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EXTREMAL MANIFOLDS AND HAUSDORFF
DIMENSION

H. DICKINSON and M. M. DODSON

1. Introduction. The recent proof by D. Y. Kleinbock and G. A. Margulis [11]
of Sprindžuk’s conjecture for smooth nondegenerate manifoldsM means that the set
Lv(M) of v-approximable points (this and other terminology is explained below) on
M is of zero induced Lebesgue measure. This raises the question of its Hausdorff
dimension. Bounds and indeed the exact dimension for manifolds satisfying a variety
of arithmetic, geometric, and analytic conditions are known (see [2], [3], [5], [7]). In
this paper ubiquity is used to obtain a lower bound for the Hausdorff dimension of a set
more general thanLv(M) for any extremalC1 manifoldM. Hitherto volume estimates
that depend on curvature conditions were used to overcome a “small denominators”
problem. It turns out, however, that extremality, when combined with Fatou’s lemma,
is all that is needed. We begin with some notation.

Let |x| = max{|x1|, . . . , |xn|} denote the supremum norm or height of the point
x = (x1, . . . ,xn) in n-dimensional Euclidean spaceRn, and denote its Euclidean
norm by|x|2= (x2

1+·· ·+x2
n)

1/2. Throughout,q= (q1, . . . ,qn) is a vector inZn, and
q ·x = q1x1+·· ·+qnxn denotes the usual inner product. For positive numbersa,b,
we use the Vinogradov notationa � b andb � a if a = O(b). If a � b � a, we
write a � b. A point x ∈Rn that satisfies

‖q ·x‖< |q|−v(1)

for infinitely many q ∈ Zn is called v-approximable(‖x‖ is the distance of the
real numberx from Z). Let M be anm-dimensional manifold inRn. The set of
v-approximable points in the manifoldM is denoted byLv(M). The manifoldM is
calledextremalif for any v > n, Lv(M) has Lebesgue measure 0. Equivalently, by
Khintchine’s transference principle,M is extremal if the setSw(M) of pointsx ∈M
that are simultaneouslyw-approximable (i.e., for which

‖qx‖< |q|−w

for infinitely manyq ∈ Z) is null (i.e., of measure zero) whenw > 1/n. Khintchine’s
theorem implies that the real line is extremal, and the terminology reflects the fact that
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the order of approximation given by Dirichlet’s theorem is unimprovable for almost
all points on an extremal manifold (see [12]).

LetU be an open set inRm, wherem6 n. V. G. Sprindžuk conjectured that if the
functionsθj : U → R, j = 1, . . . ,n are analytic and, together with 1, independent
overR, then the manifold{(

θ1(u), . . . ,θn(u)
) : u ∈ U}= θ(U)⊂Rn

is extremal (see Conjecture H1 in [19]). Manifolds satisfying a variety of additional
or different analytic, geometric, and number-theoretic conditions have been shown to
be extremal; references and further details can be found in [18], [19] (see also [4],
[7], [9], [11], [20]).

In the stronger Baker-Sprindžuk conjecture, the hypotheses on the manifoldM are
the same, but the approximation function|q|−v is replaced by a larger multiplicative
anisotropic function. Whenv > n, if the set of pointsx ∈M for which

‖q ·x‖<
n∏
j=1

(|qj |+1
)−v/n(2)

for infinitely manyq ∈ Zn is relatively null, thenM is said to be strongly extremal
(see Conjecture H2 in [19]). Points satisfying (2) for infinitely manyq ∈ Zn are
called multiplicativelyv-approximable. Transference principles allow simultaneous
and multiplicative approximation forms of these conjectures (see [11], [18]). The
conjecture H2 was first proposed by A. Baker for the rational normal curve

V= {(t, t2, . . . , tn) : t ∈R}
in [1] and proved for this case by V. I. Bernik [6].

J. Kubilius proved the parabola extremal in 1949 [13], and in 1964 W. M. Schmidt
established the remarkable result that anyC3 planar curve with nonzero curvature
almost everywhere is extremal [16]. About the same time, Sprindžuk proved Mahler’s
conjecture, corresponding to the rational normal curve being extremal (see [17]).
Recently, in [11], Kleinbock and Margulis have proved a result that implies not only
Sprindžuk’s conjecture H1, but also the Baker-Sprindžuk conjecture H2. They used
ideas from dynamical systems, namely, unipotent flows in homogeneous spaces of
lattices and the correspondence between multiplicativelyv-approximable points for
v > n and unbounded orbits in the space of lattices. Although at the moment their
techniques do not yield nontrivial upper bounds for the Hausdorff dimension, they do
give a partial Khintchine-type result and might open the way to further progress.

In [3], R. C. Baker refined Schmidt’s result [16] by showing that if the curvature of
aC3 planar curve vanishes only on a set with Hausdorff dimension 0, then forv > 2,

dimLv(M)= 3

v+1
.

Using the idea of regular systems, A. Baker and Schmidt [2] showed that dimLv(V)>
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(n+1)/(v+1) for v > n. The complementary upper inequality was established by
Bernik [5], giving

dimLv(V)= n+1

v+1

for v > n. For manifoldsM with dimensionm> 2 and satisfying a curvature condition
that reduces to nonvanishing Gaussian curvature for surfaces inR3,

dimLv(M)=m−1+ n+1

v+1

for v > n (see [7]). We use ubiquity (see [8]) to obtain the best possible lower bound
for the Hausdorff dimension of the more general set

L(M;ψ)= {x ∈M : ‖q ·x‖<ψ(|q|) for infinitely manyq ∈ Zn}
whenM is aC1 extremal manifold inRn and the functionψ : N→ R+ decreases.
Note that whenψ(q) = q−v, we write Lv(M) for L(M;ψ). For more information
about Hausdorff dimension, see [10], [14].
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Physics in Vienna, to Chris Wood for his help with the differential geometry, and
to Alan Baker and Bryan Rynne for their comments on earlier drafts. We are also
grateful to the referee for suggesting ways of improving our presentation. We would
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2. Ubiquitous systems. Let U be a nonempty open subset ofRm. Let

R= {Rj ⊂ U : j ∈ J}
be a family of sets indexed byJ ; these sets are calledresonant. Suppose further that
eachj ∈ J has a weightbjc > 0, and letρ : N→ R+ be a function converging to
zero at infinity. Suppose that for each sufficiently large positive integerN , there exists
a setA(N)⊂ U for which

lim
N→∞

∣∣U \A(N)∣∣= 0.(3)

Let

B
(
Rj ;δ

)= {u ∈ U : dist
(
u,Rj

)
< δ

}
,(4)

where dist(u,R) = inf {|u− r| : r ∈ R}. LetH/2 denote the hypercubeH shrunk by
1/2 and with the same centre.
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Suppose that there exists a constantd ∈ [0,m] such that given any hypercube
H ⊂ U with sidelength̀ (H) = ρ(N) andH/2 meetingA(N), there exists aj ∈ J
with bjc6N such that for allδ ∈ (0, ρ(N)],∣∣H ∩B(Rj ;δ)∣∣� δm−d`(H)d.(5)

Suppose further that given any other hypercubeH ′ in U with `(H ′)6 ρ(N),∣∣H ′ ∩H ∩B(Rj ;δ)∣∣� δm−d`(H ′)d .(6)

Then the pair(R,b·c) is called aubiquitous system with respect toρ.
In the one-dimensional case and when the resonant sets consist of points, ubiqui-

tous and regular systems are virtually equivalent and essentially differ only in their
formulation (see [15]).

3. Hausdorff dimension. The distribution of the resonant sets in ubiquitous sys-
tems allows the determination of a general lower bound for the lim-sup set

3(R;ψ)= {u ∈ U : dist
(
u,Rj

)
<ψ(bjc) for infinitely manyj ∈ J},

whereψ :N→R+ is a decreasing function (see [8]).

Theorem 1. Suppose(R,b·c) is ubiquitous with respect toρ :N→R+ and that
ψ : N→ R+ is a decreasing function satisfyingψ(N) 6 ρ(N) for N sufficiently
large. Then

dim3(R ;ψ)> d+γ (m−d)
whereγ = limsupN→∞(logρ(N))/(logψ(N))6 1.

The hypothesis thatψ(N)6 ρ(N) for N sufficiently large implies thatγ 6 1. We
now apply Theorem 1 to Diophantine approximation on a manifold. The lower order
λ(f ) of the functionf :N→R+ is defined by

λ(f )= lim inf
N→∞

logf (N)

logN
.

Theorem 2. LetM be anm-dimensionalC1 extremal manifold embedded inRn.
Letψ :N→R+ be decreasing with the lower order of1/ψ denoted byλ. Then for
λ> n,

dimL(M;ψ)>m−1+ n+1

λ+1
.

Since dimL(M ∩V ;ψ) 6 dimL(M;ψ), it suffices to consider the open subset
M ∩ V of M, whereV is a suitable open set inRn. We assume without loss of
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generality thatM∩V ⊂ [−1,1]n and thatV is sufficiently small. Letθ : U →M∩V
be the local parametrisation where the domainU is a sufficiently small hypercube
in [−1,1]m. We writeMU = M ∩V = θ(U). Each pointx ∈ MU can be written
x = θ(u) for someu ∈ U .

Since the manifoldM is C1, by shrinking and closingU if necessary, we can
assume that the geodesic distance between two pointsx,x′ on MU is comparable
with |x−x′| and thatθ is bi-Lipschitz onU . Hence we can assume that the Hausdorff
dimension ofL(MU ;ψ) and that of

L(ψ)= {u ∈ U : ∥∥q ·θ(u)∥∥<ψ(|q|) for infinitely manyq ∈ Zn}
are the same (see [10]). We writeLv for L(ψ) whenψ(r)= r−v; thus

Lv =
{
u ∈ U : ∥∥q ·θ(u)∥∥< |q|−v for infinitely manyq ∈ Zn}.

By the inverse function theorem, we can also assume thatMU is the graph of aC1

(Monge) ordinate functionϕ : U →Rk, wherek = n−m, so that

MU =
{
θ(u) : u ∈ U}= {(u,ϕ(u)) : u ∈ U}

and θ = 1U × ϕ. The corresponding local charth : MU → U is the restriction to
MU of the projectionRm×Rk→Rm. Moreover, by shrinking and closingU again
if necessary, we can assume|∂ϕj/∂ui | 6 Kij < ∞ for eachu ∈ U , i = 1, . . . ,m,
j = 1, . . . ,k. Indeed givenδ > 0, we can chooseU so that for anyu ∈ U ,

Kij −δ 6
∣∣∣∣∂ϕj (u)∂ui

∣∣∣∣6Kij .
Thus we can assume that the change in the direction of a vector along any geodesic
in MU is small.

It follows thatMU is not close to orthogonal toRm×{0}, 0= (0, . . . ,0) ∈ Rk, as
indicated in Figure 1. More precisely, for eachθ(u) inMU , the angleϑ , say, between
any vector in the tangent spaceTθ(u)MU andRm×{0}, satisfies cosϑ > c for some
constantc > 0 (i.e., in the Vinogradov notation, cosϑ � 1). Thus for anyθ(u) in
MU , the planeRm×{0} is not close to being orthogonal toTθ(u)MU . In other words,
the normal spaceTθ(u)M⊥U is not close to being parallel toRm×{0}.

SinceM is extremal,Lv(MU)= θ(Lv) is null for v > n in the induced measure on
M and, sinceθ is bi-Lipschitz onU , the setLv is null inRm whenv > n. To obtain a
lower bound for the Hausdorff dimension ofLv(M) or equivalently forLv, it suffices
to find a sequence of suitable setsA(N)⊂ U that approximateU in measure and that
satisfy the intersection conditions (5) and (6) above. Using the geometry of numbers,
integer vectorsq are chosen so that the hyperplanes

5p,q =
{
x ∈Rn : q ·x = p}
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Figure 1. The manifoldMU and a resonant set5p,q

associated with the resonant setsRp,q, defined below in (11), are not close to being
parallel or tangential toMU (see Figure 1). This condition is stronger than5p,q being
transversal toMU .

Let η > 0 be arbitrary and letN ∈ N be sufficiently large. By Minkowski’s lin-
ear forms theorem, given a pointu ∈ U , there existq = q(u) = (q1, . . . ,qn) ∈ Zn
satisfying 16 |q|6N , andp = p(u) ∈ Z such that

∣∣q ·θ(u)−p∣∣6N−n+kη(logN)k

|qi |6N, i = 1, . . . ,m

|qm+j |6N1−η(logN)−1, j = 1, . . . ,k.

(7)

Hence for eachN = 1,2, . . . , the setU can be written

U = A(N)∪S(N)∪E(N),(8)

whereE(N)= {u ∈ U : dist(u,∂U)6 1/N} (∂U is the boundary ofU ),

S(N)= {u ∈ U : 16 |q|<N1−η for someq satisfying (7)
}
,

and

A(N)= U \(E(N)∪S(N)),
so thatA(N) consists of pointsu ∈ U \E(N) for which there existq ∈ Zn andp ∈ Z
satisfying (7) and

N1−η 6 |q|6N.(9)
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Thus eachu ∈ A(N) is at least 1/N from ∂U (in the supremum metric), and there
exists a large vectorq ∈ Zn and an integerp satisfying (7).

The measure ofE(N) converges to 0 asN→∞ since

∣∣E(N)∣∣= ∣∣∣∣{u ∈ U : dist(u,∂U)6 1

N

}∣∣∣∣� `(U)m−
(
`(U)− 1

N

)m
�N−1.

The vectorq= q(u) ∈ Zn can be written

q= (q1, . . . ,qm,0, . . . ,0)+(0, . . . ,0,qm+1, . . . ,qn)= q′ +q′′,

say, whereq′ ∈Rm×{(0, . . . ,0)} andq′′ ∈ {(0, . . . ,0)}×Rk. SinceN is large enough,
for eachu ∈ A(N), the vectorq is close to being parallel toq′. Indeed the angleβ
thatq makes withRm×{0} satisfies

cosβ = q
|q|2 ·

q′

|q′|2 > 1− q
2
m+1+·· ·+q2

n

|q|22
= 1−O

(
1

logN

)2

by (7) and (9). Hence the hyperplane5p,q, which is normal toq, meetsMU not close
to tangentially. This implies that5p,q ∩MU is a connected(m− 1)-dimensional
submanifold ofMU .

On replacingN by N1/(1−η) in (7), it can be seen that the setS(N1/(1−η)) is
contained in the set of pointsu ∈ U for which there existp,q satisfying∣∣q ·θ(u)−p∣∣<N−(n−kη)/(1−η)(logN)k(1−η)−k

with 16 |q|6N . Moreover,S(N1/(1−η)) is also a subset of

Tδ(N)=
{
u ∈ U : ∣∣q ·θ(u)−p∣∣<N−n−δ for someq ∈ Zn, p ∈ Z, 16 |q|6N},

where 0< δ < η(n−k)/(1−η).
Lemma 1. For anyδ > 0,

limsup
N→∞

Tδ(N)=
∞⋂
k=1

∞⋃
N=k

Tδ(N)⊆ Ln+δ.

Proof. Let u ∈ ∩∞k=1∪∞N=k Tδ(N). Thenu ∈ Tδ(Nj ) for an infinite subsequence
Nj , j = 1,2, . . . . Hence for eachj there existq(j) ∈ Zn with 16 |q(j)| 6 Nj and
p(j) ∈ Z such that ∣∣q(j) ·θ(u)−p(j)∣∣<N−n−δj .
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Suppose there are only finitely many differentq(j) for which the last displayed in-
equality holds and let

min
{∣∣q(j) ·θ(u)−p(j)∣∣ : j ∈N}= c,

say. Ifc > 0, then choosingj so thatN−n−δj < c gives a contradiction. Ifc = 0, then

for eachr ∈N, r 6 |rq(j)|6 rNj and∣∣∣(rq(j)) ·θ(u)−(rp(j))∣∣∣= 0<
(
rNj

)−n−δ
.

Thus there are infinitely many solutions, contradicting the supposition that there exist
only a finite number of differentq(j). But 16 |q(j)|6Nj , whence∣∣q(j) ·θ(u)−p(j)∣∣< ∣∣q(j)∣∣−n−δ
holds for infinitely manyj . Thusu ∈ Ln+δ.

By Fatou’s lemma, for anyδ > 0,

limsup
N→∞

∣∣Tδ(N)∣∣6 ∣∣∣∣limsup
N→∞

Tδ(N)

∣∣∣∣6 |Ln+δ| = 0

sinceM is extremal. Thus limN→∞|Tδ(N)| = 0. But when 0< δ < η(n−k)/(1−η),
Tδ(N)⊇ S(N1/(1−η)), and so

lim
N→∞

∣∣S(N)∣∣= lim
N→∞

∣∣∣S(N1/(1−η))∣∣∣= 0.

Applying this and the estimate for|E(N)| above to (8), it follows that∣∣U \A(N)∣∣6 ∣∣E(N)∣∣+ ∣∣S(N)∣∣−→ 0(10)

asN→∞ andA(N) satisfies (3). The resonant sets inU are now chosen to be

Rp,q =
{
u ∈ U : q ·θ(u)= p}= h(5p,q∩MU

)
,(11)

whereq andp are given by (7). Thusd, the dimension ofRp,q, ism−1.
For eachu ∈ A(N), there exists a pair(p,q) satisfying (7) andN1−η 6 |q| 6 N .

ForN sufficiently large, the hyperplane5p,q is far from tangential toMU . Because
of this andθ being bi-Lipschitz,

dist
(
u,Rp,q

)� dist
(
θ(u),θ

(
Rp,q

))� ∣∣q ·θ(u)−p∣∣|q|2|cos$ | ,

where$ is the angle between the tangent planeTθ(u)MU andq. Since5p,q meets
MU not close to tangentially, cos$ � 1, and so for anyu ∈ U ,

dist
(
u,Rp,q

)� ∣∣q ·θ(u)−p∣∣|q|2 .
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It follows from this and (7) that there are positivec∗,c∗ such that

c∗
∣∣q ·θ(u)−p∣∣|q|−1 6 dist

(
u,Rp,q

)
6 c∗N−n−1+η(k+1)(logN)k.(12)

Let

ρ(N)= 4c∗N−n−1+(k+1)η(logN)k.(13)

We now show that the other ubiquity properties (5) and (6) hold for the familyR
of resonant sets{Rp,q} whereb(p,q)c = |q| andρ :N→R+ is given by (13). LetH
be a hypercube with̀(H)= ρ(N). The choice ofq, which ensures that5p,q meets
MU not close to tangentially, together with the choice ofρ, implies that if in addition
u ∈ H/4, then by (12), there existp,q such that dist(u,Rp,q) 6 `(H)/4. Hence the
resonant setRp,q meets the hypercubeH substantially and∣∣H ∩B(Rp,q;δ)∣∣� `(H)m−1δ,

whereB(Rp,q;δ) is given by (4), as required for (5) to hold.
It also follows that5p,q meetsMU in a connected(m−1)-dimensional submani-

fold, so that any hypercubeH ′ with `(H ′)6 ρ(N) satisfies∣∣H ′ ∩H ∩B(Rp,q;δ)∣∣� `(H ′)m−1min
{
δ,`(H ′)

}� `(H ′)m−1δ,

and (6) holds. Thus the familyR = {Rp,q : q ∈ Zn \ {0}, p ∈ Z} is ubiquitous inU
with respect toρ. Hence by Theorem 1, for any decreasing functionψ̃ :N→R+,

dim3
(
R; ψ̃)>m−1+γ,

where3(R; ψ̃) is the set of pointsu in U satisfying

dist
(
u,Rp,q

)
< ψ̃

(b(p,q)c)= ψ̃(|q|)
for infinitely manyp,q and whereγ = limsupN→∞(logρ(N))/(logψ̃(N)).

Chooseψ̃(r) = c∗ r−1ψ(r). Then by (12), dist(u,Rp,q) < ψ̃(|q|) implies that
|q ·θ(u)−p|<ψ(|q|). Thereforeu ∈3(R; ψ̃) implies that for infinitely manyp,q,∣∣q ·θ(u)−p∣∣<ψ(|q|),
and so3(R; ψ̃)⊂ L(ψ). Thus

dimL(ψ)> dim3
(
R; ψ̃)>m−1+γ,

where by (13)

γ = limsup
N→∞

logρ(N)

log
(
c∗N−1ψ(N)

) = n+1−η(k+1)

λ+1
,
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whereλ is the lower order of 1/ψ . Sinceη is an arbitrary positive number andU is
a parametrisation domain, it follows that

dimL(M ;ψ)> dimL(ψ)>m−1+ n+1

λ+1
,(14)

and Theorem 2 is proved.
By [11], aCr m-dimensional manifold embedded inRn and`-nondegenerate for

somè ≤ r almost everywhere is extremal (θ(U) is `-nondegenerate ifRn is spanned
by the partial derivatives ofθ up to order`). Hence (14) holds for such manifolds
with r ≥ 1 and so in particular for manifolds with at least one principal curvature
nonzero almost everywhere. IfM is not extremal, then dimLw(M) = m for some
w > n, and hence dimLv(M)=m for v 6 w.

Obtaining an upper bound for the Hausdorff dimension ofL(M;ψ) involves esti-
mating large contributions from near tangential resonant setsRp,q and is much more
difficult. The upper bound forL(M;ψ) has been shown to bem−1+(n+1)/(v+1)
for v > n whenM is C3, of dimensionm > 2, and has at least two principal curva-
tures nonzero everywhere except on a set of Hausdorff dimension at mostm−1 (see
[7]), so that the lower bound in Theorem 2 is best possible. It is likely that this is
the Hausdorff dimension when at least one principal curvature is nonzero everywhere
except on a set of Hausdorff dimension at mostm−1. Determining the Hausdorff
dimension in the case of simultaneous Diophantine approximation seems harder and
much less is known.
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