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Abstract— This paper studies the problem of optimal power
allocation for Kalman filtering with random packet losses.
We consider the problem of minimizing the trace of the
expected error covariance subject to an average transmit power
constraint. Adopting a model for the packet loss probabilities
that depends on both the sensor transmit power and time-
varying fading channel gain, the problem is formulated as
a constrained Markov decision process (MDP) that is solved
numerically with dynamic programming techniques. Simpler
suboptimal power allocation policies, namely a constant power
allocation scheme and a truncated channel inversion scheme,
are also considered and numerical comparisons made with the
optimal policy.

I. INTRODUCTION

The problem of Kalman filtering with random packet

losses has been studied extensively since the seminal work

of [1], which showed that for i.i.d. Bernoulli packet losses

there exists a critical threshold such that if the packet arrival

rate exceeds this threshold the expected error covariance

remains bounded, but diverges otherwise. This work has been

extended in various directions such as: multiple sensors [2],

[3], further characterizations of the critical threshold [4],

[5], probabilistic notions of performance [6], [7], performing

local processing before transmission [8], consideration of

delays [9], and Markovian packet losses [10]–[12]. Kalman

filtering over continuous valued fading channels has also

been considered in [13], [14].

In the wireless communications community, power con-

trol is regularly used to improve system performance and

reliability. The primary focus of the previously mentioned

works is on deriving conditions for stability of the estimator,

and power control is not explicitly considered. However,

power control can also be used in Kalman filtering to

improve the estimator stability and estimation performance.

For Kalman filtering over continuous fading channels, the use

of power control for outage minimization and expected error

covariance minimization has been studied in [15]. The works

of [16], [17] consider the use of power control at the sensor

over a continuous fading channel, with the data being sent

over this channel after digital modulation, which would then

give a corresponding packet loss probability dependent on the

transmit power at the sensor. Power allocation using model

predictive control techniques is considered in [16], while

optimal power allocation schemes to guarantee stability are

investigated in [17].
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In this paper we adopt a similar channel model to [17], but

instead of using power allocation to achieve filter stability,

we are interested in the use of power allocation to improve

the estimation performance of the Kalman filter. Specifically,

we address the problem of minimizing the trace of the ex-

pected error covariance subject to an average transmit power

constraint. The problem is formulated as a Markov Decision

Process (MDP) problem that can be solved numerically with

dynamic programming techniques. Two simpler suboptimal

schemes will also be investigated, namely a constant power

allocation scheme, and a truncated channel inversion scheme,

and their performance is compared with that of the optimal

policy.

The paper is organized as follows. The system model is

given in Section II. The optimal power allocation problem

is formulated and solved in Section III, while suboptimal

approaches are considered in Section IV. Numerical studies

comparing the optimal and suboptimal schemes are given in

Section V.

II. SYSTEM MODEL

A diagram of the system model is given in Fig. 1. Consider

a linear system

xk+1 = Axk + wk

where xk ∈ R
n, and wk is i.i.d. Gaussian with zero mean and

covariance matrix Q > 0.1 The sensor makes a measurement

yk = Cxk + vk

where yk ∈ R
m, and vk is i.i.d. Gaussian with zero mean

and covariance matrix R ≥ 0. We consider unstable systems,

and assume that the pair (A,Q1/2) is stabilizable and the pair

(A,C) is detectable.

Fig. 1. System model

1We say that a matrix X > 0 if X is positive definite, and X ≥ 0 if X
is positive semi-definite.
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The measurement is then sent to a fusion center (that per-

forms the Kalman filtering operation) over a packet dropping

link, which can be modelled by

zk = γkyk

where zk is the quantity received at the fusion center. Here

the measurement yk is assumed to be encoded to form a

single packet, and γk = 1 denotes that the measurement

packet is received, while γk = 0 denotes that the packet is

lost.

The Kalman filter state estimates and error covariances are

defined as

x̂k|k = E[xk|z0, . . . , zk, γ0, . . . , γk]
x̂k+1|k = E[xk+1|z0, . . . , zk, γ0, . . . , γk]
Pk|k = E[(xk−x̂k|k)(xk−x̂k|k)

T |z0, . . . , zk, γ0, . . . , γk]
Pk+1|k = E[(xk+1 − x̂k+1|k)(xk+1 − x̂k+1|k)

T |
z0, . . . , zk, γ0, . . . , γk].

We will also use the shorthand Pk+1 , Pk+1|k. The Kalman

filtering equations with packet loss can be found in [1]. In

particular, the error covariance Pk satisfies

Pk+1 = APkA
T +Q−γkAPkC

T (CPkC
T +R)−1CPkA

T .

Similar to [17], we adopt a model for the packet loss

process {γk} that is governed by a time-varying wireless

fading channel {hk} and sensor transmit power control {uk}
over this channel. In this model, the conditional packet

reception probabilities are given by

Pr(γk = 1|uk, hk) , f(hkuk) (1)

where f(.) : [0,∞) → [0, 1] is a monotonically increasing

continuous function. The form of f(.) will depend on the

particular digital modulation scheme being used [18], see

e.g. (8) for the case of binary phase shift keying (BPSK)

transmission.

We consider the case where {hk} is a i.i.d. block fading

process [19], where the channel remains constant over a

fading block (representing the coherence time of the channel

[20]) but can vary from block to block in an i.i.d. manner.2

We assume that channel state information (CSI) is available

at the receiver/fusion center such that the fusion center

knows the values of the channel gains hk at time k.3 Since

CSI is assumed to be available, we will allow the sensor

transmit power uk to depend on both hk and Pk. In the next

section we consider optimal power allocation to minimize

the trace of the expected error covariance. Due to limited

computational resources at the sensor, the optimal sensor

transmit powers are usually computed at the fusion center

and fed back to the sensor.

2Our formulation should also be able to be extended to other fading
models such as the Markovian fading channel model of [21], which will be
addressed in future work.

3In practice this can be achieved by periodically sending pilot signals
either from the sensor to the fusion center to allow the fusion center to
estimate the channel, or from the fusion center to the sensor under channel
reciprocity (such as in time-division duplex channels).

III. OPTIMAL POWER ALLOCATION

A. Problem statement

The problem we consider in this paper is to determine

the optimal sensor transmit power allocation, in order to

minimize the trace of the expected error covariance subject

to an average transmit power constraint P , i.e.

min
{uk}

lim sup
K→∞

1

K

K−1
∑

k=0

E[tr(Pk+1)]

s.t. lim sup
K→∞

1

K

K−1
∑

k=0

E[uk] ≤ P.

(2)

The solution to problem (2) will be given in the next

subsection.

Remark 3.1: Since Kalman filtering with packet losses

can have unbounded expected error covariances in certain

situations such as in [1], this raises the question as to

whether problem (2) is well-posed. In [17] the authors study

the problem of determining the minimum average power

required for guaranteeing that the following exponential

boundedness condition for the expected error covariance is

satisfied:

E||Pk|| ≤ aρk + b, ∀k

for some a and b, where ρ ∈ [0, 1), and where the packet

reception probabilities are given by (1). Choosing P in the

average power constraint of problem (2) to be greater than

this minimum average power (see [17] for details on how to

compute this minimum average power) will be sufficient to

make the problem (2) well-posed.

B. Solution to optimal power allocation problem

The optimization problem (2) can be regarded as a con-

strained average cost Markov Decision Process (MDP) [22]

with (Pk, hk) as the “state” and uk as the “action” of the

MDP. To solve this problem, we will use a Lagrangian

technique similar to [15], [22], [23] that considers instead

the following unconstrained MDP problem:

min
{uk}

lim sup
K→∞

1

K

K−1
∑

k=0

E[tr(Pk+1) + βuk]

= min
{uk}

lim sup
K→∞

1

K

K−1
∑

k=0

E[E[tr(Pk+1)|Pk, hk, uk] + βuk]

(3)

where β ≥ 0 is a Lagrange multiplier that specifies the

tradeoff between the average transmit power and expected

error covariance. Solving (3) for different values of β will

correspond to minimizing the trace of the expected error

covariance for different average transmit power constraints

in problem (2).

Remark 3.2: Under additional assumptions such as As-

sumption 3.1 (see later), one can show the absence of a

duality gap by verifying the conditions provided in [22].
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The average cost optimality equation or Bellman equation

associated with problem (3) can then be written as

ρ+H(Pk, hk) = min
uk

[

E[tr(Pk+1)|Pk, hk, uk] + βuk

+

∫

hk+1,Pk+1

H(Pk+1, hk+1)F (d(Pk+1, hk+1)|Pk, hk, uk)
]

(4)

where ρ is the optimal average cost per stage, H the

differential cost, and F the probability transition law.

We first show that there exists stationary solutions to the

MDP (3). We will make the following additional assumption.

Assumption 3.1: The range of uk is bounded, i.e. uk ∈
[0, umax], ∀k.

This assumption is obviously justified from a practical point

of view. Additionally, it will allow us to show the following

result:

Lemma 1: Under Assumption 3.1, there exists a stationary

solution to the Bellman equation (4) which solves the MDP

(3).

Proof: The proof involves verifying for our problem

(3)-(4) the conditions from [24] that guarantee the existence

of stationary solutions for MDPs with Borel state and action

spaces. The verification of these conditions is very similar

to the proof of Lemma 3 in [15]. The details are omitted for

brevity.

For computational purposes, the Bellman equation can be

further simplified as follows:

ρ+H(Pk, hk) = min
uk

[

E[tr(Pk+1)|Pk, hk, uk] + βuk

+

∫

hk+1,Pk+1

H(Pk+1, hk+1)F (d(Pk+1, hk+1)|Pk, hk, uk)
]

= min
uk

{

tr(APkA
T +Q) + βuk

− f(hkuk)tr
(

APkC
T (CPkC

T +R)−1CPkA
T
)

+

∫

Pk+1,hk+1

H(Pk+1, hk+1)F (d(Pk+1, hk+1)|Pk, hk, uk)
}

(a)
= min

uk

{

tr(APkA
T +Q) + βuk

− f(hkuk)tr
(

APkC
T (CPkC

T +R)−1CPkA
T
)

+

∫

Pk+1,hk+1

H(Pk+1, hk+1)F (dPk+1|Pk, hk, uk)F (dhk+1)
}

(b)
= min

uk

{

tr(APkA
T +Q) + βuk

− f(hkuk)tr
(

APkC
T (CPkC

T +R)−1CPkA
T
)

+

∫

hk+1

[

H(APkA
T +Q, hk+1)(1− f(hkuk))

+H
(

APkA
T+Q−APkC

T (CPkC
T+R)−1CPkA

T, hk+1

)

× f(hkuk)
]

F (dhk+1)
}

(5)

where (a) follows from the fact that hk+1 is independent

of Pk+1, and (b) follows from writing out the conditional

expectation E[H(Pk+1, hk+1)|Pk, hk, uk]. For numerical im-

plementation, a discretized version of the Bellman equation

(5) can then be solved using e.g. the relative value iteration

algorithm [25] to find solutions to the MDP (3).
Remark 3.3: The discretized solution is strictly speaking

a suboptimal approximation to the true optimal solution,

however the use of discretization is generally unavoidable

for MDPs with continuous state and action spaces. As the

number of discretization levels increases, one would expect

the discretized solution to converge to the optimal solution

[26].
Now let P ∗(u) be the minimum trace of the expected error

covariance such that the average transmit power is less than

u. By solving the MDP (3) for different values of β, one

can obtain points of the function P ∗(u), corresponding to

different tradeoffs between the average transmit power and

trace of the expected error covariance, see e.g. Fig. 2 in the

next section. We have the following characterization of the

function P ∗(u):
Lemma 2: Suppose f(.) is a strictly concave function.

Then P ∗(u) is a decreasing strictly convex function of u.
Proof: See appendix.

An example of a strictly concave f(.) is given by (8) in

Section V. Using Lemma 2, one can conclude from the

theory of Pareto optimality that all points on the curve P ∗(u)
can be obtained by solving the MDP (3) for an appropriate

choice of β, see [27], [28] for further details.

IV. SUBOPTIMAL POLICIES

The optimal solution considered in the previous section

requires the solution of a MDP which is computationally

demanding, particularly for vector systems. In this section

we consider two suboptimal policies which are simpler to

compute and implement than the optimal solution of Section

III.

A. Constant power allocation

One very simple scheme is to use constant power alloca-

tion, where uk = uconst, ∀k. With this policy, the conditional

packet reception probabilities f(hkuconst) will depend on

the channel gain hk only.

B. Truncated channel inversion

Another possible scheme is based on the concept of

channel inversion, which is a simple but quite commonly

used technique in wireless communications, that attempts

to invert the channel at every time instance to maintain

a constant quality of service. However, it is known that

for certain fading distributions such as Rayleigh fading,

channel inversion actually requires infinite average power, so

some modifications to the scheme such as truncation (where

channel inversion is only carried out if the channel gain is

sufficiently large) is necessary [29]. The power allocation

policy we consider here is of the following form:

uk =

{

α
hk

, hk > h∗
α
h∗

, otherwise
(6)
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where α and h∗ are values that can be chosen by us. This

scheme inverts the channel hk and multiplies it by a gain α if

hk is greater than some threshold h∗, otherwise it transmits

with the constant power α
h∗

.4 The average transmit power

using this scheme is

E[uk] =

∫ ∞

h∗

α

hk
F (dhk) +

∫ h∗

0

α

h∗F (dhk)

= αE(h∗) +
α

h∗FH(h∗), ∀k

where

E(h∗) ,

∫ ∞

h∗

1

hk
F (dhk),

and FH(.) is the cumulative distribution function of hk. For

instance, if hk ∼ exp(1) (which is an example of Rayleigh

fading [20]), we have E(h∗) =
∫∞
h∗

exp(−hk)/hk dhk =
E1(h

∗), the exponential integral, and FH(h∗) = 1 −
exp(−h∗).

In terms of the packet loss process {γk}, under this power

allocation scheme, γk = 1 with probability f(α) when hk >
h∗, and γk = 1 with probability f(αhk

h∗
) when hk ≤ h∗.

That is, we have

γk =











1, w.p. f(α)(1− FH(h∗)) +
∫ h∗

0
f(αhk

h∗
)F (dhk)

0, w.p. (1− f(α))(1− FH(h∗))

+
∫ h∗

0
(1− f(αhk

h∗
))F (dhk).

Therefore, using this scheme, γk becomes an i.i.d. Bernoulli

process with probability of packet reception f(α)(1 −
FH(h∗))+

∫ h∗

0
f(αhk

h∗
)F (dhk), and probability of packet loss

(1− f(α))(1− FH(h∗)) +
∫ h∗

0
(1− f(αhk

h∗
))F (dhk).

As the values α and h∗ can be chosen by us, we can

optimize α and h∗ to minimize the trace of the expected

error covariance subject to an average power constraint, i.e.

solving problem (2) but with uk restricted to be of the form

(6). For Bernoulli packet losses it is known that the expected

error covariance is a decreasing function of the packet

reception probability [1]. Hence the problem is equivalent

to minimizing the probability of packet loss subject to an

average power constraint P , i.e.

min
α,h∗

(1− f(α))(1− FH(h∗)) +

∫ h∗

0

(1− f(
αhk

h∗ ))F (dhk)

s.t. αE(h∗) +
α

h∗FH(h∗) = P.

(7)

We can further simplify problem (7) by rearranging the

constraint to express α in terms of h∗, i.e.

α =
P

E(h∗) + 1
h∗

FH(h∗)
.

The optimization problem (7) then becomes a one-

dimensional line search over h∗ that can be easily solved

numerically.

4This scheme is essentially equivalent to the saturated constant gain power
control considered in [17], but with different notations.

V. NUMERICAL STUDIES

We present here numerical results for a scalar system with

parameters A = 1.2, C = 1, Q = 1, R = 1. We consider

a model for the packet loss probabilities studied in [17]. In

this model we assume that the digital communication uses

binary phase shift keying (BPSK) transmission [18] with b
bits per packet, so that we have

Pr(γk = 1|hk, uk) = f(hkuk) =







√
hkuk
∫

−∞

1√
2π

e−t2/2dt







b

(8)

One can verify that f(.) is a strictly concave function for

b ∈ {1, 2, 3, 4, 5}. In the simulations below we use b = 4.

The fading channel is taken to be Rayleigh [20], so that hk

is exponentially distributed with p.d.f.

p(hk) =
1

h̄
exp(−hk/h̄), hk ≥ 0

with h̄ being its mean. Here we will use h̄ = 1. In solving

the Bellman equation (5) we use 50 discretization points for

each of the quantities Pk, hk, uk.

2 3 4 5 6 7 8

2

2.5

3

3.5

4

4.5

5

average power

E
[P

k
+

1
]

 

 

constant power

channel inversion

optimal power

Fig. 2. Average transmit power vs expected error covariance

In Fig. 2 we plot the average transmit power vs expected

error covariance tradeoff, for the cases of optimal power

allocation of Section III, and the constant power allocation

and truncated channel inversion policies of Section IV. We

see that optimal power allocation has significant performance

gains over the simpler suboptimal policies of Section IV

for low average transmit powers, with the performance of

the constant power allocation and channel inversion policies

being almost identical. However, for higher average transmit

powers, the truncated channel inversion policy has perfor-

mance approaching that of the the optimal power allocation

policy.

In Fig. 3 we show a 3D plot of the optimal power

allocation uk as a function of Pk and hk given by solving

the MDP (5), for parameters β = 1 and umax = 10. With
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these parameters, the average power is around 2.05 and

E[Pk+1] is around 3.36. In Fig. 4 we further plot a single
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10

P
k

h
k

u
k

Fig. 3. Optimal power allocations

simulation run of Pk and hk, together with the corresponding

optimal power allocations uk We can see that in the optimal
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0
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k

P
k

0 20 40 60 80 100
0

5

k

h
k

0 20 40 60 80 100
0

5

10

k

u
k

Fig. 4. Optimal power allocations

power allocation scheme, the allocated powers will depend

on both the current channel gain hk and error covariance Pk.

The allocated power uk tends to be higher when the error

covariance Pk is larger, provided the corresponding channel

gain hk is not too small.

VI. CONCLUSION

We have studied the problem of minimizing the trace of

the expected error covariance subject to a average power

constraint, for Kalman filtering with random packet losses.

Simpler suboptimal power allocation policies such as a

constant power allocation policy and a truncated channel

inversion policy policies have also been considered. Numer-

ical studies suggest that for low average transmit powers

optimal power allocation significantly outperforms the sub-

optimal policies, while for higher average transmit powers

the performance of the truncated channel inversion policy

approaches the performance of the optimal policy. Future

work will include the study of systems with multiple sensors

and the consideration of other fading models such as the

Markovian fading channel model of [21].

APPENDIX

A. Proof of Lemma 2

Proof: The proof uses similar ideas to the proof of

Proposition 3.1 in [28]. The decreasing property follows from

the relation

E[Pk+1] = E[Pk+1|Pk, hk, uk]

= E[APkA
T+Q−f(hkuk)APkC

T(CPkC
T+R)−1CPkA

T ]

and the assumption that f(.) is an increasing function.

For the proof of convexity, let u1 and u2 be two average

transmit powers, u1 6= u2, with P ∗(u1) and P ∗(u2) the

corresponding traces of the expected error covariances. We

want to show that

P ∗(λu1+(1−λ)u2) < λP ∗(u1)+(1−λ)P ∗(u2), ∀λ ∈ (0, 1)

Let {u1
k(Pk, hk)} be the optimal power allocation policy

that achieves P ∗(u1), and {u2
k(Pk, hk)} be the optimal

power allocation policy that achieves P ∗(u2). Define a new

policy {uλ
k(Pk, hk)} such that

uλ
k(Pk, hk) = λu1

k(Pk, hk) + (1− λ)u2
k(Pk, hk), ∀Pk, hk

We will first show that for a given Pk, we have:

1)E[uλ
k |Pk] ≤ λE[u1

k|Pk] + (1− λ)E[u2
k|Pk], and

2)E[tr(Pλ
k+1)|Pk]

< λE[tr(P 1
k+1)|Pk] + (1− λ)E[tr(P 2

k+1)|Pk],

where P j
k+1 is the value of Pk+1 that follows from using

policy {uj
k(.)}, for j = 1, 2, λ respectively. For 1), this

clearly follows from the definition of uλ
k . For 2), we have

E[tr(Pλ
k+1)|Pk]

=

∫

(

tr(APkA
T +Q)

− f(hku
λ
k)tr(APkC

T (CPkC
T +R)−1CPkA

T )
)

F (dhk)

<

∫

(

tr(APkA
T +Q)

− (λf(hku
1
k) + (1− λ)f(hku

2
k))

× tr(APkC
T (CPkC

T +R)−1CPkA
T )

)

F (dhk)

= λE[tr(P 1
k+1)|Pk] + (1− λ)E[tr(P 2

k+1)|Pk]

where the inequality comes from the strict concavity of f(.).
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From 1) and 2), we have

lim
K→∞

1

K

K
∑

k=1

E[uλ
k ] = lim

K→∞

1

K

K
∑

k=1

E[E[uλ
k |Pk]]

≤ lim
K→∞

1

K

K
∑

k=1

E[λE[u1
k|Pk] + (1− λ)E[u2

k|Pk]]

= λu1 + (1− λ)u2

and

lim
K→∞

1

K

K
∑

k=1

E[tr(Pλ
k+1)] = lim

K→∞

1

K

K
∑

k=1

E[E[tr(Pλ
k+1)|Pk]]

< lim
K→∞

1

K

K
∑

k=1

E

[

λE[tr(P 1
k+1)|Pk]

+ (1− λ)E[tr(P 2
k+1)|Pk]

]

= λP ∗(u1) + (1− λ)P ∗(u2).

By the definition of P ∗(u) being the minimum expected

error covariance such that the average transmit power is less

than or equal to u, we then have P ∗(λu1 + (1 − λ)u2) ≤
1
K

∑K
k=1 E[tr(P

λ
k+1)] < λP ∗(u1) + (1− λ)P ∗(u2).
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