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Abstract: We study remote estimation in a wireless sensor network. Instead of using a
conventional battery-powered sensor, a sensor equipped with an energy harvester which can
obtain energy from the external environment is utilized. We formulate this problem into an
infinite time-horizon Markov decision process and provide the optimal sensor transmission power
control strategy. In addition, a sub-optimal strategy which is easier to implement and requires
less computation is presented. A numerical example is provided to illustrate the implementation
of the sub-optimal policy and evaluation of its estimation performance.

1. INTRODUCTION

Wireless sensors network (WSN) has been a hot research
topic in recent years. Both theoretical results and practical
applications are growing rapidly. Compared with tradi-
tional wired sensors, wireless sensors provide many advan-
tages such as low cost, easy installation, and self-power.
In a WSN, sensors are typically equipped with batteries
and expected to work for a long time (Yick et al. [2008]).
Thus, the energy constraint is an inevitable issue. In some
applications, the amounts of sensors can be quite large
(e.g., environment monitoring) or sensors may be located
in dangerous environments (Ho and Zhang [2012]) (e.g.,
chemical industry), making the replacement of batteries
difficult or even impossible.

To deal with energy aspects of WSN, one possible way
is to develop more efficient sensor energy power control
methods to make the best use of the batteries (Aziz et al.
[2013], Pantazis and Vergados [2007]). An alternative way
is to replace the conventional battery-powered sensor with
sensors equipped with an energy harvester. The technology
of energy harvesting refers to obtaining energy from the
external environment or other types of energy sources (e.g.,
body heat, solar energy, piezoelectric energy, wind energy)
and converting them into electrical energy which can be
stored and used by the sensor (Ho and Zhang [2012]).
For sensors using this technology, the energy (but not the
energy-rate) is typically “unlimited” compared to battery-
powered sensor as the harvester can generate power all
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the time during the whole time-horizon. But unlike the
battery-powered sensor which has relatively explicit ener-
gy amount for future use, the sensor with energy harvester
will be subject to an unpredictable future energy level as
they are affected by the external environment. Due to the
randomness of the amounts of harvested energy in the
following time steps, new challenges arise in the design
and analysis of the communication strategy of the sensor.

In Nayyar et al. [2013], the authors investigated a re-
mote estimation problem for an energy harvesting sensor
and a remote estimator. The communication strategy for
the sensor and the estimation strategy for the remote
estimator are jointly optimized in terms of the expected
sum of communication and distortion costs, again using
a dynamic programming approach. Nourian et al. [2013]
studied optimal transmission energy allocation scheme for
error covariance minimization in Kalman filtering with
random packet losses when the sensors have energy har-
vesting capabilities, and they provided some structural
results on the optimal solution for both finite and infinite
time-horizon. Different from these works, we specify the
different distributions of different environment conditions
for the energy harvesting model. Furthermore, we use a
smart sensor to pre-processes the measurement data which
can improve the estimation quality Hovareshti et al. [2007].
The main challenges and contributions of this work are
summarized as follows:

(1) Randomness of harvested energy: In previous
works, e.g., Li et al. [2013b], the constraints of the
transmission power are deterministic. For energy har-
vesting sensors, on the other hand, the information of
the energy constraints is not exactly available for the
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sensor before the harvesting due to the randomness
of the energy resources. To handle this new challenge,
we develop a new approach.

(2) Infinite time-horizon MDP: We consider an infi-
nite time-horizon problem, which is a better approx-
imation for long-run applications and more difficult.
In order to overcome the randomness of the energy
resources, we prove that an associated power control
design problem can be formulated into a standard
MDP framework with infinite time-horizon and give
the optimal solution.

(3) Sub-optimal solution: As the MDP method cannot
in general provide an explicit form of the optimal solu-
tion and the computational complexity is formidable
for general higher-order systems, we propose a sub-
optimal solution which is in threshold form and is easy
to implement for different system parameter settings.

The remainder of this manuscript is organized as follows.
Section 2 presents the system setup. Section 3 formulates
the problem into a standard MDP framework and provides
the optimal solution. Section 4 introduces a sub-optimal
solution and compares it with the optimal one. Numerical
example and simulations are included in Section 5. Section
6 draws conclusions.

Notations: Z denotes the set of integers and N the positive
integers. R is the set of real numbers. Rn is the n-
dimensional Euclidean space. Sn+ (and Sn++) is the set of n
by n positive semi-definite matrices (and positive definite
matrices). When X ∈ Sn+ (and Sn++), we write X > 0
(and X > 0). X > Y if X − Y ∈ Sn+. Tr(·) is the trace
of a matrix. The superscript ′ stands for transposition.
For functions f, f1, f2 with appropriate domains, f1 ◦
f2(x) stands for the function composition f1

(
f2(x)

)
, and

fn(x) , f
(
fn−1(x)

)
, where n ∈ N and with f0(x) , x. δij

is Dirac delta function, i.e., δij equals to 1 when i = j and
0 otherwise. The notation P[·] refers to probability and E[·]
to expectation.

2. STATE ESTIMATION WITH AN ENERGY
HARVESTER

We consider the problem of remote estimating the state of
the following linear time-invariant (LTI) system:

xk+1 = Axk + wk, (1)

yk = Cxk + vk, (2)

where k ∈ N, xk ∈ Rnx is the system state vector at time
k, yk ∈ Rny is the measurement taken by the sensor, wk ∈
Rnx and vk ∈ Rny are zero-mean i.i.d. Gaussian noises
with E[wkw

′
j ] = δkjQ (Q > 0), E[vk(vj)′] = δkjR (R > 0),

E[wk(vj)
′] = 0 ∀j, k ∈ N. The initial state x0 is a zero-

mean Gaussian random vector with covariance Π0 > 0
and is uncorrelated with wk and vk. The pair (A,C) is
assumed to be observable and (A,Q1/2) is controllable.

2.1 Sensor Local State Estimate

We assume the sensor in this work is embedded with an
on-board processor (Hovareshti et al. [2007]), the so called
“smart sensor”. At each time k, the sensor first locally
runs a regular Kalman filter to produce the minimum
mean-square error (MMSE) estimate of the state xk based

Fig. 1. System Architecture

on all the measurements it collects up to time k. It then
transmits the local estimate to a remote estimator.

Denote x̂sk and P s
k as the sensor’s local MMSE state esti-

mate and the corresponding estimation error covariance,
respectively, i.e.:

x̂sk = E[xk|y1, y2, ..., yk], (3)

P s
k = E[(xk − x̂sk)(xk − x̂sk)

′|y1, y2, ..., yk], (4)

which can be calculated recursively using standard Kalman
filter update equations (Anderson and Moore [1981]),
where the recursion starts from x̂s0 = 0 and P s

0 = Π0 > 0.

The following Lyapunov and Riccati operators h, g̃ : Sn+ →
Sn+ are introduced to facilitate our subsequent discussion:

h(X) , AXA′ +Q, (5)

g̃(X) , X −XC ′[CXC ′ +R]−1CX. (6)

Since the estimation error covariance P s
k converges to a

steady-state value exponentially fast (See Anderson and
Moore [1981]), without loss of generality, we assume that
the Kalman filter at the sensor side has already entered
the steady state, i.e., :

P s
k = P , k > 1, (7)

where P is the steady-state error covariance, which is the
unique positive semi-definite solution of g̃ ◦ h(X) = X.

2.2 Wireless Communication Model

Similar to Li et al. [2013b], the local state estimate of the
sensor x̂sk is transmitted to the remote estimator over an
Additive White Gaussian Noise (AWGN) channel using
Quadrature Amplitude Modulation (QAM). Denote ωk as
the transmission power for sending the QAM symbol at
time k, which will be designed in the following sections.
Based on the analysis in Li et al. [2013b], the approximate
relationship between the symbol error rate (SER) and ωk

is given by:

SER ≈ exp
(
− β

ωk

N0W

)
. (8)

The communication channel is assumed to be time-
invariant, i.e., β, N0, W , are constants during the whole
time horizon 1 . In practice, the remote estimator can
detect symbol errors via cyclic redundancy check (CRC).
Thus taking into account of the SER in the transmission
of QAM symbols, a binary random process {γk}, k ∈ N
can be used to characterize the equivalent communication
channel for x̂sk between the sensor and the remote estima-
tor, where:

γk =

{
1, if x̂sk arrives error-free at time k,

0, otherwise (regarded as dropout).
(9)

1 For time-variant channels, one can also formulate the problem in
a similar way. This is left for future work
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From (8), we have:

P[γk = 0] = (1− λ)ωk , (10)

where λ , 1− exp(− β
N0W

) ∈ (0, 1).

2.3 Energy Harvester

Now we present a simple model for the energy harvesting
sensor. Assume that there are two states of the external
environment: G denotes the good condition (e.g., windy,
sunny, etc.) and B denotes the bad condition which may
alternate at every time step. At time k, the environment
condition state is denoted as ek and the transition of
the two condition states between two time steps follows
a Markov chain model:

Fig. 2. Markov Chain Model of Environment Condition

The transition can be expressed as:

P(ek+1 = G|ek = G) = p̂00, (11)

P(ek+1 = B|ek = G) = p̂01, (12)

P(ek+1 = G|ek = B) = p̂10, (13)

P(ek+1 = B|ek = B) = p̂11. (14)

Denote the remaining energy level in the sensor’s battery
at the beginning of time step k as bk. The maximum
battery level (battery capacity) is denoted as bmax. At
each time step, we assume the amount of harvested energy,
denoted as rk, is a discrete random variable which can
only take values in N+, i.e., rk ∈ {0, 1, 2, ..., bmax} (Note
that for the situation that rk > bmax, we can regard it as
rk = bmax and add up all the corresponding probabilities
as P[rk = bmax]). Under different environment conditions,
rk follows different distributions:

P[rk = i|ek = G] = π0
i , (15)

and
P[rk = i|ek = B] = π1

i , (16)

where i ∈ {0, 1, 2, ..., bmax}.
Note that after harvesting the energy rk, the battery level
now is min{bk+rk, bmax}. Then the sensor needs to decide
the transmission power ωk used at time k to send the
local state estimates to the remote estimator based on
the current battery level. After this procedure, the process
moves to next time step k+1 and the battery level at the
beginning of k + 1 is:

bk+1 = min{bk + rk, bmax} − ωk. (17)

As mentioned before, different power levels lead to dif-
ferent dropout rates, and thereby affect the estimation
performance. Whilst keeping the battery partly charged
serves to “prepare for the future”, one should also avoid
wasting energy harvesting opportunities due to the battery
being full. This motivates the issue of energy management
to be studied in Section III.

2.4 Remote State Estimation

Denote x̂k and Pk as the remote estimator’s own MMSE
state estimate and the corresponding error covariance
based on all the sensor data packets received up to time
step k. The works Li et al. [2013b] and Shi et al.
[2010] show that they can be calculated via the following
procedure: once the sensor’s local estimate arrives, the
estimator synchronizes x̂k with that of the sensor, i.e., x̂sk;
otherwise, the remote estimator just predicts x̂k based on
its previous estimate using the system model (1). From (9),
the remote state estimate x̂k thus obeys the recursion:

x̂k =

{
x̂sk, if γk = 1,
Ax̂k−1, if γk = 0.

(18)

The corresponding state estimation error covariance Pk

satisfies:

Pk =

{
P , if γk = 1,
h(Pk−1), if γk = 0.

(19)

3. OPTIMAL TRANSMISSION POWER SCHEDULE

The objective of the remote estimator is to give accurate
state estimates x̂k. To be more specific, we seek to min-
imize the trace of the average expected state estimation
error covariance:

J(θ) = lim sup
T→∞

1

T

T∑
k=1

Tr{E[Pk]}, (20)

where θ = {ω1, ω2, ...} is the transmission power used at
each time step. Note that here we consider an infinite time-
horizon.

Due to the energy and battery constraints, we are inter-
ested in finding the optimal transmission power policy
θ⋆ for the sensor that solves the following constrained
optimization problem:

Problem 3.1.

min
θ

J(θ)

s.t. 0 6 ωk 6 min{bk + rk, bmax}, ∀k ∈ N+,

where θ = {ω1, ω2, ...}. �

We will next formulate the optimization in Problem 3.1 as
an MDP problem and study the optimal policy.

As described before, the amount of the harvested energy is
discrete. For convenience, we assume that the sensor can
choose transmission power discretely, i.e.:

ωk ∈
{
0, 1, 2, ...,min{bk + rk, bmax}

}
.

We assume that the remote estimator will send ACKs to
the sensor to indicate whether it has received the data
packet successfully or not (Li et al. [2013a]) at time k,
which enables the sensor to obtain Pk−1. Accordingly we
define the state for the power management problem at the
beginning of time step k as:

Φk =
(
min{bk + rk, bmax}, Ek, Pk−1

)
,

which consists of the battery level at the beginning of time
step k:

min{bk + rk, bmax},
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the environment condition:

Ek =

{
1, if ek = G,

0, if ek = B,

and the state estimate error covariance of the last time
step Pk−1. Note that here we choose Pk−1 because Pk is
still unknown at the beginning of time step k. The initial
state is denoted as Φ0 = ϕ0.

From the recursion of Pk in (19), it is easy to see that
at any time step k2 > k1, Pk2 can be written as Pk2 =
hk2−k1(P ), where k1 is the latest time when it successfully
received sensor data. Since Pk only takes value in the set of
{P , h(P ), h2(P ), ...}, the state space S for Φk is countably
infinite:

S =
{
(m,n, l)

}
,

where

m ∈ {0, 1, ..., bmax},
n ∈ {0, 1},
l ∈ {P , h(P ), ...}.

At each time step k, the action for the remote estimator is
defined as the transmission power ωk it chooses. Thus the
available actions set Ak for time step k is also finite:

Ak =
{
0, 1, 2, ...,min{bk + rk, bmax}

}
,

and therefore the action set A is

A ,
+∞∪
k=1

Ak =
{
0, 1, 2, ..., bmax

}
.

From Section 2, it is easy to show that the random process
Φ := {Φk} combined with the action {ωk} constitute an
MDP Puterman [2009]. Define the transition probabilities
T : S× A → P[S] as the description of each action’s effect
in the next state and :

pk(ϕ2|ϕ1, a) = P(Φk+1 = ϕ2|Φk = ϕ1, ωk = a), ∀k ∈ N+.

As the functions pk(ϕ2|ϕ1, a) do not depend on k, i.e., Φ
is a time-homogeneous process, we can write p(ϕ2|ϕ1, a)
instead of pk(ϕ2|ϕ1, a):
p(ϕ2|ϕ1, a) = P(Φk+1 = ϕ2|Φk = ϕ1, ωk = a), ∀k ∈ N+.

The closed-form expression for the one-step transition
probabilities can be derived as follows.

Assume that at time k, the state is Φk = (m,n, l), i.e.,
the remaining battery level at the beginning of this time
step is m, the environment condition index is n (n = 0
denotes good condition and n = 1 denotes bad condition),
and Pk−1 = l. Though Pk can take value from a countably
infinite set, once Pk−1 is given, based on the recursion in
(19), there are only two possible states for Pk: h(Pk−1) and
P , with probability (1−λ)ωk and 1−(1−λ)ωk , respectively.
After the sensor chooses the transmission power ωk and
sends the data packet carrying x̂sk, we can calculate the
probabilities of different values Pk may take.

Suppose that

Φk+1 =
(
m′, n′, l′

)
,

where l′ = Pk and

m′ = min{bk+1 + rk+1, bmax}.

Since

bk+1 = min{bk + rk, bmax} − ωk,

= m− ωk,

we also have

m′ = min{m− ωk + rk+1, bmax}.

Clearly, when l′ ̸= P or h(l), we have

p
(
(m′, n′, l′)|(m,n, l), ωk

)
= 0.

Based on the battery level recursion in (17) and envi-
ronment condition transition in (11), when m′ < bmax,
indicating that rk+1 = m′ − (m− ωk) < bmax − (m− ωk),
we have

p
((
m′, n′, h(l)

)
|(m,n, l), ωk

)
= (1− λ)ωk p̂nn′πn′

rk+1
,

and

p
(
(m′, n′, P )|(m,n, l), ωk

)
= [1− (1− λ)ωk ]p̂nn′πn′

rk+1
,

where p̂nn′ and πn′

rk+1
are defined in (11) and (17), respec-

tively.

Similarly, m′ = bmax indicates rk+1 > bmax− (m+ωk) and
we have

p
((
m′, n′, h(l)

)
|(m,n, l), ωk

)
=

bmax∑
rk+1=bmax−(m+ωk)

(1− λ)ωk p̂nn′πn′

rk+1
,

and

p
(
(m′, n′, P )|(m,n, l), ωk

)
=

bmax∑
rk+1=bmax−(m+ωk)

[1− (1− λ)ωk ]p̂nn′πn′

rk+1
.

To formulate 3.1 into a standard MDP framework, in
addition to the state space S, action set A and the one-
step state transition probability T : {p(ϕ2|ϕ1, a)} obtained
above, we also need to define the reward functions.

As described in (20), the cost function (objective function)
is the trace of average expected state estimate error
covariance. Thus we can just define the single stage cost
function for time step k as Tr{E[Pk]}, denoted as vk(ϕ1, a),
i.e., as a result of choosing action ωk = a when the remote
estimator is in state Φk = ϕ1 at time step k, the remote
estimator receive a cost vk(ϕ, a).

Suppose that vk(ϕ1, a, ϕ2) is the cost given Φk+1 = ϕ2 =
(m′, n′, l′), i.e., Pk = l′. Thus vk(ϕ, a) can be expressed as
the expected value of vk(ϕ1, a, ϕ2), which depends on the
state of the remote estimator at that time step k and at
the next time k + 1:

vk(ϕ1, a) =
∑
ϕ2∈S

p(ϕ2|ϕ1, a)vk(ϕ1, a, ϕ2)

= (1− λ)aTr{h(l)}+ [1− (1− λ)a]Tr{P},
where Φk = ϕ1 = (m,n, l) and ωk = a.

Without loss of generality, we assume that the costs can
be calculated by the sensor prior to selecting a particular
action. Define Θ as the policy for the sensor, which a map
from S to A such that the transmission power is given by
ωk = Θ(Φk).
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Also denote the expected total cost under a policy Θ up
to time-horizon T when the initial state of the system is

ϕ0 as V Θ
T (ϕ0) , EΘ

ϕ0

[∑T
k=1 vk

(
ϕ, a

)]
.

The performance metric is chosen as the average cost of a
policy Θ given the initial value Φ0 = ϕ0, which is defined
by

JΘ(ϕ0) , lim
T→∞

1

T
V Θ
T (ϕ0). (21)

Therefore Problem 3.1 can be stated as finding the optimal
policy Θ⋆ to minimize (21), i.e.,

J⋆(ϕ0) = min
Θ

JΘ(ϕ0),

and
Θ⋆ = argmin

Θ
JΘ(ϕ0),

Based on the theory of MDP, the optimal policy Θ⋆ is
stationary and independent of the initial value (Puterman
[2009], Bertsekas [1995]). Thus the value of this infinite-
time horizon minimization problem is given by J⋆ which
is the solution of the average-cost optimality (Bellman)
equation:

J⋆ +H(ϕ) = min
a∈A

{
vk
(
ϕ, a

)
+

∑
ϕ′∈S

p(ϕ′|ϕ, a)H(ϕ′)
}
, (22)

where H is the relative value function.

Note that (22) is not easy to solve (See also Nourian et al.
[2013], Nayyar et al. [2013]). It requires huge computation
and cannot be expressed in a closed-form. In addition, as
the state set is countably infinite, though the solution can
be solved in theory (Bertsekas [1995]), it is quite difficult
to implement in practice. This motivates us to consider a
sub-optimal power schedule which can be easily calculated
and can be analyzed explicitly.

4. A SUB-OPTIMAL POLICY

In this section, we provide a sub-optimal power schedule
policy. In some related literature, the optimal solution is in
threshold form (Nourian et al. [2013], Nayyar et al. [2013],
Ho and Zhang [2012]), which inspires us to propose the
transmission power schedule in this form:

ωk =

{
min{bk + rk, R0}, if ek = G,
min{bk + rk, R1}, if ek = B,

(23)

where R0(6 bmax) and R1(6 bmax) are parameters to be
designed.

To analyze this strategy, it is convenient to introduce the
process Sk = (b′k, ek), k ∈ N, for the remote estimator time
step k, where b′k = min{bk + rk, bmax} ∈ {0, 1, 2, ..., bmax}
is the battery level of the sensor after harvesting energy at
time step k. Based on the description in (23), it is easy to
show that {Sk} is a Markov process.

Define the state transition matrix Ψ = {ψi,j}, where each
element of Π is denoted as:

ψi,j = P[Sk+1 = (j1, j2)|Sk = (i1, i2)],

where i2 = (i− 1) mod 2, i1 = 1
2 (i− i2 − 1), j2 = (j − 1)

mod 2, j1 = 1
2 (j − j2 − 1).

As i2, j2 ∈ {0, 1}, it is easy to verify that i = 2i1 + i2 + 1
and j = 2j1 + j2 +1, which is a one-on-one mapping from

P[Sk+1 = (j1, j2)|Sk = (i1, i2)] to ψi,j . Simple analysis
leads to the exact form of Ψ = {ψi,j} where:

ψi,j = P[Sk+1 = (j1, j2)|Sk = (i1, i2)]

=


p̂i2j2π

j2
j1
, if i1 < Ri2 ,

p̂i2j2π
j2
j1−(i1−Ri2

), if i1 > Ri2and j1 < bmax,
bmax∑
m=m

p̂i2j2π
j2
m , if i1 > Ri2and j1 = bmax,

where m = bmax− (i1−Ri2) and π
j2
j1

is defined in (15) and

(16).

Here we provide a simple example to illustrate the exact
form of Ψ. For example, assume that bmax = 3, R0 = 1,
R1 = 2, then we have Ψ as in (24).

Based on the Puterman [2009], Bertsekas [1995], we can
prove that the process described in our work will have a
stationary state distribution for each state because this
process is a time-homogeneous Markov chain.

Assume that the stationary state distribution is q⋆ =
{q⋆0 , q⋆1 , q⋆2 , ..., q⋆2bmax+1}, i.e., in the stationary state,

P[Sk = (i1, i2)] = q⋆2i1+i2 .

Based on the power schedule we proposed, ωk also has
a stationary distribution. Without loss of generality, we
assume that R0 < R1. It is easy to derive the stationary
distribution for ωk :

P[ωk = i] =



q⋆2i + q⋆2i+1, if 0 6 i < R0,
bmax∑
m=R0

q⋆2m + q⋆2R0+1, if i = R0,

q⋆2i+1, if R0 < i < R1,
bmax∑
m=R1

q⋆2m+1, if i = R1.

0, if R1 6 i < bmax.
(25)

5. NUMERICAL SIMULATION

In this section, we provide a numerical example to il-
lustrate how to implement the sub-optimal solution and
evaluate its estimation performance.

Consider a scalar system with parameters A = 0.9, C =
0.7, R = Q = 0.8, λ = 0.7. Note that even for scalar
systems, the states set for the process is still infinite,
which renders finding the optimal solution intractable.
Thus we will compare the suboptimal one with other
policies. Assume that bmax = 3, R0 = 1, and R1 = 2.
The environment condition transition probabilities are set
as p̂00 = 0.7, p̂01 = 0.3, p̂10 = 0.2, p̂11 = 0.8 and the
distribution of harvested energy is defined as

π0
i =


0.1, i = 0,
0.2, i = 1,
0.3, i = 2,
0.4, i = 3,

and

π1
i =


0.4, i = 0,
0.3, i = 1,
0.2, i = 2,
0.1, i = 3.
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Ψ =



p̂00π
0
0 p̂01π

1
0 p̂00π

0
1 p̂01π

1
1 p̂00π

0
2 p̂01π

1
2 p̂00π

0
3 p̂01π

1
3

p̂10π
0
0 p̂11π

1
0 p̂10π

0
1 p̂11π

1
1 p̂10π

0
2 p̂11π

1
2 p̂10π

0
3 p̂11π

1
3

p̂00π
0
0 p̂01π

1
0 p̂00π

0
1 p̂01π

1
1 p̂00π

0
2 p̂01π

1
2 p̂00π

0
3 p̂01π

1
3

p̂10π
0
0 p̂11π

1
0 p̂10π

0
1 p̂11π

1
1 p̂10π

0
2 p̂11π
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(24)

Based on (24), we can easily calculate Ψ and obtain the
stationary distribution q⋆.

Define

Jk(θ) =
1

k

k∑
i=1

Tr (E[Pi]) ,

as the empirical approximation (via 100000 Monte Carlo
simulations) of J(θ) (See (20)) at every time instant k.

As a comparison, we propose another common transmis-
sion power schedule, i.e, the “greedy” method: ωk = rk,
which refers to using all the harvested energy rk to send
the data packet at each time step. Denote our proposed
sub-optimal schedule as θ1, and the “greedy” method as
θ2. Though both methods are easy to implement, the
simulation shows that our proposed sub-optimal method
θ1 obtains a better estimation performance. (See Fig. 3 ).
Note that the “greedy” method have a better performance
only in the first several time steps, which is because the
“greedy” method used all the harvested energy instead
of reserve some for the future. The more cautious energy
management policy (23) makes better use of the battery
capability.

Fig. 3. Estimation performance comparison of θ1 and θ2

6. CONCLUSION

We have studied remote estimation with a wireless sensor
in this paper. Instead of using a conventional battery-
powered sensor, a sensor equipped with an energy har-
vester which can obtain energy from the external environ-
ment was utilized. We formulated this problem into an
infinite time-horizon Markov decision process and provide
the optimal sensor transmission power control strategy. In
addition, a sub-optimal policy which is easier to implement
and requires less computations is also presented. Numer-
ical simulations illustrate that performance gains can be
obtained when compared to a greedy method.
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