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Abstract— In this paper we consider the problem of designing
coding and decoding schemes to estimate the state of a scalar
stable stochastic linear system in the presence of a wireless
communication channel between the sensor and the estimator.
In particular, we consider a communication channel which is
prone to packet loss and includes quantization noise due to
its limited capacity. We study two scenarios: the first with
channel feedback and the second with no channel feedback.
More specifically, in the first scenario the transmitter is aware of
the quantization noise and the packet loss history of the channel,
while in the second scenario the transmitter is aware of the
quantization noise only. We show that in the first scenario, the
optimal strategy among all possible linear encoders corresponds
to the transmission of the Kalman filter innovation similarly to
the differential pulse-code modulation (DPCM). In the second
scenario, we show that there is a critical packet loss probability
above which it is better to transmit the state rather than
the innovation. We also propose a heuristic strategy based on
the transmission of a convex combination of the state and
the Kalman filter innovation which is shown to provide a
performance close to the one obtained with channel feedback.

I. INTRODUCTION

Wireless communication has become ubiquitous and wired
communication systems are increasingly being replaced with
wireless systems thanks to their many advantages such as
smaller installation costs, easier maintenance and fewer cum-
bersome cables. However, wireless communication comes at
the price of lower reliability due to packet loss and limited
channel capacity. This concern is particularly evident in
industrial applications such as remote sensing and real-time
automation, since a very high level of reliability is needed
in control systems and safety-critial scenarios. As a conse-
quence, it becomes of paramount importance to understand
the impact of realistic channel models in the context of esti-
mation and control. So far most of the works available in the
literature have concentrated on stability and control subject
to only one specific limitation of wireless communication.
For example, in [1], [2] the authors addressed the problem
of stabilization of an unstable plant through a rate-limited
erasure channel where no performance index is considered
besides stability. Other researchers have tried to tackle the
channel limitations by using analog models in order to
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avoid the difficulties associated with explicit design of digital
channel encoder/decoder and to optimize some performance
metrics among all possible stabilizing controllers subject
to packet loss [3], [4] or subject to a maximum signal-to-
noise (SNR) ratio [5], [6]. Finally, another well explored
approach is the analysis of control systems subject to random
packet loss [7], [8], [9], [10] under LQG framework. All
these works have been concerned with stability in control
systems. However, there are many applications, such as
remote sensing and estimation, where the dynamical system
to be controlled is already stable, but adding communication
and feedback performance can be substantially improved.
In this work we are interested in exploring the problem of
remotely estimating the state of a stable stochastic scalar
linear system over a wireless channel. In particular, we want
to design coding and decoding strategies that allow good
estimation performance in the presence of both packet loss
and quantization noise. So far mainly packet loss has been
considered in the context of remote estimation [11], [12],
although there are recent attempts at considering both limita-
tions [13], [14]. In particular we explore two scenarios. In the
first scenario the transmitter has perfect channel feedback,
i.e. it is aware of possible packet losses and therefore it is
able to make a copy of the receiver filter. As a result, we
show that the optimal transmission strategy is to send the
innovation between the best estimate of the state at the filter
and the predicted estimate of the state at the receiver. This is
reminiscent of differential pulse-code modulation (DPCM)
[15] in which a differential signal is sent over a channel
with no packet loss. Differently, in the second scenario, we
consider the case when the transmitter is not aware of the
packet loss history. We propose three strategies: the first
named state forwarding (SF) in which the state is transmitted
over the channel, the second named innovation forwarding
(IF), in which it is sent the difference between the state and
the estimate that a receiver would have if no packet loss has
occurred, and the third, named soft innovation forwarding
(SIF), which includes SF and IF as special cases. For these
three strategies we compute their performance and observe
that in the low packet loss regime it is better to use strategies
that are similar to the IF, while for high packet loss regime
it better to use strategies that are similar to the SF.

II. CHANNEL MODELING AND PROBLEM FORMULATION

We consider the problem of remotely estimating the state
of a scalar linear stochastic dynamical system:

xt+1 = axt + wt (1)
yt = cxt + vt (2)
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Fig. 1. Equivalent communication model for remote estimation.

where wt ∼ N (0, σ2
w), wt ∼ N (0, σ2

v), and x0 ∼ N (x̄0, σ
2
0)

are uncorrelated. More specifically, as graphically depicted
in Figure 1, the analogue measurement yt at the sensor can
be pre-processed by the filter g(·) into the analog signal
st before transmission. The signal is then quantized into a
binary word sqt , which is then coded and transmitted over a
digital noisy channel. At the receiver, the channel decoder
either perfectly decodes the word sqt or detect an erasure
which is modeled by the binary variable γt ∈ {0, 1} ≡
{erased, decoded}. If correctly decoded, the word sqt is
converted into the analog signal zt, which is then processed
by the receiver via the filter h(·) to provide the state estimate
x̂t. The transmission protocol might be provided with an
ACK-based system that notifies the transmitter whether the
packet has been successfully decoded at the receiver. We
refer to this senario as perfect channel feedback. We now
proceed to mathematically model such system.

In the following we will consider the simplified assump-
tion

c = 1, σ2
v = 0, |a| < 1 (3)

i.e. yt = xt is available at the transmitter. The transmitter
can send a signal through a digital noisy erasure channel
modelled as follows

zt = γts
q
t = γt(st + nt)

where γt ∈ {0, 1} represents the erasure event, sqt ∈ R is
the quantized transmitted signal, st ∈ R is the signal before
quantization, and nt is the uncorrelated additive noise which
models the quantization error under the fine quantization
assumption. The variables satisfy the following assumptions:

P[γt = 0] = ε, nt ∼ N
(

0,
1

Λ
E[s2

t ]

)
where Λ is the signal-to-quantization noise ratio (SQNR) of
the quantizer. This model for the SQNR noise assumes that
the quantizer is matched to the distribution of the incoming
signal st so as to maintain a constant SQNR value for Λ.
The transmitter sends a signal according to its available
information set, i.e.

st = gt(Tt)

where gt is a measurable function of the information set Tt

which can take the following two forms:

T CFt = {yt, .., y0, st−1, .., s0, nt−1, .., n0, γt−1, .., γ0}
= {yt, .., y0, st−1, .., s0, zt−1, .., z0, γt−1, .., γ0}

T NCFt = {yt, .., y0, st−1, .., s0, nt−1, .., n0}

The first set T CF corresponds to a scenario with perfect
channel feedback, i.e. the transmitter knows whether a packet
has been received successfully or not, while the second set
T NCF has no such information. The first scenario is realistic
in wireless communication where the receiver can transmit
back a signal with higher power and therefore very small
packet loss probability. Moreover, the information to send
back reliably is just an ACK packet.

The receiver needs to reconstruct the true state signal xt
based on its own information set Rt given by:

Rt = {zt, . . . , z0, γt, . . . γ0}

i.e.
x̂rxt|t = ht(Rt)

where ht is a measurable function. We are interested in
analyzing the performance of the overall system based on
the estimation prediction error variance at the receiver, i.e.

prxt+1|t = E[(xt+1 − x̂rxt+1|t)
2]

where the expectation has to be taken also with respect to
the packet drop process γt besides the noises wt, nt.

III. OPTIMAL ESTIMATION WITH PERFECT CHANNEL
FEEDBACK

We now consider the state estimation problem with perfect
channel feedback, i.e. also the transmitter is aware of the
packet loss sequence incurred across the digital channel. We
show that if we restrict our attention to functions g(T CFt )
and h(Rt) which are linear in the information sets T CFt and
Rt, then the optimal strategy is to send the state estimate
innovation, i.e. the difference between the current best state
estimate at the transmitter and the current best prediction of
the state at the receiver.

A. Optimal strategy derivation

Our purpose is to find the “optimal” message st to be sent
through a lossy and SQNR limited channel in order to mini-
mize the state estimation error variance at the receiver, under
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the assumption that perfect channel feedback is available. We
shall look for linear encoders

st := Lt (yt, yt−1, .., y0, zt, zt−1.., z0; γt, ..., γ0) (4)

where Lt (yt, yt−1, .., y0, zt, zt−1.., z0; γt, ..., γ0) is a linear
operator of its arguments yt, yt−1, .., y0 (the samples to be
encoded) and zt, .., z0 (the past received signals) which also
depends on the packet loss sequence γt, ..., γ0. The result
of this section is summarized in the next proposition. The
remaining part of the section proves the result.

Theorem 1: Under the assumption that perfect channel
feedback is available (i.e. that γt, ..., γ0 are known also at
the transmitter side), the optimal linear encoder (4) for the
linear system (1)-(2) is given by:

st := E[xt|yt, yt−1, .., y0,Rt−1]− E[xt|Rt−1] =
= x̂txt|t − x̂

rx
t|t−1 = xt − x̂rxt|t−1

(5)

B. Performance analysis

Based on the analysis in the previous subsection, the
optimal linear strategy for remote estimation in the presence
of channel feedback graphically represented as in Fig.2. At

Fig. 2. Remote estimation scheme with perfect channel feedback

the transmitter the measurements are first preprocessed by a
standard Kalman filter to obtain the best estimate of the state
at the transmitter, that under the assumptions of Eqn. (3), this
is simply the state xt, i.e.

x̂txt|t := E[xt | T CFt ] = E[xt | yt, . . . , y0] = xt

Since T CFt ⊃ Rt, then the transmitter is able to replicate
the estimate at the receiver x̂rxt|h = h(Rh). Based on the
results on the previous subsection, the optimal strategy at
the receiver is to construct the minimum mean squared error
(MMSE) estimator given its information set, i.e.

x̂rxt|h := E[xt |Rh]

Once again, based on the previous section, the optimal
strategy at the transmitter is to send the innovation st =
x̂txt|t − x̂

rx
t|t−1 from which it follows that the signal received

at the remote estimator is

zt = γt(xt − x̂rxt|t−1 + nt)

According to the standard MMSE theory for linear systems,
the optimal filter equation must be of the form:

x̂rxt|t−1 = ax̂rxt−1|t−1 (6)

x̂rxt|t = x̂rxt|t−1+kt(zt − ẑt|t−1) = x̂rxt|t−1+
Λ

1+Λ
zt (7)

where we used the result from Eqn. (??). From the expression
it follows that the optimal Kalman filter is given by:

kt =
Λ

Λ + 1

which is independent of time and of the packet loss sequence.
If we define he estimation error as x̃rxt|h = xt − x̂rxt|h and its
corresponding variance as prxt|h = E[(x̃rxt|h)2] we get

x̃rxt+1|t = ax̃rxt|t−1 + wt − γtakt(x̃rxt|t−1 + nt)

and the corresponding variance:

prxt+1|t = a2prxt|t−1 + σ2
w − (1− ε) Λ

1 + Λ
a2prxt|t−1 (8)

where we used the fact that nt, wt, x̃rxt|t−1, γt are all uncor-

related and E[n2
t ] = 1

ΛE[x̃rxt|t−1] =
prxt|t−1

Λ . Since |a| < 1 the
previous linear equation has a steady state solution given by:

pCF = lim
t→∞

prxt+1|t =
σ2
w

1− a2 1+εΛ
1+Λ

(9)

which represents the steady state predictor error variance.

IV. STATE FORWARDING VS INNOVATION FORWARDING
WITH NO CHANNEL FEEDBACK

In this section we consider the challenging scenario where
no channel feedback is present. In this case the information
set at the transmitter T NCFt does not include the information
set at the receiver Rt, i.e. Rt 6⊂ T NCFt . As consequence, the
transmitter cannot produce a copy of the transmitter estimate
x̂rxt|t−1. The optimal strategy in this case is not obvious and
it is likely to be a non-linear function of the information
sets T NCFt ,Rt. This situation is reminiscent of the loss of
separation principle in control systems where the estimator is
not aware if the control input has been successfully received
by the actuator or not [9].

As a consequence, we explore suboptimal linear strategies
for which is it possible to compute the performance. In
particular, there are two suboptimal naive strategies that can
be proposed. The first strategy, that we refer as state forward-
ing (SF) is to simply transmit the current transmitter best
estimate of the state xt, i.e. st = x̂txt|t. The second strategy,
that we refer as innovation forwarding (IF), is to send the
innovation between the best estimate at the transmitter x̂txt|t
and the prediction based on the past quantized transmitted
signals sqt = st + nt, i.e. st = x̂txt|t − x

tx
t|t−1 where xtxt|t−1 =

E[xt|sqt−1, . . . , s
q
0]. In practice, in this second scenario the

transmitter is sending the innovation based on the (incorrect)
assumption that all sent packets are received correctly, i.e.
assuming γt = 1,∀t. The rationale behind this strategy is
that in a lossless channel, i.e. if ε = 0, it provides the
optimal strategy. For both transmitter strategies, the receiver
will compute the MMSE estimator, i.e x̂rxt|t = E[xt |Rt].
As just mentioned, in general x̂rxt|t 6= x̂txt|t and x̂rxt|t 6= xtxt|t
These two strategies can be graphically represented as in
Fig 3, where the SF strategy corresponds to ν = 1 and the
IF strategy to ν = 0.
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Fig. 3. Remote estimation scheme with no channel feedback

A. State forwarding strategy (ν = 1)

In this strategy, and under the simplifying assumption of
Eqn. (3), we have that

st = x̂txt|t = xt

and E[n2
t ] = 1

ΛE[x2
t ] = 1

Λ
σ2
w

1−a2 , where we assumed that
xt has reached its steady state distribution. In fact, since
E[x2

t+1] = a2E[x2
t ] +σ2

w, then limt→∞ E[x2
t ] =

σ2
w

1−a2 . From
this expression it is clear that if |a| ≥ 1 the state forwarding
strategy cannot be used since the quantization noise variance
will diverge. The message received at the remote estimator
is then

zt = γt(xt + nt)

which can be interpreted as a noisy measurement of the state,
where nt is the measurement noise, subject to intermittent
observation. This problem has already been solved in [11]
and the solution is given by the following time-varying
Kalman filter:

x̂rxt|t−1 = ax̂rxt−1|t−1 (10)
x̂rxt|t = x̂rxt|t−1+γtkt(zt − x̂rxt|t−1) (11)

kt =
p̂rxt|t−1

p̂rxt|t−1 + r
(12)

p̂rxt+1|t = a2p̂rxt|t−1 + q − γt
a2(p̂rxt|t−1)2

p̂rxt|t−1 + r
(13)

where q = σ2
w, r = 1

Λ
σ2
w

1−a2 , and p̂rxt|t−1 = E[(xt −
x̂rxt|t−1)2 |Rt−1]. The optimal estimator could be compu-
tationally expensive since it needs to keep track of the
conditional estimation error covariance p̂rxt|t−1 which is a
function of the packet loss history {γh}t−1

h=0. As shown in
[16], the previous filter can be replaced with the following
constant gain filter:

xrxt|t−1 = axrxt−1|t−1 (14)
xrxt|t = xrxt|t−1+γtk(zt − xrxt|t−1) (15)

k =
pSF

pSF + r
(16)

pSF = a2pSF +q −(1−ε)a
2(pSF )2

pSF +r
, pSF> 0 (17)

which has the property that its error covariance converge to a
steady state which is also an upper bound for the asymptotic
error covariance of the optimal estimator x̂rxt|t−1, i.e.

lim sup
t→∞

prxt|t−1 ≤ lim
t→∞

E[(xt − xrxt|t−1)2] = pSF

It has been shown in [16] that the previous inequality is
quite tight, i.e. the performance degradation incurred using
a constant gain rather the the optimal time-varying gain, is
small.

B. Innovation forwarding strategy (ν = 0)

In this section we consider the innovation forwarding
scheme, that under the simplifying assumption of Eqn. (3)
is equivalent of sending

st = x̂txt|t−1 − x
tx
t|t−1 = xt − xtxt|t−1

where xtxt|t−1 = E[xt | sqt−1, . . . , s
q
0] and sqt = st + nt. The

MMSE estimator at the receiver x̂rxt+1|t = E[xt+1 |Rt] must
have the following expression:

x̂rxt+1|t = ax̂rxt|t−1 + akt(zt − ẑt) = ax̂rxt|t−1 + aktzt

zt = γt (st + nt) = γt

(
xt − xtxt|t−1 + nt

)
(18)

where ẑt := E[zt|Rt−1] = 0 since xt − xtxt|t−1 and nt are
uncorrelated and white. The optimal gain kt is to be selected,
at each step, to minimize the conditional receiver state pre-
diction error covariance p̂rxt+1|t := E[(xt+1 − x̂rxt+1|t)

2 |Rt].
This is easily achieved writing the equation for the pre-

diction error and differentiating w.r.t kt. Let us first derive
the dynamical equation for x̃rxt|t−1 = xt − x̂rxt|t−1, which is
obtained by subtracting the state prediction update Eqn. (18)
from the state equation Eqn. (1), obtaining

x̃rxt+1|t= ax̃rxt|t−1 − aktzt + wt

= ax̃rxt|t−1 − γtakt
(
xt − xtxt|t−1 + nt

)
+ wt

= a(1−γtkt)x̃rxt|t−1−γtakt(x̂
rx
t|t−1−x

tx
t|t−1+nt)+wt

For future use let us define ∆x̂t := x̂rxt|t−1−x
tx
t|t−1 =

x̃rxt|t−1 − x̃
tx

t|t−1 where x̃
tx

t|t−1 := xt − xtxt|t−1. This implies

that x̃rxt|t−1 = ∆x̂t + x̃
tx

t|t−1. Since ∆x̂t is a function of the

past data and x̃
tx

t|t−1 is the error of the optimal estimator

using past data, E
[
∆x̂tx̃

tx

t|t−1|Rt−1

]
= 0 so that

E
[
x̃rx
t|t−1

x̃
tx
t|t−1|Rt−1

]
= E

[(
∆x̂t + x̃

tx
t|t−1

)
x̃
tx
t|t−1|Rt−1

]
= E

[
x̃
tx
t|t−1x̃

tx
t|t−1|Rt−1

]
=: p̂0t

E
[
x̃rx
t|t−1

∆x̂t|Rt−1

]
= E

[
x̃rx
t|t−1

(
x̃rx
t|t−1

− x̃txt|t−1

)
|Rt−1

]
= p̂rx

t|t−1
− p̂0t

E[∆x̂t∆x̂t|Rt−1] = E
[(
x̃rx
t|t−1

− x̃txt|t−1

)
∆x̂t|Rt−1

]
= E

[
x̃rx
t|t−1

∆x̂t|Rt−1

]
= p̂rx

t|t−1
− p̂0t

where p̂0
t = E

[
(xt − xtxt|t−1)2|Rt−1

]
. Using these condi-

tions one obtains:

p̂rxt+1|t= (a−γtakt)2p̂rxt|t−1+σ
2
w+a2γ2

t k
2
t

(
p̂rxt|t−1−p̂

0
t +

p̂0t
Λ

)
+

+2a2γtkt(1− γtkt)
(
p̂rxt|t−1 − p̂

0
t

)
(19)

Taking the derivative w.r.t. kt we obtain:
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∂p̂rxt+1|t
∂kt

=−2γta
2(1−γtkt)p̂rxt|t−1+2a2γ2

t kt

(
p̂rxt|t−1−p̂

0
t +

p̂0t
Λ

)
+

+2a2γt(1− 2kt)(p̂
rx
t|t−1 − p̂

0
t )

which, equated to zero has the unique solution

kt = γt
Λ

1 + Λ
(20)

Inserting kt back into (19) we obtain:

p̂rxt+1|t = a2p̂rxt|t−1 + σ2
w − γta2p̂0

t

Λ

1 + Λ

from which it follows that the expected error covariance
prxt+1|t = E

[
(x̃rxt+1|t)

2
]

is given by

prxt+1|t = a2prxt|t−1 + σ2
w − (1− ε)a2p0

t

Λ

1 + Λ
(21)

where p0
t := E

[
p̂0
t

]
. It is interesting to observe that the gain

kt in (20) is time invariant and does not depend on the packet
loss probability. In fact kt is also the Kalman optimal gain
for ε = 0. Finally, since p0

t is the prediction error covariance
with no packet loss, which is given by Eqn. (9) by setting
ε = 0, then

lim
t→∞

p0
t =

σ2
w

1− a2

1+Λ

from which it follows that the steady state prediction error
covariance is given by:

pIF = lim
t→∞

prxt+1|t =
(Λ + 1)(1− a2) + εa2Λ

(1− a2)(1− a2 + Λ)
(22)

C. Performance comparison

We now want to compare the performance of the two
strategies in terms of the steady state prediction error covari-
ance, which are given by Eqn. (17) for the state forwarding
and by Eqn. (22) for the innovation forwarding, as a function
of the systems parameters a,Λ, ε. In particular, we are
interested in finding the set Φ := {(a,Λ, ε) | pSF ≤ pIF },
i.e. the set of parameters where the SF strategy has a better
performance than the IF strategy.

Theorem 2: Consider the set Φ := {(a,Λ, ε) | pSF ≤
pIF }. Then for Λ > 0, 0 < |a| < 1, and ε < 1 we have:

Φ := {(a,Λ, ε) | ε > εc(a,Λ)}

where

εc(Λ, a) =
(1−a2)(Λ+2)

2a2Λ

(√
1+

4a2Λ

(Λ + 2)2(1−a2)
−1

)
(23)

Moreover, the critical probability εc(Λ, a) is monotonically
decreasing in Λ and |a|, and

lim
Λ→+∞

εc(Λ, a) = lim
|a|→1−

εc(Λ, a) = 0

and
εc <

1

2
Proof: See Appendix A in [17].

The previous theorem implies that the IF strategy per-
forms better then the SF strategy only for small packet
loss probabilities, and more specifically for ε < εc. Such
critical probability decreases to zero as the system dynamics
becomes less stable, i.e. |a| increases, and as the quantization
becomes finer, i.e. Λ increases. In particular, the previous
theorem shows that it is always better to use the SF strategy
if the packet loss probability is greater than one half.
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Fig. 4. Critical probability εc as a function of |a| for different values of
the SQNR Λ.

Figure 4 pictures the critical probability εc as a function
of |a| for different values of the SQNR Λ, which shows that
such probability is almost equal to Λ

Λ+1 up to |a| ≈ 0.8 and
then rapidly decays to zero.

V. SOFT INNOVATION FORWARDING WITH NO CHANNEL
FEEDBACK

In this section, we propose an alternative strategy under
the no channel feedback scenario, that include the IF strategy
and the SF strategy as special cases. More precisely, we
propose a hybrid strategy, where the transmitter sends a
convex combination of its best estimate of the state x̂txt|t =

E[xt | T NCFt ] and the innovation between its best estimate
and the best estimate of the state given the past quantised
transmitted signals, i.e. ∆x̂t = x̂txt|t − x

tx
t|t−1 where xtxt|t−1 =

E[xt | sqt−1, . . . , s
q
0] . We call this scheme the soft innovation

forwarding (SIF) scheme. In this case, the transmitted signal
is thus given by

st = νx̂txt|t + (1− ν)∆x̂t = x̂txt|t − (1− ν)xtxt|t−1 (24)

where 0 ≤ ν ≤ 1 is fixed at the transmitter. This scheme
is graphically illustrated in Fig. 3. Under the simplifying
hypotheses of Eqn. (3), then the previous equation reduces
to st = xt − (1− ν)xtxt|t−1.

A. Transmitter filter design: g(T NCFt )

In this section, we explicitly compute the transmitter filter
function g(T NCFt ) based on the SIF strategy. Basically, it
reduces to the problem of computing the equation for the
internal estimator xtxt|t−1. Since the dynamical systems is
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linear with additive gaussian noise, then the optimal MMSE
estimator is linear in the quantized transmitted signals sqt and
it is given by the Kalman Filter. However, the equations are
somewhat non-standard since the variance of the quantization
noise nt is not constant but depends on the variance of the
transmitted signal. We start by defining the internal estimator
error covariance as pt|h = E[(x̃

tx

t|h)2], where x̃
tx

t|h = xt−xtxt|h.
Based on this definition, we can compute the power of the
transmitted signal st as follows:

E[s2
t ] = E[(νxt + (1− ν)x̃

tx

t|t−1)2]

=
(
ν2E[x2

t ] + (1− ν)2pt|t−1 +

+2ν(1− ν)E[(xtxt|t−1 + x̃
tx

t|t−1)x̃
tx

t|t−1]
)

= ν2 σ2
w

1− a2
+ (1− ν2)pt|t−1

where we used the fact that xtxt|t−1 and x̃
tx

t|t−1 are uncor-
related, and that xt is assumed to be in its steady state
distribution. The equation of the filter are given by:

xtxt+1|t = axtxt|t−1 + ktxt (zt − ẑt|t−1)

ẑt|t−1 = E[zt | sqt−1, . . . , s
q
0] = νxtxt|t−1

ktxt =
apt|t−1

pt|t−1 + E[n2
t ]

=
apt|t−1

(1 + 1−ν2

Λ )pt|t−1 +
ν2σ2

w

Λ(1−a2)

Such filter will reach a steady state, therefore, as standards,
it is possible to substitute it with its steady state implemen-
tation, since it will reach the same steady state performance.
The steady state filter is given by:

xtxt+1|t = (a− νk)xtxt|t−1 + kzt

k =
ap

(1 + 1−ν2

Λ )p+
ν2σ2

w

Λ(1−a2)

(25)

p = a2p+σ2
w−

a2p2

(1+ 1−ν2

Λ )p+
ν2σ2

w

Λ(1−a2)

, p > 0 (26)

where the last equation represents a Riccati-like equation
which has a unique stabilizing positive solution p.

B. Receiver filter design: h(Rt)
In this section we explicitly compute the optimal state

estimator at the filter, i.e. x̂rxt+1|t = E[xt+1 |Rt]. We assume
that the transmitter filter architecture, and in particular the
value of ν, are known at the receiver, therefore it is possible
to write the received message zt as the output of the
following dynamical system:[

xt+1

xtxt+1|t

]
︸ ︷︷ ︸

ξt+1

=

[
a 0

k (a−k)

]
︸ ︷︷ ︸

A

[
xt

xtxt|t−1

]
︸ ︷︷ ︸

ξt

+

[
wt
knt

]
︸ ︷︷ ︸
ηt

(27)

zt = γt
[

1 −(1− ν)
]︸ ︷︷ ︸

C

[
xt

xtxt|t−1

]
+ γtnt (28)

As a consequence the estimator x̂rxt+1|t = E[xt+1 |Rt]
corresponds of the first component of the optimal estimator
ξ̂t+1|t = E[ξt+1 |Rt] which turns out to be the optimal

Kalman filter with intermittent observations studied in [11].
Such a filter is time-varying since the Kalman gain depends
on the packet loss sequence, however, as discussed in Sec-
tion IV-A, it can be replaced with a constant gain filter
with limited performance degradation [16]. The (suboptimal)
receiver filter design is then given by:

ξt+1|t = (A− γtKC)ξt|t−1 + γtKzt (29)

xrxt|t−1= h(Rt−1) =
[

1 0
]︸ ︷︷ ︸

H

ξt|t−1 (30)

K = (APCT +S)(CPCT +R)−1 (31)
P =APAT+Q−(1−ε)K(CPCT +R)KT = Ψ(P ) (32)

R = E[n2
t ] =

1

Λ

(
ν2 σ2

w

1− a2
+ (1− ν2)p

)
Q = E[ηtη

T
t ] =

[
σ2
w 0

0 k
2
R

]
S = E[ηtnt] =

[
0

kR

]
The steady state Kalman gain K can therefore be obtained by
finding the unique positive definite solution P > 0 that solves
the Riccati-like equation (32) and the steady state prediction
error has the following upper bound:

lim sup
t→∞

E[(xt − x̂rxt|t−1)2] ≤ pSIF = HPHT (33)

The expression for the covariance matrix P can be com-
puted from three paired nonlinear equations. Let us denote

P =

[
p11(ε) p12(ε)
p12(ε) p22(ε)

]
, where we have explicitly indicated

that P is symmetric and its elements depend on ε. Although
we will be primarily interested in the behaviour of p11(ε) =
pSIF with respect to ν, the properties of p12(ε), p22(ε) will
also be useful. In the case when ε = 0 (i.e, there is no
packet loss), it is easy to check that p11(0) satisfies the same
equation as the steady-state transmitter Kalman predictor
error covariance given by p, and is clearly minimum when
ν = 0. Also, p12(0) = p22(0) = 0.

It can be shown after some algebraic manipulation that the
elements of P satisfy the following equations:

p11(ε) =
σ2
w

1−a2
− a2

1−a2

(1−ε)
M∞(ν)

(p11(ε)−(1−ν)p12(ε))
2

p12(ε) =
ak

1− a2 + ak
p11(ε)−

a(1− ε)
1− a2 + ak

(p11(ε)− (1− ν)p12(ε))
L∞(ν)

M∞(ν)

p22(ε) =
k

2

1−(a−k)2
p11(ε)+

2k(a−k)

1−(a−k)2
p12(ε)

+
k

2

1− (a− k)2
R− (1− ε)

1− (a− k)2

L2
∞(ν)

M∞(ν)
(34)

where

M∞(ν) = p11(ε)− 2p12(ε)(1− ν) + p22(ε)(1− ν)2 +R,
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and

L∞(ν) = kp11(ε) +
(
a− k(2− ν)

)
p12(ε)−

−(a− k)(1− ν)p22(ε) + kR

C. Optimal soft innovation forward strategy

The transmitter and receiver filter design proposed in
the previous two section still leave a certain degree of
freedom for optimizing the performance pSIF = p11(ε) =
pSIF (ν, ε), where we explicitly indicate its dependence on
the parameters ν, ε. If the packet loss probability ε is known,
then one might optimize for the mixing coefficient ν. More
specifically we define:

ν∗(ε) := arg min
ν∈[0,1]

pSIF (ν, ε) (35)

pOSIF (ε) := pSIF (ν∗, ε) (36)

where pOSIF (ε) is the optimal soft innovation forward
(OSIF) strategy for a given packet loss probability ε. A
shown in the next section, the numerical computation of
ν∗(ε) via exhaustive search, appears to be a monotonically
increasing function of ε, which implies that as the packet loss
probability increases, it is better to place more weight on the
state and less on the innovation. Moreover, it shows that the
SF strategy is the optimal strategy for very large packet loss
probability. This is consistent with the next theorem states
that for a fixed ε there is ν ∈ (0, 1) that performs better than
the SF strategy (ν = 1) and the IF strategy (ν = 0).

Theorem 3: For any arbitrary ε ∈ (0, 1), then pSIF (ν, ε)
is a decreasing function of ν at ν = 0 and an increasing
function of ν at ν = 1. This implies that pSIF (ν, ε) has at
least one minimum at some 0 < ν∗ < 1.

Proof: See Appendix B in [17].
Remark 1: It is possible to check numerically via suitable

examples that pSIF (ν, ε) may not be a convex function of ν
for a fixed ε. Therefore we do not, at this stage, attempt to
prove that pSIF (ν, ε) has a unique minimum with respect to
ν ∈ (0, 1). Instead, the above theorem simply states that there
is at least one minimum for pSIF (ν, ε) at some 0 < ν∗ < 1.
This is not to say that the minimum is not unique (in fact
the extensive numerical results indeed suggest uniqueness),
but a proof of uniqueness has proved to be elusive so far.
It is also possible to formally prove that as the packet loss
probability approaches one, then the optimal ν∗ approaches
one as well, i.e. the SF strategy becomes optimal for large
packet loss probabilities, as stated in the following theorem:

Theorem 4: The optimal mixing parameter ν∗(ε) has the
following properties:

ν∗(0) = 0, lim
ε→1−

ν∗(ε) = 1

Proof: See Appendix C in [17].

VI. NUMERICAL RESULTS

Figure 5 depicts the performance of the filters derived
so far and the critical probability εc defined in Eqn. (23).
As expected, the performance degrades as the packet loss

probability increases for all estimators, but the estimator
with channel feedback outperforms all estimators with no
channel feedback. The figure also shows that by optimizing
ν, the OSIF performs considerably better than the SF and
IF strategies, which are just two special cases in the class of
the SIF strategies.
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Fig. 5. Prediction error covariance of proposed strategies against packet
loss probability ε for a = 0.95,Λ = 1, σ2

w = 1.

In Figure 6 below, we plot the optimal mixing coefficient
ν = ν∗ which has been obtained numerically. The curve
appears to be monotonically increasing from zero to unity,
thus confirming that as the packet loss increases, the optimal
soft innovation forwarding strategy transits from the IF to
the SF strategy.
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Fig. 6. Optimal mixing coefficient ν∗ as a function of the packet loss
probability ε for the OSIF strategy for a = 0.95,Λ = 1, σ2

w = 1.

VII. CONCLUSIONS AND FUTURE WORK

In this work we studied the problem of remotely estimating
the state of a dynamical stable system over a noisy channel
subject to packet loss. We showed that with perfect channel
feedback it is possible to derive the optimal linear transmitter
and receiver filters to minimize the estimation error variance
using a strategy that it is reminiscent of DPCM. We also
studied the scenario with no channel feedback and we
propose few heuristic strategies for which we were able to
characterize performance and trade-offs.
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Future work will include formal proofs about the proper-
ties of the OSIF strategy, and the extension to multivariable
systems. Also, another important feature is to consider a
lossy channel feedback which is more realistic then the two
scenarios presented in this work.
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