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Abstract— In this paper, we consider a wideband spectrum
sharing system where a secondary user can share orthogonal
frequency bands with a number of primary users, each licensed
to use an individual band. We address the problem of ergodic
capacity maximization of the secondary user subject to an
average sum (across the bands) transmit power constraint on the
secondary user and individual average interference constraints
on the primary users. After studying optimal power allocation
with full channel state information (CSI) at the secondary
transmitter, we focus on designing optimal power allocation
strategies for the quantized CSI case. It is assumed that a
band manager has the full CSI of all secondary-to-secondary
and secondary-to-primary channels, and designs (ofine) an
optimal power codebook based on statistical information of
the channels and feeds back the index of the codebook to
the secondary transmitter for every channel realization. A
modified generalized Lloyd type algorithm (GLA) is designed
for an optimal power codebook. With the narrowband case (one
secondary and one primary user) in mind, various properties
of the quantized powers are derived. It is observed that only
2-3 bits of feedback with this codebook is sufficient to provide
secondary capacities close to the full CSI case.

I. INTRODUCTION

Radio spectrum is a limited and precious resource that
is traditionally licensed to users by governments in a rigid
manner. In order to avoid interference, the licensed owner has
an exclusive right to access the allocated frequency band [1].
Consequently, as the number of wireless communication
systems and services grow, the availability of vacant spectrum
becomes severely scarce. However, some recent measure-
ments reveal that many portions of the spectrum are mostly
under-utilized or even unoccupied. This has led to the idea of
cognitive radio (CR) technology [2], which holds tremendous
promise to dramatically improve the spectral efficiency. The
key idea behind CR is that an secondary user (SU) is allowed
to communicate over the frequency band originally licensed
to a primary user (PU), as long as the transmission of SU
does’t generate unfavorable impact on the operation of PU.

Basically, there are three categories of CR network
paradigms: interweave, overlay, and underlay [3]. In underlay
systems, the SU can transmit even when the PU is present, but
the transmitted power of SU should be controlled properly so
as to ensure that the resulting interference does not degrade
the received signal quality of PU to an undesirable level [6]
by imposing the interference temperature [1] constraint at PU
(average or peak interference power (AIP/PIP) constraint).
This type of CR is also known as ’spectrum sharing’ [1]
model. In this paper, we will focus on this underlay (spectrum
sharing) model.

The behavior of capacities of different AWGN channels
under received-power constraints (AIP) at the PU receiver
(PU-RX) is studied in [7]. Lack of fading results in the
almost similar capacity performance with transmit or re-
ceived power constraints. The ergodic capacity of narrowband
spectrum sharing model with one SU and one or more PU
under either AIP or PIP constraint at PU-RX under various

fading distributions is studied in [1], illustrating that with
fading, spectrum access opportunity for the SU significantly
increases compared to the AWGN case. In [9], optimum
power allocation for three different capacity notions under
both AIP and PIP constraints is studied. The optimal power
transmission strategies for maximizing ergodic capacity and
outage capacity under various combinations of secondary
transmit power constraints and interference constraints is
designed in [6].

However, most of the above results assume to have knowl-
edge of full channel state information (CSI) including the SU-
TX to PU-RX channels, which is hard to realize in practice.
Recently, the effect of imperfect channel estimation in the
secondary to primary channels has been investigated in [10]
by considering the channel estimate as a noisy version of
the true CSI, and [16] proposed a practical design paradigm
for cognitive beamforming based on finite-rate cooperative
feedback from the PU-RX to the SU-TX. In this paper, we
consider a wideband spectrum sharing system where one
SU shares M different frequency bands with M primary
users (PUs), each using a separate band. Under the general
framework of limited feedback, we address the problem of
ergodic capacity maximization of SU subject to an average
sum (across the bands) transmit power constraint on the SU
and individual average interference constraints on the PUs.

After presenting a systematic algorithm for optimal power
allocation with full CSI at the secondary transmitter, we
turn to the main focus of this paper - designing optimal
power allocation using quantized channel information. It is
assumed that a band manager or CR service provider has
full CSI including all secondary-to-secondary and secondary-
to-primary channels. It designs an optimal power codebook
based on the statistical information (channel distributions)
of the channels and feeds back the index of the codebook
to the secondary transmitter for every channel realization.
A generalized Lloyd type algorithm (GLA) is designed for
the optimal power codebook, which is globally convergent
and empirically consistent. Focusing on the narrowband case
(one secondary and one primary user), various properties of
the quantized powers are derived. Numerical studies illustrate
that only 2-3 bits of feedback provide secondary capacities
very close to capacity based on full CSI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a wideband spectrum sharing scenario with
one SU and Multiple PUs, where a SU is allowed to use
M orthogonal frequency bands (Band1 to BandM ) that
are individually licensed to PU1, . . . , PUM , respectively.
Regardless of the ON/OFF status of PUi, SU uses the i-th
channel as long as the impact of the secondary transmission
does not substantially degrade the received signal quality of
PUi. Let gi0 ∈ R+ and gi1 ∈ R+ denote the instantaneous
channel power gains of the link between the SU-TX and the
receiver of PUi and i-th channel between the SU-TX and
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SU-RX, respectively. These channels are assumed to be block
fading channels with probability density functions f0(gi0) and
f1(gi1). For analytical simplicity, the interference from PUi-
TX to SU-RX is neglected (as in [1], [6], etc). All gi0 and gi1
(i = 1, . . . ,M ) are mutually independent and are assumed to
have unit mean. Independent, standard white Gaussian noise
is added at each receiver. When M = 1, this system becomes
a typical narrowband spectrum sharing model studied in [1],
[5], [6].

Given a channel realization g0
4
= {g1

0 , . . . , g
M
0 } and g1

4
=

{g1
1 , . . . , g

M
1 }, we assume that CSI in the form of η(g0,g1)

is available at the SU-TX. The power allocated at the SU-
TX on the M parallel SU links is represented by the vector
p(η(g0, g1)) = {p1(η(g0, g1)), . . . , pM (η(g0, g1))}. Thus,
the ergodic capacity1 of the SU is given as

C =
1
M

M∑
i=1

E
[
log
(
1 + gi1pi(η(g0, g1))

) ]
(1)

A common way to protect PU’s received signal quality is
by imposing either an average or a peak interference power
(AIP/PIP) constraint at PU-RX [1], [5], [6], although other
forms of PU quality of service constraint such as PU’s
capacity loss and PU’s outage probability [17] can also be
used. It was shown in [5] that an AIP constraint is more
favorable than a peak constraint especially in the context of
transmission over fading channels, since the AIP constraint
is more flexible and can achieve larger SU capacity results
with less PU capacity loss than those achieved by PIP.

Motivated by this observation, we consider the following
optimal power allocation scheme that maximizes the ergodic
capacity of SU in a wideband spectrum sharing scenario,
under an AIP constraint at each PUi-RX and an average
sum transmit power constraint (ATP) for the SU, given by,

max
pi(η(g0,g1))≥0,∀i

1
M

M∑
i=1

E
[
log
(
1 + gi1pi(η(g0, g1))

) ]
s.t. E

[
gi0pi (η(g0, g1))

]
≤ Qav,i, ∀i

1
M

M∑
i=1

E [pi(η(g0, g1))] ≤ Pav. (2)

In Sec. III, we present the optimal power allocation results
assuming that full channel state information (CSI) is available
at the SU-TX (i.e, η(g0, g1) = (g0, g1)), followed by the
case of quantized channel information in Sec. IV, where
η(g0, g1) represents a deterministic index mapping scheme,
such that η(g0, g1) = j, j ∈ {1, 2, . . . , L}, L = 2B when the
instantaneous channel gains (g0, g1) belong to a carefully
constructed partition Rj of the channel space RM+ × RM+ .
All proofs are relegated to [8] due to paucity of space.

III. OPTIMAL POWER ALLOCATION WITH PERFECT CSI

In this section, we assume that SU-TX has perfect knowl-
edge of g0 and g1 (full CSI at the transmitter). That is,
η(g0, g1) = (g0, g1). It is easy to verify that the problem
given in (2) is a convex optimization problem. By applying
the necessary and sufficient Karush-Kuhn-Tucker (KKT)

1All capacity expressions are in nats/channel use in this work.

conditions for optimality, the optimal power allocation can
be easily shown to be

p∗i (g0, g1) =

(
1

λf + µfi g
i
0

− 1
gi1

)+

(3)

where λf and µfi are the nonnegative Lagrange multipliers
associated with the ATP constraint and the AIP constraint
of PUi respectively, and (x)+ = max(x, 0). This solution
is clearly a minor extension of the narrowband result in [6].
However, in the wideband case (M > 1), it should be noted
that determining the optimal power allocation scheme in-
volves obtaining the optimal values of the (M+1) Lagrange
multipliers. Since all the constraints in Problem (2) may not
hold with equality simultaneously, it is difficult to determine
λf and {µfi }. For example, the Lagrange multipliers can be
obtained by the ellipsoid method [15], but this procedure
is time consuming. Thus we present a complete solution to
Problem (2) in the following theorem.

Theorem 1: With η(g0, g1) = (g0, g1) at the SU-TX, the
optimal power allocation for Problem (2), p∗i (g0, g1), is given
by

(
1

µfi g
i
0
− 1

gi1

)+

⇐⇒ Pav ≥ 1
M

∑M
i=1E

[(
1

µigi0
− 1

gi1

)+
]

Otherwise
(

1
λf
− 1

gi1

)+

⇐⇒ E

[(
1
λf
− 1

gi1

)+
]
≤ Qav,i(

1

λf+µfi g
i
0
− 1

gi1

)+

⇐⇒ E

[(
1
λf
− 1

gi1

)+
]
> Qav,i

For a proof of this result, and associated special cases and
numerical studies, see [8]. Appealing to the convexity of
Problem (2), we can show that one of the cases must hold,
and the corresponding power allocation scheme must be the
global optimal solution for the original Problem (2). An al-
gorithm can then be easily designed to obtain p∗i (g0, g1), and
the associated non-zero Lagrange multipliers can be obtained
by solving the KKT optimality conditions numerically (e.g.,
via a bisection search).

IV. POWER CONTROL WITH QUANTIZED CSI

The assumption of full CSI at the SU-TX (especially that
of g0) is unrealistic in practical systems. In this section,
we are therefore interested in designing power allocation
schemes based on quantized (g0, g1) information acquired
via a no-delay and error-free feedback link with limited rate.
We assume that there is a CR service provider or a band man-
ager [4] that can obtain perfect information on g1 from SU-
RX or SU base stations and perfect information on g0 from
PU base stations, presumably over a wired link, and then
forward some appropriately quantized CSI to SU-TX (and
SU-RX for decoding purposes) through the feedback link.
More specifically, given B bits of feedback, a power code-
book P= {P1, . . . ,PL} (where Pj = {p1j , . . . , pMj}, j =
1, . . . , L) of cardinality L = 2B , is designed offline purely on
the basis of the statistics of g0, g1. This codebook is known
a priori by both SU-TX and SU-RX. The vector space of
(g0, g1) is thus partitioned into L regions R1, . . . ,RL using
a quantizer Q (codebook element Pj represents the power
level used in Rj). The CR service provider/band manager
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maps the current instantaneous (g0, g1) information into one
of L integer indices and sends the corresponding index to the
SU-TX via the feedback link (e.g., if the current (g0, g1) falls
in Rj , then η(g0, g1) = j will be conveyed back to SU-TX).
The SU-TX will use the associated power codebook element
(e.g., if the feedback signal is j, then Pj will be used as the
transmission power) to adapt its transmission strategy.

Let Pr(Rj) = Pr((g0, g1) ∈ Rj) denote the probabil-
ity that (g0, g1) falls in the region Rj . Let E[•|Rj ] =
E[•|(g0, g1) ∈ Rj ] denote the corresponding expectation.
Then, the secondary ergodic capacity maximization problem
(2) with limited feedback can be formulated as

max
Pj≥0,∀j

L∑
j=1

(
1
M

M∑
i=1

E
[
log(1 + gi1pij)|Rj

])
Pr(Rj)

s.t.

L∑
j=1

E
[
gi0pij |Rj

]
Pr(Rj) ≤ Qav,i ∀i,

L∑
j=1

(
1
M

M∑
i=1

pij

)
Pr(Rj) ≤ Pav. (4)

Our objective is thus the joint optimization of the channel
partition regions and the power codebook such that the
ergodic capacity of SU is maximized under the above average
transmit power and average interference constrains.

A. Narrowband spectrum-sharing case

For ease of exposition, we first look at the relatively
simpler case of M = 1. For simplicity (with some abuse
of notation), let pj , g1, g0, Qav represent p1j , g

1
1 , g

1
0 , Qav,1

respectively. Thus Problem (4) with M = 1 is written as

max
pj≥0,∀j

L∑
j=1

E
[
log(1 + g1pj)|Rj

]
Pr(Rj)

s.t.

L∑
j=1

E
[
g0pj |Rj

]
Pr(Rj) ≤ Qav,

L∑
j=1

pjPr(Rj) ≤ Pav.

We solve the above Problem via the Lagrange duality method.
First, we write the Lagrangian of above problem as

L(P, λ, µ) =
L∑
j=1

E
[
log(1 + g1pj)− λpj − µg0pj |Rj

]
× Pr(Rj) + λPav + µQav (5)

where λ and µ are the nonnegative Lagrange multipliers
associated with the ATP constraint and AIP constraint re-
spectively. The Lagrange dual function g(λ, µ) is defined as

max
pj≥0 ∀j

L∑
j=1

E
[
log(1 + g1pj)− λpj − µg0pj |Rj

]
Pr(Rj) (6)

and the corresponding dual problem is

min
λ≥0, µ≥0

g(λ, µ) + λPav + µQav. (7)

We first solve the optimization problem (6) with fixed λ
and µ. To this end, we employ an algorithm similar to the
Generalized Lloyd Algorithm (GLA) [11], [12] to design an
optimal codebook for Problem (6), which is based on two
optimality conditions: 1) optimum channel partitioning for
a given codebook, also called the nearest neighbor condition

(NNC) in the context of traditional vector quantization (VQ),
and 2) optimum codebook design for a given partition, also
known as the centroid condition (CC) (in the context of VQ)
[12]. GLA is usually initialized with a random choice of
codebook, and then the above two conditions are iterated until
some pre-specified convergence criterion is met. The same
procedure is used here for designing an optimal quantizer Q,
but the design criterion for our case is minimizing the differ-
ence between the capacity with perfect CSI and the capacity
with quantized power allocation under the given constraints.
This amounts to designing an optimal power codebook Q
that maximizes the Lagrangian function for quantized CSI,∑L
j=1E[log(1 + g1pj) − λpj − µg0pj |Rj ]Pr(Rj). We call

the corresponding quantized power allocation algorithm for
a given λ, µ as a modified GLA.

In practice, this modifed GLA is implemented using a suf-
ficiently large number of training samples (channel realiza-
tions for g0, g1). Beginning with a random initial codebook,
one can design the optimal partitions using the fact that the
optimal partitions satisfy

Rj =
{

(g0, g1) : (log(1 + g1pj)− λpj − µg0pj) ≥

(log(1 + g1pn)− λpn − µg0pn),∀n 6= j
}

(8)

where Rj is the corresponding partition region for power
level pj in the codebook, and ties are broken arbitrarily. Once
the optimal partitions are designed, the new optimal power
codebook is found by solving for argmaxpj≥0E[log(1 +
g1pj) − λpj − µg0pj |Rj ]Pr(Rj), ∀j = 1, 2, . . . , L. Given
a partition, this optimization problem is convex and by
using the KKT conditions, one can obtain the optimal power
as max(p∗j , 0), where p∗j is the solution to the equation
E[ g1

1+g1pj
− (λ+µg0)|Rj ] = 0. These two steps are repeated

until the resulting ergodic capacity converges within a pre-
specified accuracy. One needs to note that GLA cannot in
general guarantee global optimality, since the two optimality
conditions (NNC and CC) mentioned above are just neces-
sary conditions [12]. Thus it is possible that the resulting
quantizer is only locally optimal. While convergence of
our modified GLA follows immediately by noting that the
Lagrangian

∑L
j=1E[log(1+g1pj)−λpj−µg0pj |Rj ]Pr(Rj)

is non-decreasing at each iteration and is upper bounded
(due to finite average transmit power and average interfer-
ence constraints), it is important to state a more formal
result along the lines of [13]. Since GLA is initialized
with a random codebook and the optimal partitions and
codevectors are found using training samples drawn from
empirical distributions, it is crucial that GLA is globally
convergent with respect to the choice of initial codebooks and
empirically consistent. For more formal definitions of these
two properties, see [13]. Under the assumption of absolutely
continuous fading distributions for g0, g1 and mild regularity
assumptions satisfied by these distributions, one can show
that the modified GLA satisfies the conditions for global
convergence and empirical consistency stated in [13] and thus
we have the following result:

Theorem 2: The modified GLA that solves the optimiza-
tion problem (6) satisfies the global convergence and empir-
ical consistency properties of [13].

Next, we present some useful properties of the optimal
power solutions obtained via the modified GLA. We use the
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partitions R1, . . . ,RL and the corresponding power levels
p1, . . . , pL to denote the convergent optimal solutions.

Lemma 1: Given partitions R1, . . . ,RL and the corre-
sponding power level p1, . . . , pL, (where Rj and Rj+1,∀j ∈
{1, . . . , L − 1} are adjacent regions and pj 6= pj+1), the
boundary between any two adjacent regions Rj and Rj+1 is
given by

g1 =
e(λ+µg0)(pj−pj+1) − 1

pj − pj+1e(λ+µg0)(pj−pj+1)
. (9)

When µ 6= 0, g1 is a monotonically increasing con-
vex function of g0 and as g1 → ∞, we have g0 →
1
µ

(
log(

pj
pj+1

)

pj−pj+1
− λ

)
.

Remark 1: In case λ > 0, µ = 0, the AIP constraint is in-
active and the ATP constraint is satisfied with equality. In this
case, the boundary between any two adjacent regions Rj and
Rj+1 becomes g1 = eλ(pj−pj+1)−1

pj−pj+1e
λ(pj−pj+1) . Clearly, Problem (4)

reduces to an ergodic capacity maxmization problem with
quantized channel information. For the narrowband case, it
becomes a scalar quantization problem involving quantizing
g1 only. Note that while for the narrowband case, this no
longer pertains to a cognitive radio problem, the properties
of the optimal quantized power allocation scheme are still
important for the wideband case (M > 1). This is due to
the fact that in the wideband case, it is possible that for a
specific (say the i-th) channel, the AIP constraint is inactive
(µi > 0) while λ > 0. See Section IV-B for further details.

We now give an example to illustrate what the optimum
partition regions actually looks like. For this example, g0 and
g1 are both exponentially distributed (Rayleigh fading) with
unit mean and L = 4 (2 bits of feedback). The optimum
partition regions are as shown in Fig. 1 for λ > 0, µ > 0,
and the Figure for λ > 0, µ = 0 can be found in [8].
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p1

Fig. 1. The structure of optimum partition regions with B = 2 bits feedback
given λ = µ = 0.1.

Proposition 1: We obtain the following properties for the
optimal quantized power levels where (as illustrated in Figure
1) the regions R1,R2, . . . etc. are sequentially numbered,
with R1 being the region closest to the g1 axis and RL being
the region closest to the g0 axis. Note that these properties
apply regardless of whether µ > 0 or µ = 0.

i) p1 > · · · > pL.
ii) All boundaries between any two adjacent partitions

satisfy g1 > λ+ µg0
.

iii) Given B bits of feedback (or L = 2B regions), for
the first L-1 regions, we always have strictly positive
power, i.e. p1 > · · · > pL−1 > 0, whereas pL is simply
nonnegative, i.e. pL ≥ 0.

iv) When λ + µ ≥ 1 (note that if λ = 0, µ ≥ 1 implies
Qavg < 1, and if µ = 0, λ ≥ 1 corresponds to Pavg <
1), we always have pL = 0. In addition, when L (the
number of quantized regions) is sufficiently large, no
matter what λ, µ is, pL must be 0. Additionally, as L→
∞ the boundary between RL−1 and RL approaches
g1 = λ+ µg0 and limL→∞ pL−1 = 0.

Remark 2: The above properties of optimal quantized
power values are interesting for two reasons. From Property
ii), it is clear that (g0, g1) ∈ Rj for j = 1, 2, . . . , L−1 satisfy
the property g1 > λ + µg0 whereas for the region RL, this
property may or may not be satisfied. Since the quantized
power values in the first L−1 regions are strictly positive, it
is easy to relate this property to the corresponding property
of the full CSI based optimal power value which is strictly
positive if and only if g1 > λf +µfg0. Also, as L→∞, the
boundary between RL−1 and RL approaches g1 = λ+ µg0,
thus making this relationship between the quantized power
allocation scheme and the full CSI power allocation scheme
stronger.

Finally, Property iv) allows one to obtain an approximate
quantized power allocation scheme (AQPA) for large L by
setting pL = 0 and taking the limit as pL−1 → 0. This is
particularly useful as the modified GLA becomes compu-
tationally intensive for large L, whereas AQPA provides a
performance that is extremely close to that of the modified
GLA, while requiring very little computation. A detailed
description of the AQPA is provided in Sec. IV-C followed
by illustrative numerical simulations in Sec. V.

Based on the above results, we can solve for the optimal
quantized power values given a partition R1,R2, . . . ,RL.
This is equivalent to solving the following set of nonlinear
equations for p1, p2, · · · , pL:{
E
[

g1
1+g1pj

− (λ+ µg0)|Rj
]

= 0, j = 1, . . . , L

pL = max(0, pL)
(10)

where if µ 6= 0, E
[

g1
1+g1pj

− (λ+ µg0)|Rj
]

=∫∞
cj

∫ rj
rj−1

( g1
1+g1pj

− (λ+ µg0))f(g0)f(g1)dg0dg1, with cj =
eλ(pj−pj+1)−1

pj−pj+1e
λ(pj−pj+1) , j = 1, . . . , L − 1, cL = 0 and

rj = 1
µ

(
log

pj∗g1+1
pj+1∗g1+1

pj−pj+1
− λ

)
, j = 1, . . . , L − 1, r0 =

0, rL = ∞. When µ = 0, E
[

g1
1+g1pj

− (λ+ µg0)|Rj
]

=∫ cj−1

cj
( g1
1+g1pj

− λ)f(g1)dg1, with c0 = ∞. Equation (10)
can be solved efficiently by a nonlinear equation solver.

Now that we have an algorithm based on the modified
GLA for solving the (possibly locally optimal) quantized
power values for fixed λ, µ, we can go back to solving the
dual problem (7) for finding optimal values λ and µ. To
this end, we exploit a similar method to the full CSI case
in Sec. III to obtain optimal values λ and µ numerically
by solving the associated KKT conditions. One can thus
repeat the above two steps by solving (6) and (7) iteratively
until a satisfactory convergence criterion is met. A formal
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algorithmic format for this procedure is provided for the more
general wideband (M > 1) case next.

B. Wideband spectrum-sharing case

The above algorithm for the narrowband case can be easily
extended to the wideband case corresponding to the original
Problem (2). For this scenario, the Lagrangian function is

L(P, λ, u) =
L∑
j=1

(
1
M

M∑
i=1

E[log(1 + gi1pij)|Rj ])Pr(Rj)

− λ(
L∑
j=1

(
1
M

M∑
i=1

E[pij |Rj ])Pr(Rj)− Pav)

−
M∑
i=1

µi(
L∑
j=1

E[gi0pij |Rj ]Pr(Rj)−Qav,i) (11)

where λ and µi are the nonnegative Lagrange multipliers
associated with the ATP constraint and i-th AIP constraint
respectively. The Lagrange dual function g(λ, {µ′i}) is de-
fined as

max
pij≥0 ∀i,j

1
M

M∑
i=1

L∑
j=1

E[log(1 + gi1pij)− λpij

− µ′igi0pij |Rj ]Pr(Rj) (12)

where µ′i = Mµi, ∀i, and the dual problem is

min
λ≥0, µ′i≥0,∀i

g(λ, {µ′i}) + λPav +
M∑
i=1

µ′i
M
Qav,i. (13)

Similar to the narrowband case, we first consider the
Problem (12) to obtain g(λ, {µ′i}) with given λ and {µ′i}.
Denote by Rij the j-th quantization region for the i-th
band where

⋃M
i=1Rij = Rj . Then problem (12) can be

decomposed into M parallel subproblems, where for each
band i, i = 1, . . . ,M ,

max
pij≥0 ∀j

L∑
j=1

E[log(1 + gi1pij)− λpij − µ′igi0pij |Rij ]Pr(Rij)

is defined as the sub-dual function gi(λ, µ′i) and g(λ, {µ′i}) =
1
M

∑M
i=1gi(λ, µ

′
i). This kind of duality method is also known

as the ’dual decomposition algorithm’ [14]. Since each sub-
problem above is similar to Problem (6) for the narrowband
case, they can be similarly solved by using a modified GLA.
λ and {µ′i} can also be obtained in a manner similar to
the narrowband case. These two steps are then repeated
until a satisfactory convergence criterion is met. Due to the
increased complexity resulting from the presence of multiple
bands, we provide below a formal description of the overall
optimization algorithm (Algorithm 1) for solving (4).
Algorithm 1:
1) Let λ = 0, then all µ′i, i = 1, . . . ,M must satisfy
µ′i > 0. Starting with some random initial power codebook,
for each i, find µ′i by solving

∑L
j=1E[gi0pij |Rj ]Pr(Rj) =

Qiavg and then obtain the corresponding (locally) optimal
power codebook {pi1, . . . , piL} using a modified GLA.
Repeat these two steps until convergence resulting in a
power codebook {P1, . . . ,PL}. With this codebook, if∑L
j=1(

1
M

∑M
i=1E[pij |Rj ])Pr(Rj) ≤ Pavg , it’s an optimal

codebook and stop; otherwise go to step 2).

2) If 1) is not satisfied, we must have λ > 0. For
a given λ, for each i, use the modified GLA to find
an optimal power codebook first with µ′i = 0. If∑L
j=1E[gi0pij |Rj ]Pr(Rj) ≤ Qiavg , then the corresponding

optimal codebook {pi1, . . . , piL} (obtained via the modi-
fied GLA) is an optimal solution for this i-th subprob-
lem, otherwise, µ′i > 0, and can be found by solving∑L
j=1E[gi0pij |Rj ]Pr(Rj) = Qiavg. Find the corresponding

optimal codebook entry {pi1, . . . , piL} for the i-th subband ,
and then use this codebook to find an updated value of λ by
solving

∑L
j=1(

1
M

∑M
i=1E[pij |Rj ])Pr(Rj) = Pavg . Repeat

these steps until convergence and the final codebook will
be an optimal codebook for the wideband spectrum sharing
problem (4).

C. Approximate Quantized Power Allocation Algorithm
(AQPA)

Although an offline algorithm, the complexity of modi-
fied GLA for determining the optimal quantized power is
very high for even a moderately large value of L. This
is due to the fact that the optimal channel partitions and
the corresponding optimal power codebook are obtained via
empirically generating a large number of channel realizations
as training samples. As L increases, the number of training
samples required will also increase. Thus, we use part iv) of
Lemma 1 to derive a low-complexity suboptimal scheme for
implementing the modified GLA for large L values. Below
we describe this scheme for the narrowband case. A similar
scheme for the wideband case can be designed accordingly.

Note that part iv) of Lemma 1 states that as L → ∞,
pL = 0 and pL−1 → 0. Applying these approximations
to (10) allows us to obtain an approximate but compu-
tationally efficient algorithm (called approximate quantized
power allocation algorithm (AQPA)) for large L. AQPA first
solves E[ g1

1+g1pL−1
− (λ + µg0)|RL−1] = 0 for pL−2 by

substituting pL = 0 and taking the limit pL−1 → 0, which, if

µ > 0, is equivalent to solving
∫∞
λ

∫ g1−λ
µ

1
µ (

log(1+g1pL−2)
pL−2

−λ)
(g1−

(λ + µg0))f(g0)f(g1)dg0dg1 = 0 for pL−2. When µ = 0,

it is equivalent to solving for pL−2 from
∫ e

λpL−2−1
pL−2

λ (g1 −
λ)f(g1)dg1 = 0. Note that the above equations (for both
µ > 0 and µ = 0) involve only one variable: pL−2 and
are thus straightforward to solve. One can then recursively
compute pL−3, pL−4, . . . , by using the optimality conditions
for the regions RL−2,RL−3, . . . , respectively, in the reverse
direction. These equations can be solved by appropriate
nonlinear equation solvers and do not require the use of large
number of training samples. Thus AQPA has a substantially
reduced computational complexity and is applicable to large
number of feedback bits. Note however, as this is an ap-
proximate algorithm only, the performance of this algorithm
becomes comparable to modified GLA only for large values
of L. Numerical results presented in the next section illustrate
that AQPA performs extremely well for L ≥ 16.

V. NUMERICAL RESULTS

In this section, we will evaluate the performance of the
designed power allocation strategies via numerical simula-
tions. We use a wideband spectrum sharing system with
one SU and M independent frequency bands (each band is

1676Authorized licensed use limited to: Maynooth University Library. Downloaded on May 31,2021 at 14:12:39 UTC from IEEE Xplore.  Restrictions apply. 



originally licensed to a PU), where all the channels involved
are Rayleigh fading. For each simulation, 100,000 randomly
generated channel realizations for each g0 or g1 are used.

Fig. 2 shows the capacity performance of SU shar-
ing the spectrum with four PUs (M = 4) (wideband
spectrum sharing case) under AIP constraint thresholds
(Qav,1, Qav,2, Qav,3, Qav,4)=(−10 dB, −5 dB, 0 dB, 5 dB),
and illustrates the effect of increasing the number of feedback
bits on the capacity performance. For comparison, we also
plot the corresponding capacity performance with full CSI.
The striking observation from Fig. 2 is that introducing one
extra bit of feedback substantially reduces the gap with
capacity based on perfect CSI. This property is not very
obvious when Pav is small, for example when Pav ≤ 0 dB.
But with increasing Pav , it becomes more pronounced. To
be specific, at Pav = 10 dB, with 1 bit, 2 bits and 3 bits
of feedback, the percentage capacity loss is approximately
17.38%, 5.49% and 1.46% respectively, and only 3 bits
feedback can result in secondary ergodic capacity very close
to that with full CSI. This is very encouraging since only
a small number of bits of feedback are required to achieve
close performance to the full CSI case.

In Fig. 3 we compare the performance of AQPA with
modified GLA, where SU shares the spectrum with two PUs
(M = 2) and AIP constraint thresholds (Qav,1, Qav,2)=(−5
dB, 0 dB). It illustrated that with the same number of bits
of feedback, the gap between AQPA and modified GLA
becomes smaller as L increases. For example, when Pav =
10 dB, the capacity loss by using AQPA instead of GLA is
about 7.60%, 3.30% and 0.90% for 2 bits, 3 bits and 4 bits
feedback respectively. It is clearly seen that AQPA with 4 bits
feedback can almost approach the 4 bits GLA performance,
but with much faster speed.
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Fig. 2. SU Ergodic capacity with quantized power allocation (GLA) with
four PUs (M = 4)

VI. CONCLUSIONS AND EXTENSIONS

We have derived quantized power allocation algorithms for
a wideband spectrum sharing system with one secondary user
and multiple primary users, each licensed to use a separate
band, each band modelled as a block fading channel. The
objective has been to maximize the SU ergodic capacity
under an average sum transmit power constraint and indi-
vidual average interference constraints at the PU receivers.
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Fig. 3. Capacity performance of AQPA with two PUs (M = 2).

Generalized Lloyd type algorithms have been derived and
various properties of the quantized power allocation laws
have been presented. Future work will include deriving more
comprehensive properties of the quantized power allocation
laws, and deriving expressions for asymptotic capacity loss
with quantized power allocation, and consideration of multi-
ple PU’s in each band.
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