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Abstract—In this paper we explore the distortion performance
of distributed estimation schemes in wireless sensor networks
(WSNs) in the presence of an eavesdropper. The sensors use
an uncoded amplify and forward scheme to transmit their
observations to the fusion center (FC), which at the same
time can be overheard by the eavesdropper. Both the FC and
the eavesdropper reconstruct a minimum mean squared error
(MMSE) estimate of the physical quantity observed. In this
paper, we address the problem of transmit power allocation
for system performance optimization subject to a total average
power constraint on the sensors and a security constraint on
the eavesdropper. In the case of full channel state information
(CSI) the proposed scheme allows the sensors to adapt their
transmission strategy based on the instantaneous channel gains
of both the FC and the eavesdropper. In the partial CSI
case, transmit power is allocated only according to the FC
instantaneous channel gains and statistical channel gains of the
eavesdropper. Numerical results illustrate the performance of the
power allocation algorithms.

Index Terms—Distributed estimation, fading channels, physical
layer security, sensor networks, power allocation

I. INTRODUCTION
Wireless Sensor Networks (WSNs) are networks consisting

of small, inexpensive, and low-power sensors, which are
deployed over a region and can communicate with each other
over wireless links. Due to their low cost, robustness, and
high flexibility, WSNs are widely used in event monitoring
and data collection [1]. In distributed estimation, sensors
independently collect data about some phenomenon and send
the measurements to the fusion center (FC) which then attempt
to reconstruct the phenomenon.
One crucial issue in WSNs is the limited battery life of the

sensors. As sensors are normally geographically widespread,
replacing batteries can be costly or sometimes even impos-
sible. Many works [2], [3], [4], [5] have studied the power
allocation problems for distributed estimation in WSNs. In [2],
the authors solve the problem of minimizing power under dis-
tortion constraints and minimizing distortion under power con-
straints for an orthogonal multiple access channel (MAC). Us-
ing a universal decentralized quantization/estimation scheme
and an uncoded quadrature amplitude modulated transmission
strategy, the authors in [3] study the optimal power scheduling
problem in an inhomogeneous sensor network. The power
scheduling of a vector source is derived in [4] for a coherent
MAC. In [5], the authors study the power allocation problem
when the observations are spatially correlated.
Due to the broadcast nature of wireless communications,

security and privacy issues have become one of the biggest
challenges in WSNs. In many real world settings such as

security systems, intelligent buildings, and hospitals, there is
a high need not only for data security but also for privacy.
However, the characteristics of WSNs such as the wireless
environment and mobility make incorporating security very
challenging, as traditional encryption schemes or cryptography
normally require high computational abilities and consume
large amounts of power, which is impractical for implemen-
tation in WSNs [6]. To this point, many works have focused
on adapting security techniques to WSNs by reducing the key
size and power consumption [7], [8], [9].
However, key-establishment protocol is not the only tech-

nique to provide security for WSNs. As a matter of fact, if
an eavesdropper has sufficiently large computational power,
cryptographic schemes with small key sizes may not be
very effective. The notion of perfect security, first introduced
by Shannon [10], provides a different way to achieve data
confidentiality. With full channel state information (CSI), the
authors in [11] investigate the communication of confiden-
tial messages for the fading broadcast channel, where they
establish the secrecy capacity region and derive the optimal
power allocation scheme to achieve the secrecy capacity region
boundary. The secrecy capacity for the partial CSI scenario
is considered in [12]. For distributed detection in WSNs,
approaches proposed in [13], [14], [15], [16] explore the ability
of the physical layer as a solution in keeping the data confi-
dential. In [13], the authors address the data confidentiality
issue by intentionally inducing decision errors that randomly
flip binary local decisions before transmission. The scheme
proposed in [14] allows the binary local decision of each
sensor to be flipped according to the instantaneous channel
gain between the sensor and the FC, and achieves perfect
secrecy. Using divergence as the detection performance metric,
the authors in [15] also consider a distributed binary detection
problem, where they show how the perfect secrecy requirement
impacts on the achievable performance and propose the related
divergence per unit cost function as the most economical way
to characterise the detection information.
In this paper, we consider distributed estimation with mul-

tiple sensors in the network and the presence of an eavesdrop-
per, where the sensors use the analog amplify and forward
scheme [17], [18], [19] to communicate with the FC over a
slow-fading orthogonal MAC1 (e.g., by TDMA/FDMA). The
same information passes through a different set of fading
orthogonal MAC before being received by the eavesdropper.
The motivation for using orthogonal multiple-access channel

1The case of coherent MAC can also be analyzed using similar techniques
to this paper.
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schemes is that it removes the need for perfect synchronization
between all the sensors and the FC, but only requires pairwise
synchronization between each sensor and the FC [2]. After
receiving the observation signals, both the FC and the eaves-
dropper attempt to reconstruct a minimum mean squared error
(MMSE) estimate of the observations. We study the optimal
power allocation scheme that minimizes the distortion or mean
squared error (MSE) at the FC, subject to both an average
transmit sum power constraint at the sensors and a security
constraint at the eavesdropper, to guarantee that the system
is operating under the limited power budget and to ensure
that not much useful information can be extracted by the
eavesdropper. We consider two different scenarios: full CSI
and partial CSI. In the idealistic full CSI case, we assume
perfect channel knowledge of the links from the sensors to
both the FC and the eavesdropper; while in the case of partial
CSI, only statistical channel knowledge of the eavesdropper
is available. In both scenarios, the considered optimization
problems are non-convex, but we present algorithms to find
locally optimal solutions by applying the Karush-Kuhn-Tucker
(KKT) conditions.
The rest of the paper is organized as follows. Section

II presents the system model. Section III presents the full
CSI power allocation results and in Section IV, the power
allocation results for partial CSI are presented. Section V
briefly presents the two extreme cases of no power constraint
and no security constraint for comparison purposes. Section
VI presents numerical results followed by concluding remarks
in Section VII.

II. SYSTEM MODEL

We consider a sensor network with K sensors observing a
single point Gaussian source, denoted by θ[t], t = 0, 1, 2, . . . ,
which has zero mean and variance σ2

θ , and is independent
and identically distributed (i.i.d.) in time. The measurement
received by the kth sensor at time t is corrupted by noise
ωk[t] and given as

xk[t] = θ[t] + ωk[t], k = 1, . . . ,K, (1)

where we assume that ωk[t] is i.i.d. Gaussian with zero mean
and variance σ2

ωk.
The analog amplify and forward technique [17], [18], [19]

is used, where sensors transmit over fading channels a scaled
version of their analog measurements to the FC. It has been
shown in [18] that this technique is asymptotically optimal,
and exactly optimal in [19] under certain situations for Gaus-
sian source estimation in the coherent MAC, which can give
better performance than separate source channel coding. In our
model, each sensor amplifies the signal with a power gain of
βk[t] before transmitting it to the FC via a set of orthogonal
channels, with the same information leaked to an eavesdropper
via another set of orthogonal channels, as illustrated in Fig.
1. We assume that all channels experience block fading [20],
where the channel gains remain constant during each coher-
ence time interval, and are i.i.d. over different time intervals.
The signal received by the FC and the eavesdropper are given
by, respectively

zk[t] =
√

hk[t]βk[t]θ[t] +
√
hk[t]βk[t]ωk[t] + nk[t], (2a)

zek[t] =
√

hek[t]βk[t]θ[t]+
√

hek[t]βk[t]ωk[t]+nek[t], (2b)

where
√
hk[t] and

√
hek[t] are respectively the instantaneous

channel gains from sensor k to the FC and the eavesdropper,
and nk[t] and nek[t] respectively represent the i.i.d. additive
Gaussian noise with zero mean and variance σ2

nk at the FC
and variance σ2

ek at the eavesdropper.

Fig. 1. Diagram of the wireless sensor network using orthogonal MAC scheme
with the presence of an eavesdropper.

The linear minimum mean square error (MMSE) estimator
is well known to be the optimal2 estimator for θ under the
model (1) [21]. At time t the mean squared error or distortion
at the FC and the eavesdropper can be easily shown as,
respectively

D[t] =

(
1

σ2
θ

+

K∑
k=1

hk[t]βk[t]

hk[t]βk[t]σ2
ωk + σ2

nk

)−1

, (3a)

De[t] =

(
1

σ2
θ

+
K∑

k=1

hek[t]βk[t]

hek[t]βk[t]σ2
ωk + σ2

ek

)−1

. (3b)

In this paper, we assume that the crucial information lies
in the long term behaviour of the estimates, such as long
term trends, hence the FC would be more interested in
the estimation over multiple fading blocks. Given a limited
transmission power budget Ptot, we would like to minimize
the long-term average distortion at the FC by adapting βk[t],
where the expectation is across coherence time intervals, while
keeping the long term average sum of sensor transmission
powers, defined as

E

[
K∑

k=1

βk[t]E
[
x2
k[t]

]]
= E

[
K∑

k=1

βk[t](σ
2
θ + σ2

ωk)

]
(4)

to be less than Ptot.
In addition, we also wish to have a security constraint at

the eavesdropper. In information theoretic security, the secrecy
capacity is defined as the maximum transmission rate at which
the mutual information between the confidential message and
the signal received by the eavesdropper is less than a threshold
[12]. Motivated by this idea, we consider a notion of security
in estimation by requiring the distortion at the eavesdropper
to be greater than a threshold. In our setting, one can either
consider expected distortion (averaged over a large number
of fading channel blocks) or the distortion outage probability
(in the case where the estimate for each fading block contains

2It is also the best linear estimator for the case of non-Gaussian noise.
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valuable information) as the performance metric. In this paper,
we assume that the FC is interested in estimating the data over
a large number of fading blocks and extracting important long
term information, and estimates over individual fading blocks
do not contain the desired information. Since the desired
information can only be obtained from data transmitted over
multiple fading blocks, we assume that the eavesdropper is
also interested in long term trends in the data in order to
make strategic decisions. Therefore, we consider a security
constraint by maintaining the average distortion at the eaves-
dropper to be greater than a threshold DE , i.e. E[De] ≥ DE ,
to guarantee that a certain amount of confidentiality can be
achieved at the FC.
Due to the assumption of system independence over time t,

we will neglect the time index t for the rest of the paper.

III. FULL CSI POWER ALLOCATION

Let h = [h1, . . . , hK ]T and he = [he1, . . . , heK ]T be the
channel gains between the sensors and FC, and between the
sensors and eavesdropper, respectively. In this section we as-
sume that the FC knows both h and he. We can then formulate
a power control problem that minimizes the distortion at the
FC while satisfying a long-term total power constraint and
security constraint at the eavesdropper, where the powers are
computed at the FC and then fed back to the sensors. The
power allocation can be obtained by solving the following
functional optimization problem:

min
βk(h,he)≥0, ∀k

E

⎡
⎣( 1

σ2
θ

+
K∑

k=1

hkβk(h,he)
hkβk(h,he)σ2

ωk + σ2
nk

)−1
⎤
⎦

s.t. E

[
K∑

k=1

(
σ2
θ + σ2

ωk

)
βk(h,he)

]
≤ Ptot,

E

⎡
⎣
(

1

σ2
θ

+

K∑
k=1

hekβk(h,he)
hekβk(h,he)σ2

ωk+σ2
ek

)−1
⎤
⎦

≥ DE , (5)

where βk(h,he) is a function of both h and he due to the
assumption of full CSI.
To solve this problem, we will apply the technique of

Lagrange multipliers. More specifically, the dual problem of
(5) is defined as:

max
λ, ν

g(λ, ν), (6)

where λ and ν are nonnegative Lagrange multipliers, and the
Lagrange dual function g(λ, ν) associated with the constrained
optimization Problem (5) is

g(λ, ν) = min
βk(h,he)≥0, ∀k

∫
h

∫
he
l ({βk(h,he)} , λ, ν) fhfhe dh dhe

− λPtot + νDE , (7)
with

l ({βk(h, he)} , λ, ν)

=

(
Rk +

hkβk(h, he)
hkβk(h, he)σ2

ωk + σ2
nk

)
−1

+ λ

K∑
k=1

(
σ2
θ + σ2

ωk

)
βk(h, he)

− ν

(
Rek +

hekβk(h, he)
hekβk(h, he)σ2

ωk + σ2
ek

)
−1

, (8)

where Rk = 1
σ2
θ

+
∑K

j �=k

hjβj(h,he)
hjβj(h,he)σ2

ωj
+σ2

nj

, Rek = 1
σ2
θ

+∑K

j �=k

hejβj(h,he)
hejβj(h,he)σ2

ωj
+σ2

ej

, and fh =
∏K

k=1 f(hk), fhe =∏K

k=1 f(hek), with f(·) denoting the probability density func-
tion.
Due to the non-convexity of optimization Problem (5),

applying the Lagrangian formulation gives us the following
necessary generalized KKT conditions [22] for the optimal
point

−hkσ
2
nk(

hkβk(h, he)R̂k+Rkσ2
nk

)2 +
νhekσ

2
ek(

hekβk(h, he)R̂ek+Rekσ2
ek

)2

+ λ
(
σ
2
θ + σ

2
ωk

)
= 0, ∀k, (9a)

λ

(
E

[
K∑

k=1

(
σ
2
θ + σ

2
ωk

)
βk(h, he)

]
− Ptot

)
= 0, (9b)

ν

(
DE − E

[(
Rek +

hekβk(h, he)
hekβk(h, he)σ2

ωk + σ2
ek

)
−1

])
= 0, (9c)

where R̂k = Rkσ
2
ωk + 1 and R̂ek = Rekσ

2
ωk + 1.

In order to solve the dual problem (6), we will first assign
arbitrary initial values to λ and ν, then iteratively apply the
following Step 1 and Step 2 until we reach a pre-specified
convergence criterion.
Step 1: With fixed λ(i) and ν(i), where i is the iteration

number, find the optimal solution of the Lagrange dual prob-
lem (7), which can be obtained by solving equations in (9a).
Note that (9a) can be transformed to a set of polynomial equa-
tions, thus all the roots can be found by applying techniques
such as Gröbner Bases methods [23].
Step 2: With the resulting allocated power, we update the

Lagrange multipliers through a gradient descent, i.e.:

λ(i+1) =

[
λ(i)+ε

(
E

[
K∑

k=1

(
σ2
θ+σ2

ωk

)
β∗

k(h, he)

]
−Ptot

)]+

, (10a)

ν(i+1) =

[
ν(i)+κ

(
DE−E

[(
Rek+

hekβ
∗

k
(h, he)

hekβ
∗

k
(h, he)σ2

ωk+σ2
ek

)
−1 ])]+

,

(10b)

where [·]+ = max(0, ·), and ε and κ are sufficiently small
step-sizes for updating λ(i) and ν(i) respectively.

IV. PARTIAL CSI POWER ALLOCATION

Due to the difficulties of perfectly acquiring the eavesdrop-
per’s CSI in practice, in this section we assume that the FC
knows h, but only has statistical knowledge of he. Hence,
sensors will adapt their transmission power only according to
h.
Similar to problem (7), we define the Lagrange dual func-

tion as:

g(λ, ν) = min
βk(h)≥0, ∀k

∫
h
l ({βk(h)} , λ, ν) fh dh

− λPtot + νDE , (11)
with

l ({βk(h)} , λ, ν)

=

(
Rk +

hkβk(h)
hkβk(h)σ2

ωk + σ2
nk

)
−1

+ λ

K∑
k=1

(
σ
2
θ + σ

2
ωk

)
βk(h)

− ν

∫
he

(
Rek +

hekβk(h)
hekβk(h)σ2

ωk + σ2
ek

)
−1

fhe dhe . (12)
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The necessary optimality condition for problem (11) is given
by

−hkσ
2
nk(

hkβk(h)R̂k +Rkσ
2
nk

)2
+ ν

∫
he

hekσ
2
ek(

hekβk(h)R̂ek +Rekσ
2
ek

)2
fhe dhe

+ λ
(
σ2
θ + σ2

ωk

)
= 0, ∀k, (13)

where λ and ν satisfy, respectively

λ

(
E

[
K∑

k=1

(
σ
2
θ + σ

2
ωk

)
βk(h)

]
− Ptot

)
= 0, (14a)

ν

(
DE − E

[(
Rek +

hekβk(h)
hekβk(h)σ2

ωk + σ2
ek

)
−1

])
= 0. (14b)

For any channel power gains h, the optimal transmission power
of sensor k is determined by equation (13). We can then
similarly adapt the two steps depicted in Section III, where in
Step 1 the optimal power {β∗

k(h)} can be derived by applying
Algorithm 1 below.

Algorithm 1
1: Initialize the iteration index q = 0, choose an arbi-
trary initial value for

{
βk(h)(q)

}K

k=1
, and obtain l(q) =

l
({

βk(h)(q)
}
, λ, ν

)
from equation (12).

2: repeat
3: For k = 1 : K

1) Let βk(h)+ denote one of the non-negative
roots of equation (13), then solve β′

k(h) =

argminβk(h)+
[
l
(
βk(h)+, λ, ν

)
, l (0, λ, ν)

]
.

2) Update the transmission power of sensor k by[
β1(h)(q), . . . , β′

k
(h)(q), . . . , βK(h)(q)

]
.

4: update l(q+1) = l
({

β′
k(h)(q)

}
, λ, ν

)
, and q = q + 1.

5: until Convergence: l(q+1)−l(q)

l(q+1) < ζ; Set {β∗
k(h)} ={

β′
k(h)(q)

}
.

Remark: In Step 1, λ(i) and ν(i) are fixed, hence we can
drop the iteration number i in Algorithm 1; and ζ is a pre-
specified convergence criterion.

V. EXTREME CASES

For our proposed wireless sensor network model, if the
sensors have a large transmission power budget then we might
expect the system to behave close to the case where there is
no power constraint. Similarly, when the security threshold is
sufficiently small the system could be similar to the case with
no security constraint. Therefore, in this section we investigate
how the system behaves when the total transmission power
budget goes to infinity, and how the power allocation strategy
changes where there is no security constraint.

A. No power constraint

In the case of no power constraint, the optimal transmission
power level is obtained by setting λ to 0 in the Lagrange
dual function. For the case of full CSI, let βk(h,he)+ =

max(0,

√
hekσ

2
ek

νRkσ
2
nk

−
√

hkσ2
nk

Rekσ
2
ek√

hkσ2
nk

R̂ek
hek−

√
hekσ

2
ek

νR̂khk

). We can then derive
β′
k(h,he) given in (15) of the next page, which is then
employed in the third step of Algorithm 1.

B. No security constraint
The case without the presence of an eavesdropper can be

derived similar to [24], with β′
k(h) in Algorithm 1 being

β
′

k(h) =

⎧⎨
⎩

1

R̂k

√
σ2
nk

λhk(σ2
θ
+σ2

ωk)
−

Rkσ
2
nk

R̂khk
,

hk

λR2
k
σ2
nk(σ

2
θ
+σ2

ωk)
> 1

0, otherwise
(16)

We notice that the kth sensor will remain silent if its channel
power gain is less than λR2

kσ
2
nk

(
σ2
θ + σ2

ωk

)
.

VI. NUMERICAL RESULTS
In this section, we show the performance of the proposed

power allocation algorithms via numerical simulations. In the
simulation, we consider a multiple-sensor network with a
random source θ distributed as N(0, 1). For simplicity, we
assume that all sensors have the same measurement sensitivity
of σ2

ωk = 10−3,∀k. We also consider the same noise levels
for both the FC’s and eavesdropper’s channels, where σ2

nk =
σ2
ek = 10−8, ∀k. From (3b), we know that the distortion De at
the eavesdropper attains the maximum value of σ2

θ when βk =

0, ∀k, and De →
(

1
σ2
θ

+
∑K

k=1
1

σ2
ωk

)−1

as βk,∀k approaches
infinity, which gives the bounds,

(
1
σ2
θ

+
∑K

k=1
1

σ2
ωk

)−1

≤
E[De] ≤ σ2

θ . Therefore, the security threshold at the eaves-
dropper in this simulation is chosen from the range 0.05 ≤
DE ≤ 0.3, with the average power constraint set to 30mW.
Additionally, we consider the signal power at the FC and the
eavesdropper to follow the free-space pathloss model [25]

PLk = 20 log10(Dk) + 20 log10(f)− 27.55, (17)

where Dk = {dk, dek} is the distance between sensor k

and the FC or the eavesdropper in meters, and f is the
signal frequency in megahertz. Thus, the channel power gain
follows an exponential distribution with mean 10−

PLk
10 mW.

We further assume that the network utilizes an operation
frequency of 800MHz; and the distance from each sensor to
the FC, and the distance from each sensor to the eavesdropper,
to be 130m, i.e., dek = dk,∀k.

0.05 0.1 0.15 0.2 0.25 0.3
0
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0.14

0.16
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0.2

Security threshold, D
E

D
is

to
rti

on
 a

t t
he

 F
C

, E
[D

]

1 sensor with partial CSI
2 sensors with partial CSI
1 sensor with full CSI
4 sensors with partial CSI
2 sensors with full CSI
4 sensors with full CSI

Fig. 2. Performance comparison between full CSI and partial CSI in a 1, 2
and 4 sensors network with Ptot = 30mW.
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β′
k(h,he) =

{
βk(h,he)+,

hkβk(h,he)+σ2
wk

+σ2
nk

hkβk(h,he)+R̂k+Rkσ2
nk

− ν
hekβk(h,he)+σ2

ωk
+σ2

ek

hekβk(h,he)+R̂ek
+Rekσ

2
ek

< 1
R
− ν

Rek

0. otherwise
(15)

In Fig. 2 we plot the average distortion at the FC versus the
security threshold at the eavesdropper DE , for both the full
CSI and partial CSI cases in a 2 and 4 sensor network. For
comparison, we also plot the case of one sensor. The first thing
to be noticed is the similar performance between partial CSI
and full CSI when DE is very small across all three different
scenarios, but the differences gradually increase as we enlarge
DE . Additionally, the performance gap between full CSI and
partial CSI increases when the number of sensors increases,
which indicates the crucial role of the eavesdropper’s CSI in
a network with a large number of sensors.

0.05 0.1 0.15 0.2 0.25 0.3
10−3

10−2

10−1

100

Security threshold, D
E

D
is

to
rti

on
 a

t t
he

 F
C

, E
[D

]

2 sensors, partial CSI,  with P
tot

=30 mW

2 sensors, partial CSI, without power constraint
2 sensors, full CSI, with P

tot
= 30 mW

2 sensors, full CSI, without power constraint

Fig. 3. Performance comparison between power constraint with Ptot =
30mW and no power constraint case in a 2 sensors network.

In Fig. 3 we study the distortion performance at the FC
in a 2 sensor network with no power constraint for both the
full CSI and partial CSI scenarios, and also the case with
power constraint of Ptot = 30mW. It is seen, in both scenarios,
that the distortion in the no power constraint case is always
superior to the case with a power constraint. However, the
performance of the two cases are very close to each other,
and the performance gap gradually vanishes as the security
threshold increases. This is because in order to achieve large
distortion at the eavesdropper (to meet the security constraint),
the sensors have to reduce the transmission power (or stop
transmitting in some situations) even though they have an
infinite power budget (i.e. no power constraint).

VII. CONCLUSION
In this paper, we have considered a problem of transmit

power allocation for estimation performance optimization in a
multiple-sensor network with the presence of an eavesdropper.
We first assumed that the sensors know the CSI of both
the FC and eavesdropper channel, and derived the power
allocation strategy that meets the security requirement. Then,
we considered the case where the sensors only know the FC’s

channel and again derived the power allocation strategy at
the eavesdropper. Future work will consider a secrecy outage
constraint, by requiring the outage probability for the eaves-
dropper to be smaller than a certain value, where the outage
probability is defined as the probability that the distortion at
the eavesdropper is less than a maximum distortion threshold.
In addition, the current work can be extended to the multi-
antenna case, where the artificial noise technique [26] would
be deployed to confuse the eavesdropper.

REFERENCES
[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless

sensor networks: a survey,” Computer networks, vol. 38, no. 4, pp. 393–
422, 2002.

[2] S. Cui, J.-J. Xiao, A. Goldsmith, Z.-Q. Luo, and H. Poor, “Estimation
diversity and energy efficiency in distributed sensing,” Signal Processing,
IEEE Transactions on, vol. 55, no. 9, pp. 4683–4695, Sept 2007.

[3] J.-J. Xiao, S. Cui, Z.-Q. Luo, and A. Goldsmith, “Power scheduling of
universal decentralized estimation in sensor networks,” Signal Process-
ing, IEEE Transactions on, vol. 54, no. 2, pp. 413–422, Feb 2006.

[4] ——, “Linear coherent decentralized estimation,” Signal Processing,
IEEE Transactions on, vol. 56, no. 2, pp. 757–770, Feb 2008.

[5] I. Bahceci and A. Khandani, “Linear estimation of correlated data in
wireless sensor networks with optimum power allocation and analog
modulation,” Communications, IEEE Transactions on, vol. 56, no. 7,
pp. 1146–1156, July 2008.

[6] A. Perrig, J. Stankovic, and D. Wagner, “Security in wireless sensor
networks,” Communications of the ACM, vol. 47, no. 6, pp. 53–57, 2004.

[7] J. Zhang and V. Varadharajan, “A new security scheme for wireless
sensor networks,” in Global Telecommunications Conference, 2008.
IEEE GLOBECOM 2008. IEEE. IEEE, 2008, pp. 1–5.

[8] M. Eltoweissy, M. Moharrum, and R. Mukkamala, “Dynamic key
management in sensor networks,” Communications Magazine, IEEE,
vol. 44, no. 4, pp. 122–130, 2006.

[9] L. Eschenauer and V. D. Gligor, “A key-management scheme for
distributed sensor networks,” in Proceedings of the 9th ACM conference
on Computer and communications security. ACM, 2002, pp. 41–47.

[10] C. E. Shannon, “Communication theory of secrecy systems,” Bell system
technical journal, vol. 28, no. 4, pp. 656–715, 1949.

[11] Y. Liang, H. Poor, and S. Shamai, “Secure communication over fading
channels,” Information Theory, IEEE Transactions on, vol. 54, no. 6,
pp. 2470–2492, 2008.

[12] P. K. Gopala, L. Lai, and H. El-Gamal, “On the secrecy capacity of
fading channels,” Information Theory, IEEE Transactions on, vol. 54,
no. 10, pp. 4687–4698, 2008.

[13] T. Aysal and K. Barner, “Sensor data cryptography in wireless sensor
networks,” Information Forensics and Security, IEEE Transactions on,
vol. 3, no. 2, pp. 273–289, 2008.

[14] H. Jeon, J. Choi, S. McLaughlin, and J. Ha, “Channel aware encryption
and decision fusion for wireless sensor networks,” Information Forensics
and Security, IEEE Transactions on, vol. 8, no. 4, pp. 619–625, 2013.

[15] S. Marano, V. Matta, and P. Willett, “Distributed detection with cen-
soring sensors under physical layer secrecy,” Signal Processing, IEEE
Transactions on, vol. 57, no. 5, pp. 1976–1986, 2009.

[16] ——, “On the divergence-cost function in distributed detection with
a secrecy constraint,” in Signals, Systems and Computers, 2008 42nd
Asilomar Conference on, 2008, pp. 1357–1360.

[17] M. Gastpar, B. Rimoldi, and M. Vetterli, “To code, or not to code: lossy
source-channel communication revisited,” Information Theory, IEEE
Transactions on, vol. 49, no. 5, pp. 1147–1158, 2003.

[18] M. Gastpar and M. Vetterli, “Source-channel communication in sensor
networks,” in Information Processing in Sensor Networks. Springer,
2003, pp. 162–177.

[19] M. Gastpar, “Uncoded transmission is exactly optimal for a simple
gaussian “sensor” network,” Information Theory, IEEE Transactions on,
vol. 54, no. 11, pp. 5247–5251, 2008.

[20] G. Caire, G. Taricco, and E. Biglieri, “Optimum power control over
fading channels,” IEEE Trans. Inf. Theory, vol. 45, no. 5, pp. 1468–
1489, Jul. 1999.

[21] S. M. Kay, Fundamentals of statistical signal processing: estimation
theory. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1993.

[22] D. G. Luenberger, Optimization by Vector Space Methods. New York:
Wiley-Interscience, 1969.

[23] D. A. Cox, J. Little, and D. OSHEA, Ideals, varieties, and algorithms:
an introduction to computational algebraic geometry and commutative
algebra. Springer, 2007.

[24] A. Leong and S. Dey, “On scaling laws of diversity schemes in
decentralized estimation,” Information Theory, IEEE Transactions on,
vol. 57, no. 7, pp. 4740–4759, 2011.

[25] A. Goldsmith, Wireless communications. Cambridge university press,
2005.

[26] R. Negi and S. Goel, “Secret communications using artificial noise,” in
Proc. VTC, Dallas, TX, Sep. 2005, pp. 1906–1910.

2014 IEEE 15th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)

303Authorized licensed use limited to: Maynooth University Library. Downloaded on June 01,2021 at 16:09:28 UTC from IEEE Xplore.  Restrictions apply. 


