme

Let gmax,k = max(gl,k, ... , gM,k), and i* the index of
the corresponding sensor. Consider a scheme where only the
sensor with the best channel transmits its measurement to
the fusion center. The fusion center then receives

Zk = -Jgmax,kai*,k(Ok + Vi*,k) + nk

where nk is i.i.d. Gaussian with zero mean and variance a~.

Using the linear MMSE estimator, the mean squared error
or distortion at time k can be easily shown to be

B. Multi-access scheme

In the multi-access scheme the sensors transmit their
measurements to the fusion center using the amplify and
forward technique over a multi-access channel, so the fusion
center receives the sum

M

Zk = L -Jgi,kai,k(Ok + Vi,k) + nk
i=l
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Therefore

(3)

1 "M gi/M
~ + L...,i=1 gia~/M+a;

1

a~IE[g1] + a~ + Ma~(IE[J91])2

a;IE[g1] + a~

M(IE[J91])2

D =

IE[D]

D =

C. Orthogonal access scheme

Let us again use here the scaling (Xi = 1/V"M, Vi. Then

1

a~IE[g1] + a~ + Ma~(IE[J91])2 a.s.

provided the expectations IE[g1] and IE[J91] exist, where
the last line comes from applying the strong law of large
numbers and the definition and properties of r-, Since D
is always bounded, we can then use results on uniform
integrability, e.g. [9], to conclude that

a~(a;IE[g1] + a~)

For purposes of comparison with the diversity scheme, let
us use here the scaling (Xi = 1/V"M, Vi, which will give the
same long term average transmit power usage. Then

2 ( 2 1 "M 2)a () av M L...,i=1 gi + an

B. Multi-access scheme

Thus the expected distortion decays to zero at the rate
1/M as M ---+ 00, similar to the scaling behaviour for the
distortion derived in [7].

Considering Rayleigh fading, we have the following result.
Lemma 1: Suppose the gi'S are exponentially distributed

with mean 1/A, and let b > 0 be a constant. Then

[ 1] A A
IE gmax + b >'b + InM rv In(M) as M ----t 00

See Appendix for the proof.
Using Lemma I, we then have

IE[D] (1r~~~ [1 + (1~(;i~ (1~) In(M) ~ ~]
a() a v

a~a; [1 a~a~ A] (2)
(1~ + (1~ + (1~((1~ + (1~) In(M)

a 2a2

Hence as M ---+ 00, the expected distortion goes to ~+2 at
a() a v

the rate 1/1n(M).

Zi,k = yigi,k(Xi,k((}k + Vi,k) + ni,k, i = 1, ... , M

where ni k is i.i.d. Gaussian with zero mean and variance
a~, Vi. The distortion at time k is given by

D
_ ( 1 ~ gi,k(X;,k )-1

«> 2+L...J 2 2 2
a() i=1 gi,k(Xi,kai + an

III. ASYMPTOTIC ANALYSIS

We are interested in deriving asymptotic expressions for
IE[Dk] as M ---+ 00, where the expectation is over the random
channel gains gi,k, for the three different schemes in Section
II. By the i.i.d. (in time) nature of the models we will drop the
subscript k. For analytical tractibility we will first analyze
"symmetric" sensor networks with aT = a;, Vi, and with
the g/s being identically distributed. See Section III-E for
remarks on more general asymmetric situations. Apart from
the multi-access scheme, for the other schemes we will need
to assume a specific distribution in order to obtain precise
asymptotic results. In these cases we will assume Rayleigh
fading, though most of our analytical methods should be able
to be adapted to other fading distributions.

Notation: For two functions f(t) and g(t), we will use
the standard asymptotic notation (see e.g. [8]) and say that
f rv 9 as t ---+ to, if ~ (:~ ---+ 1 as t ---+ to. It is well known
that the asymptotic re\ation rv is retained under addition,
multiplication and division.

Notation: Extending the use of the symbol rv to functions
of random variables, for functions f(t,w) and g(t,w), we
will also say that f rv 9 w.p.l as t ----t to, if ~~:::~ ----t

1 'Xf.l as t ---+ to. For instance, if Xi are i.i.d., then
Li=1 Xi rv MIE[X1] w.p.l as M ---+ 00, which follows from
the definition and the strong law of large numbers.

A. Multi-sensor diversity scheme

Let us use (Xi* = 1, and (Xj = 0, Vj i= i*. Then

D = (~+ gmax )-1
a~ gmaxa~+ a~

a~(gmaxa; + a~)

gmax(a~ + a~) + a~

a~a; (1 + a~(:1~a~; )
0'2 + 0'2 + an

() V gmax a~+a~

M 2 2 2 2 ( M )2Li=1 gi,k(Xi,kai + an + a() Li=1 yigi,k(Xi,k

c. Orthogonal access scheme

In the orthogonal access scheme the sensors transmit their
measurements to the fusion center via orthogonal channels,
so that the fusion center receives
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1However if e.g. we use Oi = 1, Vi, then the expected distortion will
also go to zero in the orthogonal scheme.

which converges to (~+~ )-1 at the rate 1/M. The limit
O"e AO"n

(~ + \0"1 2 ) -1 for D as M ---+ 00 was also previously shown
O"() /\ n

in [4], though the rate of convergence was not derived.

where E 1 ( .) is the exponential integral, and we have used
the asymptotic expansion [11]

-z ( 1 2 )E 1(z) rv~ 1 - - + 2" - + ...
z z z

Hence for Rayleigh fading

provided the expectation IE[gl/(gla; + a~)] (and hence
IE[gl/ (gla; + M a~)]) exists, where the last line now comes
from using a strong law of large numbers for triangular
arrays [10], and the definition and properties of rv. Hence
by uniform integrability

IE[D] 1
rv 1 + MIE[ 91 ]
~ 910"2+M0"2e v n

Then we note in all the different schemes considered here
(multi-sensor diversity, multi-access, orthogonal accesss), D
is an increasing function of a; for all i. Hence we can upper
and lower bound D with the symmetric results using a; =
a~ax, Vi and a; = a~in' Vi respectively.

Then in the multi-access scheme, since the upper and
lower bounds both converge to zero at the rate 1/M, the
general situation will also have the same scaling behaviour
as the bounds. Simlarly, for the orthogonal access scheme
we have upper and lower bounds both converging to (~ +

O"e

A~2 ) -1 at the rate 1/M, and so the general situation will
also do so. On the other hand, it can be shown that in general
the multi-sensor diversity scheme will not converge to any
limit as M ---+ 00, by using an argument similar to one in
[13].

networks. The orthogonal access scheme does not require as
much synchronization between sensors [4], but each sensor
will require its own orthogonal channel. The multi-sensor
diversity scheme doesn't have these issues, though it will
still require the fusion center to determine which sensor has
the best channel, with this information then fed back to the
sensors.

IV. NUMERICAL STUDIES

Consider a situation with a~ = 1, a; = 0.2, a~ = 0.1,
and let gi, Vi be exponentially distributed with mean 1/2.
Note that then IE[ Jgi] = V1r / S, (~+ ~)-1 = 0.1667,

V::1't O"e o"v

and (~ +~ )-1 = 0.1667.
O"e /\O"n

In Fig. 1 we compare between the simulated expected
distortion (averaging over 100000 iterations) and the asymp
totic expression (2) for the multi-sensor diversity scheme,
for different numbers of sensors M. In Fig. 2 we compare
between the simulated expected distortion and the asymptotic
expression (3) for the multi-access scheme. In Fig. 3 we
compare between the simulated expected distortion and the
asymptotic expression (4) for the orthogonal access scheme.
In each case, the validity of the respective asymptotic ex
pressions for large M is confirmed.

V. CONCLUSION

This paper has studied the asymptotic behaviour of a
multi-sensor diversity scheme for the decentralized estima
tion of an i.i.d. Gaussian source. We have shown that the rate
of decay is 1/1n(M) as the number of sensors M becomes

E. General sensor noise variances

We will now consider the case where the sensor noise
variances a;, i = 1, ... , M are not necessarily identical,
though for analytical tractibility the fading channels are
still assumed to be i.i.d. across sensors. The idea is to
obtain upper and lower bounds on the expected distortion
which asymptotically will have the same scaling behaviour,
a similar method was used in [13] in the context of linear
state estimation. We suppose that the sensor noise variances
can be bounded from both above and below, i.e.

o< a~in ::; a; ::; a~ax < 00, Vi

(4)

1
1 1 20"~
~ + :\a2 - A2M0"4e n n

1 2a; 1
1 + 1 + M-X2a4 ( 1 + 1 )2
~ A0"2 n ~ A0"2e n e n

IE[D]

If we now assume Rayleigh fading, with gi being exponen
tially distributed with mean 1/-X, then

IE [ gl ] _ IE [~ (1 _ M a~/a; )]
gla~ + Ma~ - a~ gl + Ma~/a~

= ~ [1- >..Ma; exp (-XMa~) E1 (-XMa~)]
a~ a~ a~ a~

1 (a2 2a4
)

rv a2 -XMa2 - -X2M~a4
v n n

D. Comparisons and discussions
2 2

The limit ~e+0"3J2 = (~ + ~ )-1 in the multi-sensor
O"e o"v O"e o"v

diversity scheme corresponds to the distortion that can be
achieved with a single sensor with estimation performed at
that sensor, i.e. no further analog forwarding to a fusion
center. We note also that the limit (~ + ~) -1 in the

O"e AO"n

orthogonal scheme using ai = 1/J"M, Vi is different from
the limit in the diversity scheme. Under the choices of ai in
this paper, the expected distortion goes to zero only in the
multi-access scheme.'

In terms of speed of convergence, the rate 1/M is achieved
in the multi-access and orthogonal schemes. On the other
hand, we get a slower convergence rate of 1/1n(M) in
the diversity scheme. A similar 1/1n(M) rate is achieved
when sensor measurements are transmitted to a fusion center
digitally using separate source/channel coding, e.g. as in the
CEO problem [1], [12].

Finally, in regards to implementation, the multi-access
scheme requires that we add the measurements coherently
as in (1), which may be difficult to achieve for large sensor
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Fig. 1. Multi-sensor diversity scheme. Comparison between simulated
expected distortion and asymptotic expression.
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large . In comparison, the multi-access and orthogonal access
schemes have been shown to have a rate of decay of 11M. As
an extension of this work, a distributed version of the multi
sensor diversity scheme called the channel-aware ALOHA
scheme, based on ideas of [14] can be analyzed. Furthermore,
optimal power allocation in the multi-sensor diversity and
channel-aware ALOHA scheme, and its performance in the
case of large numbers of sensors, has also be studied. These
results will be presented in future work .

ApPENDIX

A. Proof of Lemma 1

Proof: The maximum of M i.i.d. exponential random
variables with mean 1/,X , has cumulative distribution func
tion

and hence the probability density function
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10'
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We wish to find the large M behaviour of

where in the second line we used the substitution e:' = I
e - Ax. To determine the asymptotic behaviour of the integral

1
00 e-Mt

1 dt ,
o b - X In(1 - e- t )

Fig. 2. Multi-access scheme. Comparison between simulated expected
distortion and asymptotic expression.

we will use a Tauberian theorem for the Laplace transform,
see p.445 of [15] or p.248 of [16], which in our notation
says that if Jet) .?: 0, 0 ::; p < 00, and L(t) is a slowly
varying function at infinity, then each of the relations

Fig. 3. Orthogonal access scheme. Comparison between simulated expected
distortion and asymptotic expression.

o

rt
j(T)dT '" tPL(t) as t ---+ 0

Jo rep + 1)

implies the other.
Thus we can study first the asymptotic behaviour of

as t ---+ O. Using an integration by parts, we obtain

it 1 it 1
1 dr =,x dr

o b - XIn(1 - e-r) 0 ,Xb - In(1 - e-r)

rt
,....I__---.,...dT =

Jo ,Xb - In(1 - e-r)

t it re:"-----,-----,-,- - dr
,Xb -In(1 - e- t ) 0 (1 - e-r)('xb -In(1 - e- r ))2
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Next, it may be verified that Te- T /(1 - e-T
) :::; 1, and that

1/(-Xb - In(1 - e-T) )2 is an increasing function of T. Then
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and so

A r 1 dr rv At
io -Xb - In(l - e:") -Xb - In(l - e-t )

-Xt -Xt
-Xb -In(t) -Xb + In(l/t)

as t -+ O. With L(t) = Ab+l~(l/t) (which can be easily
shown to be slowly varying) and p = 1, we thus have by the
Tauberian theorem that

1
00 e-Mt

M dt rv M X M- 1 X ----
o b - *In(l - e-t ) -Xb + In(M)

-X
rv In(M) as M ----t 00
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