
Proceedings of the Edinburgh Mathematical Society (2002) 45, 731–759 c©
DOI:10.1017/S001309150000064X Printed in the United Kingdom

PERTURBATIONS OF VECTOR FIELDS ON TORI:
RESONANT NORMAL FORMS AND

DIOPHANTINE PHENOMENA

DETTA DICKINSON1, TODOR GRAMCHEV2 AND MASAFUMI YOSHINO3

1Department of Mathematics, Logic House, NUI Maynooth,
Co. Kildare, Republic of Ireland (ddickinson@maths.may.ie)

2Dipartimento di Matematica, Università di Cagliari,
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Abstract This paper concerns perturbations of smooth vector fields on Tn (constant if n � 3) with
zeroth-order C∞ and Gevrey Gσ , σ � 1, pseudodifferential operators. Simultaneous resonance is intro-
duced and simultaneous resonant normal forms are exhibited (via conjugation with an elliptic pseudo-
differential operator) under optimal simultaneous Diophantine conditions outside the resonances. In the
C∞ category the results are complete, while in the Gevrey category the effect of the loss of the Gevrey
regularity of the conjugating operators due to Diophantine conditions is encountered. The normal forms
are used to study global hypoellipticity in C∞ and Gevrey Gσ . Finally, the exceptional sets associated
with the simultaneous Diophantine conditions are studied. A generalized Hausdorff dimension is used to
give precise estimates of the ‘size’ of different exceptional sets, including some inhomogeneous examples.
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1. Introduction

The purpose of this paper is to study resonant normal forms and the Diophantine phe-
nomena of perturbations of commuting resonant vector fields Xk on the n-dimensional
torus T

n = R
n/(2πZ)n. Here

Xk = 〈ωk, ∂x〉 =
n∑

j=1

ωk
j ∂xj

, 1 � k � d,

where x = (x1, . . . , xn) ∈ T
n and ωk = (ωk

1 , . . . , ωk
n) ∈ R

n, and ∂x = (∂x1 , . . . , ∂xn),
∂xj = ∂/∂xj . If n = 2 we also allow the Xk to be non-constant vector fields.
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The Xk are perturbed with zeroth-order classical pseudodifferential operators (denoted
PDOs hereafter) so that the operators

bk(x, D) := −iXk + ak(x, D), 1 � k � d, (1.1)

are commuting, where D = (Dx1 , . . . , Dxn
), Dxj

= −i∂xj
, j = 1, . . . , n, and ak(x, D) is

a zeroth-order PDO defined by

ak(x, D)f =
∑
ξ∈Zn

eixξak(x, ξ)f̂(ξ),

where

f̂(ξ) = F(f)(ξ) =
∫

Tn

e−ixξf(x) dx

is the Fourier transform on the n-dimensional torus T
n and ak(x, ξ) ∈ S0(Tn × R

n) is
a classical symbol of PDOs. As a special case of (1.1), we also consider the following
first-order commuting differential operators:

Lj = 〈ωj , Dx〉 + aj(x), aj ∈ C∞(Tn), j = 1, . . . , d. (1.2)

We will actually consider perturbations with functions in the Gevrey class Gσ(Tn). Recall
that Gσ(Tn) is the set of all f ∈ C∞(Tn) such that there exists C > 0 satisfying

max
x∈Tn

|∂βf(x)| � C |β|+1(β!)σ, β = (β1, . . . , βn) ∈ Z
n,

where β! = β1! · · ·βn! and |β| = β1 + · · · + βn. Clearly, G1(Tn) coincides with the set of
all analytic functions on T

n.
For a single vector field (respectively, map) with an isolated singular (respectively,

fixed) point the formal reduction to its linear part requires a non-resonance condition
on the eigenvalues of the linear part, while in order to show the convergence of formal
transformations, arithmetic conditions are imposed (see the surveys [26, 40] and the
references therein). If commuting vector fields or maps are considered, it is not necessary
for each vector field or map to satisfy these conditions. More precisely, simultaneous
arithmetic conditions are required (see [11,14,24,34,39,40]). Certain exceptional sets
will arise in connection with some of the parameters in these simultaneous arithmetic
conditions (cf. [18]) and these will be discussed later.

This paper deals with four closely related problems. First, after introducing the concept
of simultaneous (non)resonance for ω1, . . . , ωd, we are interested in the simultaneous
resonant normal forms of {bk(x, D)}d

1 and/or {Lk}d
1 via conjugation with an elliptic

PDO (which in the case of differential operators reduces to a change of variables on T
n)

in the framework of the C∞ and the Gevrey spaces. Roughly speaking, resonant normal
forms mean that lower-order terms depend only on resonant variables. For this purpose
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the geometrical properties of a simultaneously resonant set associated with ω := {ωk}d
1

and defined by
Γω

Z := {z ∈ Z
n; 〈ω1, z〉 = · · · = 〈ωd, z〉 = 0}

will be considered. We say that ω1, . . . , ωd are simultaneously non-resonant (respectively,
resonant) if Γω

Z
= {0} (respectively, Γω

Z
�= {0}). Using theorems on finitely generated free

abelian groups and exact sequences the existence of suitable bases for Γω
Z

will be obtained
and will lead naturally to the introduction of resonant variables on the torus. These
constructions are invariant under the action of the group of linear automorphisms of the
lattice Z

n. A simultaneous resonant normal form will be exhibited for every perturbed
system under simultaneous Diophantine conditions for ω1, . . . , ωk on the set Z

n \ Γω
Z

in the class C∞ or Gevrey Gσ. In particular, if Γω
Z

= {0}, it is possible to transform
{bk}d

1 (respectively, {Lk}d
1) simultaneously into a constant PDO (respectively, differential

operator). It will also be shown that in general the Diophantine condition is necessary
to transform the perturbed systems to their normal forms: constant pseudodifferential
operators on T

n. For results on normal forms in dynamical systems by means of KAM-
type methods and Diophantine phenomena we refer, for example, to [1,7,9,13,19,29,
35,40] and the references therein.

We then consider the simultaneous reduction of non-constant vector fields to constant
ones for the case n = 2. There are very few results regarding normal forms of vector
fields and differential operators on T

n except for those vector fields on T
2 of the form

∂x1 + λ(x)∂x2 , where the rotation number of the Poincaré map plays an essential role
(cf. [1]). For n � 3, there is a recent result of Wenyi and Chi [12] for the reduction of
a smooth vector field L on T

n to a constant one provided that the adjoint operator L∗

is globally C∞ hypoelliptic. We stress that the classical results of Arnold and Moser in
KAM theory are not applied to the original vector field, but to a small perturbation of
it (cf. [40] and the references therein).

In the second part of this paper we estimate the loss of the Gevrey regularity of
the conjugating PDO if the lower-order perturbations are Gevrey Gσ. Although we are
not able to prove that our Gevrey estimates are best possible, there is some evidence
to suggest this from the sharp loss of Sobolev regularity in each inductive step. This
phenomenon resembles a similar one in the effective stability (Nekhoroshev estimates)
of normal forms in dynamical systems and their applications (cf. [2,21,22,30,33]; see
also [23] for Nekhoroshev estimates for billiard ball maps in R

n, n � 3, by means of
Gevrey techniques).

In the third part of the paper an application of the resonant normal forms to the study
of the global hypoellipticity of commuting systems of pseudodifferential operators is pre-
sented. Indeed, assuming Γω

Z
= {0}, we show that certain inhomogeneous Diophantine

conditions completely characterize the global properties in C∞ and in Gθ for large values
of θ by virtue of the Nekhoroshev-type estimates. The case Γω

Z
�= {0} is more difficult. A

natural extension of completely resonant systems is introduced and it will be shown that
the discrete condition is necessary and sufficient for the global hypoellipticity of the per-
turbations of such systems. We will also consider systems where no discrete phenomena
appear.
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The final question considered in this paper is that of the ‘size’ of the exceptional sets
of ω associated with Gσ Siegel conditions, for which perturbations of the vector fields
Xk are not reducible to normal forms. The inhomogeneous Diophantine conditions also
play an essential role when studying the global properties of the reduced operators on
the torus. Here the problem is twofold: firstly, ordinary Hausdorff dimension gives little
information about the exceptional sets in the Gevrey category and so we use logarithmic
Hausdorff dimension; secondly, the inhomogeneity of the Diophantine conditions causes
some difficulties.

The paper is organized in the following way. Section 2 deals with the geometry of the
resonant set and § 3 is devoted to simultaneous normal forms. The Nekhoroshev-type
estimates are shown in § 4 and global hypoellipticity and solvability are discussed in
§ 5. Finally, estimates for the exceptional sets using a generalized concept of Hausdorff
dimension are proved in § 6.

2. Simultaneous resonance

The resonant set Γω
Z

will now be investigated. We observe that if P ∈ GL(n; Z), where
GL(n; Z) is the set of all n × n integer matrices with determinant ±1 (i.e. the group
of linear automorphisms of the lattice Z

n), and y = trPx, then 〈ωj , ∂x〉 → 〈Pωj , ∂y〉,
which implies the invariance property P (Γω

Z
) = ΓPω

Z
, Pω = {Pω1, . . . , Pωk}. Also note

that if the R-span of ω̃1, . . . , ω̃� ∈ R
n coincides with the R-span of ω1, . . . , ωk ∈ R

n, then
Γω

Z
= Γ ω̃

Z
.

Theorem 2.1. Assume Γω
Z

�= {0}. Then the following conditions hold.

(i) There exist κ1, . . . , κr ∈ Z
n\{0} linearly independent over R such that the {κν}r

ν=1
form a basis of Γω

Z
, i.e.

Γω
Z =

{
z ∈ Z

n; z =
r∑

ν=1

tjκ
j , with tj ∈ Z uniquely determined

}
.

The number r = r(ω) = dimZ Γω
Z

is invariant under the action of GL(n; Z), i.e.
r(ω) = r(Pω) for every P ∈ GL(n; Z). It is always possible to find κj (after changes
of indices xµ → xν) to satisfy

κj = (κj
1, κ

j
2, . . . , κ

j
n), κj

j ∈ N, κj
ν = 0, 1 � ν � j − 1. (2.1)

Every other basis {κ̃ν}r
ν=1 is represented uniquely in the form, (κ̃1, . . . , κ̃r) =

(κ1, . . . , κr)Q, for some Q ∈ GL(r; Z).

(ii) Let κ1, . . . , κr be a basis of Γω
Z

. Then there exists P ∈ GL(n; Z) such that its first r

columns coincide with κ1, . . . , κr, i.e. the basis of Γω
Z

is extended into a basis of Z
n.

In particular, if y = (y′, y′′) = trPx with y′ = (y1, . . . , yr) and y′′ = (yr+1, . . . , yn),
then

Pωk = (0′, θk), θk ∈ R
n−r, 1 � k � d, (2.2)
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with Γ θ
Z

= {0}, i.e. θ1, . . . , θk are non-resonant in R
n−r. In the y-variables the

resonant set ΓPω
Z

coincides with Z
r
y′ , where Z

r
y′ is the lattice in Z

r with basis y′.
The set of all matrices P from GL(n; Z) with such a property is isomorphic to
M(n−r)×r(Z) ⊕ GL(n − r; Z), where M(n−r)×r(Z) denotes the group of (n − r) × r

integer matrices.

In order to prove the theorem we recall the following well-known assertion (see [6] for
more general statements).

Lemma 2.2. Let A ⊂ B := Z
n be a subgroup. Set C = A⊥

Z
= {ξ ∈ Z

n : ξ ⊥ A}. Then

B = A ⊕ C (2.3)

holds if and only if the sequence

0 → A
id−→ B

π−→ C → 0 (2.4)

is exact (i.e. Ker π = id(A)) where π (respectively, id) stands for the orthogonal projection
on C (respectively, the identity map).

Proof of Theorem 2.1. The existence of a basis follows from the well-known fact
that any subgroup A (in our case A = Γω

Z
) of a finitely generated abelian group B (in

our case B = Z
n) is also a finitely generated abelian group [6]. Define πj : R

n → R
n by

πj(ξ) = 〈ξ,�ej〉�ej = ξj�ej , where �ej is the jth unit vector. Without loss of generality we may
assume that for each j ∈ {1, . . . , n} we have πj(ωk) �= 0 for some k, for otherwise we are
reduced to a space of dimension n−1. Because Γω

Z
is a linear Z-submodule of Z

n, π1(Γω
Z

)
is closed under summation, and therefore there exists p1 ∈ N such that π1(Γω

Z
) = p1Z�e1.

Let κ1 ∈ Γω
Z

be such that π1(κ1) = p1�e1. Let Λ2 ⊂ Γω
Z

be the Z-submodule such that
π1(Λ2) = {0}. In fact, Λ2 is uniquely determined: Λ2 = {(ξ1, . . . , ξn) ∈ Γω

Z
: ξ1 = 0}.

If Λ2 = {0}, the set Γω
Z

is generated by κ1 and r = 1. If Λ2 �= {0}, this procedure is
continued and sequences {κk} ⊂ Γω

Z
, {pk} ⊂ N are constructed together with a nested

family of Z-submodules {Λk}, Λk ⊂ Λk−1 such that πk(Λk) = pkZ�ek, πk(κk) = pk�ek.
Clearly, this procedure ends after a finite number of steps. Let r � n − 1 be the smallest
integer such that Λr+1 = {0}. Then the vectors κj form a basis of Γω

Z
and satisfy (2.1).

Now let {κ̃j}r
1 ⊂ Γω

Z
be another basis of Γω

Z
. Then there exist two r × r integer matri-

ces Q and Q̃ such that (κ1 . . . κr)Q = (κ̃1 . . . κ̃r) and (κ̃1 · · · κ̃r)Q̃ = (κ1 · · ·κr). Hence
Q̃ = Q−1 and detQdet Q̃ = 1. Because det Q and det Q̃ are integers it follows that
det Q = det Q̃ = ±1, i.e. Q, Q̃ ∈ GL(r; Z). Conversely, for any Q ∈ GL(r; Z), (κ1 . . . κr)Q
gives a basis of Γω

Z
. This proves (i).

Set A = Γω
Z

and C = A⊥
Z

= {ξ ∈ Z
n : ξ ⊥ A}. Evidently, A ⊂ C⊥

Z
. If we show the

exactness of (2.4), namely ρ ∈ Z
n and ρ ⊥ C imply ρ ∈ A, then Lemma 2.2 yields the

first assertion of (ii), since by (2.3) we can always extend a basis of A with a basis of C

and obtain a basis of Z
n.
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Let ρ ∈ Z
n, ρ ⊥ C. Set C⊥

R
= {ξ ∈ R

n; ξ ⊥ C}. Fix a basis as in (2.1). Since κj ⊥ C

for j = 1, . . . , r, and dimR C⊥
R

= r, we obtain that κ1, . . . , κr is a basis of C⊥
R

and ρ is
a linear combination of κ1, . . . , κr, implying that 〈ωk, ρ〉 = 0 for all 1 � k � d. Since
ρ ∈ Z

n, this implies that ρ ∈ A.
Next, note that κ1, . . . κr become the first r unit vectors in R

n
y . Thus the invariance

of the resonant set implies that ΓPω
Z

= {ζ ∈ Z
n : ζr+1 = · · · = ζn = 0} and (2.2) is

therefore true. If θ1, . . . θn−r are resonant in R
n−r
y′′ , there will exist a vector ζ0 ∈ Z

n−d\{0}
orthogonal to θ1, . . . , θn−r, so that (0′, ζ0) ∈ ΓPω

Z
. This is impossible as ζ0 �= 0′′.

The proof is concluded by observing that P ∈ GL(n; Z) preserves the basis �e1, . . . , �er

of ΓPω
Z

= Z
r × 0 if and only if

P =

(
Ir 0(n−r)×r

M P ′′

)

with P ′′ ∈ GL(n−r; Z) and M ∈ M(n−r)×r(Z). The basis κ1, . . . , κr is called a canonical
basis of Γω

Z
, and r is a (Z-)dimension of Γω

Z
over Z, so that we write dimZ Γω

Z
= r. We

stress that Z
n \ Γω

Z
is not a linear Z-submodule of Z

n. �

Remark 2.3. Take A = {(2t, −2t); t ∈ Z}, C = A⊥
Z

= {(t, t); t ∈ Z}. Then although
A, B = Z

2 and C are finitely generated abelian groups, the decomposition (2.3) does not
hold (the sequence (2.4) is not exact because C⊥

Z
�= A).

The vectors ωk ∈ R
n (1 � k � d) are said to satisfy the simultaneous resonant σ-Siegel

condition if, for every ε > 0,

lim inf
|ξ|→∞, ξ∈Zn\Γ ω

Z

(eε|ξ|1/σ

max
1�k�d

|〈ωk, ξ〉|) > 0, (Si)σ

for 1 � σ < ∞, and

lim inf
|ξ|→∞, ξ∈Zn\Γ ω

Z

(|ξ|τ max
1�k�d

|〈ωk, ξ〉|) > 0, (Si)∞

when σ = ∞ for some τ ∈ R.

Remark 2.4. Observe that (Si)σ and (Si)∞ are invariant under the action of GL(n; Z).
In particular, extending to a basis of Z

n and in view of (2.2), we get that (Si)σ (respec-
tively, (Si)∞) becomes, for each ε > 0,

lim inf
|ξ′′|→∞, ξ′′∈Zn−r

(eε|ξ′′|1/σ

max
1�k�d

|〈θk, ξ′′〉|) > 0 (Si)′
σ

(respectively,

lim inf
|ξ′′|→∞, ξ′′∈Zn−r

(|ξ′′|τ max
1�k�d

|〈θk, ξ′′〉|) > 0, (Si)′
∞

for the non-resonant vectors θ1, . . . , θk in R
n−k
y′′ ).
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If d = 1 and ω1 ∈ R
n is non-resonant, i.e. Γω

Z
= {0}, then (Si)∞ (respectively, (Si)σ,

1 � σ < ∞) is the well-known small divisor condition for ω1 and the number τ in (Si)∞
is necessarily not less than n−1 [38] (respectively, coincides with the Gevrey type Siegel
condition used in [25]; see also [4,37] for σ = 1). Furthermore, if n � 3 and d = n − 1,
(Si)∞ in the non-resonance case is the same as the simultaneous Diophantine condition
used in [5].

We exhibit examples related to the above notions. In the completely resonant case
r = n − 1, according to Theorem 2.1, after a linear automorphism of the torus T

n we
can reduce the original system to the one consisting of vector fields proportional to ∂yn .
Next, consider two vector fields

L1 = ∂x1 + α1∂x2 , L2 = ∂x1 + α2∂x3

on T
3, where α1 and α2 are irrational. Then the resonant set of Lj has dimension 1,

j = 1, 2, and Lj satisfies (Si)σ if and only if αj is not Liouville, for σ = ∞, and αj is not
σ-Liouville. Thus for every ε > 0 there exists Cε > 0 such that∣∣∣∣αj − p

q

∣∣∣∣ � Cε exp(−εq1/σ), p ∈ Z, q ∈ N.

Furthermore, the system χ = {L1, L2} is simultaneously non-resonant if and only if
α1/α2 is irrational. Finally, if α1 and α2 are rationally independent σ-Liouville numbers,
then the simultaneous σ-Siegel condition (Si)σ is satisfied if and only if for σ = ∞, α1

and α2 satisfy the simultaneous Diophantine condition in [34] (see also [5,27]), while for
1 � σ < ∞ and for every ε > 0 we can find Cε > 0 such that

max
j=1,2

{∣∣∣∣αj − p

q

∣∣∣∣
}

� Cε exp(−εq1/σ), p ∈ Z, q ∈ N

(cf. [4] for σ = 1, see also [24] for other simultaneous Gevrey arithmetic conditions).
Let C∞

2π(Rn
x) be the space of all 2π-periodic C∞ functions (i.e. the lift on R

n of all
functions from C∞(Tn)), where R

n
x is the lattice in R

n with basis x. It is readily verified
that this space is invariant under the action of GL(n; Z), namely f(y) ∈ C∞

2π(Rn
y ) if and

only if P ∗f(x) := f(Px) ∈ C∞
2π(Rn

x) for some P ∈ GL(n; Z). We will identify C∞(Tn)
and Gσ(Tn) with C∞

2π(Rn) and Gσ
2π(Tn), respectively.

3. Global canonical form of a resonant system

First we recall the basic properties of Gσ pseudodifferential operators (see [17,36]). In
the C∞ case, the constants in the estimates below may depend on the multi-indices
α, β ∈ Z

n
+ and the index of homogeneity j. Let FSm

σ = FSm
σ (Tn × R

n) be the set of all
formal sums

∑∞
j=0 am−j(x, ξ) such that am−j ∈ Gσ(Tn × (Rn \ {0})), ordξ am−j = m− j

(i.e. am−j is (positively) homogeneous of order m − j) and there exists A > 0 satisfying

sup
x∈Tn

|∂β
x∂γ

ξ am−j(x, ξ)| � Aj+|γ|+|β|+1(β!j!)σγ!|ξ|m−j−|γ| (3.1)
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for all β ∈ Z
n
+, γ ∈ Z

n
+, j ∈ Z+, ξ ∈ R

n. By Cauchy’s integral formula and the homo-
geneity of am−j , (3.1) is equivalent to the existence of a neighbourhood S̃ in C

n of Sn−1

such that

sup
x∈Tn, ξ∈S̃

|∂β
xam−j(x, ξ)| � Aj+|β|+1(β!j!)σ, β ∈ Z

n
+, j ∈ Z+.

A function a(x, ξ) ∈ Gσ(Tn×R
n) is said to be a Gσ realization of

∑∞
j=0 am−j(x, ξ) ∈ FSm

σ ,
written a(x, ξ) ∼

∑∞
j=0 am−j(x, ξ), if for every γ ∈ Z

n
+ one can find C = Cγ > 0 such

that ∣∣∣∣∂β
x∂γ

ξ

(
a(x, ξ) −

N∑
j=0

am−j(x, ξ)
)∣∣∣∣ � CN+|γ|+|β|+1(β!N !)σ|ξ|m−N−|γ|−1

for all β ∈ Z
n
+, N ∈ Z+, x ∈ T

n and ξ ∈ R
n with |ξ| � 1. The set of Gσ realizations

of order m is denoted by Sm
σ (Tn × R

n) and the set of pseudodifferential operators with
symbol in Sm

σ (Tn × R
n) by FSm

σ (Tn). We also recall that for each ã ∈ FSm
σ there exists

a realization a ∈ Sm
σ such that a ∼ ã. If b(x, ξ) is another Gσ realization of ã, then

R(x, ξ) = a(x, ξ)− b(x, ξ) ∈ S−∞
σ (Tn × R

n), i.e. R is a Gσ smoothing symbol, so that for
some c > 0

sup
x∈Tn

|∂β
xR(x, ξ)| � c−|β|−1(β!)σe−c|ξ|1/σ

, ξ ∈ R
n, β ∈ Z

n
+.

Note that the composition rule for PDOs on T
n is valid as in the local case, that is if

a(x, ξ) ∼
∞∑

j=0

aµ−j ∈ Sµ
σ (Tn × R

n) and b(x, ξ) ∼
∞∑

j=0

bν−j(x, ξ) ∈ Sν
σ(Tn × R

n),

then c(x, D) := a(x, D) ◦ b(x, D) is in FSν+µ
σ (Tn), with symbol

c(x, ξ) = a(x, ξ) ◦ b(x, ξ) ∼
∞∑

j=0

cµ+ν−j(x, ξ)

given by (see [17])

cµ+ν−j(x, ξ) =
∑

p+q+|β|=j

1
β!

Dβ
ξ aµ−p(x, ξ)∂β

x bν−q(x, ξ), j ∈ Z+.

Furthermore, if a(x, ξ) is elliptic, i.e. aµ(x, ξ) �= 0 for (x, ξ) ∈ T
n × (Rn \ 0), then a(x, D)

admits a (formal) inverse a−1(x, D) ∈ FS−µ satisfying a ◦ a−1 − id ∈ FS−∞
σ and a−1 ◦

a − id ∈ FS−∞
σ . Recall that for a given P ∈ GL(n; Z), the change of variables y = Px

induces the linear (symplectic) change (x, ξ) → (y, η), x = P−1y and ξ = trPη. We have
(P ∗a)(y, η) = a(P−1y, trPη) for y ∈ T

n, η ∈ R
n. Thus the composition is invariant,

i.e. for two PDOs a = a(x, D) and b = b(x, D) we have

P ∗(a ◦ b) = P ∗a ◦ P ∗b. (3.2)
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Moreover, if a is a PDO having a symbol depending in x only on resonant variables, the
same is true for P ∗a.

We denote by C∞(Rn\{0}; Gσ(Tn
x)) the set of functions a(x, ξ) smooth in ξ ∈ R

n\{0}
and valued in Gσ(Tn

x). Now we state the first main result on simultaneous normal forms.

Theorem 3.1. Let 1 � σ � ∞ and suppose that (Si)σ holds for ω. If r = dimZ Γω
Z

�
1, fix a resonant (canonical) basis {κj}r

1. Assume that if σ < ∞, then ak
−j(x, ξ) is in

C∞(Rn \ {0}; Gσ(Tn
x)) for k = 1, . . . , d, j ∈ Z+. Then there exists an elliptic symbol

q(x, ξ) ∼
∑∞

j=0q−j(x, ξ) ∈ FS0(Tn × R
n) and symbols αk(y, ξ) ∼

∑∞
j=0α

k
−j(y, ξ) ∈

FS0(Tr × R
n) such that for 1 � k � d

(−iXk + ak(x; D)) ◦ q(x; D) = q(x; D) ◦ (−iXk + αk(κx; D) + Rk(x, D)), (3.3)

where Rk(x, ξ) ∈ S−∞(Tn × R
n) and κx := (〈κ1, x〉, . . . , 〈κr, x〉).

Proof. Let P ∈ GL(n; Z) be as in Theorem 2.1, with the first r rows being κ1, . . . , κr,
and define y = Px. In view of (3.2), we will consider the new variables (y, η), with κj = �ej .
The resonant set is the lattice Z

r
y′ in R

r
y′ , where y = (y′, y′′) and y′ = (y1, . . . , yr). For

brevity, a(y, η) is used instead of P ∗a(y, η) = a(P−1y, trPη) for the symbol a(x, ξ). We
write terms of the same order of homogeneity on both sides of (3.3) in the new variables
y. The first system of d equations involves both q0(y, η) and αk

0(y′, η) (1 � k � d)

〈θk, Dy′′〉q0 + ak
0(y, η)q0 = αk

0(y′, η)q0, η ∈ R
n \ 0. (3.4)

The advantage of the expression (3.4) is that we can regard the resonant variables y′ as
parameters if r � 1. A non-zero solution of (3.4) can be found if for every k ∈ {1, . . . , d},
αk

0 is chosen to satisfy∫
Tn−r

ak
0(y′, y′′, η) dy′′ = αk

0(y′, η), y′ ∈ T
r, η ∈ R

n \ {0}, (3.5)

i.e. the Fourier coefficients Fy→ζ(ak(y, η) − αk
0(y′, η)) vanish on the resonant set, which

in the canonical variables is defined by ζr+1 = · · · = ζn = 0. By the commutativity we
have 〈θj , Dy′′〉ak

0(y, η) = 〈θk, Dy′′〉aj
0 for 1 � j, k � d. As 〈θj , Dy′′〉αk

0 ≡ 0, it follows
from the Frobenius Theorem and some simple calculations that the general solution of
(3.4) is given by

q0(y, η) = �(y′, η)eiψ(y,η), �(y′, η) ∈ Gσ(Tr × (Rn \ 0)), ordη � = 0,

where ψ(y, η) is the unique solution of the following system of equations with Fourier
coefficients vanishing on the resonant set ΓPω

Z
:

〈θk, ∂y′′〉ψ = fk
0 (y, η) := −ak

0(y, η) + αk
0(y′, η), 1 � k � d. (3.6)

In fact, ψ is defined by

Fy′′→ζ′′(ψ(y′, y′′, η)) =
Fy′′→ζ′′(fk

0 (y′, y′′, η))
i〈θk, ζ ′′〉
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if 〈θk, ζ ′′〉 �= 0 for some 1 � k � d, and is 0 otherwise. In view of (Si)σ and the results
in [25], ψ(y, η) (and therefore q0(y, η)) is Gσ in x. The composition rule for PDOs yields

(q−1
0 ◦ bk ◦ q0)(y, η) = 〈θk, η′′〉 + αk

0(y′, η) + (O(|η|−1)), |η| → ∞

for all 1 � k � d, where bk stands for P ∗(iXk + ak). We proceed by induction: suppose
that there exist αk

−j(y
′, η) ∈ C∞(Rn\{0}; Gσ(Tr

y′)), ordη αk
−j(y

′, η) = −j, 0 � j � N −1,
1 � k � d, such that

ak(y, η) ∼
N−1∑
j=0

αk
−j(y

′, η) +
∞∑

j=N

ak
−j(y, η), 1 � k � d.

Now we look for an elliptic symbol q(y, η) ∼ 1 + q−N (y, η), ordη q−N = −N , and
αk

−N (y′, η) ∈ C∞(Rn \ {0}; Gσ(Tr)) such that

(q−1 ◦ bk ◦ q)(y, η) = 〈θk, η′′〉 +
N∑

j=0

αk
−j(y

′, η) + O(|η|−N−1),

when |η| → ∞ for all 1 � k � d. For k = 1, . . . , d this gives the system of equations

−i〈θk, ∂y′′〉q−N (y, η) = fk
−N (y, η) := αk

−N (y′, η) − ak
−N (y, η), (3.7)

for q−N (y, η) and αk
−N (y′, η). In view of (3.5) and (3.6) define αk

−N by

Fy′→ζ′(αk
−N (y′, η)) = Fy→ζ(ak

−N (y′, y′′, η))|ζ=(ζ′,0). (3.8)

By the Frobenius Theorem, (3.8) and (Si)σ, (3.7) admits a unique solution q−N (y, ξ),
if Fy′→ζ′(q−N (y′, y′′, η)) = 0 for ζ ′ ∈ Z

r. Moreover, in view of (Si)σ, q−N (y, ξ) is in
C∞(Rn \ {0}; Gσ(Tn)).

Finally, construct an elliptic PDO q by

q(y, η) = · · · ◦ (1 + q−N (y, η)) ◦ · · · ◦ (1 + q−1(y, η)) ◦ q0(y, η). (3.9)

The right-hand side of (3.9) defines a formal symbol in FS0(Tn × (Rn \ 0)). Taking any
realization of this formal symbol, the above calculations yield (3.3) and the estimates on
the remainders. �

Remark 3.2. Let ω ∈ R
n be non-resonant and assume that ω does not satisfy (Si)σ

for some 1 � σ � ∞. Then we can find f(x) ∈ Gσ(Tn) such that the pseudodifferential
operator with symbol 〈ω, ξ〉 + f(x)ξ|ξ|−1 cannot be transformed via conjugation (3.3)
into a constant PDO.

Indeed, in view of the assumption on ω there exists a positive constant δ > 0 and a
sequence ρk ∈ Z

n \ 0 (k = 1, 2, . . . ) such that

lim
k→∞

e−2δ|ρk|1/σ |〈ω, ρk〉|−1 = ∞.
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We choose a function f(x) =
∑

η f̂(η)eiηx ∈ Gσ(Tn) such that f̂(η) = e−δ|ρk|1/σ

if η = ρk,
f̂(η) = 0 for η �= ρk. The solution q0(x, ξ) of the equation 〈ω, Dx〉q0 = f(x)ξ/|ξ| satisfies
|Fx→η(q0(x, ξ))| � Ceδ|η|1/σ

for η = ρk, k ∈ N, which contradicts the fact that q0 ∈ Gσ

in x. Thus, our Diophantine conditions are optimal.

Remark 3.3. In Theorem 3.1 perturbations of constant vector fields Xk are con-
sidered. If Xk is a variable coefficient vector field, the problem is essentially a global
nonlinear one. There follow two examples of a system of overdetermined vector fields
being simultaneously transformed into constant vector fields. First, any non-singular
hypoelliptic real vector field on T

2 is diffeomorphic to a non-zero multiple of ∂t + ρ∂x

with ρ being an irrational non-Liouville number (cf. [28]). The second example is an
overdetermined system of vector fields, L = dt + ω(t) ∧ ∂x, x ∈ T

1, t = (t1, . . . , tn) ∈ T
n,

ω(t) =
∑n

j=1 ωj(t) dtj being a real-valued smooth closed one-form on T
n. The corre-

sponding family of n commuting vector fields associated with L (cf. [5]) is given by
Lj = ∂tj + ωj(t)∂x, 1 � j � n. Straightforward calculations show the existence of a
real-valued function h(t) on T

n such that ∂tj
h(t) = ωj(t) − cj , with cj being the mean

value [ωj(·)]n of ωj , 1 � j � n. Then the family {Lj}n
1 is transformed into {∂sj + cj∂y}n

1
via the diffeomorphism of T

n+1 : y = x − h(t), s = t.

We now study the simultaneous reduction of a family of commuting vector fields with
variable coefficients on T

2

Xj = ∂t + hj(t, x)∂x, j = 1, . . . , d.

The commutativity relations are given by

∂t(hk − hj) = hk∂xhj − hj∂xhk, j, k = 1, . . . , d. (3.10)

Let ψt
j : T

1 → T
1 be the time map of Xj , defined by ψt

j(ξ) = xj(t; ξ), where xj(t; ξ) is a
solution of ẋj = hj(t, xj), xj(0) = ξ. Clearly, (3.10) is equivalent to ψt

j ◦ ψs
k = ψs

k ◦ ψt
j ,

s, t ∈ R, j, k = 1, . . . , d.
Recall that the Poincaré map of Xj , given by Pj := ψ2π

j : T
1 → T

1, is a diffeomorphism
of T

1 and assume the orientation-preserving property of Pj . The rotation number of Pj is
denoted by ρj ∈ R (ρj is also called the rotation number of the vector field Xj). Moreover,
suppose that there exists a smooth diffeomorphism u simultaneously conjugating the
maps P1, . . . , Pd to the rotations Rρ1 , . . . , Rρd

, where Rρj (z) = z + ρj , z ∈ T (j =
1, . . . , d), so that

u−1 ◦ Pj ◦ u = Rρj , j = 1, . . . , d. (3.11)

Theorem 3.4. Let 1 � σ � +∞. If d � 2, assume that the Poincaré maps P1, . . . , Pd

are orientation preserving and that there exists an index j ∈ {1, . . . , d} such that (2π)−1ρj

is irrational. Then if a Gσ diffeomorphism u on T
1 satisfying (3.11) can be found, the

map Φ : t = s, x = φ(s, y), where φ(s, y) = x1(s, u(y − s(2π)−1ρ1)) if d = 1 and
φ(s, y) = xj(s, u(y − s(2π)−1ρj)) if d � 2, is a Gσ diffeomorphism of T

2 transforming
∂t + hk(t, x)∂x to ∂s + (2π)−1ρk∂y for all 1 � k � d.
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Proof. We want to reduce the vector fields Xj to ∂t +ρj∂x by the change of variables
on T

2, (t, x) = Φ(s, y) with t = s and x = φ(s, y) simultaneously. By simple computation
it can be seen that ∂s + (2π)−1ρj∂y = ∂t + (φs + ρjφy)∂x. Hence it is necessary to solve
the equation

φs + ρjφy = hj(s, φ(s, y)), j = 1, . . . , d.

By the definition of xj(t; ξ), we obtain for ξ = u(y − s(2π)−1ρj), t = s,

∂sφ + (2π)−1ρj∂yφ = ẋj(t, ξ) − (2π)−1ρj∂ξxj(t; ξ)u′(y − s(2π)−1ρj)

+ (2π)−1ρj∂ξxj(t; ξ)u′(y − s(2π)−1ρj)

= ẋj(t; ξ)

= hj(t, xj(t; ξ)) = hj(s, φ(s, y)).

Hence φ transforms ∂t +hj(t, x)∂x into ∂s +(2π)−1ρj∂y. If d � 2 for i �= j, ∂t +hi(t, x)∂x

is transformed to ∂s + gi(s, y)∂y for some gi ∈ Gσ(T2; R). The commutativity implies
that

(∂s + (2π)−1ρj∂y)gi(s, y) = 0, i = 1, . . . , d, i �= j.

Since (2π)−1ρj is irrational, it is readily verified from the Fourier expansion that the gi

are constants. Because the rotation number is invariantly defined for vector fields on T
2,

we have gi(s, y) ≡ (2π)−1ρi.
In order to prove that the map Φ is a Gσ diffeomorphism on T

2, note that the Jacobian
of Φ does not vanish, as it is equal to ∂yφ. For ξ = u(y − s(2π)−1ρj) we have ∂yφ(s, y) =
∂ξxj(t; ξ)u′(y − s(2π)−1ρj), and since u is a Gσ diffeomorphism, u′(y) �= 0 for every
y ∈ R. On the other hand, θ(t; z) := ∂zxj(t; z) satisfies

θ̇ = ∂xhj(t, xj(t; z))θ, θ|t=0 = 1,

which implies that θ(t; ξ) = ∂ξxj(t; ξ) �= 0 for all t ∈ R, ξ ∈ R. Thus ∂yφ(s, y) �= 0
for all s ∈ R, y ∈ R, and the map Φ is a Gσ diffeomorphism. In order to complete the
proof, we will show that φ(s + 2π, y) = φ(s, y) and φ(s, y + 2π) = φ(s, y). The latter
relation is easy; for the former one, recall that xj(2π, u(y)) = u(y + ρj) by the definition
of u. The function xj(t + 2π, u(y − ρj − sρj/2π)) solves ẋj = hj(t, xj) with initial value
ξ = xj(2π, u(y − ρj − sρj/2π)) = u(y − sρj/2π). By uniqueness it is therefore equal to
xj(t, u(y − sρj/2π)). �

Remark 3.5.

(a) Let d = 1 and suppose either that σ = 1 and ρ/(2π) = ρ1/(2π) satisfies the Bruno
condition [10] or that σ = ∞ and ρ/(2π) satisfies the usual Siegel condition. Then
by the global reduction theorems due to Herman and Bruno, the circle map P = P1

is conjugate to a rotation by a G1 or C∞ diffeomorphism.

(b) Let d = 1 and 1 < σ < +∞. We are not aware of any result on global reduction in
Gσ Gevrey classes.
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(c) Let d � 2. If σ = +∞ or σ = 1, there is a local simultaneous reduction theorem due
to Moser [34], under a simultaneous Siegel condition. A global C∞ simultaneous
reduction theorem was given by Katznelson, Kra and Ornstein [31].

(d) For d � 1 and 1 � σ < +∞, Gramchev and Yoshino [24] proved local simulta-
neous reductions of commuting Gσ circle maps under weak exponential arithmetic
conditions.

4. Nekhoroshev-type estimates for Gσ PDO

The next result shows that perturbations with Gσ PDOs are conjugated with Gθ elliptic
PDOs for some θ > σ if simultaneous small divisor conditions in the non-resonant case
are satisfied. This shows a sharp contrast with the case of commuting diffeomorphisms,
where even weaker arithmetic conditions are sufficient.

Theorem 4.1. Let Γω
Z

= {0} and let (Si)∞ in § 2 hold for some τ � −1. Let θ =
max{1, 1 + τ}. Assume that ak(x, D) (1 � k � d) is a Gσ PDO. Then there exist
symbols q−j(x, ξ) of the conjugating PDO with the following properties: there exists a
neighbourhood S̃ ⊂ C

n of the unit sphere Sn−1 such that for every s > n/2, ε > 0 we
can find M > 0, N > 0 satisfying

sup
ξ∈S̃

‖∂γ
xq−j(·, ξ)‖Hs � εM jN |γ|((θj + |γ|)!)σ, γ ∈ Z

n
+, j ∈ N, (4.1)

sup
ξ∈S̃

|αk
−j(ξ)| � εM j((θj)!)σ, k = 1, . . . , d, j ∈ N, (4.2)

where ‖ · ‖Hs denotes the usual Sobolev norm. It follows that

∞∑
j=0

q−j(x, ξ) ∈ FS0
θσ and

∞∑
j=0

α−j(ξ) ∈ FS0(Rn \ {0}).

Set θ′ = θ if σ > 1 or τ > 0, and θ′ = 1 + ρ, 0 < ρ � 1 if θ = 1 (i.e. σ = 1 and τ � 0).
Then there exist Gθσ realizations q(x, ξ), αk(ξ), 1 � k � d, and positive constants C, δ

such that

sup
x∈Tn

|∂γ
x∂β

ξ Rk(x, ξ)| � C
|β|+|γ|
2 (γ!)σ(β!)σθ′ |ξ|−|γ| exp(−δ|ξ|1/(σθ)),

for all β, γ ∈ Z
n
+, ξ ∈ R

n and 1 � k � d. Thus Rk(x, D) ∈ FS−∞
σθ (Tn), 1 � k � d. Finally,

if the symbols aj(x, ξ) depend on one base variable, the system can be transformed into
a simultaneous normal form without any restrictions on τ in the Diophantine condition
for ω1, . . . , ωd. In this case there is no loss of regularity in the remainders; more precisely,
if ak(x, D), 1 � k � d, are Gσ PDO, then Rk(x, D) are Gσ smoothing PDOs.

First we need a technical assertion, in which C∞
0 (Tn) denotes the set of smooth func-

tions with mean value zero.
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Lemma 4.2. Suppose that (Si)∞ holds. Then for every fk(x) ∈ C∞
0 (Tn) such that

Xkfr = Xrfk, 1 � r, k � d, there exists a unique solution q(x) ∈ C∞
0 (Tn) of the system

〈ωk, ∂x〉q(x) = fk(x), 1 � k � d, satisfying q̂(ξ) = 0, ξ ∈ Γω
Z

. Furthermore, for some
Cτ > 0 this unique solution satisfies the estimate

‖q‖Hs � Cτ max
1�k�d

‖fk‖Hs+τ , s � 0.

Proof. Using the Fourier transform we obtain 〈ωk, η〉q̂(η) = f̂k(η). It follows that
f̂k(η) = 0 when 〈ωk, η〉 = 0. The compatibility condition and the definition of Γω

Z
implies

that we can decompose Z
n \ Γω

Z
=

⋃d
m=1 Z ′(m), Z ′(m)

⋂
Z ′(j) = ∅, 1 � j < m � d,

with the property that 〈ωk, η〉 �= 0 for η ∈ Z ′(k), 1 � k � d. Hence for 1 � k � d the
inverse Fourier transform gives

‖q‖Hs � (2π)−n/2
d∑

k=1

( ∑
η∈Z′(k)

|η|2s

|〈ωk, η〉|2 |f̂k(η)|2
)1/2

� Cτ max
1�k�d

( ∑
η∈Zn\0

〈η〉2(s+τ)|f̂k(η)|2
)1/2

= Cτ max
1�k�d

‖fk‖Hs+τ ,

where 〈η〉 = (1 + |η|2)1/2. �

Proof of Theorem 4.1. Suppose that τ is an integer (the proof is the same for τ �∈ Z,
but there are some technical complications). Clearly, after conjugation with the symbol
eiψ(x,ξ), we may suppose that ak

0(x, ξ) = α0(ξ) for 1 � k � d, and hence that ψ = 0,
q0 = 1 and the conjugating PDO is of the form q(x, ξ) ∼ 1 +

∑∞
j=1 q−j(x, ξ). Then, by

the composition rule, q−j satisfies the following equations

〈ωk, Dx〉q−j = F k
−j(x, ξ) + Gk

−j(x, ξ) − ak
−j(x, ξ) + αk

−j(ξ) (4.3)

for 1 � k � d, where

F k
−j(x, ξ) = −

j−1∑
r=1

∑
|β|�j−r

1
β!

Dβ
ξ ak

−(j−r−|β|)(x, ξ)∂β
x q−r(x, ξ);

Gk
−j(x, ξ) =

j−1∑
r=1

q−r(x, ξ)αk
−(j−r)(ξ).

Clearly, in order to solve (4.3) we must choose

αk
−j(ξ) = −[F k

−j(·, ξ)]n − [Gk
−j(·, ξ)]n + [ak

−j(·, ξ)]n, 1 � k � d. (4.4)

Because ak(x, ξ) ∈ S0
σ(Tn), 1 � k � d, there exists a complex neighbourhood S̃ in C

n

of the unit sphere Sn−1 in R
n so that for fixed s > n/2 and τ there exists a positive

constant A such that

sup
ξ∈S̃

‖∂β
xak

−j(·, ξ)‖Hs+τ � Aj+|β|+1(j!β!)σ, j ∈ Z+, β ∈ Z
n
+. (4.5)
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By the Schauder Lemma for multiplication in Sobolev spaces, if s + τ > n/2 there exists
ω > 0 such that

‖fg‖Hs+τ � ω‖f‖Hs+τ ‖g‖Hs+τ , f, g ∈ Hs+τ
0 (Tn). (4.6)

Estimates (4.1) and (4.2) will be proved by induction. They both hold for j = 0. Suppose
that they are true for 0 � j � i − 1. By (4.6) we obtain for ξ ∈ S̃ that

‖∂γ
xF k

−i(·, ξ)‖Hs+τ

� ω

i−1∑
r=1

∑
|β|�i−r

∑
γ′�γ

(
γ

γ′

)
1
β!

‖∂γ−γ′

x Dβ
ξ ak

−(i−r−|β|)(·, ξ)‖Hs+τ ‖∂β+γ′

x q−r(·, ξ)‖Hs+τ

� εωA

i−1∑
r=1

∑
|β|�i−r

∑
γ′�γ

(
γ

γ′

)
Ai−r+|γ|−|γ′|((i − r − |β|)!(γ − γ′)!)σMr

× N |β|+τ+|γ′|((θr + |β| + |γ′| + τ)!)σ � εM iN |γ|((θi + |γ|)!)σωANτK, (4.7)

with

K =
i−1∑
r=1

(
AN

M

)i−r ∑
|β|�i−r

∑
γ′�γ

(
γ

γ′

)

×
(

A

N

)|γ|−|γ′|( (i − r − |β|)!(γ − γ′)!(θr + |β| + τ + |γ′|)!
(θi + |γ|)!

)σ

�
i−1∑
r=1

(
AN

M

)i−r ∑
|β|�i−r

∑
γ′�γ

(|γ′| + 1) . . . (|γ′| + |γ| − |γ′|)
(γ − γ′)!

×
(

A

N

)|γ|−|γ′|( (γ − γ′)!
(|γ′| + 1) . . . (|γ′| + |γ| − |γ′|)

)σ

×
(

(i − r − |β|)!(|γ′| + 1) . . . (|γ′| + |γ| − |γ′|)(θr + |β| + |γ′| + τ)!
(θi + |γ|)!

)σ

�
i−1∑
r=1

(
AN

M

)i−r ∑
|β|�i−r

∑
γ′�γ

(
A

N

)|γ|−|γ′|
Cσ−1

1 Cσ
2 , (4.8)

where

C1 =
(γ − γ′)!

(|γ′| + 1) . . . (|γ′| + |γ| − |γ′|) � 1,

while

C2 =
(i − r − |β|)!(|γ′| + 1) . . . (|γ′| + |γ| − |γ′|)(θr + |β| + |γ′| + τ)!

(θi + |γ|)!

� (i − r − |β|)!(θr + |β| + |γ| + τ)!
(θi + |γ|)! � (θi + |γ| − (θ − 1)(i − r) + τ)!

(θi + |γ|)! � 1
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for all γ, γ′, β ∈ Z
n
+, γ′ � γ, r, i ∈ N, i − r � 1. We used the inequality (θ − 1)(i − r) �

θ − 1 � τ if i − r � 1. Choosing first N > A and then M > 2AN large enough so that
AN/M(1 − A/N)−n

∑∞
ν=0 2−ν(ν + 2)n � (6CτωANτ )−1, and using the estimates on C1

and C2, we get from (4.8) that

K �
i−1∑
r=1

(
AN

M

)i−r ∑
|β|�i−r

∑
γ′�γ

(
A

N

)|γ|−|γ′|

�
i−1∑
r=1

(
AN

M

)i−r ∑
|β|�i−r

(
1 − A

N

)−n

�
(

AN

M

)(
1 − A

N

)−n i−1∑
r=1

(
AN

M

)i−r−1

(i − r + 1)n

�
(

AN

M

)(
1 − A

N

)−n ∞∑
ν=0

2−ν(ν + 2)n � (6CτωANτ )−1.

Hence, by the choice of M and N ,

sup
ξ∈S̃

‖∂γ
xF k

−i(·, ξ)‖Hs+τ � (3Cτ )−1εM iN |γ|((θi + |γ|)!)σ, γ ∈ Z
n
+. (4.9)

Next, for any ξ ∈ S̃,

‖∂γ
xGk

−i(·, ξ)‖Hs+τ �
i−1∑
r=1

‖∂γq−r(·, ξ)‖Hs+τ |αk
−(i−r)(ξ)|

� ε2M iN |γ|+τ ((θi + |γ|)!)σL,

L =
i−1∑
r=1

(
(θr + |γ| + τ)!(θ(i − r))!

(θi + |γ|)!

)σ

=
(

(τ + 1)!
θi + |γ|

)σ i−1∑
r=1

(
(τ + 2) . . . (τ + 1 + θr + |γ| − 1)

(θ(i − r) + 1) . . . (θ(i − r) + θr + |γ| − 1)

)σ

. (4.10)

Since i − r � 1, r � 1 and θ � (1 + τ),

c̃ :=
(τ + 2) . . . (τ + 1 + θr + |γ| − 1)

(θ(i − r) + 1) . . . (θ(i − r) + θr + |γ| − 1)

� θ . . . (θ + θr + |γ| − 1)
(θ(i − r) + 1) . . . (θ(i − r) + θr + |γ| − 1)

� 1. (4.11)

It is readily verified from (4.10) that, for all γ ∈ Z
n
+,

L �
(

(τ + 1)!
θi + |γ|

)σ i−1∑
r=1

1

=
(

(τ + 1)!
θi + |γ|

)σ

(i − 1) � ((τ + 1)!)σ

(θi + |γ|)σ−1 � ((τ + 1)!)σ.
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Hence, by choosing ε > 0 and N > 0 so that εNτ ((τ + 1)!)σ � 1
3 , we obtain, from (4.1)

and (4.2) with 1 � j � i − 1,

sup
ξ∈S̃

‖∂γ
xGk

−i(·, ξ)‖Hs+τ � 3−1εM iN |γ|((θi + |γ|)!)σ, γ ∈ Z
n
+. (4.12)

Finally, observe that (4.5) leads to

sup
ξ∈S̃

‖∂γ
xak

−j(·, ξ)‖Hs+τ � 3−1εM jN |γ|((θj + |γ|)!)σ, j ∈ N, γ ∈ Z
n
+, (4.13)

provided that M � 3A/ε and N � A. By Lemma 4.2, (4.4), (4.12) and (4.13) we have,
for any ξ ∈ S̃,

|αk
−i(ξ)| � |[F k

−i(·, ξ)]n| + |[Gk
−i(·, ξ)]n| + |[ak

−i(·, ξ)]n|
� ‖F k

−i(·, ξ)‖L2 + ‖Gk
−i(·, ξ)‖L2 + ‖ak

−i(·, ξ)‖L2

� ‖F k
−i(·, ξ)‖Hs+τ + ‖Gk

−i(·, ξ)‖Hs+τ + ‖ak
−i(·, ξ)‖Hs+τ

� ε(Cτ )−1M i((θi)!)σ � εM i((θi)!)σ.

Thus (4.1) and (4.2) for 1 � j � i − 1 imply (4.2) for j = i, while (4.1) for j = i follows
from Lemma 4.2 applied to fk = F k

−i(x, ξ) + Gk
−i(x, ξ) − ak

−i(x, ξ) + αk
−i(ξ), 1 � k � d,

and the fact that the Hs+τ (Tn) norm of fk does not depend on αk
−i. �

Remark 4.3. As the proof of Theorem 4.1 shows, our approach resembles methods
used for obtaining effective stability (Nekhoroshev-type) estimates (cf. [2,21–23,29,33]).
However, we stress that the study of the Gevrey regularity of the conjugating PDO
q(x, D) presents new features and difficulties in comparison with the aforementioned
results in dynamical systems. This is due to the presence of compositions of PDOs and
the global regularity in ξ ∈ R

n. In fact, the composition rule of PDOs is a major technical
obstacle for getting Gevrey estimates in the presence of resonances. Finally, we point out
that our iterative approach shows that the dominating term in qj(x, ξ), |ξ| = 1, is given
by Cj+1|Djθq−1(x, ξ)| ∼ (j!)θ, which suggests that the Gevrey index σ is sharp.

5. Global properties of perturbations of resonant vector fields

In this section we study the global hypoellipticity of first-order overdetermined systems
by use of global normal forms.

Let Lj be defined by (1.2) with aj ∈ Gσ(Tn). We say that Lj is Gσ globally hypoelliptic
(1 � σ � ∞) if every distribution u such that Lju ∈ Gσ (j = 1, . . . , d) is in Gσ. Set
r = dimZ Γω

Z
and, for r � 1, take a canonical basis η1, . . . , ηr of Γω

Z
. Suppose that it is

possible to find αj(y) ∈ Gσ(Tr) (j = 1, . . . , d) for which the system

〈ωj , ∂x〉ψ = aj(x) − αj(〈η1, x〉, . . . , 〈ηr, x〉), 1 � j � d, (5.1)

admits a unique solution ψ with ψ̂(ξ) = 0 for ξ ∈ Γω
Z

. Note that (5.1) is weaker than the
simultaneous σ-Siegel-type condition on Z

n \ Γω
Z

, since if that holds we can solve (5.1)
by Fourier series expansion.
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If the multiplication operator q is defined by qv(x) = eiψ(x)v(x), the proof of Theo-
rem 3.1 and (5.1) imply that for every j ∈ {1, . . . , d} we have

q−1 ◦ Lj ◦ q = Lj := 〈ωj , Dx〉 + αj(〈η1, x〉, . . . , 〈ηr, x〉).

Indeed, in (3.7) ak
−N (x, ξ) = 0 for N � 1. Therefore, the system Lju = fj (1 � j � d) is

equivalent to the system
Ljv = gj , 1 � j � d, (5.2)

where gj = eiψ(x)fj(x), 1 � j � d.
We define the change of variables x = T x̃, x̃ = (y, z) with y = (y1, . . . , yr) and

z = (z1, . . . , zn−r) by yj = 〈ηj , x〉 (1 � j � r), and zj = 〈κj , x〉 (1 � j � n − r). Then
the system (5.2) becomes

〈θj , Dz〉w + αj(y)w = hj(y, z), j = 1, . . . , d, (5.3)

where the θj ∈ R
n−r are given by (0, θj) = trTωj , 1 � j � d. The partial Fourier

transform z → ζ reduces (5.3) to

(〈θj , ζ〉 + αj(y))ŵ(y, ζ) = ĥj(y, ζ), ζ ∈ Z
n−r, j = 1, . . . , d. (5.4)

Define Φ(y, ζ) =
∑d

j=1 |〈θj , ζ〉 + αj(y)| and let d0 � n−r be the rank of θ1, . . . , θd. Then
we have the following theorem.

Theorem 5.1. Suppose Γω
Z

�= {0} and let η1, . . . , ηr be a canonical basis of Γω
Z

.
Assume that (5.1) has a unique solution and that ak

−j(x, ξ) ∈ C∞(Rn
ξ \ {0}; Gσ(Tn

x)) if
σ < ∞. Then the following conditions hold.

(i) The system (5.3) is Gσ globally hypoelliptic if there exists c > 0 such that Φ(y, ζ) �
c for all ζ ∈ Z

n−r and y ∈ T
r. If d0 = n − r, the preceding condition is replaced by

the discrete condition Φ(y, ζ) �= 0 for all ζ ∈ Z
n−r and all y ∈ T

n. Note that the
completely resonant case r = n − 1 satisfies d0 = n − r.

(ii) Suppose d0 = n−r. Then the system (5.3) is Gσ globally hypoelliptic for 1 < σ � ∞
if and only if the discrete condition is satisfied.

Proof. By the representation (5.4), w satisfies ŵ(y; ζ) = ĥj(y; ζ)(〈θj , ζ〉 + αj(y))−1

for some 1 � j � d. Hence w ∈ Gσ. If d0 = n − r, then
∑d

j=1 |〈θj , ζ〉| → ∞ as |ζ| → ∞,
ζ ∈ Z

n−r. Hence the condition Φ(y, ζ) � c can be replaced by the discrete condition,
proving (i).

(ii) We define the distribution w(y, z) by ŵ(y, ζ) ≡ 0 if ζ �= ζ0, and ŵ(y, ζ0) = δ(y−y0),
with y0 ∈ T

r and ζ0 ∈ Z
n−r satisfying ζ0+αk(y0) = 0 for 1 � k � d. Here δ(y−y0) stands

for the Dirac measure massed at y = y0. The distribution w(y, z) gives a non-smooth
zero solution of (5.3). �

Remark 5.2. If d0 < n − r, the condition Φ(y, ζ) � c is not a discrete condition,
because the vectors (〈θ1, ζ〉, . . . , 〈θd, ζ〉) (ζ ∈ Z

n−r) fill a dense subset of a d0-dimensional
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subspace of R
d. Indeed if d0 < d, this actually occurs. Next, if the simultaneous Gσ Siegel

condition holds, the solvability of (5.1) is superfluous; that is, instead of the Diophantine
conditions on ωj , the solvability of (5.1) for special aj(x) is enough. This allows us to
characterize larger classes of first-order operators on T

2 with non-resonant ω = ω1 than
those in Proposition 3.2 of [3] (σ = ∞) and to generalize some of the results for a class
of overdetermined systems of vector fields on T

n in Theorem 3.3 of [4] (σ = 1). Note
that the Gevrey spaces Gσ(Tn) are not metrizable if 1 � σ < ∞, and therefore Baire’s
Theorem is not applicable.

Now we study the global properties of {bk(x, D)} in the non-resonant case Γω
Z

= {0}.
Let a corresponding normal form {ωk · ξ +αk(ξ)}d

1 be as in Theorem 3.1 and 1 � θ � ∞.
We say that {ωkξ + αk(ξ)}d

1 satisfies the simultaneous inhomogeneous θ-Siegel condition
if

lim inf
|ξ|→∞, ξ∈Zn

+\0
exp(ε|ξ|1/θ) max

1�k�d
|ωk · ξ + αk(ξ)| > 0, for every ε > 0 (TSi)θ

for 1 � θ < ∞, and

lim inf
|ξ|→∞, ξ∈Zn

+\0
|ξ|N max

1�k�d
|ωk · ξ + αk(ξ)| > 0, (TSi)∞

for some N ∈ R when θ = ∞.
If θ = ∞, (TSi)∞ is well defined in the sense that it does not depend on realizations of∑∞
r=0 α−r(ξ). However, if 1 � θ < ∞, the condition (TSi)θ is independent of realizations

if q is a Gθ PDO. In this case, αj(D) and the remainders Rk(x, D) are Gθ PDOs as well.

Theorem 5.3. Assume that ωj , j = 1, . . . , d, are simultaneously non-resonant and
satisfy (Si)σ for some 1 � σ � ∞. Let the hypotheses of Theorem 3.1 be true. Then
(TSi)∞ holds for one simultaneous canonical form of {bj}d

1 if and only if it holds for
every simultaneous canonical form of {bj}d

1. Moreover, {bj}d
1 is globally hypoelliptic on

T
n if and only if a normal form of {bj}d

1 satisfies (TSi)∞. If (Si)∞ holds and aj(x, D),
j = 1, . . . , d, are Gσ PDOs, then the operator {bj}d

1 is Gθ globally hypoelliptic if and
only if a normal form of {bj}d

1 satisfies (TSi)θ for θ � ρσ, where ρ = max{1, 1 + τ}.

Proof. The proof follows from Theorem 3.1 (respectively, the Nekhoroshev-type esti-
mates) if θ = ∞ (respectively, θ � ρσ) and the following properties: since q(x, D) is
elliptic in Gρσ, either both or neither systems {ωjDx + aj(x, D)} and {ωjDx + αj(D) +
Rj(x, D)} are globally hypoelliptic. The estimates for q(x, D) and the remainders Rj(x, ξ)
imply the global Gθ hypoellipticity for θ � ρσ if (TSi)θ is true. �

6. Logarithmic Hausdorff dimension

For β = (β1, . . . , βd) ∈ Rd and 1 � σ � ∞ we define NGσ(β; d) to be the set of
all ω = (ω1, . . . , ωd) in R

nd such that {〈ωj , ξ〉 + βj}d
1 does not satisfy (Si)σ. Also put

NGσ(d) = NGσ(0; d). Clearly, NGσ(d) with Γω
Z

= {0} is the exceptional set for which
(Si)σ fails, and therefore no reduction to normal forms is possible. Similarly, if β �= 0,
NGσ(β; d) is related to the exceptional sets of {ωj}d

1 for which the system {Lk + βk}d
1
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is not globally Gσ hypoelliptic. The sizes of NGσ(d) and NGσ(β; 1) will be estimated in
terms of the Hausdorff dimension and logarithmic Hausdorff dimension associated with
the Gevrey index σ.

For n > d let Eβ(σ) = Eβ(σ; n, d) be the set

Eβ(σ) = {X ∈ R
nd : |qX − β| < e−|q|1/σ

for infinitely many q ∈ Z
n}.

Note that if X is identified with ω = (ω1, . . . , ωd), we have

E0(σ) ⊂ NGσ(d) and Eβ(σ) ⊂ NGσ(β; d).

Recall that a δ-cover of a set A is a union of sets C with diameter less than or equal
to δ such that A ⊆ ∪C.

Definition 6.1. Let J ⊆ R
nd and define the function f : R

+ → R by f(r) =
r(n−1)d(log 1/r)−s. The logarithmic Hausdorff measure of J is

L
s(J) := lim

δ→0
inf
Cδ

∑
C∈Cδ:∪C⊃J

f(L(C)),

where the infimum is over all δ-covers, Cδ of J and L(C) � δ is the diameter of C. The
logarithmic Hausdorff dimension is

Ldim(J) := sup{s : L
s(J) = ∞} = inf{s : L

s(J) = 0}.

Hence Ldim(J) is the unique value for which Ls(J) changes from being ∞ to 0.
The definition of Hausdorff dimension is the same as above with f(L(C)) = L(C)s;
its properties can be found in [20]. To denote the information given by the two dimen-
sions, ordinary and logarithmic, the dimension of J will be written as the ordered pair
�dimJ = (dimJ,Ldim J).
For the homogeneous case the following theorem will be proved.

Theorem 6.2. Let σ ∈ R
+. Then �dimE0(σ; n, d) = ((n − 1)d, nσ).

By modifying the proof of Theorem 6.2 an inhomogeneous version will also be proved
for the case d = 1. We will only deal with d = 1, as in this case the set can be changed
so that the homogeneous result can be used with an appropriate change in the number
of variables. For d > 1, the set is not a Cartesian product of the homogeneous sets we
have already dealt with and so this method cannot be used. As yet we have been unable
to obtain the Hausdorff dimension when d > 1.

Theorem 6.3. Let σ ∈ R
+ and β ∈ R. Then �dimEβ(σ; n, 1) = (n − 1, nσ).

Remark 6.4. Identify R
nd with (Rn)d and note that the sets NGσ(β; d) are invariant

under the action of GL(n; Z) (P (NGσ(β; d)) = NGσ(β; d) for all P ∈ GL(n; Z)). Next,
let ∼ be an equivalence relation in NGσ(β; d) such that ω ∼ ω′ if and only if ω = Pω′

for some P ∈ GL(n; Z) (i.e. they lie in the same orbit), then the space of GL(n; Z) orbits
of NGσ(β; d)/ ∼ has the same �dim.
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Without loss of generality, as the two sets are invariant under translations of integer
vectors, we can restrict ourselves to the sets Eβ(σ; n, d) ∩ Ind, where I = (− 1

2 , 1
2 ]. The

proofs are done in three parts: firstly the Hausdorff dimensions are obtained; then an
upper bound for the logarithmic Hausdorff dimension of Eβ(σ; n, d) is determined for all
β, n and d; and finally lower bounds for the logarithmic Hausdorff dimensions of the two
sets are found.

In [15], the Hausdorff dimension of the set

W0(τ) = W0(n, d; τ) = {X ∈ R
nd : |qX| < |q|−τ for infinitely many q ∈ Z

n}

was shown to be (n−1)d+n/(τ +1). Plainly, the (n−1)d-dimensional hyperplanes Rq =
{X ∈ Ind : qX = 0} are contained in E0(σ) for all q ∈ Z

n so that dimE0(σ) � (n − 1)d.
Also E0(σ) ⊂ W0(τ), which implies that dimE0(σ) � dim W0(τ) for all τ and all σ.
Thus dimE0(σ) = (n−1)d. Similarly, in the inhomogeneous case the (n−1)-dimensional
hyperplanes Rβ,q = {x ∈ In : q · x + β = 0} are contained in Eβ(σ; n, 1), which implies
that dimEβ(σ; n, 1) � n − 1. Using the upper-bound argument in the next section with
f(L(C)) replaced by L(C)s, it is readily verified that for any s > n − 1 the Hausdorff
s-measure of Eβ(σ; n, 1) is zero. This implies that dimEβ(σ; n, 1) � n − 1, completing
the result.

Now we deal with the logarithmic component of �dim. In what follows a � b (respec-
tively, a � b) means that there exists a constant c > 0 such that a � cb (a � cb). If
a � b and a � b, then a � b.

First the upper bounds are obtained for both theorems.

Lemma 6.5. Let n, d ∈ N, n � 2, σ ∈ R
+ and β ∈ R. Then

Ldim Eβ(σ) � nσ.

Proof. For future reference note that

f(e−r1/σ

/r) =
(e−r1/σ

)(n−1)d

r(n−1)d(rs/σ + log r)
� (e−r1/σ

)(n−1)d

r(n−1)d+s/σ
. (6.1)

Define Rβ,q as Rβ,q = {X ∈ Ind : qX + β = 0} and let C(q) denote a collection
of hypercubes C with sides of length L(C) = 2n1/2e−|q|1/σ

/|q|, centred on Rβ,q with
centres at a distance e−|q|1/σ

/|q| apart. There are � (|q|e|q|1/σ

)(n−1)d such hypercubes.
Let CN denote the set CN = {C(q) : |q| > N}. For each N this set is a cover of Eβ(σ).
Hence, using (6.1),

L
s(Eβ(σ)) �

∑
r>N

∑
|q|=r

∑
C∈C(q)

f(L(C))

�
∑
r>N

∑
|q|=r

(|q|e|q|1/σ

)(n−1)d (e−|q|1/σ

)(n−1)d

|q|(n−1)d+s/σ

�
∑
r>N

r(n−1)−s/σ < ε
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for s > nσ and for N sufficiently large. Therefore, Ls(Eβ(σ)) = 0 for s > nσ and
Ldim Eβ(σ) � nσ. �

Proof of Theorem 6.2. We now obtain a lower bound for LdimE0(σ; n, d). First, a
Cantor subset K of E0(σ; n, d) and a probability measure supported on K are constructed.
Then the Mass Distribution Principle is used to show that the logarithmic Hausdorff
measure of K is infinity for s < nσ. This implies that the logarithmic Hausdorff dimension
of K and hence of E0(σ; n, d) is at least nσ.

For the rest of the proof it is assumed that s < nσ. Also note that the following
inequality will continually be used:

Nn/d

16n log N
�

[
Nn/d

8n log N

]
� Nn/d

8n log N
, (6.2)

where [·] denotes integer part.
Similar Cantor constructions to the following can be found in [8, p. 347] and [16] (for

general dimension functions). Choose N1 large enough so that

eN
1/σ
1 >

5N
n/d−1
1

2 log N1
, (6.3)

15N
n−s/σ
1

5nd24nd+4 logd N1
> 1. (6.4)

Starting in one corner, divide Ind into T (N1) = [Nn/d
1 /8n log N1]nd hypercubes C with

L(C) = LN1 = [Nn/d
1 /8n log(N1)]−1.

Define C ′ to be a hypercube with the same centre as C and L(C ′) = 1
2L(C). Let RN =

{Rq : N � |q| � 2N} and let G(N1) denote the set of cubes C for which there exists an
Rq ∈ RN1 such that C ′ ∩ Rq � ( 1

10L(C))(n−1)d; i.e. the intersection C ∩ Rq is relatively
large and Rq does not just ‘clip’ one corner. From Lemma 2 in [15] it can be verified
that for any ε > 0 and N1 sufficiently large

#G(N1) �
[

N
n/d
1

8n log N1

]nd

(1 − ε). (6.5)

For each C ∈ G(N1) pick one such intersection C ′ ∩ Rq and call it I(C). Now draw
smaller hypercubes centred on I(C) and contained in C ′ of sidelength e−N

1/σ
1 /N1 with

centres at a distance 2e−N
1/σ
1 /N1 apart, so that they are disjoint (see Figure 1 for n = 2).

Let #I(C) denote the number of these small cubes lying on the segment I(C). Then,
using (6.3) it can be shown that

( 1
40N1L(C)eN

1/σ
1 )(n−1)d � ( 1

20L(C)N1eN
1/σ
1 − 1)(n−1)d

� #I(C) � (N1eN
1/σ
1 L(C))(n−1)d.
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Figure 1.

The union of these cubes over all C ∈ G(N1) forms the first level K1 of the Cantor set
and #K1 denotes the number of them. From (6.2), (6.5) (with ε = 1

16 ) and above

#K1 � 15
16

[
N

n/d
1

8n log N1

]nd

( 1
40N1L(C)eN

1/σ
1 )(n−1)d

� 15Nnd−d+n
1 (eN

1/σ
1 )(n−1)d

2nd+4(8n)d40(n−1)d(log N1)d
.

Let E1 denote a hypercube in K1, so that L(E1) = e−N
1/σ
1 /N1. Then (6.4) yields

#K1f(L(E1)) � 15N
n−s/σ
1

5nd24nd+4 logd N1
> 1.

This will be needed later to apply the Mass Distribution Principle.
To obtain the second level K2, almost the same construction is made, but instead of

Ind, the cubes coming from the previous level K1 are used. Choose N2 large enough so
that

N
n/d
2

16n log N2
> N1eN

1/σ
1 , (6.6)

3N
n−s/σ
2

5nd · 25nd+2 logd N2
>

endN
1/σ
1 Nnd

1

#K1
, (6.7)

and ε > 0 such that
ε � 2−1e−2N

1/σ
1 N−nd

1 . (6.8)

Divide Ind into T (N2) hypercubes with sides of length LN2 = [Nn/d
2 /8n log N2]−1 as

before. Since N2 > N1 from (6.2),

#G(N2) �
[

N
n/d
2

8n log N2

]nd

(1 − ε) >
Nn2

2

(16n)nd lognd N2
(1 − ε).

Let TE1(N2) denote the number of hypercubes contained in E1, and #GE1(N2) be the
number of those which have large intersection with a resonant set Rq ∈ RN2 . It is readily
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verified that (
e−N

1/σ
1

N1LN2

− 1
)nd

� TE1(N2) �
(

e−N
1/σ
1

N1LN2

+ 2
)nd

,

and (6.6) implies that

(
e−N

1/σ
1

2N1LN2

)nd

� TE1(N2) �
(

2e−N
1/σ
1

N1LN2

)nd

.

Equations (6.8) and (6.5) can be used to show that #G(N2) � T (N2) − TE1(N2)/4,
whence

#GE1(N2) >
3TE1(N2)

4
>

3e−ndN
1/σ
1

4 · 2nd(16n)ndNnd
1 N−d2

2 lognd N2
.

Do exactly the same as before with the segments I(C) to construct the second level of
the Cantor set K2. Let #H2 be the number of hypercubes of K2 in one E1, so that
#K2 = #K1#H2. Then

#H2 � #GE1(N2)(LN2N2eN
1/σ
2 /40)(n−1)d

and

#H2 � #GE1(N2)(LN2N2eN
1/σ
2 )(n−1)d.

Thus

#K2 � #K1
3Nnd−d+n

2 e(n−1)dN
1/σ
2

4 · 22nd(8n)n · 40(n−1)d logd N2

e−ndN
1/σ
1

Nnd
1

and, from (6.7),

#K2f(L(E2)) =
3N

n−s/σ
2

5nd · 25nd+2 logd N2

e−ndN
1/σ
1

Nnd
1

#K1 > 1.

A similar process is used for the rth level. Assume that Kr−1 has been constructed
with hypercubes Er−1 of sidelength e−N

1/σ
r−1/Nr−1. Choose Nr sufficiently large so that

N
n/d
r

16n log Nr
> NreN

1/σ
r−1 , (6.9)

3N
n−s/σ
r

5nd · 25nd+2 logd Nr

>
endN

1/σ
r−1Nnd

r−1

#Kr−1
, (6.10)

and ε > 0 so that
ε � 2−1e−2N

1/σ
r−1N−nd

r−1 . (6.11)

Let TEr−1(Nr) denote the number of hypercubes of the rth level contained in Er−1 (a
cube in Kr−1) and #GEr−1(Nr) the number which have large intersection with a resonant
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set Rq ∈ RNr−1 . Following the argument as for the second level but using equations (6.9)
and (6.11) rather than equations (6.6) and (6.8) we get

#Kr � #Kr−1
3Nnd−d+n

r e(n−1)dN1/σ
r

4 · 22nd(8n)d40(n−1)d logd Nr

e−ndN
1/σ
r−1

Nnd
r−1

, (6.12)

and

#Krf(L(Er)) =
3N

n−s/σ
2

5nd · 25nd+2 logd Nr

e−ndN
1/σ
r−1

Nnd
r−1

#Kr−1 > 1, (6.13)

from (6.10).
Let K =

⋂∞
r=1 Kr. It can be readily verified that K ⊂ E0(σ; n, d). Now we proceed to

construct a probability measure supported on K. In order to do this the following lemma
from [20, p. 55] is needed.

Lemma 6.6 (the Mass Distribution Principle). Let µ be a probability measure
supported on a subset F of R

k. Suppose there are positive constants λ and δ such that
µ(C) � λf(L(C)), for any cube C with L(C) � δ. Then Ls(F ) � λ−1.

Recall that Ei represents a cube in Ki that is in the ith level of K and define a
probability measure on K in the following way: µ(Ei) = (#Ki)−1 < f(L(Ei)) from (6.13),
for i ∈ N. Thus the sum of the measures of all hypercubes in the rth level in one fixed
cube on the (r − 1)th level is µ(Er−1), i.e. µ(Er) = µ(Er−1)/(#Hr). To use Lemma 6.6,
we need to show that the measure of an arbitrary cube B is also � f(L(B)). Without
loss of generality we can choose an arbitrary cube B contained in some hypercube Er−1

and containing at least two cubes of the rth level so that L(B) � e−N
1/σ
r−1/Nr−1. (If

B never contains two hypercubes of any level, then its measure is zero.) There are two
cases to consider. The first is when B intersects hypercubes lying on at least two different
segments I(C). In this case L(B) � LNr = [Nn/d

r /8n log Nr]−1. Let S be the number
of segments I(C) that B intersects. Then S � (L(B)/LNr

)nd. The maximum number
of hypercubes Er of Kr that B can intersect on each segment is (LNrNre

(N1/σ
r ))(n−1)d.

Evidently,

µ(B) � S(LNr
NreN1/σ

r )(n−1)d

#Kr
� L(B)ndNnd−d+n

r e(n−1)dN1/σ
r

logd Nr#Kr

.

From (6.12)

µ(B) �
L(B)ndendN

1/σ
r−1Nnd

r−1

#Kr−1
.

However, #Kr−1 � 1/f(L(Er−1)), which implies that

µ(B) � L(B)ndendN
1/σ
r−1Nnd

r−1f(L(Er−1)).

As the function f(r)/rnd decreases for r < 1 and since

L(B) � e−N
1/σ
r−1/Nr−1 < 1,

we obtain µ(B) � f(L(B)).
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The second case is when B intersects cubes in Kr from only one segment I(C). As
before L(B) � e−N

1/σ
r−1/Nr−1, and L(B) � L(Er) = e−N1/σ

r /Nr. The number of cubes
that B can intersect is � (L(B)/L(Er))(n−1)d. Therefore,

µ(B) � L(B)(n−1)d

L(Er)(n−1)d#Kr
� L(B)(n−1)df(L(Er))

L(Er)(n−1)d .

As f(r)/r(n−1)d = 1/ logs(1/r) is an increasing function and L(B) � L(Er), it is easy to
verify that µ(B) � f(L(B)).

Thus from Lemma 6.6 (the Mass Distribution Principle) for s < nσ we have Ls(K) � 1,
which implies that Ldim(E0(σ; n, d)) � nσ and completes the proof of Theorem 6.2. �

Proof of Theorem 6.3. Only the lower bound is left to prove. Let Im
δ = {x ∈

In : |x| > δ} and let ‖ · ‖ denote the distance from the nearest integer, i.e. ‖x‖ =
mink∈Z2 |x − k|. The following lemma is needed.

Lemma 6.7. For every N > 2 and almost all x ∈ In
δ there exists q ∈ Z

n\{0} with
N/ log4 N � |q| � N such that dist(x, Rβ,q) < N−2 log7 N .

Proof. From [32, pp. 74, 75] it can be verified that for every N > 2 and almost all
x ∈ In there exists q ∈ Z

n\{0} with N/ log4 N � |q| � N such that

‖q · x − β‖ � N−n log3 N. (6.14)

The following argument is done in detail for n = 2 and any decreasing function φ(N)
and is not difficult to extend to n � 3. Consider the line x2 = 1. Then |q · x + β| < φ(N)
implies that |q1x1 + q2 + β| < φ(N). Thus we can consider the inequality ‖q1x + β‖ <

φ(N). Similarly, consider the line x2 = α for any 1 � α > 0. Then the inequality
|q1x1 + q2α + β| < φ(N) is the same as the inequality ‖qx + β′‖ < α−1φ(N), where
x = x1/α and β′ = β/α. Thus, if there exists a function φ for which almost all points on
the lines x2 = α are covered by intervals centred at points (p+β′)/q of length α−1φ(N)/q

with N/ log4 N < q < N , then, for some fixed δ > 0 with α > δ almost all points in I2
δ

will be covered by the set ⋃
q:N>|q|>N/ log4 N

{x : |q · x + β| < φ(|q|)}

for N sufficiently large. On letting φ(N) = N−1 log3 N and using (6.14) and the fact that
N > |q| > N/ log4 N the lemma is proved. Exactly the same argument can be used for
n � 3. �

Using the ubiquity argument from [32] it can be shown that as in the homogeneous
case with LN = [N2/8n log7 N ]−1 we have

#G(N) �
[

N2

8m log7 N

]n

(1 − ε).

Theorem 6.3 can now be proved by using the above and following the proof of Theorem 6.2
exactly. �
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Theorems 6.2 and 6.3 show that the sets E0(σ; m, n) and Eβ(σ; m, 1) consist of more
than just the resonant hyperplanes Rq,β .
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