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Abstract—We consider remote state estimation of a scalar
stationary linear Gauss-Markov process observed via noisy mea-
surements obtained by two sensors. The sensors can construct a
causal linear function of their measurements, which are quantized
and transmitted to a decoder (or fusion centre (FC)) over
channels which are prone to packet erasures. We design linear
encoding and decoding strategies for estimating the state of the
linear system that allow improved estimation performance in
the presence of packet erasures and quantization errors. To this
end, we construct and compare various distributed encoding and
decoding methods without any feedback from the FC regarding
the channel erasures. We also design various decentralized
benchmark methods that either assume perfect feedback from
the FC or in addition co-location of the two sensors resulting in
a centralized scheme with diversity. These benchmark methods
provide various lower bounds for the distributed encoding-
decoding schemes designed without feedback. Numerical results
indicate i) that optimal decentralized design of the encoders and
the decoder in the absence of feedback can provide a remote state
estimation performance that is comparable to those achieved
by the lower bounds (with feedback) particularly when the
sensors are identical and their channels are symmetric, and (ii)
a little feedback from the decoder can improve the performance
considerably when the channels are asymmetric (i.e. the packet
erasure probabilities are unequal).

I. INTRODUCTION

Rapid advances in sensing and wireless technologies have
led to a significant interest in understanding and development
of wireless sensor networks (WSNs). Though easier to realize,
wireless communication systems come at the price of lower
channel capacity which results in higher quantization noise,
packet loss and delay. Therefore, such communication con-
straints need to be considered in the design of WSNs. In the
last decade or so, remote sensing and estimation in WSNs have
witnessed significant progress in dynamical systems which
evolve over time (see e..g., [1]–[3] and references therein).

In this work, we are interested in exploring the problem
of remotely estimating the state of a stable stochastic scalar
dynamic linear time-invariant (LTI) system (equivalently, a
stationary Gauss-Markov process) that is being observed in
the presence of noise by two sensors. From each terminal,
the noisy measurement is encoded (pre-processed), quantized
and then transmitted over a communication channel subject
to packet erasures, to a remote node (or FC) for decoding
and estimation purposes. In such system, we aim to design
strategies for encoding the measurements of the sensors and
decoding the state of the LTI system that allow improved
estimation performance in the presence of packet erasures,
quantization errors, process and measurement noises.

Assuming Gaussian communication channels, linear encod-
ing/decoding strategies are shown to be optimal with respect
to minimizing a quadratic cost function in a single-sensor
LTI system with Gaussian noise [4]. The optimality, however,
cannot be generalized to multi-sensor LTI systems. This is
shown, for example, in [5] via a counter example, and in [6],
where the authors proposed a non-linear encoding strategy in
a multi-sensor LTI system, equipped with a controller, which
outperforms the best linear scheme in mean-square sense.
Linear schemes, although not optimal in multi-sensor setups,
are easier to analyze. Moreover, finding the optimal non-linear
policy is difficult in general. Hence, in this work, we focus
on exploring linear encoding/decoding strategies that can be
implemented with reasonable complexity.

Under the model of channel erasures in a multi-sensor
system (but without quantization noise), the authors in [7]
obtain necessary and sufficient conditions for stabilization
of an LTI system in mean-square sense by identifying an
encoding algorithm, where each sensor has access to channel
erasure information of all sensors. In [8], the authors proposed
a linear encoding/decoding scheme for a single-sensor system
setup when channel erasures are considered along with quan-
tization noise. An important result of [8] is that the optimal
strategy among all possible linear encoders corresponds to
the transmission of the Kalman filter innovations under the
assumption that the encoder has perfect knowledge of the
channel. In this work, we generalize the result of [8] by
considering two sensors and correspondingly two transmission
links to the receiver. The results out of this generalization, as
will be shown later, are non-trivial. Note that although we
consider only two sensors, the results derived here can be
easily generalized to any number of sensors.

In particular, we propose two benchmark methods where
the first (Benchmark I) is based on the fact that a perfect
feedback link is available from the decoder to the encoders,
and in the second benchmark method (Benchmark II), besides
the perfect receiver feedback, we assume that sensors are co-
located such that encoders can be designed in a centralized
manner. Due to resource constraints, channel feedback may not
be always available, and sensors are generally not co-located
in distributed remote estimation applications. Therefore we
also propose distributed encoding/decoding schemes, where
the encoders are not aware of the receiver state estimate. We
propose a soft-innovation forwarding (SIF) scheme where each
encoder transmits a convex combination of transmitting the
state estimate at the encoder (state-forwarding (SF)) and the
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difference between encoder state estimate and the predicted
state estimate at the receiver (innovation forwarding (IF)).
Although the SIF strategy has a higher design complexity
compared to SF or IF, its performance is superior to the
latter methods for low erasure probabilities. Our numerical
simulations also show that the encoding-decoding designs
with receiver feedback considerably improve the performance
compared to the case where the feedback is not available.

The rest of the paper is organized as follows. Section II
presents the system description and problem formulation. Sec-
tion III presents the encoding/decoding schemes with perfect
receiver feedback, while Section IV presents the soft innova-
tion forwarding scheme with no receiver feedback. Section V
presents numerical results, followed by concluding remarks in
Section VI.

II. SYSTEM DESCRIPTION AND PRELIMINARIES

We study the system model depicted in Figure 1. We
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Fig. 1: Dynamical system model for decentralized transmission and
estimation with two terminals. Potential feedback links are specified
by dashed arrow lines.

consider the problem of remotely estimating the state of a
scalar linear stochastic dynamical system in a two-terminal
setup (comprised of two sensors, two encoders, two quantizers
and two communication channels). System and Measurement
equations are expressed as follows1

xt+1 = axt + wt, y
i
t = cixt + vit , i ∈ {1, 2}, (1)

where the process noise wt ∼ N (0, (σw)2) and the mea-
surement noise vit ∼ N (0, (σi

v)
2), i ∈ {1, 2} are white,

mutually uncorrelated and uncorrelated with the initial state
x0 ∼ N (x0, (σ0)2). As shown in Figure 1, the measurements
yit are pre-processed by causal linear encoders αi

t(·) into an
analog signal sit before transmission. The signals are then
quantized, using quantizers Qi

t(·), into code-points qit from
finite alphabets, which are then transmitted over digital noisy
channels. The channels are modeled as packet erasure channels
(PECs), where their outputs are either exactly received or
erased. Therefore, channel outputs are zit = γi

tq
i
t, where

γi
t ∈ {0, 1} ≡ {erased, received}, and Pr(γi

t = 0) = ϵi.

1We denote time indexes by subscripts, and indexes associated with a
terminal are denoted by superscripts. In order to remove ambiguity, squared
values are demonstrated by parentheses; for example, (g2

t
)2 means the squared

value of gt associated with terminal 2, while g1
t

means the value of gt

associated with terminal 1.

At the receiver side, the linear decoder, characterized by the
function βi

t(·), uses the noisy received signals zit and provides
the estimate of the state at time instant t.

Throughout the paper, we consider that the dynamical plant
is stable, i.e., |a| < 1, and is operating in open loop. This
assumption is reasonable in many applications, such as remote
sensing and estimation, where the dynamical system to be con-
trolled is already stable, but the existing communication and
feedback performance can be substantially improved. Without
loss of generality, we can assume that the scaling coefficient
ci = 1. Further, we assume that the quantizer outputs qit are
available to their corresponding sensors. Motivated by the fact
that the quantization noise incurred by using a uniform scalar
quantizer can be modeled as an additive Gaussian random
variable with zero mean and known variance under a high rate
quantization assumption (see [8]–[10]), we have qit = sit+ni

t,
where ni

t ∼ N
(
0, 1

ΛiE[(sit)
2]
)
. Here, Λi is the signal-to-

quantization noise ratio (SQNR) of the quantizer. Later, in
Section V, we show how to calculate Λi based on a given
quantization rate.

We also assume that there is potentially a delay-free error-
free channel feedback from the receiver to the encoders. Note
that this assumption is an idealized and may not always be
practical. However, the performance provided by schemes
based on such feedback, which is the focus of Section III,
serves as a benchmark against the methods (focus of Sec-
tion IV) in which the feedback is not available.

Define the measurement sets Yi
t , quantizer output sets Qi

t,
and received signal set Rt, respectively, as
Yi
t ! {yi0, y

i
1, . . . , y

i
t} , Qi

t ! {qi0, q
i
1, . . . , q

i
t}, i ∈ {1, 2},

Rt ! {z10 , . . . , z
1
t , z

2
0 , . . . , z

2
t , γ

1
0 , . . . , γ

1
t , γ

2
0 , . . . , γ

2
t }.

(2)
We aim to design the linear encoders αi

t(·) and the linear
decoder βt(·) such that the estimation prediction error variance
at the decoder, i.e.,

prxt+1|t = E[(xt+1 − x̂rx
t+1|t)

2|Rt] (3)

is minimized. In (3), the expectation is taken over all sources
of randomness in the system including process, measurement
and quantization noises as well as the erasure process {γi

t}.
x̂rx
t+1|t denotes the decoder’s predicted state estimate given Rt.
We also define the state estimator at the transmitter side as

x̂txi

t|t ! E[xt|Yi
t ]. Using Kalman filter analysis [11, Chapter

13], it follows that

x̂txi

t|t = ax̂txi

t−1|t−1 + k̂it(y
i
t − ax̂txi

t−1|t−1),

x̂txi

t+1|t = ax̂txi

t|t

(4)

where k̂it is the Kalman filter gain to be optimized. Now, let

us define the estimation error at encoder i as x̃txi

t|t = xt− x̂txi

t|t

and the error variance as ptx
i

t|t ! E[(x̃txi

t|t )
2], then based on the

fact that the system is asymptotically stable, the estimation

error variance has the property that limt→∞ ptx
i

t|t = ptx
i

and

limt→∞ k̂it = k̂i where ptx
i

is the solution of the following
quadratic equation [8]

ptx
i

= (σi
v)

2 (a)2ptx
i

+ (σw)2

(a)2ptxi + (σw)2 + (σi
v)

2
, (5)
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and the (asymptotic) optimal Kalman filter gain is given by

k̂i =
(a)2ptx

i

+ (σw)2

(a)2ptxi + (σw)2 + (σi
v)

2
. (6)

The above equations (5) and (6) are later used in the design
of encoding schemes for the case with no receiver feedback.

III. IDEALIZED DESIGN METHODS:
PERFECT CHANNEL FEEDBACK & A CENTRALIZED

SCHEME

In this section, we investigate two benchmark methods,
where in the first one (Benchmark I) perfect channel feedback
is available to the encoders where the decoder is able to send
its predicted estimate to both encoders, and in the second one
(Benchmark II), along with the channel feedback, the encoders
have access to each other’s measurements (centralized sce-
nario). Note that with a slight abuse of notation, we denote the
transmitter Kalman gains by k̂i although we actually optimize
over them when there is perfect feedback, instead of using (6).
This allows for greater flexibility in this scenario.

A. Benchmark Method I

Inspired by the results of [8, Theorem 1] for a single-
sensor scenario, we propose an encoding scheme with perfect
channel feedback where the decoder sends its predicted state
estimate to both encoders. The linear encoding scheme at the
sensors is shown in (7), which provides a lower-bound on the
estimation error variance for the linear system (1) achievable
under any linear encoding scheme when channel feedback is
not available. The proposed linear encoding scheme is based
on transmitting the innovation signal

sit = αi
t(Y

i
t ,Rt−1) = x̂txi

t|t − x̂rx
t|t−1 = E[xt|Y

i
t ]− E[xt|Rt−1],

(7)
where, based on the perfect knowledge of the receiver pre-
dicted estimate x̂rx

t|t−1, we can obtain the state estimates at the
encoder as

x̂txi

t|t = x̂rx
t|t−1 + k̂i(yit − x̂rx

t|t−1) = x̂rx
t|t−1 + k̂i(x̃rx

t|t−1 + vit),
(8)

where k̂i is the Kalman filter gain to be optimized, and
x̃rx
t|t−1 ! xt− x̂rx

t|t−1 is the receiver prediction error. Note that
(8) is obtained by replacing the sensors’ individual predicted
estimates in (4) by the receiver predicted estimate (which
contains information (albeit lossy) from both sensors). Later
in Remark 2, we explain a variation of (8) where the sensors’
own predicted estimates can be used in updating their filtered
estimates.

The Kalman filter at the decoder is given by

x̂rx
t+1|t = ax̂rx

t|t−1 + a[k1 k2]

[
γ1
t (x̂

tx1

t|t − x̂rx
t|t−1 + n1

t )

γ2
t (x̂

tx2

t|t − x̂rx
t|t−1 + n2

t )

]

(9)

where ki are the decoder’s Kalman filter gains to be optimized.
Subtracting from xt+1 = axt + wt, it follows that

x̃rx

t+1|t = a

(

1−
2∑

i=1

kik̂iγi

t

)

x̃rx

t|t−1 + wt − a

2∑

i=1

kiγi

t(k̂
ivit + ni

t).

(10)
Remark 1. It is well known that the optimal Kalman gain for
a filter using intermittent signals transmitted from the sensors
in general is time-varying [12] but imposing a constant gain
that minimizes the expected state estimation error (when the

expectation is taken over the packet loss sequence) can achieve
a performance close to that with the optimal time-varying
gain, and at the same time, makes the analysis more tractable
[13]. In the single-sensor case, the optimal receiver Kalman
gain was also shown to be constant when the sensor transmits
innovations [8].

Now, the error variance given the sequences γi
t , i ∈ {1, 2},

is defined as prxt+1|t ! E[(x̃t+1|t)
2|γ1

t γ
2
t ]. Then, as the trans-

mitted signals over the channel are sit = x̂txi

t|t − x̂rx
t|t−1 =

k̂i(x̃rx
t|t−1 + vit), the variance of quantization noise becomes

(σi
n)

2 =
E[(x̃txi

t|t − x̃rx
t|t−1)

2]

Λi
=

(k̂i)2(prxt|t−1 + (σi
v)

2)

Λi
.

(11)
Taking the mean of squared terms in right- and left-hand

sides of (10) (conditioned on the sequences γ1
t and γ2

t ) yields

prxt+1|t = Atprxt|t−1+Nt, where At ! a2
(
1−

∑2
i=1 k

ik̂iγi
t

)2
,

and Nt ! σ2
w + a2

∑2
i=1(k

i)2γi
t

(
(k̂iσi

v)
2 + (σi

n)
2
)

.

Next, let us define Aij ! At|γ1
t =i,γ2

t =j and Nij !

Nt|γ1
t =i,γ2

t =j , i, j ∈ {0, 1} and prxt|t−1 = Eγ1
t γ

2
t
[prxt|t−1]. Then

by averaging prxt+1|t over the sequences γ1
t , γ

2
t , and using the

Bayes’ rule, we get
prx
t+1|t=(A11p

rx

t|t−1+N11)(1−ϵ1)(1−ϵ2)+(A00p
rx

t|t−1+N00)ϵ
1ϵ2

+ (A01p
rx

t|t−1 +N01)ϵ
1(1− ϵ2) + (A10p

rx

t|t−1 +N10)(1− ϵ1)ϵ2.
(12)

Since |a| < 1, Aij < 1 and Nij < 1, ∀i, j ∈ {0, 1}, it can
be shown that prxt|t−1 reaches its steady-state value, denoted
by prx, as t → ∞. We note that our goal is to optimize
the Kalman filter gains at the encoders k̂i and at the decoder
ki in the sense of minimizing the estimation prediction error
variance (12). To do so, we define βi ! kik̂i, and solve ∂prx

∂β1 =

0 , ∂prx

∂β2 = 0 for β1 and β2, which yields

β1 =
prx
[
(1 + 1/Λ2)(prx + (σ2

v)
2)− (1− ϵ2)prx

]
∏2

i=1(1 + 1/Λi)(prx + (σi
v)2)− (1 − ϵ1)(1− ϵ2)(prx)2

(13a)

β2 =
prx
[
(1 + 1/Λ1)(prx + (σ1

v)
2)− (1− ϵ1)prx

]
∏2

i=1(1 + 1/Λi)(prx + (σi
v)

2)− (1 − ϵ1)(1− ϵ2)(prxt )2
.

(13b)

It is clear that the optimal ki and k̂i can be chosen as
arbitrary positive values whose product gives the optimal βi.
This is beneficial because one can choose the transmitter
gain k̂i to satisfy a transmit power constraint for example,

and then choose ki as βi

k̂i
. Finally, the resulting steady-state

estimation prediction error prx is obtained by plugging (13a)
and (13b) back into (12) (assuming steady-state parameters),
which yields a quartic equation in terms of prx that can be
solved numerically using standard algorithms.
Remark 2. Note that in (8), we consider the receiver predicted
estimate in order to design the encoding scheme. However,
another variation of this method can be considered by only
using the sensors’ individual predicted estimates. The deriva-
tions of this new scheme (which can be regarded as another
benchmark) are omitted due to space limitations. However, we
have observed via numerical studies that the performance of
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this scheme closely follows that of benchmark I unless there is
a substantial asymmetry in terminals’ parameters, e.g., erasure
probabilities, quantization rates, etc.

B. Benchmark Method II

Now, we investigate a centralized scheme, where the en-
coders at the transmitter side can be combined to give a
single state estimation. As we exploit the information from
both sensors, it is expected that the state estimation is more
accurate using this centralized scheme. We still assume that a
perfect channel feedback is available so that we can exploit
the decoder’s estimate at the centralized encoder to obtain
the innovation signal, which is transmitted by both sensors
to achieve a diversity scheme over the erasure channels. Note
that encoding and decoding processes are the same as those
of Benchmark I, introduced in Section III-A. Therefore, this
method is expected to give the best performance among the
benchmark methods based on perfect feedback. Once again,
we use constant Kalman filter gains at the encoder and
decoder.

The centralized state estimate at the transmitter side can be
written as

x̂tx
t|t = x̂rx

t|t−1 + k̂1(x̃rx
t|t−1 + v1t ) + k̂2(x̃rx

t|t−1 + v2t ) (14)

Hence, x̂tx
t|t − x̂rx

t|t−1 =
∑2

i=1 k̂
ix̃rx

t|t−1 +
∑2

i=1 k̂
ivit. Also,

x̂t+1|t = ax̂rx
t|t−1 + a[k1 k2]

[
γ1
t (x̂

tx
t|t − x̂rx

t|t−1 + n1
t )

γ2
t (x̂

tx
t|t − x̂rx

t|t−1 + n2
t )

]
, (15)

Subtracting (15) from xt+1 = axt + wt, and defining
x̃rx
t|t−1 = xt − x̂rx

t|t−1, we obtain

x̃rx
t+1|t = a

(

1− (k̂1 + k̂2)
2∑

i=1

kiγi
t

)

x̃rx
t|t−1

+ wt − a(k1γ1
t + k2γ2

t )(k̂
1v1t + k̂2v2t )− a

2∑

i=1

kiγi
tn

i
t.

(16)
Similar to the previous benchmark method, we define the

variance of receiver prediction error given the sequences γi
t ,

i ∈ {1, 2}, as prxt+1|t ! E[(x̃t+1|t)
2|γ1

t γ
2
t ]. Then, as the

transmitted signals over the channel are sit = x̂tx
t|t − x̂rx

t|t−1 =
x̃rx
t|t−1 − x̃tx

t|t, the variance of quantization noise becomes

(σi
n)

2 =
(k̂1 + k̂2)2prxt|t−1 +

∑2
i=1(k̂

iσi
v)

2

Λi
. (17)

Taking the mean of squared terms in right- and left-
hand sides of (16) (conditioned on the sequences γ1

t

and γ2
t ) yields prxt+1|t = Atprxt|t−1 + Nt, where At !

a2
(
1− (k̂1 + k̂2)

∑2
i=1 k

iγi
t

)2
, and

Nt ! σ2
w+a2(k1γ1

t+k2γ2
t )

2((k̂1σ1
v)

2+(k̂2σ2
v)

2)+a2

2∑

i=1

γi

t(k
iσi

n)
2.

Next, let us define Aij ! At|γ1
t =i,γ2

t =j and Nij !

Nt|γ1
t =i,γ2

t =j , i, j ∈ {0, 1} and prxt|t−1 = Eγ1
t γ

2
t
[prxt|t−1]. Then

by averaging prxt+1|t over the sequence {γ1
t , γ

2
t }, and using

Bayes’ rule, we get
prxt+1|t=(A11p

rx

t|t−1+N11)(1−ϵ1)(1−ϵ2)+(A00p
rx

t|t−1+N00)ϵ
1ϵ2

+ (A01p
rx

t|t−1 +N01)ϵ
1(1− ϵ2) + (A10p

rx

t|t−1 +N10)(1− ϵ1)ϵ2.
(18)

Finally, we can obtain the optimal gains {k1, k2, k̂1, k̂2}⋆ by
minimizing limt→∞ prxt|t−1.

IV. LINEAR ENCODING/DECODING WITH NO FEEDBACK:
SOFT-INNOVATION FORWARDING (SIF)

Here we investigate a scenario where there is no channel
feedback available from the decoder to the encoders. For
this purpose, we can instead exploit the information from
quantizers’ outputs. That is to say, instead of using x̂rx

t|t−1 we

employ xtxi

t|t−1 ! E[xt|Qi
t−1] by combining it with the state

estimate at the sensors, i.e., x̂txi

t|t−1 = E[x|Yi]. This technique
is motivated by the soft innovation forwarding strategy (SIF)
pioneered in [8] for the single sensor case, where a convex
combination of the innovations and the state estimate at the
encoder is transmitted. Using this method, the transmitted
signal is

sit ! αi
t(Y

i
t ,Q

i
t−1, ν

i) = νix̂txi

t|t + (1− νi)(x̂txi

t|t − xi
t|t−1)

= x̂txi

t|t − (1− νi)xi
t|t−1

(19)
where 0 < νi < 1 is a mixing coefficient to be optimized.
Note that state-forwarding (SF) method (sending the state
estimate at the sensor, i.e., νi = 1) and innovation-forwarding
(IF) method (sending the innovation, which is optimal for the
perfect feedback case i.e., νi = 0) are special cases of SIF.

We first write augmented state equations as in the form

µt+1 = Atµt + ηt, (20)

where

µt =
[
xt+1 x̂tx1

t+1|t+1 xtx1

t+1|t x̂tx2

t+1|t+1 xtx2

t+1|t

]⊤
, (21a)

At =

⎡

⎢⎢⎢⎢⎢⎣

a 0 0 0 0

ak̂1 a(1− k̂1) 0 0 0

0 k
1

a− k
1

0 0

ak̂2 0 0 a(1− k̂2) 0

0 0 0 k
2

a− k
2

⎤

⎥⎥⎥⎥⎥⎦
,

(21b)

ηt =
[
wt k̂1(wt + v1t+1) k

1
n1
t k̂2(wt + v2t+1) k

2
n2
t

]⊤
.

(21c)

Here, k
i
, i ∈ {1, 2}, is the Kalman filter gain (to be optimized)

associated with the quantizer predicted estimate. Also, the re-
ceived measurement equation can be stated as zt = Ctµt+nt,

where zt =
[
z1t z2t

]⊤
, nt =

[
γ1
t n

1
t γ2

t n
2
t

]⊤
, and

Ct =

[
0 γ1

t −(1− ν1)γ1
t 0 0

0 0 0 γ2
t −(1− ν2)γ2

t

]
.

Now, defining µ̃t ! µt − µt|t−1, we have

µ̃t+1 = Atµt + ηt − (At −KtCt)µ̂t|t−1 −Kt(Ctµt + nt)

= (At −KtCt)µ̃t + ηt −Ktnt,
(22)

where Kt ∈ R5×2 is the Kalman filter gain matrix to be
optimized. Note that we are interested in the entries of its
first row that minimize prxt+1|t.

Next, we define the following covariance matrices

Pt ! E[µ̃tµ̃
⊤
t |γ

1
t γ

2
t ], Q ! E[ηtη

⊤
t ]

Nt ! E[ntn
⊤
t |γ

1
t γ

2
t ], St ! E[ηtn

⊤
t |γ

1
t γ

2
t ].

(23)
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More explicitly, we can derive Nt, St and Q, which are stated
by (24), on top of next page. Note that (σi

n)
2 can be computed

from [8, Equation (38)].
Then, from (22) and (23), we obtain
Pt+1 = E[(At −KtCt)Pt(At −KtCt)

⊤|γ1
t γ

2
t ]

+Q+KtNtK
⊤
t −KtS

⊤
t − StK

⊤
t .

(25)

Now, let us define Pt ! Eγ1
t γ

2
t
[Pt], Nij ! Nt|γ1

t =i,γ2
t =j

and Sij ! St|γ1
t =i,γ2

t =j , i, j ∈ {0, 1}. Using the Bayes’ rule
on (25), we get
Pt+1 = KtXtK

⊤
t +KtYt +Y

⊤
t K

⊤
t + Zt

= (Kt +YtX
−1
t )Xt(Kt +YtX

−1
t )⊤ + Zt −YtX

−1
t Y

⊤
t

(26)
where
Xt=(1−ϵ1)(1− ϵ2)(N11+C11PtC

⊤
11)

−ϵ1(1−ϵ2)(N01+C01PtC
⊤
01)−ϵ2(1−ϵ1)(N10+C10PtC

⊤
10)

(27a)

Yt = −(1−ϵ1)(1− ϵ2)(S⊤
11+C11PtA

⊤
t )

−ϵ1(1−ϵ2)(S⊤
01+C01PtA

⊤
t )−ϵ2(1−ϵ1)(S⊤

10+C10PtA
⊤
t )
(27b)

Zt=AtPtA
⊤
t +Q (27c)

Next, minimizing (26) with respect to Kt yields

Kt = −YtX
−1
t , Pt = Zt −YtX

−1
t Y⊤

t . (28)

Note that (28) represents the optimal filter gain matrix and
corresponding error covariance matrix for a fixed νi. The op-
timal Kt can be substituted (26) to obtain limt→∞ Pt = P∞,
which can be minimized with respect to 0 ≤ νi ≤ 1, to obtain

{ν1, ν2}⋆ = argmin
{0≤νi≤1}2

i=1

[
P∞

]
1,1

. (29)

Hence, [P∞]1,1 is the optimal receiver prediction error vari-
ance, given the optimized {ν1, ν2}⋆ and the optimal Kalman
filter gains k1 and k2 are the ones which are associated
with the first row of K∞ = limt→∞ Kt. Note that this
minimization can only be done numerically as [P∞]1,1 is not
convex in ν1, ν2.

V. NUMERICAL RESULTS

In this section, we demonstrate the performance of the
proposed design methods characterized in Section III and
Section IV. We use a uniform quantizer to quantize sit
(i ∈ {1, 2}) with a suitable number of quantization levels and
saturation thresholds to ensure SQNR equals Λi. Following
a similar method to [8], the quantization step ∆i

q is chosen

so that (σi
n)

2 =
(∆i

q)
2

12 , where (σi
n)

2 = Var{sit}
Λi , which yields

∆i
q =

√
12Var{sit}

Λi . By setting the saturation thresholds ±T i
q

according to T i
q = 4

√
Var{sit}, the number of quantization

levels is given by N i
b = ⌈

2T i
q

∆i
q
⌉ = ⌈4

√
Λi

3 ⌉, which corresponds

to N i
b = ⌈log2(4

√
Λi

3 )⌉ number of quantization bits per

sample. We also set a = 0.95, (σw)2 = 0.1 and (σi
v)

2 = 0.05.
In our simulation studies, we compare the following strate-

gies: Benchmarks I and II, and designs with no feedback, i.e.,
SIF, SF (when νi=1) and IF (when νi=0).

We illustrate, in Figure 2, the performance of the ideal
methods and non-ideal methods in a symmetric scenario,

where ϵ1 = ϵ2. For the SIF method, we optimize νi using
a grid search by varying νi from 0 to 1 in a step size 0.02.

As expected, the centralized design (benchmark II) out-
performs other design methods. Among the non-ideal design
methods, SIF reaches the lowest error since it finds the optimal
mixing coefficients νi. It should be noted that the gap between
the performance of Benchmark II and the SIF strategy is,
of course, achieved at the price of perfect channel feedback.
Comparing the methods based on no feedback where both
terminals use SF or IF, we see that the former improves
the performance for high packet loss probabilities, while the
latter gives a better performance at a low packet loss regime,
which is consistent with the results in [8]. The critical erasure
probability where these two curves intersect is approximately
ϵcri

1

= ϵcri
2

= 0.18. Now, if a terminal uses the SF method,
and the other uses IF, we observe that at an intermediate low
packet loss regime, this scheme performs than the schemes
where both terminals use SF or IF. As the erasure probability
increases, the scheme where both terminals use SF becomes
better, and approaches the SIF scheme for large packet loss
probabilities.

In the next study, in Figure 3, we choose an asymmetric
scenario by fixing ϵ1 = 0.05 and varying ϵ2. Note that
we have chosen ϵ1 such that ϵ1 < ϵcri

1

= 0.18 (obtained
by previous simulations). We omit the graphs for the case
where ϵ1 > ϵcri

1

due to space limitations. In Figure 3, the
benchmark methods I and II outperform the other schemes,
and the SIF method, by optimizing the mixing coefficients νi,
provides a better performance among all the schemes based
on no feedback. At low packet loss regime, we observe that
both terminals using IF gives a lower error, due to the fact
that terminals 1 and 2 benefit from the IF method at low
erasure probabilities. When ϵ2 increases to 1, it can be also
seen that the curve corresponding to terminal 1 using IF and
terminal 2 using SF (or, vice versa, terminal 1 using SF and
terminal 2 using IF) tends to the curve associated with both
terminals using IF (or, vice versa, SF). The reason is that
for large ϵ2, terminal 2 becomes practically immaterial, and
terminal 1 becomes the only functional link. Thus, the ultimate
performance corresponds to that of the forwarding technique
used at terminal 1. One can also see that for ϵ2 < ϵ1 = 0.05,
the strategy with terminal 1 using SF and terminal 2 using IF
does better than vice versa, while the behavior reverses when
ϵ2 > ϵ1 = 0.05.

In the last study, we plot the behavior of optimal mixing
coefficient νi by varying ϵ2 and fixing ϵ1 = 0.2 in the
SIF method. We observe as ϵ2 increases, ν2 also increases.
Interestingly, as ϵ2 increases, ν1 also increases even though ϵ1

is fixed at 0.2. This is an indication that both encoders need to
adapt in order to improve the overall performance. Further, the
two curves intersect at ϵ2 = 0.2, the point where the system
becomes symmetric, i.e., ϵ1 = ϵ2 such that ν1 = ν2.

VI. CONCLUSIONS AND EXTENSIONS

In this paper, we proposed distributed linear encoding
schemes and the associated decoder design methods for re-
mote estimation of the state of a scalar stable linear dy-
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Nt =

[
γ1
t (σ

1
n)

2 0
0 γ2

t (σ
2
n)

2

]
, St =

[
0 0 k

1
γ1
t (σ

1
n)

2 0 0

0 0 0 0 k
2
γ2
t (σ

2
n)

2

]⊤
,

Q =

⎡

⎢⎢⎢⎢⎢
⎣

(σw)
2 k̂1(σw)

2 0 k̂2(σw)
2 0

k̂1(σw)
2 (k̂1)2((σw)

2+(σ1
v)

2) 0 k̂1k̂2(σw)
2 0

0 0 (k1σ1
n)

2 0 0
k̂2(σw)

2 k̂1k̂2(σw)
2 0 (k̂2)2((σw)

2+(σ2
v)

2) 0

0 0 0 0 (k
2
σ2
n)

2

⎤

⎥⎥⎥⎥⎥
⎦
.

(24)
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Fig. 2: Prediction error covariance of proposed strategies as a function
of erasure probability in a symmetric setup.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
ϵ

2

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

Pr
ed

ict
io

n 
er

ro
r v

ar
ia

nc
e

Both terminals: SF
Terminal 1: SF, Terminal 2: IF
Both terminals: IF
Terminal 1: IF, Terminal 2: SF
SIF
Benchmark I (perfect channel feedback)
Benchmark II (centralized)

Fig. 3: Prediction error covariance of proposed strategies as a function
of ϵ2 in an asymmetric setup for a fixed ϵ1 = 0.05.

namical system (or equivalently a stationary Gauss-Markov
source) when multiple sensors take noisy measurements and
send their linearly encoded signals over channels subject to
quantization noise and packet erasures. We propose various
benchmark methods when there is perfect feedback from
the receiver/decoder, and an extension of the soft innovation
forwarding method for the single sensor case in [8] to multiple
sensors. Although we present our results for a 2-sensor case,
the proposed encoding/decoding methods can be easily ex-
tended to an arbitrary number of sensors. How the number of
sensors affect the estimation error performance for the various
encoding schemes is however requires further analysis, and
will be investigated in future work.
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