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Abstract— We consider a remote state estimation problem,
where a sensor transmits local state estimates over an indepen-
dent and identically distributed (i.i.d.) packet dropping link to
a remote estimator. At each discrete time instant, the sensor can
decide whether to transmit, with each transmission incurring a
fixed energy cost. Performance is quantified via an optimization
problem that minimizes a convex combination of the expected
error covariance at the remote estimator and expected energy
usage. For transmission schedules dependent only on the error
covariance at the remote estimator, this work establishes that a
threshold policy (i.e. transmit if the error covariance exceeds a
certain threshold and don’t transmit otherwise) is optimal. This
provides a rigorous justification for the use of such threshold
policies in event triggered estimation. An extension of the result
to Markovian packet drops is also outlined.

I. INTRODUCTION

The concept of event triggered estimation of dynamical
systems, where sensor measurements or state estimates are
only sent to a remote estimator/controller when certain events
occur, has gained recent attention. By transmitting only at
events such as when the estimation quality at the remote
estimator has deteriorated sufficiently, potential savings in
energy usage can be achieved, which are important in net-
worked estimation and control applications. Event triggered
estimation has been studied in e.g. [1]–[6], while event
triggered control has also been studied in e.g. [7]–[10].

Many rules for deciding when to transmit have been
proposed in the literature, such as if the estimation error
[1], [2], [4], functions of the estimation error [5], [6], or
the error covariance [3], exceeds a given threshold. These
transmission policies often lead to energy savings, however
the motivation for using these rules are usually based on
heuristics. Furthermore, the literature on event triggered
estimation is mostly concerned with the idealized case where
all scheduled transmissions (when they occur) are received
at the remote estimator.

In this paper we allow for the more practical situation
where sensor transmissions experience random packet drops
[11]. We will focus on transmission schedules which decide
whether to transmit based only on knowledge of the error
covariance at the remote estimator. Our analysis shows
that a threshold policy, where the sensor transmits if the
error covariance exceeds a threshold and does not transmit
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Fig. 1. System model

otherwise, is optimal in the sense that it minimizes a convex
combination of the expected error covariance and expected
energy usage. This provides a theoretical justification for the
use of such threshold policies in event triggered estimation.

The paper is organized as follows. Section II presents
the system model, while the optimization problems for the
finite and infinite horizon cases are formulated in Section
III. The proof that threshold policies are optimal for these
optimization problems is given in Section IV. Analytical
expressions for the expected energy usage and expected error
covariance are derived in Section V. Some numerical results
are presented in Section VI. An extension of the main result
to Markovian packet drops is outlined in Section VII.

II. SYSTEM MODEL

A diagram of the system model is shown in Fig. 1.
Consider a discrete time process

xk+1 = Axk + wk

with A being unstable, where xk ∈ Rn and wk is i.i.d.
Gaussian with zero mean and covariance Q. There is a sensor
taking measurements

yk = Cxk + vk

where yk ∈ Rm and vk is i.i.d. Gaussian with zero mean
and covariance R. We assume that {wk} and {vk} are
mutually indepedent, the pair (A,C) is detectable and the
pair (A,Q1/2) is stabilizable.

The sensor has computational capability and can run
a local Kalman filter. The local state estimates and error
covariances

x̂sk|k−1 , E[xk|y0, . . . , yk−1]

x̂sk|k , E[xk|y0, . . . , yk]

P sk|k−1 , E[(xk − x̂sk|k−1)(xk − x̂sk|k−1)T |y0, . . . , yk−1]

P sk|k , E[(xk − x̂sk|k)(xk − x̂sk|k)T |y0, . . . , yk]
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can be computed using the local Kalman filter. Let P̄ s be
the steady state value of P sk|k−1 and P̄ the steady state value
of P sk|k as k →∞, which both exist due to the detectability
assumption. To simplify the presentation, we will assume
that the local Kalman filter is operating in steady state, so
that P sk|k−1 = P̄ s and P sk|k = P̄ ,∀k.

At time k, the remote estimator decides whether the sensor
should send its state estimates x̂sk|k. Let νk ∈ {0, 1} be a
decision variable such that νk = 1 if x̂sk|k is transmitted to
the remote estimator, and νk = 0 if there is no transmission.
We will assume that νk is communicated by the remote
estimator1 back to the sensor without error2 via a feedback
link, see Fig. 1. The decision νk is assumed to not depend
on the current value of xk (or functions of xk such as
measurements and state estimates). In particular, in this paper
we will assume that νk depends only on the error covariance
at the remote estimator, see Section III.

Sensor transmissions are over a packet dropping link. Let
γk be a random variable such that γk = 1 if the transmission
is successfully received by the remote estimator, and γk = 0
otherwise. We begin our analysis by assuming that {γk} is
i.i.d. Bernoulli with

P(γk = 1) = λ, λ ∈ (0, 1).

In Section VII we will outline how to treat correlated packet
dropouts. Define the information set available at the remote
estimator at time k as:

Ik , {ν0, . . . , νk, ν0γ0, . . . , νkγk, ν0γ0x̂s0|0, . . . , νkγkx̂
s
k|k}

Call the state estimates and error covariances at the remote
estimator as:

x̂k|k , E[xk|Ik]

Pk|k , E[(xk − x̂k|k)(xk − x̂k|k)T |Ik].

Under the above assumptions on νk and γk, we have (see
e.g. [12])

x̂k|k =

{
x̂sk|k , νkγk = 1

Ax̂k−1|k−1 , νkγk = 0

Pk|k =

{
P̄ , νkγk = 1

APk−1|k−1A
T +Q , νkγk = 0.

(1)

For our subsequent analysis, we introduce

f(X) , AXAT +Q (2)

and define the countably infinite set

S , {P̄ , f(P̄ ), f2(P̄ ), . . . }, (3)

where fn(.) denotes the n-fold composition of f(.). Then
it is clear from (1) that S consists of all possible values of
Pk|k at the remote estimator.

1Scheduling can also be done at the sensor if γk−1 is fed back from the
remote estimator to the sensor.

2This models the case where the remote estimator has more resources than
the sensor and can transmit on the feedback link with very low probability
of error.

III. OPTIMIZATION OF TRANSMISSION SCHEDULING

In this paper, we will consider transmission policies where
νk(Pk−1|k−1) depends only on Pk−1|k−1, similar to [3].
From the way in which the error covariances at the remote
estimator are updated, such policies will not depend on xk,
c.f. [5].

To take into account energy usage, we will assume a
fixed transmission energy cost of E for each scheduled
transmission (when νk = 1). We will consider the following
finite horizon (of horizon K) optimization problem:

min
{νk}

K∑
k=1

E[βtrPk|k + (1− β)νkE|P0|0, Ik, νk]

= min
{νk}

K∑
k=1

E
[
βtrPk|k + (1− β)νkE|Pk−1|k−1, νk

] (4)

for some design parameter β ∈ (0, 1). Problem (4) min-
imizes a convex combination of the trace of the expected
error covariance at the remote estimator and the expected
transmission energy. We note that

E[trPk|k|Pk−1|k−1, νk] = νk
[
λtrP̄ + (1− λ)trf(Pk−1|k−1)

]
+ (1− νk)trf(Pk−1|k−1)

= νkλtrP̄ + (1− νkλ)trf(Pk−1|k−1)
(5)

where f(.) is defined in (2). Problem (4) can thus be solved
using the dynamic programming algorithm:

JK+1(PK|K) = 0

Jk(Pk−1|k−1) = min
νk∈{0,1}

{
β
[
νkλtrP̄+(1−νkλ)trf(Pk−1|k−1)

]
+ (1− β)νkE + E[Jk+1(Pk|k)|Pk−1|k−1, νk]

}
= min
νk∈{0,1}

{
β
[
νkλtrP̄+(1−νkλ)trf(Pk−1|k−1)

]
+ (1− β)νkE + νkλJk+1(P̄ )

+ (1−νkλ)Jk+1(f(Pk−1|k−1))
}
, k = K, . . . , 1.

Note that the finite horizon problem (4) can be solved exactly
via explicit enumeration, since for a given initial P0|0, the
number of possible values for Pk|k, k = 1, . . . ,K, is finite.

We will also consider the infinite horizon problem:

min
{νk}

lim sup
K→∞

1

K

K∑
k=1

E
[
βtrPk|k + (1− β)νkE|Pk−1|k−1, νk

]
(6)

which is a Markov decision process (MDP) based stochastic
control problem with νk as the “action” and Pk−1|k−1 as the
“state” at time k. The Bellman equation for problem (6) is

ρ+ h(P ) = min
ν∈{0,1}

{
β
[
νλtrP̄ + (1− νλ)trf(P )

]
+ (1− β)νE + νλh(P̄ ) + (1− νλ)h(f(P ))

} (7)

where ρ is the optimal average cost per stage and h(.) is
the differential cost or relative value function [13]. For the
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infinite horizon problem (6), existence of solutions can be
ensured via the following result:

Lemma 3.1: Let λ > 1 − 1
||A||2 , where ||A|| denotes the

spectral norm of A. Then there exists a constant ρ and a
function h(.) that satisfies the Bellman equation (7).

Proof: See Appendix.
Remark 3.2: The condition λ > 1− 1

||A||2 in Lemma 3.1
is similar to the stability condition of [11].

As a consequence of Lemma 3.1, Problem (6) can be
solved using methods such as the relative value iteration
algorithm [13]. In computations, since the state space is
(countably) infinite, one first truncates the state space to

SN , {P̄ , f(P̄ ), f2(P̄ ), . . . , fN−1(P̄ )}, for some N ∈ N,

and then uses the relative value iteration algorithm to solve
the resulting finite state space MDP problem, as follows:
For a given N , define for t = 0, 1, 2, . . . the value functions
Vt(.) : SN → R by:

Vt+1(P ) = min
ν∈{0,1}

{
β[νλtrP̄ + (1− νλ)trf(P )]

+ (1− β)νE + νλVt(P̄ ) + (1− νλ)Vt(f(P ))
}
.

Let Pf ∈ SN be fixed. The relative value iteration algorithm
is given by:

ht+1(P ) , Vt+1(P )− Vt+1(Pf )

= min
ν∈{0,1}

{
β[νλtrP̄ + (1− νλ)trf(P )]

+ (1− β)νE + νλht(P̄ ) + (1− νλ)ht(f(P ))
}

− min
νf∈{0,1}

{
β[νfλtrP̄ + (1− νfλ)trf(P )]

+ (1− β)νfE + νfλht(P̄ ) + (1− νfλ)ht(f(P ))
}
.

(8)

As t → ∞, we have ht(P ) → h(P ),∀P ∈ SN , with h(.)
satisfying the Bellman equation (7). In practice, the algo-
rithm (8) terminates once the differences ht+1(P ) − ht(P )
become smaller than a desired level of accuracy ε. One then
compares the solutions obtained as N increases to determine
an appropriate value of N for trunctation of the state space
S, see Chapter 8 of [14] for further details.

IV. OPTIMALITY OF THRESHOLD POLICIES

Solutions to the optimization problems (4) and (6) via
dynamic programming or solving MDPs do not provide
much insight into the form of the optimal solution. In this
subsection we will prove that threshold policies (i.e. transmit
if and only if the error covariance exceeds some value) are
optimal for problems (4) and (6).

A. Preliminaries

We first develop some ordering properties which are
needed in the proof of the main result in Section IV-B. For
symmetric matrices X and Y , we say that X ≤ Y if Y −X is
positive semi-definite. In general, “ ≤ ” only gives a partial
ordering on the set of symmetric matrices. However, when
restricted to the set S defined in (3), we have a total ordering,

i.e. for any two elements X,Y ∈ S, one has either X ≤ Y
or Y ≤ X .

Lemma 4.1: There is a total ordering on the elements of
S given by

P̄ ≤ f(P̄ ) ≤ f2(P̄ ) ≤ ...
Proof: First note that

f(X) ≤ f(Y ) for X ≤ Y (9)

which can be easily shown from the definition of f(.) in (2).
We proceed by induction. We have that f(P̄ ) ≥ P̄ from

e.g. [12]. Now assume that fn(P̄ ) ≥ fn−1(P̄ ). Then

fn+1(P̄ ) = f(fn(P̄ )) ≥ f(fn−1(P̄ )) = fn(P̄ )

where the inequality comes from (9) and the induction
hypothesis. Hence by induction

P̄ ≤ f(P̄ ) ≤ f2(P̄ ) ≤ ...

With Lemma 4.1, we next define on S × {0, 1} the
following partial ordering:

(P1, ν1) ≤ (P2, ν2) if P1 ≤ P2 and ν1 ≤ ν2 (10)

where P1, P2 ∈ S, ν1, ν2 ∈ {0, 1}. Also define the join
operation “ ∨ ” on S × {0, 1} (see [15], [16]) by

(P1, ν1) ∨ (P2, ν2) , (max(P1, P2),max(ν1, ν2))

and the meet operation “ ∧ ” on S × {0, 1} by

(P2, ν2) ∧ (P2, ν2) , (min(P1, P2),min(ν1, ν2)).

Clearly, S × {0, 1} contains the join and meet of each pair
of its elements, thus S × {0, 1} is a lattice with respect to
the partial order (10).

Consider functions g(·, ·) defined on the lattice X =
S × {0, 1} with partial order (10). For lattices which can
be written as the product of two chains (or totally ordered
sets), we have (see [15]):

Definition 1: A real-valued function g(·, ·) defined on the
lattice S × {0, 1} is submodular on S × {0, 1} if

g(P1, ν1) + g(P2, ν2) ≤ g(P1, ν2) + g(P2, ν1)

for all P1, P2 ∈ S and ν1, ν2 ∈ {0, 1}, with P1 ≥ P2 and
ν1 ≥ ν2. �

B. Proof of optimality of threshold policies

We divide the proof into two stages. First, we have the
following:

Lemma 4.2: Let the functions Jk(·) : S → R be defined
recursively as:

JK+1(P ) = 0

Jk(P ) = min
ν∈{0,1}

{
β
[
νλtrP̄ + (1− νλ)trf(P )

]
+ (1−β)νE

+ νλJk+1(P̄ ) + (1−νλ)Jk+1(f(P ))
}
, k = K, . . . , 1.
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Then the functions Lk(·, ·) : S × {0, 1} → R, k = 1, . . . ,K
given by

Lk(P, ν) , β
[
νλtrP̄ + (1− νλ)trf(P )

]
+ (1− β)νE

+ νλJk+1(P̄ ) + (1− νλ)Jk+1(f(P ))

are submodular on S × {0, 1}.
Proof: Define

F (P, ν) , βtr
[
νλP̄ + (1− νλ)f(P )

]
+ (1− β)νE.

By Definition 1, we need to show that for P1 ≥ P2, ν1 ≥ ν2,
we have:

F (P1, ν1) + F (P2, ν2) ≤ F (P1, ν2) + F (P2, ν1)

⇔tr
[
ν1λP̄+(1−ν1λ)f(P1)

]
+(1−β)ν1E

+tr
[
ν2λP̄+(1−ν2λ)f(P2)

]
+(1−β)ν2E

≤ tr
[
ν2λP̄+(1−ν2λ)f(P1)

]
+(1−β)ν2E

+tr
[
ν1λP̄+(1−ν1λ)f(P2)

]
+(1−β)ν1E

⇔tr[(1−ν1λ)(f(P1)−f(P2))]≤ tr[(1−ν2λ)(f(P1)−f(P2))] .

The latter expression is true by (9) since P1 ≥ P2 and ν1 ≥
ν2. Hence F (·, ·) is submodular on S × {0, 1}.

Now define

Gk(P, ν) , νλJk+1(P̄ ) + (1− νλ)Jk+1(f(P )).

To prove that Gk(·, ·) is submodular on S ×{0, 1}, we need
to show that for P1 ≥ P2, ν1 ≥ ν2,

Gk(P1, ν1) +Gk(P2, ν2) ≤ Gk(P1, ν2) +Gk(P2, ν1)

⇔ν1λJk+1(P̄ ) + (1− ν1λ)Jk+1(f(P1))

+ ν2λJk+1(P̄ ) + (1− ν2λ)Jk+1(f(P2))

≤ ν2λJk+1(P̄ ) + (1− ν2λ)Jk+1(f(P1))

+ ν1λJk+1(P̄ ) + (1− ν1λ)Jk+1(f(P2))

⇔(1− ν1λ) [Jk+1(f(P1))− Jk+1(f(P2))]

≤ (1− ν2λ) [Jk+1(f(P1))− Jk+1(f(P2))] .

By induction, one can show that Jk(P ) is a non-decreasing
function of P . Hence the inequality

(1− ν1λ) [Jk+1(f(P1))−Jk+1(f(P2))]

≤ (1− ν2λ) [Jk+1(f(P1))−Jk+1(f(P2))]

is true when P1 ≥ P2 and ν1 ≥ ν2, which means that Gk(., .)
is submodular on S × {0, 1}.

Since the sum of two submodular functions is submodular,

Lk(P, ν) = F (P, ν) +Gk(P, ν)

is submodular.
We now give the main technical result of this section:
Theorem 4.3: (i) The optimal solution to the finite horizon

problem (4) is of the form:

ν∗k =

{
0 , Pk−1|k−1 < P th

k−1|k−1
1 , Pk−1|k−1 ≥ P th

k−1|k−1

for some thresholds P th
k−1|k−1 ∈ S, k = 1, . . . ,K, where S

is given by (3).

(ii) The optimal solution to the infinite horizon problem (6)
is of the form:

ν∗k =

{
0 , Pk−1|k−1 < P th

1 , Pk−1|k−1 ≥ P th (11)

for some constant threshold P th ∈ S.
Proof: (i) Lemma 4.2 implies (see [15]) that

arg min
νk∈{0,1}

Lk(Pk−1|k−1, νk)

is non-decreasing in Pk−1|k−1. Since νk only takes on one
of the two values 0 and 1, this then means that for each
k ∈ {1, . . . ,K} there exists some threshold P th

k−1|k−1 ∈ S
such that ν∗k = 0 for Pk−1|k−1 < P th

k−1|k−1, and ν∗k = 1

for Pk−1|k−1 ≥ P th
k−1|k−1. This proves the optimality of

threshold policies for the finite horizon problem (4).
(ii) For the infinite horizon problem (6), recall the relative
value iteration algorithm (8). By similar arguments as in the
proof of Lemma 4.2, one can show that the function

β[νλtrP̄ + (1− νλ)trf(P )] + (1− β)νE + νλht(P̄ )

+ (1−νλ)ht(f(P ))− min
νf∈{0,1}

{
β[νfλtrP̄+(1−νfλ)trf(Pf )]

+ (1− β)νfE + νfλht(P̄ ) + (1− νfλ)ht(f(Pf ))
}

is submodular, and hence a threshold policy also holds for
each t. Since ht(P )→ h(P ) as t→∞, these thresholds also
converge. Thus the optimal policy in the infinite horizon case
is ν∗k = 0 for Pk−1|k−1 < P th, and ν∗k = 1 for Pk−1|k−1 ≥
P th, for some constant threshold P th ∈ S.

Remark 4.4: In Theorem 4.3, we could have P th
k−1|k−1 or

P th equal to P̄ , in which case ν∗k = 1,∀Pk−1|k−1 ∈ S.
Remark 4.5: Knowing that the optimal policy is a thresh-

old policy allows for significant reductions in the amount of
computation required to solve problems (4) and (6), see [17]
for details.

V. ANALYTICAL CHARACTERIZATION OF PERFORMANCE

In the previous subsection we showed that the optimal
policy is a threshold policy on the error covariance. This also
allows us to derive analytical expressions for the expected
energy usage and expected error covariance. We will consider
the infinite horizon case here.

Let t ∈ N be such that f t(P̄ ) = P th ∈ S, see (11).
Note that t will depend on the value of β chosen in problem
(6). Then the evolution of the error covariance at the remote
estimator can be modelled as the Markov chain shown in
Fig. 2, where state i of the Markov chain corresponds to the
value f i(P̄ ), i = 0, 1, 2, . . . , with f0(P̄ ) , P̄ .

The transition probability matrix P for the (infinite)
Markov chain can be written as:

P=



0 1 0 . . . . . . . . .
0 0 1 0 . . . . . .
...

. . . . . .
0 . . . . . . 0 1 0 . . . . . .
λ 0 . . . 0 1− λ 0 . . . . . .
λ 0 . . . 0 1− λ 0 . . .
...

...
. . .


.
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Fig. 2. Markov chain for threshold policy

For λ ∈ (0, 1), one can easily verify that the Markov chain
is irreducible, aperiodic, and with all states being positive
recurrent. Then the stationary distribution

π =
[
π0 π1 π2 . . . πt πt+1 πt+2 . . .

]
where πj is the stationary probability of the Markov chain
being in state j, exists and can be computed using the relation
π = πP. We find after some calculations that πj = π0, j =
1, . . . , t, and πj = (1−λ)j−tπ0, j = t+ 1, t+ 2, . . . , and so

π0 =
1

t+ 1/λ
=

λ

λt+ 1
.

Hence

πj =

{
λ

λt+1 , j = 0, . . . , t
(1−λ)j−tλ
λt+1 , j = t+ 1, t+ 2, . . .

We can now derive analytical expressions for the ex-
pected energy usage and expected error covariance. For
the expected energy usage, since the sensor transmits only
when the Markov chain is in states t, t + 1, . . . , an energy
amount of E is used in reaching the states corresponding to
P̄ , f t+1(P̄ ), f t+2(P̄ ), . . . . Hence

E[energy] = E[π0 + πt+1 + πt+2 + . . . ]

= Eπ0[1 + 1− λ+ (1− λ)2 + . . . ]

=
Eπ0
λ

=
E

λt+ 1
.

(12)

For the expected error covariance, we have

E[trPk|k] = π0tr(P̄ )+π1tr(f(P̄ ))+π2tr(f2(P̄ ))+ . . . (13)

which can be computed numerically. Under the assumption
that λ > 1 − 1

||A||2 , E[trPk|k] will be finite, by a similar
argument as that used in the proof of Lemma 3.1.

VI. NUMERICAL RESULTS

We consider an example with parameters

A =

[
1.1 0.2
0.2 0.8

]
, C =

[
1 1

]
, Q = I, R = 1.

One can easily compute that

P̄ =

[
1.3762 −0.9014
−0.9014 1.1867

]
.

The packet reception probability is chosen to be λ = 0.8,
and the transmission energy cost E = 1.

We first consider the finite horizon problem, with K = 5
and β = 0.05. Fig. 3 and Fig. 4 plots respectively the optimal

ν∗1 and ν∗2 (i.e. k = 1 and k = 2) for different values of
fn(P̄ ), which we recall represents the different values that
the error covariance can take. In agreement with Theorem
4.3, we see a threshold behaviour in the optimal ν∗k . In this
example we have P th

0|0 = f3(P̄ ) and P th
1|1 = f2(P̄ ), and we

see that in general the thresholds are different for different
values of k.

0 1 2 3 4 5 6 7 8 9

0

1

n

ν 1*

Fig. 3. Finite horizon, K = 5. ν∗1 for different values of fn(P̄ ).

0 1 2 3 4 5 6 7 8 9

0

1

n

ν 1*
Fig. 4. Finite horizon, K = 5. ν∗2 for different values of fn(P̄ ).

We next consider the infinite horizon problem, with β =
0.05. Fig. 5 plots the optimal ν∗k for different values of
fn(P̄ ), where we again see a threshold behaviour, with
P th = f3(P̄ ). In Fig. 6 we plot the values of the thresholds

0 1 2 3 4 5 6 7 8 9

0

1

n

ν k*

Fig. 5. Infinite horizon. ν∗k for different values of fn(P̄ ).

for different values of β. As β increases, the relative im-
portance of minimizing the error covariance (vs the energy
usage) is increased, thus one should transmit more often,
leading to decreasing values of the thresholds. Finally, in
Fig. 7 we plot the trace of the expected error covariance
vs the expected energy, obtained by solving problem (6) for
different values of β, with the values computed using the
expressions (12) and (13). Note that the plot is discrete as
t ∈ N in (12) and (13), see also Fig. 6.

VII. MARKOVIAN PACKET DROPS

So far in this paper we have considered i.i.d. packet drops.
In this section we briefly outline how our results extend to the
case where the packet loss process {γk} is a Markov chain,
with parameters p , P(γk = 0|γk−1 = 1) and q , P(γk =
1|γk−1 = 0). The probabilities p and q are also known
as, respectively, the failure and recovery rates [18]. We
shall consider transmission decisions νk(Pk−1|k−1, γk−1)
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Fig. 6. Infinite horizon. Threshold P th vs β, with f t(P̄ ) = P th.
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Fig. 7. Infinite horizon. Expected error covariance vs expected energy.

dependent only on Pk−1|k−1 and γk−1, in which case the
remote estimator equations will still have the form (1).

The finite horizon problem is:

min
{νk}

K∑
k=1

E
[
βtrPk|k + (1− β)νkE|Pk−1|k−1, γk−1, νk

]
(14)

for some β ∈ (0, 1), where now (c.f. (5))

E[trPk|k|Pk−1|k−1, γk−1, νk]

= νk
(
γk−1(1− p) + (1− γk−1)q

)
trP̄

+
(
1− νk(γk−1(1− p) + (1− γk−1)q)

)
trf(Pk−1|k−1).

The infinite horizon problem is:

min
{νk}

lim sup
K→∞

1

K

K∑
k=1

E
[
βtrPk|k+(1−β)νkE|Pk−1|k−1, γk−1, νk

]
(15)

The following results can be derived:
Lemma 7.1: Let the functions Jk(·, ·) : S × {0, 1} → R

be defined recursively for k = 1, . . . ,K as:

JK+1(P, γ) = 0

Jk(P, γ) = min
ν∈{0,1}

{
β
[
ν(γ(1− p) + (1− γ)q)trP̄

+ (1− ν(γ(1− p) + (1− γ)q))trf(P )
]

+ (1− β)νE + ν(γ(1− p) + (1− γ)q)Jk+1(P̄ , 1)

+
(
1− ν(γ(1− p) + (1− γ)q)

)
Jk+1(f(P ), 0)

}
.

Then the functions L1
k(·, ·) : S × {0, 1} → R, k = 1, . . . ,K

and L0
k(·, ·) : S × {0, 1} → R, k = 1, . . . ,K given by

L1
k(P, ν) , β

[
ν(1−p)trP̄+(1−ν(1−p))trf(P )

]
+ (1− β)νE + ν(1− p)Jk+1(P̄ , 1)

+ (1− ν(1− p))Jk+1(f(P ), 0)

L0
k(P, ν) , β

[
νqtrP̄ + (1− νq)tr(f(P ))

]
+ (1− β)νE + νqJk+1(P̄ , 1)

+ (1− νq)Jk+1(f(P ), 0)

are submodular on S × {0, 1}.
Proof: Define

F 1(P, ν),β[ν(1−p)trP̄+(1−ν(1−p))trf(P )]+(1−β)νE

G1
k(P, ν),ν(1−p)Jk+1(P̄ , 1)+(1−ν(1− p))Jk+1(f(P ), 0).

Using similar arguments as in the proof of Lemma 4.2, we
can show that F 1(., .) and G1

k(., .) are submodular on S ×
{0, 1}, which then implies that

L1
k(P, ν) = F 1(P, ν) +G1

k(P, ν)

is submodular. The submodularity of L0
k(., .) can be shown

in the same way.
Lemma 7.1 implies that in the finite horizon problem (14),

for each k there exist two (in general different) thresholds
P th,1k−1|k−1 and P th,0k−1|k−1 ∈ S, k = 1, . . . ,K, such that when
γk−1 = 1 then ν∗k = 0 if and only if Pk−1|k−1 < P th,1k−1|k−1;
and when γk−1 = 0 then ν∗k = 0 if and only if Pk−1|k−1 <
P th,0k−1|k−1.

For the infinite horizon problem (15), similar to the proof
of Theorem 4.3 (ii), the optimal policy will be such that when
γk−1 = 1 then ν∗k = 0 if and only if Pk−1|k−1 < P th,1; and
when γk−1 = 0 then ν∗k = 0 if and only if Pk−1|k−1 < P th,0,
for some constant thresholds P th,1 and P th,0 ∈ S.

VIII. CONCLUSION

This paper has shown that in event triggered estimation
with packet drops, a threshold policy is optimal in the sense
that it will minimize a convex combination of the expected
error covariance and expected energy usage. Future work
includes the study of triggering policies with imperfect feed-
back acknowledgements, and deriving structural properties
of the optimal scheduling policy for systems with multiple
sensors.

APPENDIX

Proof of Lemma 3.1
We will verify the conditions (CAV*1) and (CAV*2) given

in Corollary 7.5.10 of [14], which guarantee the existence of
solutions to the Bellman equation for average cost problems
with countably infinite state space. Condition (CAV*1) says
that there exists a standard policy d such that the recurrent
class Rd of the Markov chain induced by d is equal to the
whole state space S, where d is a standard policy if there
exists a state z such that the expected first passage time τi,z
from i to z satisfies τi,z < ∞,∀i ∈ S, and the expected
first passage cost ci,z from i to z satisfies ci,z <∞,∀i ∈ S.
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Condition (CAV*2) says that given U > 0, the set DU =
{i ∈ S|c(i, a) ≤ U for some a} is finite, where c(i, a) is the
cost at each stage when in state i and using action a.

To verify (CAV*1), let d be the policy that always trans-
mits, i.e. νk = 1,∀k. Let state i of the induced Markov chain
correspond to the value f i(P̄ ), i = 0, 1, 2, . . . , where we
define f0(P̄ ) , P̄ . The state diagram of the induced Markov
chain is given in Fig 8, with state space S = {0, 1, 2, . . . }.

Fig. 8. Markov chain for policy of always transmitting

Let z = 0. Then the expected first passage time from state
i to state z = 0 is

τi,z = λ+ 2(1− λ)λ+ 3(1− λ)2λ+ · · · = 1

λ
<∞.

The expected cost of a first passage from state i to state
z = 0 is

ci,z = βtrf i(P̄ ) + (1− β)E + (1− λ)c(i+1)0

= βtrf i(P̄ ) + (1− β)E + (1− λ)
(
βtrf i+1(P̄ )

+ (1−β)E
)
+(1−λ)2

(
βtrf i+2(P̄ )+(1−β)E

)
+ . . .

= β

∞∑
n=0

(1− λ)ntrf i+n(P̄ ) +
(1− β)E

λ
.

(16)

We have

(1− λ)n+1trf i+n+1(P̄ )

(1− λ)ntrf i+n(P̄ )
= (1− λ)

tr(Af i+n(P̄ )AT +Q)

trf i+n(P̄ )

≤ (1− λ)

(
||A||2 +

trQ
trf i+n(P̄ )

)
where the inequality uses Fact 8.12.28 of [19]. Since A is
unstable, trf i+n(P̄ )→∞ as n→∞, and so

lim
n→∞

(1− λ)n+1trf i+n+1(P̄ )

(1− λ)ntrf i+n(P̄ )
≤ (1− λ)||A||2.

Then by the ratio test, the condition (1 − λ)||A||2 < 1, or
equivalently λ > 1− 1

||A||2 , is sufficient for the infinite series
in the last line of (16) to converge. Hence d is a standard
policy. Furthermore, one can see from Fig. 8 that the positive
recurrent class Rd of the induced Markov chain is equal to
S, which verifies (CAV*1).

Since the cost per stage c(i, a) corresponds to βtrPk|k +
(1− β)νkE, condition (CAV*2) can be easily verified.
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