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Abstract—This paper focuses on the analysis of an optimal
sensing and quantization strategy in a multi-sensor network
where each individual sensor sends its quantized log-likelihood
information to the fusion center (FC) for non-Bayesian quickest
change detection. It is assumed that the sensors are equipped
with a battery/energy storage device of finite capacity, capable
of harvesting energy from the environment. The FC is assumed
to have access to either non-causal or causal channel state
information (CSI) and energy state information (ESI) from all
the sensors while performing the quickest change detection.
The primary observations are assumed to be generated from
a sequence of random variables whose probability distribution
function changes at an unknown time point. The objective of the
detection problem is to minimize the average detection delay of
the change point with respect to a lower bound on the rate of
false alarm. In this framework, the optimal sensing decision and
number of quantization bits for information transmission can
be determined with the constraint of limited available energy
due to finite battery capacity. This optimization is formulated
as a stochastic control problem and is solved using dynamic
programming algorithms for both non-causal and causal CSI
and ESI scenario. A set of non-linear equations is also derived
to determine the optimal quantization thresholds for the sensor
log-likelihood ratios, by maximizing an appropriate Kullback-
Leibler (KL) divergence measure between the distributions
before and after the change. A uniform threshold quantization
strategy is also proposed as a simple sub-optimal policy. The
simulation results indicate that the optimal quantization is
preferable when the number of quantization bits is low as
its performance is significantly better compared to its uniform
counterpart in terms of average detection delay. For the case of
a large number of quantization bits, the performance benefits
of using the optimal quantization as compared to its uniform
counterpart diminish, as expected.

I. INTRODUCTION

IN recent years, wireless sensor systems have attracted
significant attention from the research community. The

use of wireless sensor network (WSN) has become prevalent
in the areas such as industrial process monitoring [1], smart
grid [2] and environmental monitoring [3]. Due to the fact
that often these sensors are located in remote locations,
it becomes a significant problem to power such networks
reliably with batteries. Re-installing and replenishing bat-
teries in such a scenario is very costly. Here, renewable
power sources such as solar, wind or temperature gradients
can be very useful to mitigate these problems. However
as the process of energy harvesting is often unpredictable
and the rechargeable batteries have finite capacities, forming
optimal transmission policies in sensor networks with energy
harvesting capabilities constitute a non-trivial task.

Recently, there has been significant research in the domain
of energy harvesting in WSN. For example, optimal energy
management policies [4], power allocation policies [5], and
energy efficient transmission policies [6] are analyzed for

energy harvesting WSN. One of the major responsibilities
of such networks is detecting the change in distributions of
the underlying observations, thus detecting anomalies or pre-
dicting failures etc. There are different ways to detect these
changes as discussed in the literature [7]. Quickest change
detection is one form of sequential detection techniques
which has been studied extensively [8]. This detection policy
is used for diverse purposes like seismic event detection,
health monitoring or detecting vacant radio spectrum etc. It
can be applied to the observation at the individual sensors
or after collecting all the information from the sensors at the
FC [9]. In this paper, we focus on the latter approach.

The classical quickest change detection problem focuses
on detecting a sudden change in the probability density
function of a stochastic process with minimum delay, where
the delay is defined as the amount of time between the actual
occurrence of change in distribution and the detection of such
an event. The Non-Bayesian formulation is one of the most
important ones which has been studied e.g., by G. Lorden
[10] and M. Pollack [11]. Let Xk denote the vector of sensor
observations at time instant k. The standard formulation con-
sists of a sequence of observations {Xk, k = 1, 2, . . .} with
an unknown but deterministic change point, λ. Before the
change point the observation sequence X1,X2, . . . ,Xλ−1

are assumed to be independent and identically distributed
(i.i.d) and generated from the distribution f0 whereas after the
change point λ, the sequence of observations, Xλ,Xλ+1, . . .
is drawn from distribution f1. The goal is to detect the change
point λ to minimize the average detection delay with respect
to a false alarm constraint.

In the standard frameworks of quickest change detection,
the sensors can observe the signal of interest at each time
slot. But, that is not the case, when the sensors are powered
by rechargeable batteries due to the stochastic nature of
energy availability. Research in this domain of quickest
change detection with energy constraint has been reported for
the Non-Bayesian [12] and Bayesian [13] frameworks in cen-
tralized settings. Similar problems have been studied in [14],
[15] without energy constraints. To the best of our knowledge
there has not been any research in the domain of Non-
Bayesian quickest change detection with energy harvesting in
decentralized settings. It is an interesting research problem,
due to the stochastic nature of the energy harvesting process.
Thus, at every time slot, each sensor has to decide whether it
has enough energy in the battery for sensing and transmitting
the quantized observations to the FC. It should be noted that
it is crucial to find a proper quantization strategy in such a
scenario, because the performance of the detection problem
is sensitive to the accuracy of the information collated at
the FC. We assume that the bandwidth-constrained channels
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between the sensor transmitters and the FC receiver are
subject to Rayleigh fading. The channel realization influences
the amount of energy required to send each quantized bit to
the FC. Thus, each sensor can decide to take an observation
if it has enough energy in its battery and quantize it with an
appropriate number of bits depending on the corresponding
channel gain. An optimal solution of such a problem is
achieved by considering maximization of a finite horizon sum
of an appropriate KL measure with respect to the sensing
decision and the number of quantization bits for information
transmission, using Dynamic Programming (DP) techniques.

The key contributions of this paper are:
• We formulate the problem of minimizing the average

detection delay for Non-Bayesian decentralized quickest
change detection in a fading multi-sensor system over
a finite time horizon where each sensor is capable of
harvesting energy from the surroundings. The problem
is addressed for both Non-Causal and Causal channel
state information (CSI) and energy state information
(ESI).

• The optimal sensing and number of quantization bits
are determined using DP.

• An analytic solution for determining the optimal quanti-
zation thresholds, when the number of quantization bits
are obtained from DP, is presented.

• Finally, performance comparison in terms of average
detection delay between the non-causal and the causal
CSI scenario is conducted for both optimal and a heuris-
tic uniform quantization policy. The results indicate,
that the uniform strategy is useful, when the number
of quantization bits is sufficiently large, but inferior to
its optimal counterpart when the number of quantization
bits is small.

The rest of the paper is organized as follows. In Section II,
we describe the system model and formulate the optimization
problem. We present the analytic formulation for optimal
threshold quantization in Section III. We also propose the
idea of uniform quantization as a heuristic strategy in Section
III. In Section IV, we focus on finding the optimal sensing
and quantization strategy by using dynamic programming for
both Non-Causal and Causal CSI and ESI. Simulation results
are presented in Section V. Finally conclusions are drawn in
Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We study a system setup as shown in Fig.1. It consists of
N wireless sensors, all of which measure the same physical
variable and communicate with a centralized decision maker
FC. If they have sufficient energy in their battery, the
individual sensors decide to sense the observation signal.
We assume that due to limited bandwidth availability in the
channels between the sensors and FC, each sensor quantizes
its observation signal and sends it to the FC. In each time
slot, the FC receives the quantized observations from the
sensors who have decided to transmit the information. After
collating those information, the FC performs the cumulative
sum (CUSUM) test based on the received information to
detect a change in distribution in the observation signal
similar to the CUSUM algorithm discussed in [9].

We assume that time is slotted. During each time slot
the fading channel gains between the sensors and the FC
are assumed to remain fixed, but change from one slot
to the next in a statistically independent and identically

Figure 1: Quickest change detection with distributed sensors

(i.i.d) distributed manner. In the kth time slot the ith sensor
decides to sense or not based on the binary parameter νi,k
1 ≤ i ≤ N, 1 ≤ k ≤ M , where M is the length of the
finite time horizon under consideration for the sequential
change detection problem. νi,k ∈ {0, 1}, where 1 (or 0)
represents the decision to sense the observation signal (or
not), respectively. Each sensor decides to sense if the amount
of energy in its battery is greater or equal to the amount
of energy required for sensing the observation signal and
sending quantized information bits to the FC. Thus, we can
write:

νi,k =

{
1, if Bi,k ≥ Es + qi,kE

b
i,k

0, otherwise

where Es is the amount of energy required for sensing during
each time slot, Bi,k is the battery state, Eb

i,k denotes the
amount of energy required to transmit each quantized bit to
the FC and qi,k denotes the number of such quantized bits
of the ith sensor, which is determined via a DP algorithm
at the FC and communicated to the sensor, to be described
later in Sections III and IV. We assume the finite battery
capacity to be Bmax for all sensor nodes. Then the battery
state dynamics can be represented as follows:

Bi,k+1 = min {Bmax, Bi,k +Hi,k − Ei,k} (1)

where Bi,k is the amount of energy in the battery of the
ith sensor at the kth time slot, Hi,k is the amount of energy
harvested and Ei,k is the amount of energy used by the same
sensor during the same time slot. This energy can be further
subdivided into energy required for sensing and transmitting
quantized observations as follows:

Ei,k = νi,k(Es + qi,kE
b
i,k) (2)

We denote the channel gain between the ith sensor Si

and the FC at the kth time slot by hi,k. Assuming either
binary phase shift keying (BPSK) or quadrature phase shift
keying (QPSK) modulation technique with a fixed noise
power spectral density N0, and the probability of error Pe,
the energy required to transmit one quantized bit can be
expressed as follows:

Eb
i,k =

N0

hi,k

{
erfc−1(2Pe)

}2
(3)
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where erfc−1 is the inverse complementary error function.
It should be noted that in the system model under con-

sideration, the individual sensors don’t calculate the channel
gain hi,k and the transmission energy for each quantized
bits Eb

i,k. They are computed at the FC, based on the pilot
symbols sent to all the sensors by the FC and assuming
the channel reciprocity between the sensors and FC. We
denote the battery state and channel state information at
kth time instant by Bk = {B1,k, B2,k, . . . , Bn,k} and
hk = {h1,k, h2,k, . . . , hN,k} respectively.

A. Quickest Change Detection Model

If the ith sensor decides to sense during the kth time slot,
then the FC receives its successful transmission Xi,k. For the
purpose of our discussion we assume that the observation
signal is drawn from two different Gaussian distributions
with the same variance but with different means, depending
on whether it is received before or after the change point
λ. We also assume that the change point is an unknown
but deterministic time instant. We may then formulate the
following hypothesis:

H0 : Xi,k ∼ N (0, σ2), if k < λ

H1 : Xi,k ∼ N (µ, σ2), if k ≥ λ

where µ is the mean of the observation signal Xi,k under
hypothesis H1 and σ2 is the variance of Xi,k independent
of any hypothesis.

Each sensor calculates the log-likelihood ratio (LLR) at
each time instant which can be expressed as follows:

Zi,k =
µXi,k

σ2
− µ2

2σ2
. (4)

At the kth time slot the sensor Si quantizes the LLR, Zi,k

and corresponding qi,k bits encoded message Ui(k) is sent
to the FC. Let gji denote the probability mass function (pmf)
of Ui(k) when the observation is drawn from hypothesis Hj .
If we denote the lth quantization threshold for ith sensor as
til , then these pmf’s can be expressed as follows:

g1i (l) = Φ

{
til+1 − µ

σ

}
− Φ

{
til − µ

σ

}
(5)

g0i (l) = Φ

{
til+1

σ

}
− Φ

{
til
σ

}
(6)

where Φ is the cumulative distribution function of the stan-
dard normal variable.

After receiving the quantized information from the sen-
sors, the FC computes the discrete LLR between hypotheses
H1 and H0. The LLR between quantized distributions for the
kth time slot at the FC is denoted by Zq

k . It can be written
as follows:

Zq
k =

N∑
i=1

log
g1i (Ui(k))

g0i (Ui(k))
. (7)

We denote T as the stopping time, i.e., the time in-
stant when the quickest change detection algorithm de-
clares that a change has been detected in the distri-
bution of the observation. The sensing strategy ν =
{νi,k, i = 1, . . . , N ; k = 1, . . . ,M}, quantization functions
q = {qi,k, i = 1, . . . , N ; k = 1, . . . ,M} along with the stop-
ping time T at the FC form the policy ϕ = (ν,q, T ).

In the classical Non-Bayesian quickest change detection
mini-max formulation, the goal is to detect the change point
as soon as possible after it occurs. In other words, we have
to find the quantization and sensing policy ϕ that minimizes
the average worst case detection delay (SADD) [11], which
is defined as follows:

SADD(ϕ) = sup
1≤λ<∞

Eλ(T − λ|T ≥ λ). (8)

In the above expression Eλ denotes the expectation when
the change happens at time instant λ. Once we determine
the optimal sensing strategy ν⋆ and quantization function
q⋆, we define ϕ̃ = (ν⋆,q⋆, T ). Then the optimal stopping
time T ⋆ can be determined by the minimax change point
detection procedure [9] as follows:

T ⋆ = min
T
SADD(ϕ̃) s.t. E∞[T ] > γ; γ > 1 (9)

where E∞[T ] denotes the stopping time declared by the
algorithm when the change never occurs, i.e., λ = ∞. This
quantity is called average run length to false alarm, because
this indicates the rate of false alarm. It is lower bounded
by a constant false alarm rate, i.e., the minimum expected
duration to false alarm γ > 1. We determine the solution of
the optimization problem (9) by applying the CUSUM test at
the FC. The CUSUM test statistics is formulated as follows:

W q(k) = max {0,W q(k − 1) + Zq(k)} , W q(0) = 0.

The stopping time can be determined by the CUSUM pro-
cedure as:

T ⋆ = min {k ≥ 1 :W q(k) ≥ h} , h = log γ. (10)

B. Optimization Problem Formulation

The problem under consideration is to find the optimal
sensing and quantization policy to minimize the average
delay in detecting the change point. The asymptotic perfor-
mance of the optimal decentralized detection procedure for
a fixed sensing and quantization policy can be written as
follows [9]:

SADD(T ) ∼ log γ

Iqtot
as γ → ∞

where Iqtot is the Kullback-Leibler (KL) information number
between the hypothesis H1 and H0 at the FC. In general,
assuming error-free transmission between a fixed number
of active sensors and the FC, the expression Iqtot can be
determined by summing individual KL information measures
over the number of active sensors communicating to the FC.
It is to be noted, however, that computing Iqtot at the FC in
our current setting is not straightforward, as it depends on
a number of factors including the number of active sensors
sending information to the FC in each time slot, whether
the data sent from each active sensor to the FC are received
successfully (i.e. with probability (1−Pe)), and the random
realizations of the harvested energy and channel gains in each
time slot.
Remark. For simplicity, we first make the assumption that
Pe is sufficiently small, such that an active sensor’s trans-
mitted data is received successfully at the FC with high
probability when the sensor transmits with its required
transmission energy per bit (3), and therefore, we ignore the
effect of erroneous transmission. This can be justified very
easily in the symmetric case where all sensors have the same
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Pe requirement at the FC, in which case, it is easy to show
that the KL information measure at the FC will be scaled by
a factor of (1− Pe).

Next, we note that the number of active sensors nk
in the k-th time slot is not fixed but a random variable
which depends on the harvested energy and channel state
information, for a given sensing and quantization rate (which
in turn determines the energy level in a sensor’s battery at
the beginning of a time slot) policy. For a given nk, all else
being deterministic and time-invariant, Iqtot can be expressed
as:

Iqtot =

nk∑
i=1

I(g1i , g
0
i ) =

nk∑
i=1

2qi,k−1∑
l=0

g1i (l) log
g1i (l)

g0i (l)

where I (g1i , g
0
i ) denotes the KL divergence between the ith

sensor’s probability mass functions g1i and g0i . 2qi,k − 1
denotes the number of quantization thresholds, when the
number of quantization bits is chosen to be qi,k.

Clearly, minimizing the asymptotic average worst case
detection delay is equivalent to the problem of maximizing
Iqtot, provided that the number of active sensors nk and the
realizations of Bk, hk are deterministic and identical in each
slot. We are however interested in optimizing the sensing
and quantization policy over a finite time horizon, where
Bk, hk (and hence, nk) vary randomly from one time slot
to another. The reason behind this problem formulation is
(i) to study the effects of changing battery level and channel
state information in different sensors and the quickest change
detection process, and (ii) in return, allowing for a more
general energy harvesting and expenditure model than the
binary model studied in [12]. Furthermore, given stationary
and ergodic energy harvesting and fading channel processes,
1
M

∑M
k=1 I

q
tot can be interpreted as the average KL measure

for such a problem, as M → ∞. While the asymptotic upper
bound on the average detection delay is not exactly inversely
proportional to the average KL measure, the inverse of the
average KL measure still provides a lower bound on the
asymptotic average detection delay from Jensen’s inequality.
In addition, the solution to the problem of maximizing
an average KL measure can provide further insights into
the design of optimal quantization and sensing policies for
minimizing the average detection delay in the asymptotic
case when the probability of false alarm goes to zero. We
thus formulate an optimization problem as follows:

max
νi,k,qi,k

M∑
k=1

E

{
nk∑
i=1

{
νi,k

2qi,k−1∑
l=0

g1i (l) log
g1i (l)

g0i (l)

}}
s.t. νi,k ∈ {0, 1} ; ∀i, k (11)
qi,k ∈ {1, . . . , Qmax} ; ∀i, k (12)
Ei,k ≤ Bi,k; ∀i, k (13)

In the optimization problem the expectation E is taken over
the random variables Bk and hk (and hence also nk). In the
constraint (12), Qmax denotes the upper limit on the number
of quantization bits qi,k and (11), (12) and (13) refer to the
binary choice of the sensing parameter νi,k, the feasibility set
of number of quantization bits qi,k, and the energy causality
constraints, respectively.

III. NON-CAUSAL OPTIMIZATION WITH FINITE BATTERY

In this section, we analyze the optimization problem with
the assumption that the CSI between the sensors and the

FC along with the information about harvested energy is
available non-causally. We notice that νi,k and qi,k are both
discrete variables, and thus the problem under consideration
is a combinatorial optimization problem. Therefore, the
optimization problem will be solved by DP similar to the
causal CSI case, which will be discussed in the next section.
Clearly, this sort of non-causal setup is hardly practical,
but it provides an important benchmark for performance
comparison.
Remark. Note that for a fixed sensing and quantization
policy with non-causal knowledge of {Bk,hk} for all
k = 1, 2, . . . ,M , the objective function in the optimization
problem (11)-(13) becomes deterministic. Thus, for the non-
causal case, the expectation operator can be removed.

In the kth time slot, once sensor Si decides that νi,k = 1
(and the optimal qi,k has been computed by DP off-line),
the next question is how to determine the thresholds for
the quantization process of the LLR. To this end, we find
the quantization function ψi,k that minimizes the average
detection delay. Hence, we have to find 2qi,k − 1 thresholds
t0, t1, . . . , t2qi,k−1, such that:

ψi,k(Xi,k) = bi,k only if tbi,k < Zi,k(Xi,k) ≤ tbi,k+1

In the next two subsections we will discuss how to find
the optimal quantization thresholds and a heuristic-based
uniform quantization policy, respectively.

A. Optimal Threshold Quantization

Ideally speaking, the sensing decision, the number of
quantization bits and the corresponding quantization thresh-
olds should be jointly optimized using DP. However, as DP
incurs exponential computational complexity, we optimize
the quantization thresholds non-adaptively. This means that
the number of quantization bits is computed through DP. Fur-
thermore, the optimal quantization thresholds corresponding
to each number of quantization bits are pre-computed by
maximizing the following sum of KL divergence measure
over a finite time horizon:

F({tl : l ∈ {0, . . . , 2qi,k − 1}}) =
nk∑
i=1

2qi,k−1∑
l=0

g1i (l) log
g1i (l)

g0i (l)

(14)

when the optimal νi,k and qi,k satisfy (11), (12) and (13).
Suppressing the sensor index i for readability, the optimal

solution for the threshold tl can be found by solving for
∂F
∂tl

= 0. Only two terms in the above expression are
functions of tl as we note from (5) and (6), i.e., (for a given
sensor) only g1(l), g0(l), g1(l − 1), g0(l − 1) depend on tl.
So the gradient expression can be simplified as:

∂F
∂tl

=
∂

∂tl
{F1 + F2} . (15)

where these two terms are F1 = g1(l − 1) log g1(l−1)
g0(l−1) and

F2 = g1(l) log g1(l)
g0(l) . The individual gradients of these terms

can be simplified as follows:

∂F1

∂tl
=
∂g1(l − 1)

∂tl
log

g1(l − 1)

g0(l − 1)
+g0(l−1)

∂

∂tl

{
g1(l − 1)

g0(l − 1)

}
∂F2

∂tl
=
∂g1(l)

∂tl
log

g1(l)

g0(l)
+ g0(l)

∂

∂tl

{
g1(l)

g0(l)

}
.
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These two gradients are further simplified by replacing
the individual gradients of the four cumulative distribution
functions as follows:

∂g1(l − 1)

∂tl
= −∂g

1(l)

∂tl
=

1

σ
√
2π
e
− 1

2

{
tl−µ

σ

}2

(16)

∂g0(l − 1)

∂tl
= −∂g

0(l)

∂tl
=

1

σ
√
2π
e−

1
2{ tl

σ }
2

. (17)

Following further algebraic manipulations, the equations
∂F
∂tl

= 0 reduce to

∂g1(l − 1)

∂tl

{
log

{ g1(l−1)
g0(l−1)

g1(l)
g0(l)

}}
=

∂g0(l − 1)

∂tl

{
g1(l − 1)

g0(l − 1)
− g1(l)

g0(l)

}
. (18)

Inserting (16) and (17) into (18) we obtain the following set
of simultaneous non-linear equations:

e−
1

2σ2 (µ2−2µtl) =


g1(l−1)
g0(l−1) −

g1(l)
g0(l)

log

{
g1(l−1)

g0(l−1)

g1(l)

g0(l)

}
 , l = 1, 2, . . . , 2qi,k .

(19)
We can determine the optimal thresholds by solving the
above mentioned equations for a fixed qi,k (determined using
DP) by using a suitable nonlinear equation solver.

B. Uniform Threshold Quantization

In this heuristic policy, we first decide an interval of
significance in the distribution of Xi,k. We assume that the
probability within this interval is high enough to ignore any
value of Xi,k outside this domain, such as mean plus or
minus 3σ. Furthermore, we denote the lower and upper
bound of that interval by lb and ub, respectively. If the
number of optimal quantization bits is qi,k, then the numbers
of quantization bins and thresholds are 2qi,k and 2qi,k − 1,
respectively. So the length of each quantization bin is:
∆ = ub−lb

2qi,k
, and the rth uniform threshold will be placed at

tr = lb+∆r. It should be noted that the choice of upper and
lower bound in this uniform quantization strategy influences
the performance of the corresponding detection policy. Thus,
it is a reasonable to assume that these two aforementioned
bounds should be optimized to achieve the best performance.
However, as mentioned before, we have decided to use the
domain of mean plus or minus 3σ as most of the probability
mass is concentrated in that range.

It should be noted that the optimal and uniform threshold
quantization can be used for the scenario involving both the
non-causal and the causal CSI.

IV. CAUSAL OPTIMIZATION WITH FINITE BATTERY

In this section, we consider the more realistic case of
causal CSI/ESI scenario with finite battery. The resulting
problem is a finite horizon stochastic control problem and
thus can be solved by applying dynamic programming algo-
rithms.

A. Information Pattern

We assume that during each time slot, the CSI be-
tween sensor transmitters and the FC receiver hk =
{h1,k, h2,k, . . . , hN,k} and the battery state Bk =

{B1,k, B2,k, . . . , BN,k} are collated by the FC using appro-
priate channel estimation and feedback mechanism from the
sensors. Thus, the information available at the FC during the
kth time slot is given by the tuple Jk = {hk,Bk,Jk−1} and
J1 = {h1,B1}. Note that we do not consider the amount of
energy consumed to carry out this feedback. However, if the
amount of energy consumed due to this process is fixed in
each time slot, one can easily subtract this expenditure from
the available battery energy, and the presented algorithm in
our paper still applies.

B. Dynamic Programming Algorithm

In this subsection, we discuss the procedure of finding the
optimal sensing decision and quantization bits for energy
harvesting sensors with finite battery in order to minimize
the average change point detection delay when only causal
CSI and ESI are available at the FC. Once again, for a fixed
sensing and quantization policy, the KL information number
corresponding to the kth time slot is given by:

D(νk,qk) =

nk∑
i=1

{
νi,k

2qi,k−1∑
l=0

g1i (l) log
g1i (l)

g0i (l)

}
. (20)

where νk = (ν1,k, . . . , νM,k)
T is the vector of sens-

ing parameters νi,k, and qk = (q1,k, . . . , qM,k)
T is the

vector of number of quantization bits qi,k respectively.
Clearly, here, nk, the number of active sensors, is a ran-
dom variable varying from slot to slot depending on the
harvested energy and channel gain realizations. The feasi-
ble set for the optimization variables is defined as S =
{(νk,qk) : νk,qk satisfy (11), (12), (13)}. In this case of
a causal information pattern, the presence of the expectation
operator in the objective function of the optimization problem
(11) - (13) is thus strictly necessary, and the optimization
problem is truly a stochastic control problem that can be
solved using DP. This leads us to the main result for
determining the optimal values of sensing decision νi,k and
quantization bits qi,k, described as follows:
Theorem 1. With the initial condition J1 = {h1,B1},
the value of the finite horizon finite battery problem with
causal information can be given by V1(h1,B1), which can be
computed by the backward Bellman dynamic programming
equation:

Vk(hk,Bk) = max
(νk,qk)∈S

{
D(νk,qk)+

E {Vk+1(hk+1,Bk+1|νk,qk)}

}
(21)

for 1 ≤ k ≤M−1. In (21), the expectation is computed over
random variables h and B. The terminal condition for the
algorithm is VM (hM,BM) = max(νM ,qM )∈S D(νM ,qM ).

Proof. See [16] for a proof.

Clearly, the optimal {νk,qk} can be computed numeri-
cally by searching over discretized values of the optimization
variables as follows:

{ν⋆
k,q

⋆
k} = argmax

(νk,qk)∈S

{
D(νk,qk)+

E {Vk+1(hk+1,Bk+1|νk,qk)}

}
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Figure 2: Single slot single user KL information number for
optimal, uniform quantization and unquantized policy

This procedure is performed offline based on the statistical
distribution of the channel gains and harvested energy pro-
cesses. Based on this procedure, the FC creates a look-up
table for optimal sensing decisions νi,k and quantization bits
qi,k corresponding to discretized values of hk and Bk. In
real time, the FC receives the causal channel gain and battery
state information from the sensors and looks for the closest
values of each quantity in the look-up table. The optimal
values are fetched corresponding to those closest discretized
parameters from the look-up table and sent to the individual
sensors through feedback channels.

V. SIMULATION RESULTS

We present simulation results for both non-causal and
causal CSI scenarios with finite battery with optimal and
uniformly quantized information. The channel power gain
between the sensor transmitter Si and the FC receiver, hi,k is
modeled as an exponentially distributed random variable with
unit mean. The energy harvesting process is also assumed
to be exponentially distributed with unit mean. It should
be noted that the channel gain being i.i.d from one time
slot to another, is assumed for its simplicity. However, the
optimization problem under consideration is not constrained
by more general assumption of the non i.i.d scenario. In
that case, both channel gains and harvested energy can be
modeled by a discrete Markov chain with a transition matrix
as in [17]. We choose µ = 1.5 and σ2 = 1 for the relevant
distributions. The probability of bit error for transmission of
quantized information is assumed to be Pe = 0.005. The
noise power spectral density is N0 = 0.02µW/Hz. The
sensing energy is Es = 0.1µJ . In all simulations we assume
the number of sensors to be N = 2. The maximum limit
on number of quantization bits is Qmax = 5. The choice
of the value of Qmax is motivated by Fig.2, which clearly
shows that the KL information number corresponding to both
optimal and uniform quantization policy and unquantized
case become virtually equal when qi,k = 5. The initial
battery level in all sensors is assumed to be 0.4µJ . For
the DP implementation both battery state Bi,k and channel
power gain hi,k are quantized to 4 different discrete levels.
The averages are taken over 104 Monte-Carlo simulations
for plots in Fig.3-Fig.6.

Fig.2 shows the comparative plot of the KL information
number (14) for a single sensor case between the optimal,
uniform and unquantized case with respect to the number
of quantization bits. The KL information number for the
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Figure 3: Probability of false alarm Pfa vs false alarm rate bound
γ for non-causal CSI with optimal quantization policy for Horizon
length M = 6, 8, 10
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Figure 4: Average detection delay (Time slots) vs mean channel
gain µh for non-causal CSI with optimal and uniform quantization
policy for horizon length M = 6, 8, 10

unquantized information case is found to be µ2

2σ2 , which
constitutes the upper bound for all quantized information
scenarios. As expected, the optimal quantization policy per-
forms better compared to its uniform counterpart. The KL
information numbers of all three policies become comparable
as the number of quantization bits increases.

Fig.3 depicts the actual probability of false alarm, Pfa,
vs the false alarm rate lower bound γ for non-causal CSI
with optimal quantization for horizon length M = 6, 8, 10
respectively. We notice that the probability of false alarm
increases with increasing horizon length for small γ. This
is due to the fact the average detection delay decreases
with increasing horizon length, which leads to decrease in
expected time to false alarm. This results in an increase of
probability of false alarm with increasing horizon length.
For our simulations, illustrated in Fig.5-Fig.6, we fix the
probability of false alarm to be Pfa = 0.01. Corresponding
values of γ are determined from the plots and used in the
simulations below. We use similar plots for optimal and
uniform quantization for both the causal and the non-causal
CSI scenario.

Fig.4 shows the average detection delay of change point λ
with respect to the mean channel gain µh for the non-causal
CSI scenario, when the battery capacity Bmax is fixed to
0.8µJ . We note from Fig.4 that the optimal quantization
policy is more sensitive to the channel gain compared to
its uniform counterpart and it has the ability to exploit
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Figure 5: Average detection delay (Time slots) vs battery capacity
Bmax for non-causal CSI with optimal and uniform quantization
policy for horizon length M = 6, 8, 10
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Figure 6: Average detection delay (Time slots) vs battery capacity
Bmax for non-causal and causal CSI with optimal and uniform
quantization policy for horizon length M = 8

that property when the channel gain is significantly higher.
Fig.5 shows the average detection delay with respect to the
battery capacity Bmax for the non-causal CSI scenario. As
a numerical comparison, we note that for M = 10 and
Bmax = 0.7µJ , the average detection delay corresponding to
the non-causal CSI scenario in the uniform quantization pol-
icy is 5.9 percent higher compared to its optimal counterpart.
We also notice that the average detection delay decreases
with increasing horizon length, since if the information
regarding CSI/ESI is non-causally available, then sensors will
be able to plan its quantization and sensing strategy better
as the horizon length increases.

Finally Fig.6 shows the comparative plots of the average
detection delay with respect to a varying battery capacity,
Bmax, for both non-causal and causal CSI scenario with
the optimal and uniform quantization policies and horizon
length M = 8. As a numerical comparison, it can be seen
that for M = 8 and Bmax = 0.7µJ , the average detection
delay corresponding to the optimal quantization policy in the
causal CSI scenario is 15.3 percent higher compared to its
non-causal counterpart. Similar plots can be obtained (but
excluded due to space limitations) with respect to varying
the mean channel gain µh while keeping the battery capacity
Bmax fixed.

VI. CONCLUSIONS

This paper focuses on the problem of minimizing the
detection delay of a change point in the quickest change
detection framework for multi-sensor system powered by
energy harvesting. The optimal sensing and quantization
strategy is formulated as a stochastic control problem in
both the non-causal and the causal CSI scenario and solved
using dynamic programming. The non-causal CSI scenario
provides a benchmark of average detection delay for the more
practical causal CSI scenario. We also compute the optimal
quantization thresholds once the number of quantization bits
are obtained from dynamic programming, by optimizing
a suitable KL divergence measure involving the quantized
variables. We compare this optimal threshold policy with the
uniform threshold policy and find that the optimal policy
performs significantly better for lower quantization bits,
whereas for higher quantization bits the performance benefits
of using the optimal quantization thresholds are marginal
compared to its uniform counterpart.
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