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Summary  
 

Experimental and Theoretical analysis of the Luminescence Spectroscopy of 
atomic Mercury and atomic Manganese isolated in solid Rare Gases 

 

The work presented in this thesis is primarily experimental but also contains an 

important theoretical extension to gain further insight into the optical spectroscopy of 

atomic ns2 metal atoms, mercury and manganese isolated in cryogenic thin films of 

rare gases argon, krypton and xenon.  The luminescence spectroscopy of solid-state 

M/RG (M = Hg and Mn; RG = Ar, Kr and Xe) samples has been recorded employing 

both time-integrated (steady-state) and time-resolved methods.  The impetus for the 

selection of the Hg/RG systems being the availability of solid-state spectroscopic and 

gas phase pair-potentials data that allowed the development of a theoretical model.  

The theoretical analysis conducted on the Hg/RG systems, yielded a qualitative 

interpretation of the recorded experimental data, providing information on the 

vibronic modes leading to the observed luminescence.  In contrast, the investigation 

of Mn/RG solids was motivated by the absorption similarities between this transition 

metal atom and the simpler Hg/RG system, as both exhibit a ground ns2 electronic 

configuration and excited states derived from the ns1np1 configuration.  However, the 

existence of low lying excited states in Mn, originating from electronic configurations 

other than the [Ar]3d54s4p configuration accessed in absorption, provides multiple 

radiative and non-radiative relaxation channels for excited state populations.  The 

luminescence spectroscopy of Hg and Mn atoms isolated in rare gas matrices has 

shown that the solid state environment provides an ideal environment to study the 

solvation of ground and excited state metal atoms.  It allows the extraction of 

information on long-lived electronic transitions (> 100 µsec) that cannot be observed 

in gas phase experiments.  The experimental results obtained for the Mn/RG systems 

have shown that the site of isolation governs the excited state interactions with the 

host.  This observation therefore would allow the extension of this work to investigate 

site selective excited state reactions with reagents such as CH4, CH3F, NH3 and H2-

doped rare gas matrices.   
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Chapter I  
The optical spectroscopy of metal atoms isolated in rare gas solids – 

Introduction 
 

I.1 Overview 

The following provides a synopsis of the ‘matrix-isolation’ technique with particular 

emphasis on its application to the spectroscopic interrogation of metal atoms isolated 

in rare gas solids (RG).  First, a brief history of the development of the technique 

since its inception in the 1920’s is outlined.  Second, some general remarks regarding 

the requirements of the apparatus necessary to realise a matrix-isolation experiment 

are given.  Third, the structure of rare gas solids and the effect of the matrix 

environment on the dopant species are discussed in detail.  Finally, a brief outline of 

the experimental and theoretical research conducted in this study is presented to 

provide a guide to the results which are presented in the Chapters following.  This 

includes specific details of the metal atom systems, mercury and manganese, 

investigated. 

 

I.2 Matrix-isolation; History and development 

Matrix-isolation is a term, according to IUPAC, which refers to the isolation of a 

reactive or unstable species by dilution in a solid matrix such as argon, nitrogen or 

any other inert material.  The matrix is usually condensed on a window or in an 

optical cell at low temperature, to preserve the structure of the reactive or unstable 

species for identification by spectroscopic means1.  However, the expression is most 

commonly used in a narrower sense to refer to the technique of trapping atomic and 

molecular species in the solid rare gases.  Occasionally reactive solids are used to 

investigate low temperature photochemistry. 

L. Vegard2,3,4 preformed the earliest reported experiments using low 

temperature matrix materials in the 1920’s and observed the luminescence resulting 

from the electron bombardment of rare gas and nitrogen solids prepared at liquid 

helium temperatures.  In the 1940’s the first report of the isolation of molecular 

species in an optically transparent material for the purpose of spectroscopic 

investigation appeared.  G. N. Lewis and co-workers5 in Berkeley studied the 
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phosphorescence of aromatic molecules in low temperature organic glasses.  In the 

1950’s two groups further developed the ‘matrix-isolation’ technique.  Norman and 

Porter6,7 reported the optical spectra of free radicals trapped in organic solvents while 

Pimentel and co-workers8,9,10 adopted the solid rare gases as host materials for the 

study of free radicals using infrared spectroscopy.  Pimentel’s group are also credited 

with coining the phrase ‘matrix-isolation’.  Following the early development of the 

technique11 and the adoption of rare gas solids as host materials, low temperature 

‘matrix’ studies have blossomed from the investigation of unstable molecular species 

and reaction intermediates to encompass several other fields of spectroscopic 

investigation12,13,14,15.  These fields include the analysis of matrix-isolated atoms and 

molecules using UV/Vis, IR, Raman, ESR, Mössbauer, MCD and electronic/time-

resolved spectroscopy.  These areas of research allow I) the identification and 

characterisation of new chemicals prepared in the solid, II) analysis of the interaction 

of the ground and excited states of the dopant species with the host matrix and III) 

determination of local matrix effects on the guest atom/molecule and the perturbation 

caused by the dopant species to the rare gas crystal. 

In general ‘matrix-isolation’ experiments are preformed by condensing a gas 

phase vapour containing an excess of matrix material (a rare gas solid) with a small 

amount of the guest atom or molecule of interest onto a cold spectroscopic substrate.  

The matrix to guest ratio is usually between 104 and 105 in order to achieve complete 

isolation of the guest species and prevent guest-guest (metal-metal) interactions.  

Some practical requirements must be considered before attempting matrix-isolation 

experiments.  The sample substrate (spectroscopic window) and host material must be 

transparent over a wide spectral range.  One advantage of using rare gas solids is their 

transparency from the vacuum UV to the far-infrared spectral regions.  However, the 

choice of spectroscopic window is dependent on the type of spectroscopy to be 

carried out.  Duncan16 provides details of the suitability of spectroscopic windows for 

different measurements.  The guest species (metal atoms) must be volatile or a 

gaseous vapour must be produced.  A stable method of guest vaporisation is required 

to ensure uniform matrix ratios are maintained throughout the sample deposition.  

Experiments involving the isolation of low vapour pressure molecular species must 

ensure that factors such as the thermal generation of the guest species does not cause 

decomposition before matrix condensation.  Metal atom vapours can be achieved in a 

number of ways such as resistive heating, pulsed laser vaporisation and ‘sputtering’ 
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by electron bombardment of the bulk.  Sample purity is a priority given the small 

amounts of dopant species used.  This can be ensured for matrix gases by employing 

a high vacuum gas handling system.  A vacuum shroud serves to protect the sample 

chamber from radiative and physical sources of heat.  High vacuum (typically 10-6 

mbar or better) must be maintained in the chamber to allow the refrigeration system 

achieve the low temperatures (4 to 40 K) required for sample deposition. 

The use of low temperatures and rare gas solids in matrix-isolation are two of 

the advantages of the technique, as the low temperature ensures simpler molecular 

spectroscopy than that achievable in the gas phase, since only the lowest electronic 

and vibrational states are populated.  The deposition and sample temperature also 

play important roles in simplifying the observed spectroscopy as the rigid matrix 

environment prevents molecular rotation.  Therefore, rotational progressions 

corresponding to the P and R branches observed for molecular species in the gas 

phase are removed and only the vibrational transitions are observed.  However the 

deposition temperature should be approximately one third the melting point of the 

host material (Ar, Kr and Xe) to produce samples with high crystallinity.  To achieve 

isolation and avoid guest-guest interactions resulting from diffusion processes 

deposition temperatures less than this are sometimes used.  The effect of the 

deposition temperature on the crystallinity of the solid rare gases is discussed later in 

this Chapter. 

This thesis centres on an investigation of the luminescence spectroscopy of 

metal atoms isolated in solid Ar, Kr and Xe and therefore a brief overview of the 

development of this narrower subject area is provided.  The investigation of the 

electronic spectroscopy of metal atoms in rare gas solids has paralleled, and in some 

cases, preceded the growth in understanding molecular interactions in matrices.  This 

synergism was necessitated by preparative transition metal atom Cryochemistry13 as 

the analysis of matrix-isolated metal atom reactions required an understanding of the 

atomic spectroscopy of the precursor metal atoms in rare gas solids.  This is of great 

advantage in determining the reaction mechanisms involved in the preparation and 

characterisation of new species.  The extensive study of matrix-isolated metal atoms 

began in 1959 when McCarthy and Robinson17 reported optical absorption studies of 

Na and Hg in solid Ar, Kr and Xe deposited at 4.2 K.  Since then, the optical 

absorption spectroscopy of many refractory metals have been reported and reviewed 

in the literature11,18,19.  Only in the past decade, has the luminescence spectroscopy of 
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metal atoms isolated in rare gas solids been used as a sensitive probe of some aspects 

of the solid-state environment20.  This role was afforded by the development of cold 

supersonic jets to study the interaction of the ground and excited states of a single 

metal atom interacting with rare gases in 1:1 M⋅RG complexes or in larger M⋅RGn 

clusters21.  The interaction of metal atoms in matrices can be seen as an infinite RGn 

cluster and therefore information on energetics and dynamics extracted from gas 

phase experiments can be used to probe the matrix environment using theoretical 

simulations. 

In the last ten years the Maynooth group have concentrated on the 

luminescence spectroscopy of nsnp ← ns type electronic transitions of group I (Na)22, 

group II (Mg)23,24 and group IIA (Zn25, Cd26 and Hg27) metal atoms isolated in solid 

rare gases.  These systems exhibit either 2S or 1S spherically symmetric ground states 

resulting from ns1 and ns2 ground state electronic configurations respectively.  The 

excited np1 and ns1np1 states reached in absorption are spatially very different to the 

ground states, leading to very different interaction with the host than the ground state.  

The high ground state symmetry and the availability of accurate ground and excited 

state diatomic pair-potentials allowed the development of a simple theoretical 

method28 to model the local matrix cage interactions leading to the observed M/RG 

luminescence.  The localised M⋅RG18 model employs pair-potentials from gas phase 

1⋅1 M⋅RG complexes to simulate the interaction of the metal atom in the RG solid. 

 

I.3 Rare Gas solids, (RG) 

Solid rare gases make ideal matrix hosts, as they are chemically inert and transparent 

over a very wide spectral range, from the far-infrared to the vacuum UV.  The RG’s 

(Ne, Ar, Kr and Xe) all exhibit spherical ground states and adopt a simple packing 

structure in the solid state.  The formation of simple solids on condensation owes its 

origin to the van der Waals nature of the RG-RG interactions, as forming close 

packed structures maximises the van der Waals forces between the RG atoms by 

achieving the highest coordination, that is the largest number of nearest neighbour 

atoms15.  The structure adopted is the simple close packed, face centered cubic (fcc) 

arrangement.  Figure  I.1 presents an fcc unit cell, which when expanded in three 

dimensions n times generates the RG matrix.  The fcc unit cell represented in Figure 
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 I.1 shows fourteen lattice points, eight of which are positioned at the corners of the 

unit cell with the remaining six occupying the centre of the cubic faces.  Each of these 

points corresponds to the centre of mass of a RG atom.  The lattice parameter (a) and 

the next nearest neighbour distance (R) are depicted in Figure  I.1.  In an fcc lattice29 

each RG atom has twelve nearest neighbours at a distance of R = a/√2 and six next 

nearest neighbour atoms located at a distance of the lattice parameter, a.  The lattice 

parameters for the solid rare gases Ne to Xe are presented in Table  I.1 at 4 K15. 

 

Face Centred Cubic (fcc) unit cell 

a

R

a = lattice parameter
R = next nearest neighbour distance  

Figure  I.1 A representation of a face centered cubic unit cell showing the fourteen lattice 
points, the lattice parameter (a) and the nearest neighbour distance, R.  The 
nearest neighbour distance can be calculated using simple algebra as R = 0.707a 
= a/√2. 

 
Table  I.1 Lattice parameter (a) and site sizes in angstrom units (Å) for specific spherically 

symmetric site types in the solid rare gases.  The site sizes presented were 
calculated with respect to the lattice parameter using the simple algebraic 
expressions provided in the text and in the legend of Figure  I.2. 

RG Solid Lat. Parm. (a, Å) Td (Å) Ioh (Å) ss (Å) TVac (Å) 

Ne 

Ar 

Kr 

Xe 

4.462 

5.312 

5.644 

6.131 

0.709 

0.844 

0.897 

0.974 

1.307 

1.556 

1.653 

1.796 

3.155 

3.756 

3.991 

4.335 

3.699 

4.404 

4.679 

5.083 

 
The ordered fcc packing structure exhibited by solid Ne, Ar, Kr and Xe upon 

deposition allows the identification of the possible sites of isolation for spherical 
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ground state metal atoms.  These ‘S’-state metal atoms therefore show a preference 

for a spherically symmetric site within the host matrix.  The site diameters (Å) of four 

of these sites as listed in Table  I.1.  The two-layer space filled representation of an fcc 

unit, shown in Figure  I.2, allows a visual assessment of the relative site diameters of 

the four site types.  The sites are: 

 (I) Substitutional Site (ss): A ss is the vacancy left in the host RG lattice 

following the removal of a single RG atom.  The substitutional site diameter is 

calculated with respect to the lattice parameter (a) of the RG as ss = a/√2.  The fcc 

unit cell in Figure  I.2 shows that these sites are centered at the unit cell lattice points 

as indicated by the large circles. 

 (II) Octahedral Interstitial Site (Ioh): This site is located at the centre of the fcc 

unit cell as shown in Figure  I.1 and encompassed by six host RG atoms.  The site size 

and its position in the unit cell is shown (dashed circle) at the centre of Figure  I.2.  

The largest guest species it can accommodate without disruption of the lattice is 

70.7% of the size of the host (rare gas) atom radius.  The site size is calculated from 

the lattice parameter using the expression Ioh = (a – ss). 

 (III) Tetrahedral Interstitial Site (Td): There are eight of these sites per fcc unit 

cell, four of these are represented by the smallest circles in Figure  I.2.  These sites are 

also referred to as tetrahedral holes as the vacancy is located at the centre of  four rare 

gas atoms forming a regular tetrahedron.  The centre of this site is located at a 

distance √3(a/4) away from the corner of the cubic fcc cell.  A tetrahedral interstitial 

site can accommodate a spherical dopant species of radius less than a fifth of the 

radius of the host RG atom15. 

 (IV) Tetravacancy Site (TVac): This site, like the substitutional site, is 

generated by the removal of a tetrahedron of four adjacent host atoms surrounding a 

tetrahedral interstitial site and its replacement by the guest species.  Therefore, the 

centre of a TVac coincides with the centre of a tetrahedral interstitial site, Td.  

Although this site is not shown explicitly, its size can be assessed by inspection of 

Figure  I.1. 

The simple fcc unit cell therefore allows the identification of possible sites of 

atomic isolation in the rare gas lattice.  This aids in the analysis of the solid-state 

luminescence spectroscopy of M/RG’s.  For example the Hg atom exhibits a 1S0 

ground state and a comparison of the ground state bond length30, for the Hg(1S0)⋅Xe 
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1:1 complex known from the gas phase to be 4.25 Å, with the site size available in 

solid Xe (ss = 4.334 Å) reveals that the Hg⋅Xe bond length is less than ss, and 

therefore substitutional site occupancy is expected for Hg atoms in solid Xe. 

 
 

Figure  I.2 A space filling representation of the face centered cubic (fcc) unit cell showing 
two layers AB of the repeating structure ABCABC that describes the layer-
packing characteristic of RG solids.  The circles represent the spherical sites 
sizes and the legend provides the simple expressions used to calculate the site 
sizes available from the lattice parameter (a) for a given solid. 

 

I.4 Matrix Effects 

In the following section some effects of the rare gas solid host matrix on the 

luminescence spectroscopy of metal atoms, are presented.  These include the 

formation of multiple trapping sites, a topic discussed with respect to identification 

and removal of thermally labile sites.  In addition a general comparison of the RG 

solids is made to allow an assessment of their relative preference for multiple site 

formation.  The origin of gas phase to matrix frequency shifts for transitions is 

discussed with respect to the role of electron-phonon coupling for luminescent F-

a  

Subs. Site (ss)  

Ioh Int.
Td Int.

Lattice parameter (a)
Substitutional site (ss = a/√2)

Octahedral Interstitial site (Ioh = a – ss)
Tetrahedral Interstitial site (Td = 0.225*ss)

a  

Subs. Site (ss)  

Ioh Int.
Td Int.

Lattice parameter (a)
Substitutional site (ss = a/√2)

Octahedral Interstitial site (Ioh = a – ss)
Tetrahedral Interstitial site (Td = 0.225*ss)
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centres in solids.  The origin of Jahn-Teller effect which gives rise to structured 

broadband profiles observed for P ← S type electronic transitions is also discussed. 

 

I.4.I  Multiple metal atom trapping sites 

As the M/RG solid condensation proceeds at low temperatures (4 to 35 K) metal 

atoms exhibit a preference for certain sites of isolation within the RG host as 

controlled by the M⋅RG ground state bond length.  The Hg/Xe case mentioned in 

Section I.3 represents the ideal situation where the Hg(1S0)⋅Xe bond length is less 

than the ss site diameter of solid xenon.  This is not always the case.  If the ground 

state bond length is slightly larger than the substitutional site size available in the 

solid, isolation may occur in multiple sites.  Thus isolation may occur in a larger site 

such as a tetravacancy but also in a substitutional site following an expansion.  In 

addition, where the solid formation occurs at the lower end of the temperature range 

(T < 12 K) isolation in thermally unstable sites that contain defects such as lattice 

vacancies may result.  These sites are subsequently removed by the formation of a 

more crystalline lattice by annealing, where the solid is gently heated and re-cooled to 

allow organisation of the lattice into its regular packing structure.  Matrix annealing 

or high deposition temperatures are therefore required to assess the thermal stability 

of the sites of isolation occupied by dopant species in RG solids. 

 Due to the larger site sizes available but also for rigidity reasons, solid Xe is 

known to be most efficient rare gas matrix for the isolation of atomic species.  The 

rigidity is directly related to the magnitude of the RG⋅RG diatomic dissociation 

energy (De).  Table  I.2 presents the dissociation/binding energies for the rare gas 

dimers.  A comparison of the De values for the Xe2 and Ne2 reveals the Xe⋅Xe 

binding energy is almost seven times larger than that of Ne⋅Ne.  The difference in the 

RG dimer dissociation energies is manifest in how solid Xe achieves and maintains 

the crystalline fcc packing easier than Ne. 
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Table  I.2 Lattice parameters (a) for the RG solids and the ground state bond lengths for 
the RG dimers presented in angstrom units.  The binding / dissociation energies 
(De) for the RG dimers are presented in wavenumber units. 

RG Solid Lat. Parm. (a, Å)15 RG⋅RG Re (Å) De (cm-1) 

Ne 

Ar 

Kr 

Xe 

4.462 

5.312 

5.644 

6.131 

Ne⋅Ne31 

Ar⋅Ar32 

Kr⋅Kr31 

Xe⋅Xe31 

3.091 

3.756 

4.017 

4.363 

29.4 

99.5 

138.4 

196.2 

 

I.4.II  Gas Phase – Matrix transition frequency shifts 

It has been observed for several metal atom systems undergoing P ← S type 

electronic transitions, that the solid host strongly influences the spectroscopy.  The 

differences from the free atom in the gas phase include the observation of a shift 

between absorption and emission energies.  The magnitude of this shift is calculated 

as the difference in energy between the absorption and emission band maxima.  It is 

generally referred to as the Stokes’ shift.  In the gas phase absorption occurs from the 

ground state E0 to the excited state E1 corresponding to a transition energy ∆E1,0 = E1 

– E0 and the emission occurs between the same levels.  Therefore, as depicted on the 

left of Figure  I.3 ∆E1,0 (Abs.) = ∆E1,0(Em.) in the gas phase.  The introduction of the 

luminescent centre (the atom) to a crystalline solid (RG) results in a Stokes’ shift as 

∆E1,0 (Abs.) > ∆E1,0(Em.).  This is due to interaction with lattice phonons in both the 

ground E0 and excited E1 states.  Electron-phonon coupling results in the population 

of E1(vn) from E0(v0) in absorption as shown in the middle panel (Atom A) of Figure 

 I.3.  Then fast non-radiative relaxation occurs from the excited state phonon levels 

accessed E1(vn) to E1(v0) followed by the radiative transition to the ground state 

phonon level E0(vn) where a second non-radiative relaxation occurs to E0(v0).  As a 

result, the radiative transition energy is ∆E1,0 (Em.) = E1(v0) – E0(vn), and the Stokes’ 

shift observed is the sum of the non-radiative energies occurring in both the ground 

and excited states.  This process is shown in Figure  I.3, where the solid and dashed 

arrows represent radiative and non-radiative processes respectively. 

 In Figure  I.3 E1 ← E0 represents the electronic transition for metal atoms 

undergoing P ← S type transitions in solid RG matrices.  The matrix absorption 

energies are normally observed to blue shift by approximately 1% of the gas phase 

transition energy11 ∆E1,0.  This effect is due, in part, to the electron-phonon coupling 
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and is dominated by the interaction of the excited state with the rare gas solid, 

occurring in the Frank-Condon region of the ground state potential energy surface.  

The gas-phase to matrix shift of electronic transition energies of M/RG solids arises 

from contributions from both the ground and excited state interactions.  This is 

revealed by the linear correlation between the matrix shifts and the RG polarizability.  

This was shown by the analysis of the Zn/RG, Cd/RG and Hg/RG systems by 

Laursen and Cartland33.  However, another factor leads to the observation of broad 

absorption features for P ← S transitions in RG solids.  This results from the dynamic 

Jahn-Teller effect, which is discussed in the next section. 

 In emission the relative positions of the ground and excited state potential 

energy curves are of great importance in determining the observed Stokes’ shift as the 

transition energies are restricted by the Frank-Condon approximation.  If a large 

difference exists between the excited and the ground state minima (for the same 

configuration of the atoms), a large Stokes’ shift will be observed.  If the excited state 

is stabilised greatly, the ground state may be very repulsive at the excited state 

minimum.  However, the overall emission bandshape is determined by the electron-

phonon coupling strength, of which the Huang and Rhys factor34, S is a measure.  The 

larger the value of S, the more Gaussian the observed emission band will be.  In cases 

where interactions in the excited and ground states leads to a coincidence in the 

minima of both potential energy surfaces, radiative relaxation from E1(v0) to E0(v0), 

as shown on the right hand side of Figure  I.3, allows the electronic transition to occur 

with minimal electron-phonon coupling (S ≈ 0).  In this case the observed emission 

feature corresponds to the band origin, (ν0,0) and a narrow zero-phonon line (ZPL) is 

observed.  These effects are of reference to Chapter III where the first evidence of 

ZPL’s for matrix-isolated metal atoms is presented for the 3P0 → 1S0 transition of 

atomic mercury.  ZPL’s have, however been observed in the spectroscopy of matrix-

isolated molecules.  Bondybey and Brus35 have discussed in detail the physical origin 

of electron-phonon lineshapes observed for matrix-isolated molecules such as Cl2 and 

C2. 

 The material presented above indicates the profound changes that can occur 

on placing a metal atom into a solid-state environment.  Therefore knowledge of 

M⋅RG systems in the gas and condensed (M/RG) phases provide powerful methods to 
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examine the interactions occurring in the condensed phase which contribute to the 

observed spectral band shapes.  

 

Figure  I.3 A comparison between the interactions of luminescent metal atoms in the gas 
and condensed phase.  E0 and E1 represent the ground and excited electronic 
states of the atom and v represent the vibronic interactions in the ground and 
excited states induced by electron-phonon coupling.  The right hand panel in 
this figure depicts the case of a luminescent centre in the solid where weak 
electron-phonon coupling (S ≈ 0) exists. 

 

I.4.III  Dynamic Jahn-Teller effect 

The optical absorption spectroscopy of matrix-isolated metal atoms undergoing P ← 

S transitions in the rare gas matrices often show a threefold split pattern13,18.  Jahn 

and Teller36,37 showed that an electronically degenerate state of a non-linear complex 

is unstable with respect to some asymmetric nuclear displacement that lowers its 

energy by lowering the symmetry and thereby removing the electronic degeneracy.  

In the early literature, the presence of the structured absorption features on matrix-

isolated atoms was attributed to effects such as multiple site occupancy38, crystal field 

splittings39 and non-nearest neighbour M-M40, interactions in the solid.  In the 1950’s, 

the JT effect was first detected in EPR spectra of paramagnetic ions isolated in 

crystals41.  In the late 1970’s moment analyses using magnetic circular dichroism 

(MCD) studies of matrix-isolated Mg atoms42 in rare gas solids and comparison to the 
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observed absorption spectra, revealed for the first time substantial evidence that the 

threefold splitting observed for M(P ← S)/RG transitions was a consequence of the 

dynamic Jahn-Teller effect.  It was concluded that the threefold absorption pattern 

resulted from a splitting of the Mg 1P excited state due to a quenching of the excited 

state orbital angular momentum for Mg atoms isolated in single site type in solid Ne, 

Ar, Kr and Xe.  The quenching was believed to be as a result of mixing of the 3p Mg 

orbitals with orbitals from neighbouring host rare gas atoms.  An analysis of higher 

MCD moments and absorption spectra, assuming octahedral site symmetry for the 

Mg atom showed a dominant non-cubic (JT active) vibronic mode contributed to the 

observed bandwidth in the rare gas hosts (Ar, Kr and Xe) where the threefold pattern 

was observed.  A Jahn-Teller explanation of this splitting, via T1 × t2g coupling, was 

thus proposed for Mg/RG and assigned as the origin of other triplet splitting patterns 

observed for P ← S type transitions of matrix-isolated atoms. 

 Analysis of the 2P ← 2S transition of matrix-isolated Li atoms43 in rare gas 

matrices using the MCD technique showed that strong Jahn-Teller coupling in the 2P 

state contributes to the absorption bands recorded in solid Kr and Xe.  In addition, the 

application of simple crystal field models to these systems were unable to account for 

the threefold pattern.  A theoretical analysis44 of the MCD and absorption 

measurements made for the Li/Xe system showed good agreement between 

simulation and experiment when the JT active modes, (eg and t2g) had equivalent 

frequencies and coupling strengths.  The eg and t2g designations are the non-cubic 

vibronic modes of the rare gas lattice.  The Na/Xe and Li/Xe systems were further 

investigated45 using a temperature dependent moment and theoretical lineshape 

analysis of the MCD spectra.  This study conclusively assigned the threefold splitting 

pattern observed for the P ← S type electronic transition to the dynamic Jahn-Teller 

effect.  Information on the actual site occupied by the guest metal atom in the rare gas 

solid was not available in the early ‘80’s.  Since this time, accurate experimental and 

theoretical work has been presented on the 1:1 M⋅RG diatomics.  This is particularly 

true of the Hg⋅RG diatomics and it is this system which is analysed first in the present 

work. 
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I.5 Luminescence spectroscopy of Hg/RG and Mn/RG solids 

The following sections provide a general outline of the experimental and theoretical 

(Hg only) analyses of the luminescence spectroscopy of atomic mercury and 

manganese isolated in rare gas solids (Ar, Kr and Xe) presented in this thesis. 

I.5.II  Hg/RG 

The metal atom whose spectroscopy has been most extensively studied, both in 1:1 

van der Waals (Hg⋅RG) complexes21 and isolated in solid rare gas matrices20  

(Hg/RG), is mercury.  This is particularly true of the 6p 3P1 ↔ 6s 1S0 transition46 

which occurs in the gas phase at 39412.3 cm-1.  Figure  I.4 presents a schematic of the 

gas phase energy level diagram for atomic Hg46.  As accurate Hg⋅RG pair-potentials, 

obtained from spectroscopy of the diatomic Hg⋅RG complexes stabilised in 

supersonic expansions are available in the literature21, spectral simulations of the 

matrix absorption and emission spectroscopies are undertaken in this study.  The 

simulations completed are an extension of the pair-potentials approach the Maynooth 

group has implemented in the Zn/RG28 and Cd/RG47 matrix systems.  The results of 

these calculations are presented in Chapter IV. 

Following the theoretical work, it was necessary to extend the experimental 

analysis of the emission spectroscopy to provide sufficient information for 

comparison with predictions.  The aspects relating to the spectroscopy of the 6p 3P1 

and 6p 3P0 states will be addressed in the luminescence spectroscopy reported in 

Chapter III. 

In Chapter V, the Hg/RG18 pair-potentials calculations, presented in Chapter 

IV for RG = Ar, Kr and Xe, are extended to model the luminescence of the atomic Hg 

6p 3P1 ↔ 6s 1S0 transition in solid neon, reported by Chergui and co-workers48,49.  In 

addition, the localised Hg/RG18 model was extended to simulate the emission 

spectroscopy of the atomic Hg 6p 3P0 → 6s 1S0 transition reported in Chapter III. 
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Figure  I.4 Schematic of the energy levels of atomic Hg46 the arrows indicate the allowed 
transitions and there energies in wavenumber units above the ground 1S0 state 
of atomic Hg.  The gas phase lifetimes50,51,52 of the transitions are also presented. 

  

I.5.II  Mn/RG 

Like mercury17, manganese53 was one of the earliest metal atom systems to be 

investigated with the matrix-isolation technique.  Since the first report by Schnepp53 

on the absorption spectroscopy of atomic Mn/RG solids, further work has appeared in 

the literature, including a review of the UV/Vis absorption spectroscopy of Mn/RG 

solids18,54,55.  In contrast, no reports of the Mn/RG luminescence spectroscopy of 

atomic manganese have appeared to date.  Therefore, the experimental work 

presented in Chapters VI – IX report both the UV/Vis absorption and luminescence 

spectroscopy of Mn isolated in solid Ar, Kr and Xe.  The motivation for this being the 

similarities between atomic manganese, which exhibits an ns2 ground state electronic 

configuration and M/RG systems such as Mg23,24 where the solid-state spectroscopy 

has been studied in detail.  The similarities in the gas phase spectroscopy of Mg and 

Mn is evident on inspection of Figure  I.5. 

The lowest energy electronic configuration of atomic Mn is [Ar]3d54s2 giving 

rise to the spherically symmetric a6S5/2 ground state.  Chapter VI presents the UV/Vis 
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absorption spectroscopy of Mn/RG (RG = Ar, Kr and Xe) solids.  The aim of this 

being to assign the of s → p electronic type transitions of Mn atoms from the ground 

a6S5/2 state to the excited Mn [Ar]3d54s4p states.  The excited states are the ‘singlet-

like’ [3d5(6S)4s4p(1P°)] y6P and ‘triplet-like’ [3d5(6S)4s4p(3P°)] z6P states occurring 

in the gas phase56 at 35,725.85 cm-1 (279.91 nm) and 24,788.05 cm-1 (403.42 nm), as 

shown in Figure  I.5.  Following the identification of the fully allowed y6P ← a6S and 

z6P ← a6S transitions in Chapter VI, the subsequent Chapter presents the 

luminescence spectroscopy of Mn/RG solids following resonant (z6P5/2 ← a6S5/2) 

excitation with continuous and pulsed light sources.  Excitation spectra are recorded 

to resolve multiple site occupancies, which are, convoluted in the absorption spectra 

and determine the matrix shifts of z6P5/2 ← a6S5/2 transition in each solid.  High-

resolution time-integrated and time-resolved emission spectra are recorded following 

resonance excitation to assign the observed emission features to radiative transitions 

from excited states of the Mn atom that occur to lower energy than the z6P state.  

Excited state lifetime measurements are reported to identify the excited state 

dynamics, inter-system crossing and inter-multiplet relaxation processes leading to 

the observed emission bands. 

 Although the absorption spectra of atomic manganese and magnesium share 

many characteristics, the existence of several atomic states (a4D, z8P and a6D) that 

occur to lower energy than the z6P state means that the emission spectra of the former 

is complex.  The spectral regions of the ‘forbidden’ 3d54s4p z8P5/2 ↔ 3d54s2 a6S5/2 

and 3d64s a6D5/2 ↔ 3d54s2 a6S5/2 atomic transitions at 543.4 and 573.0 nm, (18402.46 

and 17451.52 cm-1) were investigated with direct dye laser excitation.  The intrinsic 

high-resolution of the laser coupled with the high intensity, allows excitation spectra 

for both of these forbidden transitions to be recorded.  These spectra also provide a 

comparison of the absorption characteristics of Mn atoms undergoing P ← S or D ← 

S transitions.  The emission spectroscopy recorded following direct laser excitation of 

the z8P and a6D ← a6S transitions provides more definitive state assignments of the 

emitting levels. 
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Figure  I.5 Schematic representation of the energy levels of gas phase atomic manganese56 
The allowed y6P5/2 ← a6S5/2 and z6P5/2 ← a6S5/2 transitions occur at 35726 cm-1 
(279.91 nm) and 24788 cm-1 (403.42 nm) respectively, are indicated by arrows. 

 

 Chapter IX provides a comparison of the excitation spectroscopy recorded for 

the y6P, z6P and z8P ← a6S transitions of atomic Mn.  Allied with the similarities of 

the Mn/RG systems and those of Mg/RG systems, an attempt is made to identify the 

site or sites of Mn atom isolation in each RG system employing the polarizability 

model of Laursen and Cartland33. 

All of the experimental data reported in this thesis was recorded in the Low 

Temperature Laboratory in the Department of Chemistry, National University of 

Ireland – Maynooth, with the exception of the Hg(3P1)/Ne luminescence data which 

was provided by M. Chergui and co-workers48,49.  The specifics of the experimental 

apparatus and spectroscopic techniques used to achieve these results are presented in 

Chapter II. 
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Chapter II  
Experimental 

II.1  Introduction 

The experimental work involved the production and spectroscopic interrogation of 

low temperature solids doped with metal atoms.  The sections which follow, develop 

the general remarks made in Chapter I on the matrix–isolation technique to provide 

specific details of the equipment and methods employed to achieve the results 

reported. 

Solid M/RG (M = Mn and Hg, RG = Rare gases Ar, Kr and Xe) samples were 

prepared by co-condensing manganese or mercury vapour with the host gas onto a 

calcium fluoride (CaF2) window at temperatures ranging from 12 to 35 K. The M/RG 

thin-films were characterised spectroscopically using both steady-state and time-

resolved methods. This section is arranged in the following format, firstly the 

physical components comprising the matrix-isolation apparatus (MIA) used to 

achieve the deposition temperatures are described. Secondly, an account of the gas 

handling system (GHS) and the precautions taken to ensure sample purity is provided. 

Thirdly, the procedure of M/RG sample preparation and deposition on the cryogenic 

substrate is outlined, including two methods of metal vapour generation based on the 

physical properties of the bulk metals, Hg and Mn.  Finally, a comprehensive 

description of the luminescence spectrometer used in the steady-state and time-

resolved measurements is provided in addition to the continuous lamp and pulsed 

laser excitation sources. 

II.2  Matrix – isolation apparatus 

A typical matrix-isolation apparatus like that described by Ozin and Moskovits1,2 was 

used during the course of this work as shown in Figure  II.1.  Vacuum, typically in the 

low 10-7 mbar range, was maintained in the sample chamber at room temperature 

using an Edwards Speedivac oil diffusion pump, model E02 backed by an Edwards 

Rotary Pump, model RV3.  The vacuum was monitored using an Alcatel CF2P 

penning gauge.  An Edwards cold trap filled with liquid N2 (77 K) also minimised 

contamination of the deposition substrate from the diffusion pump oil. Following 

‘cool–down’ to 12 K and prior to sample deposition the vacuum dropped to 
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approximately 9x10-8 mbar.  A quarter swing butterfly valve, Edwards QSBR allowed 

isolation of the sample chamber from the pumping system for venting. Table  II.1 

outlines the individual components of the pumping system used to attain the high 

vacuum in the sample chamber3. 

APD Cryogenics
Helium Displex

Edwards Diffusion
pump, mod.: 302 

Vacuum shroud

Metal vapor

Cold Trap
(Liq. N2)

Backing valve

Helium (from compressor)

Edwards QSB2
Butterfly valve

Alcatel CF2P 
penning gauge

Host gas inlets

Edwards 3 
rotary pump

In
Out

CaF2 window

Tmin 12 K

 

Figure  II.1 A representation of the matrix-isolation apparatus showing the pumping 
systems employed. 

 
Table  II.1 Equipment employed to achieve and monitor the vacuum in the sample 

chamber prior to and during sample deposition.  

Component Manufacturer Model/Part Number 

Rotary pump 

Diffusion pump 

Butterfly valve (1/4 swing) 

Penning gauge 

Edwards 

Edwards 

Edwards 

Alcatel 

RV3 

E02 

QSB2 

CF2P 

 
A minimum temperature of 12 K was achieved at the CaF2 window with an APD 

Cryogenics closed–cycle helium displex system, shown in Figure  II.2. High-pressure 
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helium (270 psi) was admitted to the refrigeration unit via gas lines from an APD 

Cryogenics compressor4, model HC-2. The two–stage refrigeration unit (expander) 

APD Cryogenics model DE-202 operates on the Gilford-McMahon refrigeration 

cycle at 50 Hz5. ‘Cool-down’ to 12 K was typically achieved in 70–80 minutes. 

Temperature was monitored and controlled with a Scientific Instruments 9600–1 

silicon diode6 and heater mounted on the copper holder of the CaF2 window.  Good 

thermal contact is achieved between the window and copper holder using an indium 

wire seal7.  The refrigeration components and manufacturers are listed in Table  II.2. 
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Figure  II.2 A representation of the APD Cryogenics closed-cycle helium displex system 
used to achieve the deposition temperatures required to for M/RG matrices 
showing the two – stage refrigeration system operated by the DE-303 expander4. 
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Table  II.2 Experimental apparatus used to attain cryogenic conditions (minimum 
temperature 12 K) at the CaF2 window required to deposit M/RG thin films. 

Component Manufacturer Model/Part Number 

Helium compressor5 

Two – stage refrigerator4 

APD Cryogenics 

APD Cryogenics 

HC-2 

DE-202 

 

II.3  Gas handling system, (GHS) 

The matrix gases were handled using a dedicated gas handling system, (see Figure 

 II.3) maintained at vacuum in the low 10-8 mBar range by a Pfeiffer Balzers turbo-

molecular (TPU–180H) pump,8 backed by a diaphragm pump9.  An ionization 

gauge10, combined with a Granville–Phillips (GP) vacuum gauge controller11 (model 

307), was used to monitor the vacuum in the GHS.  The amounts of host gas in the 

gas handling system before and after sample deposition was monitored by two 

baratron gauges (Tylan General CDLD-11 and 31) sensitive in the ranges 0 – 10 and 

0 – 1000 Torr respectively12.  This allowed the rate of gas deposition to be 

determined. The RG was admitted to the sample chamber via a Granville–Phillips 

variable leak valve, (Type 203)10.  It allowed isolation of the gas handling system 

from the matrix rig at all times except during sample deposition.  The individual 

components comprising the GHS are listed in Table  II.3. 

Granville-Phillips variable
leak valve (Model 203)

C
aF

2 
w

in
do

w

Granville-Phillips Ionisation 
gauge and controller
(Model 307)

   AEI valve
mod.: MV38

     VAT
Gate valve

X
en

on

Krypton

Argon

Nupro valves
SS-4BW-V51

Tylan General
   CDLD-11

Tylan General
   CDLD-31

Pfeiffer Balzers 
Turbo - molecular 
pump TPU-180 H 

Vacuubrand, diaphragm 
pump; MD - 4T 

 

Figure  II.3 A schematic of the gas handling system. 
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Table  II.3 Experimental apparatus used to maintain and monitor the vacuum in the gas  
handling system. 

Component Manufacturer Model/Part Number 

Turbo – molecular pump8 

Diaphragm pump9 

Ionisation gauge11 

Pfeiffer Balzers 

Vacuubrand 

Granville – Phillips 

TPU-180H 

MD-4T 

307 

 

II.4  M/RG sample preparation 

Solid M/RG samples were prepared by co-condensing metal vapour with the host 

gases listed in Table  II.4 onto a CaF2 window at temperatures ranging up to 

approximately one quarter the melting point of the host gas depending on the sample 

characteristics under investigation. The method of metal vapour generation selected 

was specific to the physical properties of the metal. The two different techniques 

employed are discussed individually. 

Table  II.4 Matrix host gases, purity and suppliers.  The melting point of the host gases 
(Mp) in Kelvin. 

Host Gas Purity Supplier Mp (K)7 

Argon, (Ar) 

Krypton, (Kr) 

Xenon, (Xe) 

99.998 % 

99.998 % 

99.998 % 

BOC Gases 

Linde Gas UK 

Linde Gas UK 

83.9 

116.6 

161.2 

 

II.4.I  Metal vapour generation, Mercury 

The deposition method used for mercury, exploits its high vapour pressure whereby 

metal ‘pick-up’ by the matrix gases flowing over a Hg reservoir at room temperature, 

(296 K) entrains sufficient Hg vapour to produce moderately absorbing samples (OD 

= 0.9).  Mercury has a vapour pressure (v.p.) of 1 x 10-3 Torr14 at 16 °C.  The 

reservoir consisted of a 15 cm long stainless steel tube, 1.5 cm in diameter containing 

1 cm3 of mercury, connected by one quarter inch tubing to the gas inlet of the matrix 

shroud.  Pick-up is controlled by the three-way valve arrangement shown in Figure 

 II.4, where two valves isolate the reservoir from the matrix rig, except during Hg/RG 

sample formation, when they are opened and a third valve, directly connecting the 



Chapter II, Experimental 

25 

GHS to the matrix, is closed.  Freeze-pump-thaw cycles were used to remove air from 

the reservoir after the initial fill with mercury. 

Figure  II.4 A schematic of the three-way valve system used in the Hg ‘pick–up’ deposition. 

 

II.4.II  Metal vapour generation, Manganese 

Manganese vapour was generated by electron bombardment (sputtering) of the bulk 

metal using an ultra-high vacuum Omicron evaporator, Model EFM3 (Evaporator 

with integral Flux Monitor)13 shown in Figure  II.5.  Manganese is a high temperature 

metal with a melting point of 1244 K and a vapour pressure 1 x10-3 torr14 at 1108 K. 

The electron beam from a tungsten filament is as shown in Figure  II.6 focused on 

irregular manganese pieces15,16 (Goodfellow, Johnson Matthey; purity >99.5%) 

contained in a molybdenum crucible.  The bombardment induces localised heating in 

the metal resulting in evaporation. The integrated flux monitor indicated the metal 

flux generated with this vaporisation.  However, the absolute quantity of metal 

deposited in samples was ascertained from absorption spectroscopy, as irregular size 

Mn pieces were used the flux observed was dependent on the packing and subject to 

change as consistent loading of the crucible was not possible. Therefore, the flux 

monitored during sample deposition served only as a guide. The specifications of the 

EFM3, Mo crucible and the bulk metal are presented in Table  II.5. 
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Figure  II.5 A representation of the metal atom source Omnicron UHV EFM3 evaporator 
showing the orientation of the source with respect to the sample substrate CaF2 
and the electrical and physical connections required for operation. 

 
Tungsten filament  (0 - 3 A)cooling shroud

ceramics

'HV' electrical supply
      (0 - 1000 V)

Mn atom beam
Molybdenum Crucible

barrel connector  
Figure  II.6 An illustration of the molybdenum crucible (containing the bulk manganese) 

and its immediate environs showing the relative positions of the filament and 
the exit path of the metal atom vapour within the Omnicron UHV EFM3 
evaporator. 

 
 This study centres on the atomic spectroscopy of metal atoms, therefore, low 

metal atom fluxes were used with an excess of the host gas to ensure atomic isolation 

dominated. Typically, for manganese, 700 V was applied to the EFM3 and filament 

currents (IFil) ranging from 1.3 to 1.5 A were used to achieve Mn/RG samples 

containing the maximum amount of isolated metal atoms while limiting the content of 

higher metal atom aggregates formed from metal nucleation during deposition. 

To ensure sample purity and limit the effect of contaminations from the 

evaporation, such as MnO2 adsorbed on the metal surface, the evaporant was 

degassed prior to depositing samples.  This was done following each fill of the 

crucible. This procedure was completed in two stages.  First, the filament was 

degassed by slowly increasing the filament current (IFil.) without high voltage.  

Second, the bulk metal was evaporated under the normal conditions (see above) with 
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the exit shutter (Figure  II.5) closed until a stable flux could be maintained without 

any noticeable pressure rise in the sample chamber.  This procedure was employed to 

remove the adsorbed species as the flux arising from these contaminants reduces over 

time whereas the remaining stable flux is due to the vaporisation of the bulk metal. 

 
Table  II.5 Manufacturers of the equipment and the specific dimensions where appropriate 

for the UHV evaporator, molybdenum crucible and bulk manganese. 
 

Apparatus Manufacturer Model Specifications 

Evaporator 

 

Crucible 

 

 

 

Manganese 

 

 

 

Omicron13 

 

Omicron 

 

 

 

Goodfellow15 

 

Johnson Matthey16 

 

UHV EFM3 

 

Molybdenum 

 

 

 

- 

 

- 

 

IFil: 0 – 2.5 A 

Voltage: 0 – 1000 V 

Outer diameter: 5.0 mm 

Inner diameter: 3.5 mm 

Capacity: 75 mm3 

Temperature (max): 2200 K 

Condition: Irregular pieces  

Purity: 99.5 % 

Condition: Irregular pieces 

Purity: 99.99 % 

 
Although the method by which the mercury and manganese vapours were 

produced are different, both present specific difficulties with respect to purification.  

However, once the vapour was achieved, the co-condensation with the host gas was 

completed as follows.  Firstly, a layer of pure host gas (RG) was allowed to deposit 

on the CaF2 window to minimise metal nucleation and contaminant build up at the 

sample window. This precaution limited the amount of sample-to-sample cross 

contamination.  Secondly, the metal vapour was admitted and co-condensed with the 

rare gas of interest.  In the case of Hg, this was achieved by allowing metal ‘pick–up’ 

to proceed.  Opening the EFM-3 exit shutter allowed the co-condensation of Mn/RG 

samples to begin. The samples reported here were deposited at a rate of 8-10 mmol/hr 

for a period of 30 minutes.  The same M:RG ratios and sample thickness were 

achieved by varying the two factors which govern the deposition rate; a) the backing 

pressure (Pbk) in the GHS and b) the flow rate selected for the Granville – Phillips 

variable leak valve. 
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II.5 Luminescence measurements 

Following deposition of the M/RG thin films, the spectroscopic measurements 

reported in the following chapters were conducted using three optical arrangements, 

which can be considered in two classes depending on the excitation source employed. 

A) Continuous Lamp Excitation yielding steady–state excitation and emission spectra 

and B) Pulsed Laser Excitation allowing excitation and emission spectra and 

temporal measurements of the emission to be made. 

II.5.I Steady-state spectroscopy (continuous lamp excitation) 

A deuterium17 (Hamamatsu L6310 and a Cathodeon C713 power supply18) and/or 

tungsten lamp (30 W, GE Model DZA) were used as the light sources for the ultra-

violet (UV, 180–500 nm) and UV/Vis (350–600 nm)19 spectral regions respectively 

to record both absorption and excitation spectra. An Acton Research Corporation 

(ARC) 0.30 m SpectraPro–300i monochromator20 fitted with a 1200 grooves/mm 

diffraction grating, blazed at 300 nm was used for wavelength selection. The 

absorption, excitation and emission spectra reported later employed the highest 

resolution gratings (1200 grooves/mm) fitted in both ARC SpectraPro 

monochromators.  However, both monochromators were fitted with additional 

diffraction gratings, the specifications of which are listed in Table  II.6.  Figure  II.7 

presents a schematic of the spectrometer employed for continuous lamp absorption 

and luminescence spectroscopies.  The monochromatic light transmitted through the 

thin film M/RG matrix samples, located on a vertical CaF2 window21, was focused 

onto a photomultiplier tube (Hamamatsu, 1P2822) by means of a quartz focusing lens 

(Fl1) (Figure  II.7) mounted with the PMT on the sample chamber. Absorption spectra 

of the M/RG samples were obtained in the usual manner by rationing sample 

transmittance spectra with their corresponding blanks, i.e., pure RG films, (RGbl).  

The absorbance23 quantified in terms of the optical density (O.D.) is calculated using 

the Equation II.1, 

  O.D. = - log10 (I/I0)    Equation. (II.1) 

Assuming the same sample thickness for the M/RG sample and the corresponding 

rare gas blank RGbl, the absorbance was calculated using the following substitutions, 

I = I(M/RG) and I0 = I(RGbl). 
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 An important consideration for optical measurements is the choice of the 

deposition substrate in this case calcium fluoride, CaF2.  The substrate should be 

transparent in the regions of the electromagnetic spectrum where the measurements 

are preformed.  Calcium fluoride is transparent over the range 129–1176 nm7.  Also 

the matrix material, must be optically transparent in the region of interest.  The rare 

gases are ideal as they are transparent over a very wide spectral range from the far 

infrared to the vacuum UV.  The far IR absorptions are due to phonon absorptions, 

lattice vibrations of the atoms within the solid matrix crystal. The vacuum UV 

absorptions of the rare gas crystals correspond to Frenkel excitons, the lowest energy 

transition occurring for solid xenon at 150 nm23. 

Emission from the M/RG samples was monitored perpendicular to the 

excitation axis by focussing emitted light onto the entrance slits of an ARC 0.5 m 

SpectraPro-500i monochromator24 fitted with a 1200 g/mm grating, blazed at 300 nm. 

Photon detection was achieved using a Hamamatsu R928-P PMT25 maintained at –20 

°C in a Products for Research cooled-housing (Photocool S600)26.  This PMT was 

operated in photon counting mode by relaying its signal via an amplifier/ 

discriminator module27 (Electron Tubes Ltd, type AD6) to the ARC NCL data 

acquisition and controller unit.  The specifications of the photo-multiplier tubes used 

are presented in Table  II.7.  The SpectraPro-500i emission monochromator was 

calibrated using the sodium D lines from a hollow cathode Na lamp, UV lines of 

molecular oxygen were used to calibrate the excitation monochromator SpectraPro-

300i. 

 

Table  II.6 The specifications of the Acton Research Corporation (ARC) monochromators 
used during the course of this work. Note * indicates the specifications refer to 
the 1200 grooves/mm gratings. 

ARC Monochromator SpectraPro-300i20 SpectraPro-500i24 

Focal length (mm) 

Wavelength range (nm) 

Gratings (grooves/mm) / Blaze (nm) 
 
 

Resolution (nm)* 

Dispersion (nm/mm)* 

Accuracy (nm)* 

300 

180 nm – far infrared 

1200 / 300 
300   / 300 

 

0.1 @ 435.8 nm 

2.7 

± 0.2 

500 

180 nm – far infrared 

1200 / 300 
600   / 600 
150   / 300 

0.05 @ 435.8 nm 

1.7 

± 0.2 
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Table  II.7 The specifications of the Hamamatsu photo-multiplier tubes (PMT’s) employed 
during the course of this work. Note the IP28 was mounted on the sample 
chamber and used to monitor the radiation transmitted by the M/RG samples. 

Hamamatsu PMT IP2822 R928-P25 

Range (nm) 

Peak wavelength (nm) 

Photo-cathode material 

Window material 

Cathode sensitivity (µA/lm) 

Anode sensitivity (A/lm) 

Response times – Rise time (ns) 

Electron transit time (ns) 

185 – 650 

340 

Sb-Cs 

UV glass 

40 

200 

2.2 

22 

 

185 – 900 

400 

Multialkali 

UV glass 

200 

2000 

2.2 

22 

D2: Hamamatsu L6310

W: GE Model: DZA 

Emission Monochromator
  ARC SpectraPro - 500i

ABS
PMT

D
2
 / W

 Lamp
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am

am
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28
  

Excitation Monochromator
  ARC SpectraPro - 300i

Hamamatsu R928-P  
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Fl1 - focusing lens    (f.l.: 1 inch) 
Cl1 - collecting lens  (f.l.: 1 inch)
Cl2 - collecting lens  (f.l.: 1 inch)  

Figure  II.7 A Schematic of the luminescence spectrometer set–up used to record the 
steady–state (time–integrated) spectra. 
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II.5.II  Time-resolved spectroscopy 

Emission spectra were also recorded with pulsed excitation using a Nd:YAG (Quantel 

YG 980E-10)28 laser normally operating at a repetition frequency of 10 Hz.  A dye 

laser29 (Quantel TDL–90), pumped by either the second or third harmonics of the 

YAG, were used to produce tuneable laser radiation. The characteristics of the 

Quantel laser systems are presented in Table  II.8. 

Table  II.8 The specifications of the Quantel laser systems. 

Pump Laser System Nd:YAG, Quantel YG 980E 

Gain Medium 

 

Repetition rate (Hz) 

Energy (mJ) @ 1064, 532, 355 nm 

Pulse duration (ns) @ 1064 nm 

Flash-lamps 

Flash-lamp Voltage (V) 

Q – Switch pre-pulse (ns) 

Flash-lamp / Q – Switch delay (µs) 

Neodymium-doped crystal 

(Yttrium – Aluminium – Garnet) 

10, 5, 2,1 

850, 400, 165 

6 

SFL 611.09N/RX 

1600 

500 

242 

Dye Laser System Quantel TDL-90 

Tuning range (nm) 

Linewidth (cm-1) @ 560 nm 

220 – 750 

0.08 

 

The wavelengths required for mercury atom excitation around 250 nm were 

achieved by mixing the residual Nd: YAG fundamental at 1064 nm with the doubled 

output of the dye laser using DCM (4-Dicyanmethylene-2-methyl-6-(p-

dimethylaminostyryl)-4H-pyran) as the dye material.  Manganese atom excitation in 

the UV at 280 nm was achieved by frequency doubling Rhodamine 590 (Benzoic 

Acid, 2-[6-(ethylamino)-3-(ethylimino)-2,7-dimethyl-3H-xanthen-9-yl]-ethyl ester, 

monohydrochloride).  Manganese atom excitation in the 360-420 nm spectral region 

was produced by mixing the dye laser output with the Nd:YAG fundamental using 

DCM as the dye material.  Table  II.9 presents the details of the spectral characteristics 

of the dye materials used.  KDP (Potassium Diphosphate) crystals, Quantel DCC2/3 

and MCC1/2 were used to frequency double and mix respectively while quartz 

crystals, Quantel QCC1 and QCC2, were used to compensate for the walk of the 

resultant beams.  The wavelength ranges accessible by frequency doubling and/or 

mixing the dye laser output are presented in Table  II.10.  Wavelength separation of 
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the final beam from residual beams was achieved with a Pellin-Broca prism, the UV 

output of which was trained onto the matrix sample (on a CaF2 window) without 

focusing optics.  The experimental arrangement of the laser is shown in Figure  II.8. 

The direct dye laser output was employed for pumping the forbidden a6D and 

z8P transitions Mn atom using Rhodamine 590 and Coumarin 500 as dye materials 

respectively.  The former and the latter involved pumping with 2ω and 3ω of the 

Nd3+:YAG at 532 and 355 nm respectively.  Table  II.9 presents the spectral 

characteristics of the dye materials.  The use of the tuneable dye laser output allowed 

the acquisition of laser excitation spectra, using the arrangement shown in Figure  II.8.  

Wavelength separation was not required using the direct dye output of the TDL-90 so 

the Pellin-Broca prism was replaced by a right-angled prism.  Excitation spectra were 

recorded by scanning the dye laser wavelength monitoring a given emission band 

maximum.  The excitation spectra recorded in this manner were not corrected for the 

intensity distribution of the dye material.  

 
Table  II.9 The specifications of the laser Dye materials employed for mercury and 

manganese atom excitation in RG solids. 

Dye Material Characteristic Specification 

DCM30, 31 

(4-Dicyanmethylene-2-methyl-

6-(p-dimethylaminostyryl)-4H-

pyran) 

C19H17N3 

Manufacturer 

Solvent 

Pump Source: Nd: YAG (nm) 

Absorption maximum, (nm) 

Fluorescence maximum, (nm) 

Dye Laser Range, (nm) 

Exciton 

Ethanol 

532 (2ω) 

472 

639 

615–666 

Rhodamine 59030, 31 

(Benzoic Acid, 2-[6-

(ethylamino)-3-(ethylimino)-

2,7-dimethyl-3H-xanthen-9-yl]-

ethyl ester, monohydrochloride) 

C28H31N2O3Cl 

Manufacturer 

Solvent 

Pump Source: Nd: YAG (nm) 

Absorption maximum, (nm) 

Fluorescence maximum, (nm) 

Dye Laser Range, (nm) 

Exciton 

Ethanol 

532 (2ω) 

530 

566 

555–580 

Coumarin 50030, 31 

(7-Ethylamino-4-

trifluormethycoumarin) 

C12H10NO2F3 

Manufacturer 

Solvent 

Pump Source: Nd: YAG (nm) 

Absorption maximum, (nm) 

Fluorescence maximum, (nm) 

Dye Laser Range, (nm) 

Exciton 

Ethanol 

355 (3ω) 

395 

495 

498–546 
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Table  II.10 Details of the technical processes used to achieve the laser frequencies29 
required for UV mercury and UV-Vis. Manganese atom excitation. 

M/RG System Wavelength Range, nm Technical Process Crystals Dye Material 

Hg 

 

 

Mn (UV) 

 

 

Mn (Vis.) 

231–272 

 

 

267–325 

 

 

360–420 

Frequency Mixing 

after Doubling 

 

Frequency 

Doubling 

 

Frequency Mixing 

MCC2/QCC2 

DCC2/QCC1 

 

DCC3/QCC1 

 

 

MCC1/QCC2 

DCM 

 

 

Rhodamine 

590 

 

DCM 

 
Typical laser fluence of 20 µJ/mm2, measured with a Molectron power-max 

500A meter and PM10V1 head, was achieved in the 250 nm spectral region using 

only the oscillator and pre–amplifier stages of the TDL-90 dye laser. The linewidth of 

the dye laser is 0.8 cm-1 at 560 nm. 
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Figure  II.8 A representation of the luminescence spectrometer and the interaction with the 
Quantel Nd:YAG (YG-980E) pumped Dye laser (TDL-90) used to record the 
time-resolved luminescence of M/RG samples following UV/Vis excitation at a 
repetition frequencies of 1 to10 Hz. 

 
Emission was monitored perpendicular to the laser beam and recorded in the 

photon counting manner described previously for the steady-state measurements, 

except that each data point in the spectrum was obtained by averaging ten laser shots.  

Recording emission spectra in the manner described above provided temporal 
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resolution as coupling high intensity, low repetition excitation (Nd:YAG laser, 10 Hz) 

with single photon counting introduced a time–gating which favoured long lived 

emission over short-lived (nanosecond) fluorescence. 

 Time–resolved emission spectra were also recorded using an Andor 

Technologies iStar iCCD (Intensified Charge Coupled Device) camera mounted32 on 

the ARC SpectraPro 500i as shown in Figure  II.9.  A swing mirror allowed the 

emitted radiation dispersed by the diffraction grating to fall directly on the iCCD 

camera.  

1

CCD

SPC
PMT

Sample

'swing mirror'

Laser Output

Emission Monochromator
ARC SpectraPro - 500i

 

Figure  II.9  An illustration of the experimental set–up depicting the relative positions of the 
iCCD camera, swing mirror and single photon counting photomultiplier tube 
(SPC PMT) on the emission monochromator. 

 
A personal computer equipped with the Andor iStar software and controller card 

(CCI–010), allowed control of the iCCD unit and ARC SpectraPro 500i 

monochromator via the Remote Scan Controller Port, RS232.  The intensified charge 

couple device comprises of a two–dimensional matrix of photo-sensors on a silicone 

based semiconductor chip.  The iStar system employed contains 256 rows x 1024 

columns of these photo-sensors.  The iCCD was operated at -15°C maintained by an 

integrated fan cooling system. The specifications of the iCCD are listed in Table 

 II.11.  The main components of the iCCD camera in addition to the photosensitive 

pixel matrix are the photo-cathode, microchannel plate (MCP), output phosphor 

screen and a fibre optic bundle as shown in Figure  II.10. 
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Table  II.11 Specifications and performance of the Andor iStar CCD system 

Component Manufacturer Model Specifications 

iStar System 

 

 

 

 

 

 

 

iCCD 

 

 

 

Andor 

Technologies 

 

 

 

 

 

 

Marconi 

 

 

 

DH 720-25F-03 

 

 

 

 

 

 

 

CCD-30-11 

 

 

 

Gating Speed:7 ns 

Photo-cathode: Wide Spectral Coverage 

Input Window: Quartz 

Spectral Range (nm): 180 –850 

Phosphor: P43 

Spatial Resolution: High 

Minimum Optical Gate: 4.6 ns 

Irising at Min. Optical Gate: 0.25 ns 

Active Area: Φ25 mm 

Pixel: 1024 x 256 

Active Pixels: 960 x 256 

Eff. Pixel Size: 26 µm2 

 

Phorphor coating, P43

Lens

Light

Input Image

Photocathode

Microchannel
Plate (MCP)

Output
Image

Fiber Optic
Window

Input Window

Vacuum

2D CCD Array   
 256 x 1024 pixels   

 

Figure  II.10 A sectional view of the Andor iStar Image Intensifier  

 
Briefly, the iCCD operates as follows; an incident photon of dispersed 

radiation falling on the input quartz window produce an electron from the 

photocathode.  The emitted electron is drawn towards the microchannel plate by an 

electric field.  The electrons cascade down the honeycomb channels of the MCP 

producing secondary electrons resulting in a net amplification of 104 per incident 

photon.  The resultant electron shower is accelerated by means of a potential 

difference and focused onto a phosphor screen (P43) inside the fibre-optic exit 

window.  Switching on/off the voltage to the photocathode allows time gating of the 
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device.  The electrons strike the CCD producing an electrical signal proportional to 

their intensity.  The final spectrum is generated with a “Vertical Binning” procedure 

where the charge (image) from each column of pixels is removed and summed 

vertically by a series of transparent horizontal electrode(s) to an ‘on–chip’ amplifier.  

The amplified signal is then transferred to the A/D converter on the CCI-010 

controller card. 

The spectral resolution of the iCCD is determined by the resolution of the 

dispersing element (diffraction grating) and limited by the number of pixels available 

to process the radiation.  The wavelength range dispersed by each of the gratings 

mounted in the ARC SpectraPro 500i and the maximum resolution of each are listed 

in Table  II.12. 

 

Table  II.12 Maximum resolution achievable employing the Andor iStar iCCD camera for 
each of the diffraction grating mounted in the ARC SpectraPro-500i 
monochromator. 

Diffraction Grating – ARC SpectraPro–500i Dispersal Range (nm) Resolution (nm) 

1200 g/mm; Blz: 300 nm 

600 g/mm; Blz: 600 nm 

150 g/mm; Blz: 300 nm 

40 

80 

320 

0.04 

0.08 

0.32 

 
Time–gated and time–resolved emission spectra were recorded by turning 

on/off the voltage to the iCCD photocathode. Triggering the CCD was achieved using 

the fast external trigger obtained from the Q–switch pre-pulse of the YG 980 laser.  

Time–gated emission spectra are obtained by varying the delay in activation of the 

photocathode after laser excitation has occurred and/or recording the spectrum for a 

specific time duration, (gate width).  These gated measurements and all the time 

resolved measurements were made within the total exposure time available (pulse to 

pulse time) limited by the repetition rate of the laser. Operating the YG 980 at 10 Hz 

allows a maximum exposure time of 100 msec.  Time–resolved spectra were recorded 

by setting a small gate width and stepping this in time.  Therefore, the time-resolved 

emission spectrum (TRES) is built from individual time-gated emission spectra 

recorded in known temporal slices. 
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II.5.III Excited state lifetime measurements 

Emission lifetime measurements were completed using two different methods one 

direct and the second indirect by analysis of the time–resolved measurements made 

with the Andor iStar iCCD camera.  The Andor software allowed the extraction of the 

emission intensities for a given emission feature (at a fixed wavelength) in the TRES 

allowing an examination of the temporal decay of individual features. Decay times 

were obtained by fitting single or multiple exponential functions to the decay curves 

extracted by applying a non-linear least squares analysis.  The fits were completed 

over more than four orders of magnitude and convoluted with the temporal profile of 

the YG 980 excitation source (fwhm 6 nsec) where required to extracted the excited 

state decay times. 

Emission decay measurements33 were also conducted with photon counting 

detection of the emission produced with pulsed laser excitation (using repetition rates 

ranging from 1 to 10 Hz), and recorded with a multi-stop, multi-channel scalar 

(MCS). The signal from the photon counting (R928-P) emission PMT was amplified 

by an Ortec (Model VT120) fast-timing preamplifier34 and relayed to an Ortec 

(Model 584) constant–fraction discriminator (CFD)35 to limit electronic noise. The 

fast NIM-output of the CFD was passed simultaneously to an Ortec (Model 661) 

ratemeter36 and to the stop-in on a 2 GHz multi-channel scalar (Fast ComTec, Model 

7886), which has a minimum dwell time of 0.5 nsec per channel37. The start pulse for 

the MCS unit was obtained from the Q–switch pre-pulse of the YG 980 laser, see 

Figure  II.11. The components used are listed in Table  II.13.  The temporal resolution 

of this arrangement has been determined to be approximately 500 nsec limited largely 

by the poor pulse-pair resolution of the R928-P PMT when high intensity, low 

repetition laser excitation is used.  This characteristic allows the recording of only 

long-lived emission decay (t ≥ 1 µsec) in the pulsed laser/MCS detection 

arrangement. 
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Figure  II.11 An illustration of the physical components used to record the decay 
characteristics of the luminescence of M/RG solids reported in this present 
work and there relative positions. 

 

Table  II.13 The components, manufacturers and model numbers of the experimental 
apparatus used to record the decay times of the atomic luminescence reported. 

Component Manufacturer Model/Part Number 

Fast timing preamplifier34 

Ratemeter36 

Constant fraction discriminator35 

Multi Channel Scalar37 

Ortec 

Ortec 

Ortec 

FAST ComTec GmbH 

VT120 

661 

VT584 

7886 
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Chapter III  
Luminescence spectroscopy of 3P1 and 3P0 state atomic mercury isolated 

in solid Ar, Kr and Xe. 

III.1 Introduction 

Historically Hg 3P1 ↔ 1S0 was one of the first atomic systems studied with the 

matrix-isolation technique1,2,3,4.  Despite the existence, for more than a decade now, 

of accurate Hg⋅RG pair-potentials, obtained from the spectroscopy of the diatomic 

Hg⋅RG complexes stabilised in supersonic expansions, no calculations have appeared 

in the literature of the corresponding atomic absorption or emission spectra in rare gas 

matrices. With the availability of accurate interaction potentials for the Hg⋅RG 

diatomics, spectral simulations of the matrix absorption and emission spectroscopies 

were extended to the Hg/RG system using the pair-potentials approach our group has 

implemented in the Zn5 and Cd6 matrix systems. However, with several emission 

pathways identified in the theoretical work, it was necessary to extend experimental 

analysis of the emission spectroscopy to provide sufficient information for 

comparison with predictions.  Specifically, the temperature dependence of the matrix 

emission is examined, lineshape analysis is performed and excitation spectra are 

recorded.  Details of the pair-potentials simulations and a comparison with the 

experimental data are presented in Chapter IV. 

The spectroscopy and reactivity of atomic mercury isolated in low 

temperature solids has been studied in greatest depth and scope by the Orsay group of 

Crepin and Tramer (C&T)7.  As their work has been recently reviewed8, only aspects 

relating to the spectroscopy of the 6p 3P1 and 6p 3P0 states will be addressed here. 

Absorption recorded by C&T with a deuterium lamp yielded spectra in agreement 

with the earlier work9 showing a threefold split band for Hg/Xe in the vicinity of the 

gas phase 6p 3P1 ↔ 6s 1S0 transition of atomic mercury at 253.6 nm.  Featureless 

bands, progressively blue-shifted from the gas phase transition, were observed in Kr 

and Ar matrices.  Dye laser excitation of the 6p 3P1 state absorption produced 

multiple emission bands in the UV in all three rare gas matrices.  Although excitation 

spectra were not presented in C&T’s work7, the most intense emission bands had the 

smallest Stokes’-shifts and were tentatively assigned to the occupancy of atomic 

mercury in substitutional sites. The Hg/Xe emission was quite different to that 
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recorded for Hg/Kr and Hg/Ar in that the Stokes’ shift was very large and the 

emission bandwidth was much greater than the absorption bandwidth. 

C&T also identified narrow “atomic-like” features in the matrix emission 

spectra which they assigned to the forbidden 6p 3P0 → 6s 1S0 transition.  The 

linewidth of these transitions decreased in the order Ar to Xe but the shift of the band 

positions was irregular with the emission in Ar located between that in Kr and Xe.  

Other work by C&T on matrix-isolated atomic Hg has involved an examination of the 

relaxation of the excited atomic 6p 1P1 state following resonance excitation with 

synchrotron radiation10,11 and pulsed laser excitation12,13. Population of all three 

triplet spin-orbit states (3P2,1,0) was observed as a result of 1P1 excitation.  More 

recently, Chergui and co-workers14 have conducted spectroscopic studies in neon 

matrices, work which will be compared with theoretical calculations presented in 

Chapter V. 

This Chapter presents a study of the temperature dependence of the 3P1 → 1S0 

and 3P0 → 1S0 transitions of atomic mercury isolated in the solid rare gases Ar, Kr and 

Xe, resulting from resonance excitation of the 3P1 excited state.  This state is accessed 

with continuous lamp and pulsed laser excitation, facilitating a clear distinction of the 

latter forbidden transition and the former, nearly fully allowed transition.  Excitation 

spectra are presented for the first time allowing identification of the origin of the 

multiple emission features observed.  Lineshape analysis of high-resolution 3P0 → 1S0 

emission spectra allow the strength of the electron-phonon coupling to be determined 

for this transition. 

III.2 Results 

III.2.I  Hg 3P1 ← 1S0 absorption spectra 

Following Hg/RG matrix deposition, as outlined in Chapter II, absorption spectra 

were recorded with a deuterium lamp in the vicinity of the 3P1 ↔ 1S0 transition3 of 

atomic Hg at 253.6 nm.  Figure  III.1 shows the absorption spectra recorded at 12 K 

for atomic Hg isolated in Ar, Kr and Xe matrices deposited at 22, 25 and 35 K 

respectively.  The Hg/RG samples were deposited at elevated temperatures to 

increase the matrix crystallinity and minimise thermally unstable sites of isolation. 

The spectra shown were obtained by rationing transmittance spectra recorded for 
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Hg/RG thin films with corresponding pure RG films.  The spectra observed are in 

good agreement with those presented in the study by C&T. 
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Figure  III.1 Hg/RG absorption spectra recorded at 12 K in the vicinity of the atomic Hg 3P1 
↔ 1S0 transition3 upon deposition at temperatures in excess of 12 K. 

 
Thus, as observed by C&T7 upon deposition at 14 K, a progressive red–shift of the 

Hg(3P1 ← 1S0)/RG band and decreasing linewidth of the matrix absorption band 

occurs from Ar to Xe.  These spectra verified that the Hg/RG samples prepared by 

our group mirrored those reported in previous studies. 

III.2.II  Hg 3P1 ↔ 1S0 excitation and emission spectra 

Emission spectra produced with continuous lamp excitation of the Hg 3P1 state are 

presented in Figure  III.2 for Ar, Kr and Xe samples.  The overall features of the 

Hg/RG spectra agree well with the nanosecond, time-resolved spectra presented 

previously by Crepin and Tramer7. One difference is the presence of a weak, resolved 

feature at 265.1 nm in Hg/Xe that is due to the long-lived 3P0 state emission of Hg.  

The main emission features are centered at 250.3, 254.1 and 273.0 nm in Ar, Kr and 
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Xe respectively as listed in Table  III.1.  Excitation spectra recorded for these 

emission wavelengths are shown on the left in Figure  III.2 and correspond to the 

dominant features in the previously reported7,9 absorption spectra.   
 

Table  III.1 Photophysical characteristics of the triplet 6p 3P1 ↔ 6s 1S0 transition3 of matrix 
– isolated atomic mercury. λEx indicates the position of the central component of 
the three–fold split excitation spectrum and λEm indicates the emission band-
centre in nm units. The full-width at half-maximum intensity of the 
excitation/emission features is denoted by ∆ and the Stokes shift by SS - both in 
wavenumber (cm-1) units. 

Excitation Emission Hg/RG 

System λEx (nm) ∆ (cm-1) λEm (nm)      ∆ (cm-1)         SS (cm-1) 

Ar 245.9 484 250.3 399 715 

Kr 248.9 397 254.1 465 816 

Xe 253.6 344 273.0 1472 2802 
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Figure  III.2 Emission spectra recorded at 12 K for the Hg/RG systems with lamp excitation 
of the Hg 3P1 ← 1S0 transition.  The excitation spectra, recorded by monitoring 
emission at 250.4, 254.1 and 273.9 nm in Ar, Kr and Xe respectively, are shown 
on the left of the figure. Hg/Ar, Hg/Kr and Hg/Xe samples were deposited at 22, 
25 and 35 K respectively. 
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As observed by C&T, the emission band in Hg/Xe, centered at 273 nm, has a 

large bandwidth and Stokes’ shift compared with those in the Hg/Ar and Hg/Kr 

systems.  Moreover, the Hg/Xe emission band exhibits a clear asymmetry.  To 

investigate the origin of this asymmetry we have examined the temperature 

dependence of the Hg/Xe emission and conducted lineshape analyses at 12 K and 

elevated temperatures. 

The right hand panel in Figure  III.3 provides a comparison of the Hg/Xe 

emission recorded at 12 and 42 K. As expected the emission bandwidth increases at 

elevated temperatures but contrary to expectation, the band-centre blue shifts.  This 

effect is completely reversible because, although not shown in Figure  III.3, the 12 K 

scan recorded after sample warming to 42 K is identical to the previous 12 K scan.  

Lineshape analysis of the time-integrated Hg/Xe emission spectrum is complicated by 

the presence of a small amount of 3P0 state emission in addition to 3P1 emission.  The 

location of the former emission is revealed by overlaying, as shown on the left in 

Figure  III.3, the 3P0 emission spectrum produced with pulsed laser excitation.  As 

indicated in this comparison, the emission bands of these two states are quite different 

- the 3P0 state is very narrow while the 3P1 state is broad. 

The deconvolution of the fluorescent 3P1 and phosphorescent 3P0 components 

present in the time-integrated spectrum shown in the right panel Figure  III.3 was also 

achieved temporally.  The different lineshapes of the 3P1 and 3P0 excited state 

emission features were verified by time–gated emission spectra recorded with iCCD 

detection as shown in Figure  III.4.  It is evident from the time–gated spectra shown in 

Figure  III.4 that employing no acquisition delay (td = 0 nsec) and a long gate width 

(95 msec) reproduced the time-integrated emission spectrum shown in the right panel 

of Figure  III.3.  Temporal separation of the 3P1 and 3P0 emission features was 

achieved using a delay time (td) of 1.0 µsec.  As shown by the dotted trace in Figure 

 III.4, this setting removes the broad 3P1 fluorescence while maintaining the narrow 
3P0 emission.  A long gate width of 95 msec was chosen to optimise the measurement 

time between excitation pulses from the Nd:YAG laser operating at 10 Hz. 
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Figure  III.3 Details of Hg/Xe emission.  The panel on the right shows a comparison of  
emission spectra recorded at 12 K and 42 K. In this comparison a reversible 
blue shift in the band maximum occurs with increasing temperature.  The panel 
on the left shows a comparison of the emission spectra produced with pulsed 
and continuous excitation.  The narrow feature at 265.1 nm was recorded with 
pulsed laser excitation and is gated to show only long-lived 3P0 emission. 

 

343536373839
x10

3
Energy (cm

- 1
)

260 265 270 275 280 285 290 295
Wavelength (nm)

Hg/Xe

In
te

ns
ity

 (A
rb

. U
ni

ts
)

Delay 0.0 nsec
Delay 1.0 µsec

343536373839
x10

3
Energy (cm

- 1
)

260 265 270 275 280 285 290 295
Wavelength (nm)

Hg/Xe

In
te

ns
ity

 (A
rb

. U
ni

ts
)

Delay 0.0 nsec
Delay 1.0 µsec

 
Figure  III.4 Hg/Xe time-gated emission spectra recorded at 12 K using iCCD detection 

following pulsed laser excitation, λEx = 253.0 nm.  The delay times (td) employed 
were 0 and 1.0 µsec with a constant gate width of 95 msec for the solid and 
dotted traces respectively. 
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In the lineshape analysis conducted on the time-integrated Hg/Xe emission, 

provision was made for the presence of the narrow 3P0 state emission band.  A 

satisfactory fit of the 12 K emission band, shown on the bottom left in Figure  III.5, is 

obtained with three Gaussian functions (not counting the narrow 3P0 state emission).  

Details of the 12 K fits are presented in Table III.II, which gives the positions of the 
3P1 emission components as 37535, 36619 and 35729 cm-1.  Fitting the emission band 

profile to Gaussian functions is a realistic analysis for Hg/RG systems where the 

difference in the ground and excited state bond lengths ∆R is large.  The excitation 

spectra recorded for all three emission components were identical.  As the Hg/Xe 

samples were deposited at 35 K to minimize the formation of multiple trapping sites 

and annealed to approximately 60 K to remove any persistent unstable sites, we 

conclude the three components in the 3P1 state emission centered at 273 nm arise 

from the occupancy of Hg in a single site in xenon.  

The 42 K spectrum, shown on the right in Figure  III.5, could also be fit 

adequately with three bands.  An indication of the quality of the fits is provided in the 

upper panels, which show the residuals existing between data and fit.  Also shown are 

the emission profiles generated in the fit.  The comparison of the low and high 

temperature fits, shown on the bottom in Figure  III.5, suggests that the origin of the 

unexpected blue shift occurring at higher temperatures in the emission band, arises 

from the increasing intensity of the unresolved blue component. However, when the 

spectra are plotted on absolute intensity, it becomes clear that it is the intensity of the 

central component, which is decreasing at higher temperatures. 

Lineshape analyses of the emission bands in the Hg/Ar and Hg/Kr systems 

were also conducted, the results of which are shown in Figure  III.6 and collected in 

Table  III.2.  As in the Hg/Xe system, allowance had to be made in the Hg/Kr system 

for the presence of a weak 3P0 state emission.  This component and a broad 

underlying feature, due to a thermally unstable site, occur to the red of the main 3P1 

state emission in Kr.  Adequate fits in Hg/Ar were only obtained when three 

components were allowed for, as shown on the left in Figure  III.6.  The temperature 

dependence in the Hg/Ar and Hg/Kr systems is simpler than in the Hg/Xe system in 

so far as the emission bands broaden and red shift with increasing temperature. 
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Figure  III.5 Lineshape analysis of 3P1 emission in the Hg/Xe system. The panel on the left 
shows an acceptable fit of the spectra recorded at 12 K.  In this fit, three broad 
Gaussian functions are required in addition to one, narrow function included 
for the 3P0 state emission.  The panel on the right shows a fit of the high 
temperature emission.  As in the 12 K fits, three broad and one narrow 
Gaussian functions provide an adequate fit. 
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Figure  III.6 Lineshape analyses of 3P1 state emission in the Hg/Ar and Hg/Kr systems.  The 
panels on the top show acceptable fits of spectra recorded at 12 K, revealing the 
presence of multiple components in the Ar and Kr systems as observed in 
Hg/Xe. In contrast to the Hg/Xe system, little temperature dependence is 
exhibited as indicated in the panels on the bottom. The fourth Gaussian 
component used in the Hg/Kr system was required to account for a small 
amount of a red site present in this sample.  Numerical values extracted in these 
fits are collected in Table  III.2. 
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Table  III.2 Parameters extracted in Gaussian fits of the Hg/RG 12 K emission spectra 
produced with continuous lamp excitation. The band areas were determined by 
numerical integration of the fitted curves. 

Hg/RG 
Bandcentre  

ν0 (cm-1) 

Bandheight 

(counts) 

Bandwidth 

 ∆ (cm-1) 

Integrated 

area (counts) 

Xe 37693.9 1658 84.3 1.488 x 105 

 37534.9 3151 710.5 2.383 x 106 

 36618.8 15229 1256.6 2.037 x 107 

 35728.9 1924 2455.8 5.020 x 106 

Kr 39486.9 6883 299.0 2.190 x 106 

 39334.7 1249 371.7 4.944 x 106 

 39149.0 5122 503.0 2.742 x 106 

 38513.515 619 1650 1.050 x 106 

Ar 40038.0 5482 252.5 1.473 x 106 

 39899.3 9309 329.4 3.263 x 106 

 39734.6 2967 467.2 1.475 x 106 

 

Time-resolved emission spectra (TRES) produced with pulsed laser excitation 

and iCCD detection are shown in Figure  III.7 for Hg/Kr.  Such scans yielded short 

lived (nanosecond) decay times for the Hg(3P1)/RG emission features. 
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Figure  III.7 Hg/Kr time–resolved emission spectrum corresponding to the Hg 3P1 → 1S0 
nanosecond fluorescence recorded at 12 K produced with pulsed laser excitation 
and iCCD detection. 
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 Decay profiles were extracted from the time–resolved emission spectra as 

described in Chapter II.  A representative plot of the Hg/Kr system is shown in Figure 

 III.8.  Adequate fits, generated with a single–exponential function convoluted with 

the temporal profile of the YG980 laser pulse, reproduced the overall decay profile of 

the emission feature well.  Figure  III.8 shows the result of this analysis for Hg/Kr, the 

upper panel showing the residuals - the deviation of the decay profile recorded from 

the fit completed.  This analysis reveals the decay of the excited state population 

follows 1st order kinetics with a decay time τ = 39 nsec at 12 K. 
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Figure  III.8 Decay profile of the Hg(3P1)/Kr emission recorded at 12 K extracted from time–
resolved emission spectrum, Figure  III.7.  The decay profile is convoluted with 
the temporal profile of the excitation laser source.  The residual shown 
represents the difference between the decay recorded and the single-exponential 
fit. 

 
 Single-exponential decays of τ = 46.5 and 37 nsec were extracted from similar 

fits of the time–resolved spectra recorded for Hg/Ar (250.3 nm) and Hg/Xe (273.0 

nm).  These nanosecond decay times confirm the assignment of the emission features 

to those of the Hg 3P1 → 1S0 transition whose gas phase lifetime is reported to be in 

the range 11316 to 125 nsec17. 
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 The temperature dependence of the decay profiles was investigated to assess 

the contributions of non-radiative components in the decay characteristics of the 

observed bands and thereby attempt and identify the true radiative decay times, (τrad) 

in the solid state.  Figure  III.9 presents the temperature dependence recorded for the 

Hg/Kr 254.06 nm emission at temperatures of 12, 27 and 35 K. 
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Figure  III.9 Decay profiles of the Hg(3P1)/Kr emission at 254.06 nm recorded at 12, 27 and 
35 K.  The temporal profile of the YG 980 laser excitation source at 249 nm is 
also shown. 

 
It is evident from Figure  III.9 that the decay profile for the Hg/Kr 254.06 nm 

emission feature does not exhibit any variation over the temperature range 12 to 35 K.  

This was also observed for the 3P1 → 1S0 emission features in the Hg/Ar and Hg/Xe 

systems.  This observation allowed the identification of the lifetimes extracted at 12 

K, (τobs) as the radiative lifetimes (τrad) of the atomic Hg 3P1 state emission for Hg/Ar, 

Hg/Kr and Hg/Xe, collected in Table  III.3.  The radiative decay times, τrad, presented 

in Table  III.3 for the Hg(3P1)/RG emission features are substantially less than the gas 

phase transition as the values quoted have not been corrected for the effective field of 

the host matrices.  The effective field correction18,19 is made with Equation III.1 using 

the index of refraction of the given rare gas host, n20, 21. 
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    τcor = τobs n[(n2 + 2)/3]2   Equation (III.1) 

Application of the correction yields decay times of 95.52, 100.96 and 109.1 nsec for 

Hg(3P1)/Ar, Kr and Xe respectively.  Figure  III.10 plots both the observed and 

corrected matrix lifetimes (τobs and τcor) as a function of emission wavelength.  The 

gas phase lifetime τgas (open diamond) is also shown and the solid line intercepting 

this point represents a λ3 extrapolation of the gas phase radiative lifetime.  The 

observed lifetimes τobs at 12 K, the radiative τrad and the corrected matrix lifetimes τcor 

(nsec) are collected in Table  III.3. 
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Figure  III.10 A comparison of the lifetimes recorded at 12 K for the Hg(3P1 → 1S0) emission 
features in Ar, Kr and Xe and a λ3 extrapolation of the gas phase lifetime of the 
3P1 state of atomic Hg.  The uncorrected and the data corrected for the effective 
fields shown by closed triangles and closed squares respectively. 

 

Table  III.3 The lifetimes recorded at 12 K for the Hg(3P1 → 1S0) emission features in Ar, Kr 
and Xe.  The observed decay time (τobs) at 12 K, radiative lifetime (τrad) and the 
radiative lifetime corrected for the effective field of the RG solid using Equation 
III.1.  The indices of refraction for the RG solids are also presented. 

Hg/RG System 
(λEm, nm) τobs (nsec) @ 12 K τrad (nsec) τcor (nsec) RG Refractive Index, n20,21 

Ar 46.5 46.5 95.52 1.320 

Kr 39.0 39.0 100.96 1.428 

Xe 37.0 37.0 109.10 1.490 
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 The λ3 extrapolation presented in Figure  III.10 is based on the relationship 

between the Einstein A coefficient for the emission decay rate Am,n and the radiative 

lifetime of a level m (τm).  It is given by Equation III.2. 

 
   Am,n = (64 π4/3hλ3)µ2 m,n = 1/τm   Equation (III.2) 

 
The trend of decreasing lifetimes observed from Ar to Xe in the uncorrected data τobs 

is reversed when the effective fields of the host matrices are taken into account, τcor.  

The trend in τcor suggests a λ3 dependence as expected, shown by the solid line from 

Ar to Kr with slight deviation for Xe.  This deviation in Xe may be as a result of the 

correction where the refractive index used was recorded at 60 K20 unlike Ar and Kr21 

recorded at 6 K.  C&T also presented lifetime measurements for the observed Hg 3P1 

emission features7 and following effective field correction reported radiative lifetimes 

τrad = 45, 55 and 55 nsec for Ar, Kr and Xe host matrices.  The radiative lifetimes 

reported by C&T are systematically less than the corrected values recorded in this 

study.  However the nanosecond lifetimes recorded here allowed unambiguous 

assignment of the 3P1 emission features using time-resolved methods. 

 Following the assignment of the radiative lifetimes (τrad) for the atomic Hg 3P1 

→ 1S0 transition isolated in solid Ar, Kr and Xe, the decay profiles of the individual 

emission components identified in the lineshape analysis were investigated. The 

lineshape analysis of the Hg/Xe system revealed three fluorescence bandcentres at 12 

K occurring at 266.42, 273.08 and 279.89 nm, shown bottom left of Figure  III.5.  

These three emission components have the least spectral overlap so the Hg/Xe system 

was selected for this analysis.  The decay profiles corresponding to these emission 

wavelengths were extracted from a single time-resolved emission spectrum at a given 

temperature.  Because the emission features are temporally very similar, analysis with 

a single–exponential function provided adequate fits and allowed the extraction of the 

observed lifetimes, τobs.  The Hg/Xe 3P1 decay profiles corresponding to emission at 

263, 273 and 280 nm are shown in Figure  III.11.  The band-centre of the high-energy 

emission feature was identified at 266.42 nm, however the decay profile of 263 nm 

was chosen to further reduce the spectral overlap between this band and the 

dominant, central 273 nm component. 
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Figure  III.11 A comparison of the temporal decay profiles recorded for the three emission 
components identified in the lineshape analysis (Figure  III.5) of the steady-state 
emission spectrum recorded for the Hg 3P1 → 1S0 transition in solid Xe at 12 K. 

 
Inspection of the Hg/Xe decay profiles shown in Figure  III.11 reveals slight 

differences in the profiles for the 263, 273 and 280 nm features at 12 K.  Fits of the 

individual decay profiles with a single exponential function allowed the extraction of 

different lifetimes τobs (nsec) for each component.  The observed lifetimes at 12 K, 

presented in Table  III.4, show a progressive increase with increasing emission 

wavelength.  When the decay times are corrected for the effective field, the corrected 

lifetimes τcor presented in Table  III.4 are 103.05, 106.97 and 111.39 nsec for the 263, 

273 and 280 nm features respectively.  The plot of the corrected decay lifetimes 

versus λ3 shown in Figure  III.12 reveals this trend is not λ3 dependent.  Therefore the 

lifetimes extracted represent decay times for three different emission components 

corresponding to those identified using the Gaussian lineshape analysis of the Hg 3P1 

→ 1S0 steady-state emission spectrum. 
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Table  III.4 The observed and corrected decay times (τobs and τcor, nsec) extracted from non-
linear single exponential fits of the decay profiles recorded for the three 
components present in the Hg 3P1 fluorescence in solid Xe at 12 and 46 K. 

Hg(3P1)/Xe System 
λEm, (nm) τobs (nsec) τcor (nsec) 

263.0 (12 K) 

                    (46 K) 

34.95 

35.39 

103.05 

104.35 

273.0 (12 K) 

          (46 K) 

36.28 

35.39 

106.97 

104.35 

280.0 (12 K) 

          (46 K) 

37.78 

35.91 

111.39 

105.88 
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Figure  III.12 A comparison of the lifetimes recorded at 12 K for the emission features 
identified at 263.0, 273.0 and 280.0 nm using the lineshape analysis of the Hg(3P1 
→ 1S0) emission feature in Xe. The solid line represents a λ3 extrapolation of the 
gas phase lifetime of the 3P1 state of atomic Hg. 

 
 A similar analysis of the decay profiles recorded for the emission components 

identified in the lineshape analysis of the Hg(3P1) emission spectra presented in 

Figure  III.6 for Hg/Ar and Hg/Kr, showed no marked differences.  This behaviour 

may stem from the lack of spectral resolution between the components identified and 

presented in Table  III.2. 

 The temperature dependence of the decay profiles for the individual emission 

components identified in the lineshape analysis was investigated.  The decay profiles 
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deviated from those recorded at 12 K for the Hg/Xe system only.  Figure  III.13 

presents a comparison of the decay profiles recorded for the three emission features 

(263, 273 and 280 nm) at 42 K.  It is evident in Figure  III.13 that the decay profiles of 

the 263 and 273 nm features, represented by open triangles and stars respectively, are 

equivalent.  This is reflected in the observed decay times (τobs) extracted at 46 K, 

collected in Table  III.4, where the value of the emission (35.4 nsec) 263 nm is equal 

to that extracted for the 273 nm feature. 
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Figure  III.13 A comparison of the temporal decay profiles recorded for the three emission 

components identified in the lineshape analysis (Figure  III.5) of the steady-state 
emission spectrum recorded for the Hg 3P1 → 1S0 transition in solid Xenon at 42 
K. 

 
This observation reveals the Hg/Xe decay profile is temperature dependent consistent 

with the lineshape analysis completed which showed that the 273 nm feature is 

diminished at temperatures in excess of 30 K.  Therefore the temperature dependence 

in the decay time extracted is reflecting the behaviour of the 266 and 273 nm 

components identified in the lineshape analysis shown in Figure  III.5. 
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III.2.III Hg 3P0 → 1S0 emission spectra 

In this section, details of the 3P0 state emission of mercury atoms resulting from 

intermultiplet relaxation (IMR) following pulsed laser excitation of the 3P1 level are 

presented. The combination of a high intensity, low-repetition excitation source 

(Nd:YAG laser) with photon counting detection is used for recording these spectra as 

it favours the long-lived 3P0 emission over the nanosecond 3P1 fluorescence.  Hence 

the resulting spectra are free of the 3P1 state emission bands described in the 

preceding section. 

The excitation wavelengths chosen correspond to the Hg 3P1 ← 1S0 transition in 

solid Ar, Kr and Xe, at 245.9, 248.8 and 253.0 nm respectively.  As shown in Figure 

 III.14, the emission features resulting from pulsed laser excitation are centered at 

258.9, 260.8 and 265.1 nm in Ar, Kr and Xe. The spectra shown in Figure  III.14 

exhibit a progressive red shift and decreasing linewidth from Ar to Xe. The red shift 

mirrors that of the 3P1 emission but the linewidth behaviour is the reverse of that 

shown in Figure  III.2 for the 3P1 fluorescence. It should be noted that the progressive 

red shift evident in Figure  III.14 was not present in C&T’s data7. In their spectra, the 

position of the Hg/Ar emission was intermediate between that of Kr and Xe.  It is 

thought that the 3P0 data presented in the earlier Hg/Ar work, corresponds to Hg 

occupancy in a secondary site13 of argon.  
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Figure  III.14 A summary of the long-lived emission features recorded in the Hg/RG systems 
at 12 K.  These emission spectra were produced with pulsed laser excitation of 
the Hg atom 3P1 ← 1S0 transition and are gated to show only long-lived 3P0 
emission.  Note the increasing red-shift in the emission bands on going from Ar 
to Xe but the decreasing linewidth. 

 
The emission features in Kr and Xe matrices reveal fine-structure splitting 

when recorded under high resolution.  As shown in Figure  III.15, Hg/Xe exhibits a 

narrow line (fwhm = 10.5 cm-1) at 265.12 nm, (37718 cm-1) and a broader red feature 

(fwhm = 70 cm-1 at 265.54 nm, (37658 cm-1). High temperature scans, also shown in 

Figure  III.15, indicate that the sharp feature is reversibly removed while the broad 

feature broadens and red-shifts. These lineshapes and their temperature dependence 

are characteristic of a zero phonon line (ZPL), for the narrow blue feature and a 

phonon sideband for the broader, red feature. Two features are also evident in the 

Hg/Kr system although not as well resolved as in Hg/Xe, but exhibiting the same 

temperature dependence.  The main band of Hg/Ar at 258.9 nm exhibits little 

temperature dependence, except that the pair of weak side-bands at 261.0 and 263.7 

nm are removed at high temperature.   
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Figure  III.15 High resolution scans of the Hg 3P0 state emission in Ar, Kr and Xe yielding 
resolved fine structure in the Hg/Kr and Hg/Xe systems.  The solid traces were 
recorded at 12 K.  High temperatures scans are shown by the dotted lines 
indicating reversible changes in the Hg/Kr and Hg/Xe spectra.  The main band 
in the Hg/Ar system exhibits little temperature dependence but the weak pair of 
red bands, assigned to defect site occupancy, are quenched at elevated 
temperatures. 

 
To investigate the origin of the splitting observed at high resolution for the 3P0 

state emission in Hg/Xe, a lineshape analysis was conducted using the Wp optical 

function.  This function was originally derived by Huang and Rhys22.   It is described 

in detail by Struck and Fonger23 and given by  

   Erreur !   Equation (III.3) 
In this expression r = exp(−h,−ω/kT) and Ip(x) is a modified Bessel function of 

variable order p and at a given temperature T, of fixed argument θ = 2Sr½/(1 − r). 

The function W provides the distribution of intensity as a function of phonon number, 

p.  It essentially provides Franck-Condon intensity factors for a single phonon mode 

of frequency h,−ω, coupling to the electronic transition with a strength S, a variable 

known as the Huang-Rhys factor. For large S, the Wp function approaches a Gaussian 

function. To maintain numerical accuracy in the weak electron-phonon characteristics 

of the Hg 3P0 state emission spectra, the sum form of the Wp function was used in our 

programming.  The sum form is  

 Erreur ! Equation (III.4) 
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and its evaluation is truncated at θm, the next integer greater than θ  + 1.  Clearly, the 

sum increases with the electron-phonon coupling strength S and the temperature.   

 A fit with the Wp function allows identification of the position of the zero-

phonon line (ZPL or ν0,0), and the magnitude of the strength electron-phonon 

coupling S once the recorded spectrum has been transformed into phonon units, p.  

This initially involves estimating the magnitude of the phonon frequency, h,−ω, a task 

which was direct in the 12 K Hg/Xe spectrum due to the ZPL being resolved.  A 

satisfactory fit, obtained with S = 1.3 and h,−ω = 21.0 cm-1, is shown on the left in 

Figure  III.16.  The fit verifies the ZPL is located at 37718 cm-1, the phonon side-band 

is, as expected, to the red of this.  In addition it reveals the presence of weak, ‘hot’ 

emission at 37739 cm-1 to the blue of the ZPL.  Using the 12 K fit parameters (S, 

h,−ω and ν0,0) the lineshape calculated with T = 30 K is compared on the right in 

Figure  III.16 with the emission spectrum recorded at this temperature.  Evident in this 

plot is the diminished intensity of the ZPL and the gain in the intensity of the phonon 

sideband now showing a maximum at 37673 cm-1.    

 Similar fits were performed on the 3P0 emission in Hg/Kr and Hg/Ar.  A 

satisfactory fit was obtained in Hg/Kr with S = 2.2, h,−ω = 28.0 cm-1 and ν0,0 = 38366 

cm-1.   The comparison shown on the right in Figure  III.17 indicates that the ZPL is 

not resolved in Hg/Kr but is located as a blue shoulder on the partially resolved 

feature.  The fits conducted in Hg/Ar are not as definitive as those in Hg/Xe or Hg/Kr 

because fine-structure splitting has not been resolved to provide an initial estimate of 

the phonon frequency, h,−ω.  However, the lineshape generated with S = 3.3, h,−ω = 

41.0 cm-1 and ν0,0 = 38740 cm-1 compares well, as shown on the left in Figure  III.17 

with the observed emission band. This fit indicates the ZPL is too weak to be resolved 

in the emission spectrum.  The results of the Wp lineshape analyses are presented in 

Table  III.5. 
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Figure  III.16 The Wp lineshapes calculated with Equation III.4 for the 3P0 state emission in 
Hg/Xe recorded at 12 and 30 K and produced with pulsed laser excitation at 253 
nm.  The location of the zero-phonon line in the spectrum is indicated as ZPL 
and numerically as ν0,0. The presence of ‘hot’ emission in the 12 K spectrum 
indicated by the asterix is made evident in the comparison of fit and data, which 
reveals the existence of a line to the blue of the ZPL. 
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Figure  III.17 The Wp lineshapes calculated for the 3P0 state emission in the Hg/Ar and Hg/Kr 

systems. The Hg/Ar emission was produced with laser excitation at 245.9 nm, 
the Hg/Kr spectrum with 248.8 nm excitation. 
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Table  III.5 The location of the ZPL extracted in the Wp lineshape function analysis 
conducted on the recorded atomic Hg 3P0 ↔ 1S0 emission in solid Ar, Kr and 
Xe. For comparison purposes, the results of a similar analysis on the central 
component in the Hg/Xe 3P1 ↔ 1S0 emission are also given. 

Hg/RG Transition ZPL, ν0,0 (cm-1) S h,−ω (cm-1) 

Hg/Ar 

Hg/Kr 

Hg/Xe 

3P0 ↔ 1S0 
3P0 ↔ 1S0 
3P0 ↔ 1S0 

38740 

38366 

37718 

3.3 

2.2 

1.3 

41 

28 

21 

Hg/Xe 3P1 ↔ 1S0 ~39000 105 21 

 
The two weak features in the Hg(3P0)/Ar emission spectrum at 261.17 and 

263.75 nm (see Figure  III.14 and Figure  III.15), have always been present in the 

samples we have prepared.  As shown in Figure  III.15, both of these low energy 

features are absent in the high temperature scans but re-appear at 12 K.  It has also 

been observed that the intensities of these two features are increased dramatically by 

the introduction of a third species to the Hg/Ar matrix.  This is most evident in Ar 

samples containing less than 0.1% Xe, where the intensities of the red-pair increase 

together relative to the 258.9 nm band. Crepin et al.7 previously assigned the 263.75 

nm feature to an Hg:H2O complex in the Ar matrix, however, we find this band 

always accompanies the 261.17 nm feature and both are present in Ar samples free of 

water.  Thus, we assign this pair of bands to mercury atom occupancy in imperfect 

sites in the Ar lattice, for example, a substitutional site with one of the 12 nearest 

neighbour atoms missing.  

Long decay times, ranging from 8 – 530 ms, were recorded for the emission 

bands of Ar, Kr and Xe shown in Figure  III.14 and Figure  III.15, verifying that they 

correspond to the strongly forbidden Hg 3P0 → 1S0 transition. Least squares fits with a 

triple–exponential function were required to obtain adequate fits, as shown in Figure 

 III.18 for the Hg/Xe system.  This is indicative of complex decay kinetics, behaviour 

already reported7 by Crepin et al.  It should be noted however, that by far the largest 

component in the decay curve has the shortest decay time (τ = 8.8 ms) while the 

longest decay (τ = 541 ms) is found only on the phonon sideband band and is the 

weakest component.  An investigation of the temperature dependence in the decay 

times extracted monitoring the 265.3 nm emission up to 30 K allowed the assignment 

of the 8.8 ms component as the radiative lifetime for the 3P0 → 1S0 transition in solid 

Xe. 



Chapter III, Hg(3PJ)/RG Luminescence 

63 

0.0 0.3 0.5
Time (sec)

10

100

1000

10000

λem= 265.124 nm λem= 265.3 nm
τ1 = 275.0 msec
A1 = 1618
τ2 = 093.0 msec
A2 = 1697
τ3 = 008.7 msec
A3 = 36439

τ1 = 541.0 msec
A1 = 2410
τ2 = 141.2 msec
A2 = 7925
τ3 = 008.9 msec
A3 = 23402

37.537.8
x103 Energy (cm-1)

265.0 265.5 266.0 266.5 267.0 267.5
Wavelength (nm)

12 K λEx. = 253 nm
Hg(3P0)/Xe

 

Figure  III.18 Hg/Xe high-resolution time-gated emission spectra produced with laser 
excitation at 253 nm.  Inset results of the non-linear least squares analysis 
completed and the decay characteristics extracted for the resolved emission 
features at 265.124 and 265.3 nm respectively. 

 

III.3 Discussion 

III.3.I  Hg 3P1 → 1S0 emission 

The gross spectral features recorded for the Hg 3P1 → 1S0 transition in the present 

study are in very good agreement with Crepin and Tramer’s7 earlier work.  High 

resolution scans of the emission bands reveal complex profiles, requiring multiple 

emission components to yield adequate lineshape fits.  Of the Hg/RG systems, the 

most complex behaviour is exhibited by the emission in Hg/Xe, which shows a blue 

shift with increasing temperature.  Calculation of the Wp optical function for the 3P1 

state emission in xenon yields a Gaussian curve with an electron-phonon coupling 

strength S of 105. This is almost two orders of magnitude greater than the value of 

1.3 extracted for the 3P0 state emission and closely replicates the central Gaussian in 

the lineshape analysis of the 273 nm band.  Gaussian fits done as a function of 

temperature reveal that the intensity of the central component is diminishing at high 
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temperature.  The origin of the multiple emission components in the Hg/RG systems 

is known from excitation scans not to be due to multiple site occupancy.  Pair-

potential simulations described in Chapter IV, present a model, which explains the 

origin of multiple emission features for atomic mercury isolated at a single site.  

These calculations also suggest a mechanism for the quenching of the central 

emission component in the 273 nm emission in the Hg/Xe system. 

 Time-resolved emission spectra recorded allowed the assignment of the 

nanosecond radiative lifetimes τrad of the emission features corresponding to atomic 

Hg 3P1 → 1S0 relaxation in solid Ar, Kr and Xe.  The decay profiles extracted from 

the time-resolved emission spectra exhibited different decay characteristics for the 

emission components identified in the lineshape analysis completed for Hg/Xe 

system, providing further evidence for the multi-component nature of the Hg(3P1 → 
1S0)/Xe emission. 

III.3.II Hg 3P0 → 1S0 emission 

The spectral and temporal characteristics of the Hg atom 3P1 and 3P0 excited state 

emissions are very different making them, as the comparison presented in Figure  III.4 

for Hg/Xe illustrates, easy to differentiate. Although the 3P0 state was easily observed 

with laser excitation in the three rare gas hosts used, the actual amount of it produced 

with 3P1 state excitation is rather small relative to emission of the 3P1 state.  The 

inefficiency of the 3P1 → 3P0 intramultiplet relaxation is made clear in Figure  III.2, 

where the only Hg/RG system showing a clear sign of the 3P0 state in continuous 

(time-integrated) emission is Hg/Xe.  Even in Hg/Xe, the ratio of the 3P1 state 

radiative decay to the 3P1 → 3P0 intramultiplet relaxation is estimated as 200:1 from 

the lineshape analysis presented in Figure  III.5 and the corresponding numerical data 

collected.  Moreover, the efficiency of the intramultiplet relaxation is not enhanced 

with increasing temperature up to 42 K as shown in Figure  III.5. 

Optical lineshapes generated with the Wp function indicate the 3P0 emission in 

the solid rare gases involves weak electron-phonon coupling.  The S values extracted 

are 1.3, 2.2 and 3.3 for Xe, Kr and Ar respectively.  In solid-state spectroscopy, weak 

electron-phonon coupling is indicative of unshifted potentials for the two states 

involved in the optical transition.  While the ground and many of the excited state 

potentials of the Hg⋅RG complexes are accurately known, the ã30(3Σ) states of the 
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Hg(3P0)⋅RG diatomics cannot be determined directly be spectroscopic means.  

However, in the limit of Hund’s case-c coupling, it can be extracted from the A31(3Π) 

and B30(3Σ) states24,25 of the Hg(3P1)⋅RG diatomics with Equation III.5 

   V(3P0) ã30 = 1/3[(VΣ
e + VΠ

e) + VΠ]   Equation (III.5) 

presented by Duval et al26.  In this expression VΠ is the spectroscopic A state, while 

VΣ is determined from the A and B states from the relationship VΣ = 2VB - VA. 

The potential energy curves extracted for the ã30(3Σ) states of the Hg(3P0)⋅RG 

diatomics from the spectroscopic A and B states are shown in Figure  III.19 and their 

key parameters are collected in Table  III.6.  It is evident on inspection of the curves 

shown in Figure  III.19 that the ground Hg(1S0)⋅RG X 10(1Σ) and excited Hg(3P0)⋅RG ã 
30(3Σ) state potential energy curves are very similar. Conversely the form of the 

excited Hg(3P1)⋅RG A31(3Π) state potentials are very different to the ground states.  

This explains the very strong electron-phonon exhibited on the Hg(3P1) state 

emissions (e.g., Hg/Xe, S = 105) and the very weak coupling on the Hg(3P0) state 

emission (S = 1.3). 
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Figure  III.19 Potentials of the Hg⋅RG diatomics of relevance to the Hg(3P0)/RG matrix 
emission spectra. The X and the A(Π) state potentials are obtained directly from 
spectroscopic data of the Hg⋅RG diatomics given in Ref.26 while the ã30- state 
potential was obtained with Equation III.5 which assumes case-(c) coupling. 
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Table  III.6 Comparison of the key molecular parameters of the ground X 10+(1Σ) and 
excited ã 30-(3Σ) states of the Hg⋅RG diatomics.  The ã(30-) state was obtained 
from Equation III.3 using the spectroscopic potentials presented in Ref. 26 for 
the Hg(3P1)⋅RG [A 3Π (30+)] and [B 3Σ (31)] states.  Also shown are the bond 
lengths of the rare gas dimers. 

State Parameter Hg⋅Ar Hg⋅Kr Hg⋅Xe 

ã 30-(3Σ) 
De(cm-1) 

Re(Å) 

92 

4.26 

136 

4.13 

351 

3.6 

X 10+(1Σ) 
De(cm-1) 

Re(Å) 

130.25 

3.98 

178 

4.07 

254 

4.25 

X RG⋅RG 
De(cm-1) 

Re(Å) 

99.5 

3.756 

138.4 

4.017 

196 

4.363 

 
Closer scrutiny of the bond lengths collected in Table  III.6, reveals that 

another parameter plays a role in determining the electron-phonon coupling strengths. 

Specifically, the ã 30(3Σ) and X 10(1Σ) state bond lengths are almost identical in 

Hg⋅Kr and differ by larger amounts in the Hg⋅Ar and Hg⋅Xe cases.  It will be 

remembered that the weakest electron-phonon coupling strength was identified in Xe, 

not in Kr.  Application of Equation III.5, in the extraction of the ã30(3Σ) states, 

assumes case-(c) coupling but as this is expected to be reasonable in the case of the 

Hg⋅RG diatomics, some other factor must be partly determining the S value.  Another 

parameter that plays a role in this regard is the site size presented by the solid.  From 

the comparison made in Table  III.6 of the substitutional site sizes of the solid rare 

gases with the Hg⋅RG ground state bond lengths, it is clear that Xe is the only system 

where the site size of the solid is larger than the bond length of any Hg⋅Xe state.  

Thus, in the case of Hg⋅Xe, emission will terminate in a state whose bond length is 

less than that the Xe-Xe distances in the lattice.  Hence, little or no coupling will 

occur between the optically active Hg⋅(Xe)n “quasi-molecule” and the delocalised 

phonons of solid xenon.  On this basis, stronger (but still weak) coupling is 

anticipated in Kr where the Hg⋅Kr ground state bond length (4.07 Å) only slightly 

exceeds that of Kr-Kr (4.017 Å).  In solid Ar, the nearest neighbour distance (3.756 

Å) is considerably shorter than the ground state bond length (3.98 Å) of Hg⋅Ar.  In 

this case, emission will return a ground state configuration almost 0.25 Å more 

extended that the equilibrium Ar lattice positions.  This will necessarily result in 

stronger coupling with the lattice phonons. 
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III.4 Conclusions 

The sharp, weak feature centered at 37693.9 cm-1 in Hg/Xe is the 6p 3P0 → 6s 1S0 

transition and arises from of intramultiplet 3P1 → 3P0 relaxation.  The contribution of 

this band to the time integrated emission intensity is only 0.5% indicating the 

inefficiency of intramultiplet 3P1 → 3P0 relaxation compared with radiative decay of 

the 3P1 excited state. The efficiency of the intramultiplet relaxation increases, but only 

very slightly, at higher temperatures.  The presence of resolved fine structure on the 

Hg 3P0 → 1S0 emission bands in Xe (and partly in Kr) matrices and the temperature 

dependence exhibited, allowed the identification of a zero phonon line and a phonon 

side band.  This assignment is confirmed in the lineshape simulation conducted with 

the Wp function yielding small S values (1.3 and 2.2 in Xe and Kr respectively), 

which represent weak electron-phonon coupling.  The close match between the 

excited Hg⋅RG(3P0) ã30-(3Σ) and ground X Hg⋅RG(1S0) 10+(1Σ) state bond lengths is 

the origin of the very weak electron-phonon coupling in the Hg(3P0)/RG matrix 

system.  Conversely the dissimilarity in the bond lengths in the excited A Hg⋅RG(3P1) 
31(3Π) state and ground X Hg⋅RG(1S0) 10+(1Σ) state potentials explains the large 

linewidths on the Hg(3P1)/RG matrix bands. The multi-component nature of the 3P1 

state emission is shown not to arise from solid-state effects such as multiple site 

trapping.  Its origin is examined in Chapter IV where the energetics of excited state 

vibronic modes are calculated with pair-potential methods for Hg(3P1)/RG18 clusters. 

 

 



Chapter III, Hg(3PJ)/RG Luminescence 

68 

References 

 
1  W.H. Breckenridge, C. Jouvet, B. Soep, in: M. Duncan (Ed.), Advances in Metal and

 Semiconductor Clusters, Vol. 3, JIA Press, Greenwich, CT, 1995. 
2  C. Crepin-Gilbert and A. Tramer, Intl. Rev. Phys. Chem., 18, 485 (1999). 
3  Atomic Energy Levels, Volume 3, Circular 467, Department of Commerce United 

 States of America. 
4  M. McCarty and G.W. Robinson, Mol. Phys., 2, 415 (1959). 
5  J. G. McCaffrey and P. N. Kerins, J. Chem. Phys., 106, 7885 (1997). 
6  B. Healy and J. G. McCaffrey, J. Phys. Chem. A, 104, 3553 (2000). 
7  C. Crepin and A. Tramer, J. Chem. Phys., 97, 4772 (1992) 
8  C. Crepin, F. Legay, N. Legay-Sommaire and A. Tramer, Trends in Chem. Phys., 7, 

 111 (1999). 
9  S.L. Laursen and H.E. Cartland, J. Chem. Phys., 95, 4751 (1991). 
10  M. Chergui, C. Crepin, T. Hebert and A. Tramer, Chem. Phys. Letts. 197, 467 (1992). 
11  C. Crepin, M. Chergui, T. Hebert, L. Konig, P. Martin and A. Tramer, J. Phys. Chem., 

98, 3280 (1994). 
12  C. Crepin and A. Tramer, J. Chem. Phys., 100, 5467 (1994). 
13  C. Crepin and A. Tramer, J. Chem. Phys., 107, 2205 (1997). 
14  J. Helbing, A. Haydar and M. Chergui, J. Chem. Phys., 113, 3621 (2000). 
15  This broad feature originates from the remnants of a thermally unstable site that still 

existed in this annealed Hg/Kr sample. 
16  K. A. Mohamed, J. Quant. Spectrosc. Radiat. Transfer, 30, 225, (1982). 
17  NIST, Physics Laboratory, Physical Reference Data, www.physics.nist.gov 
18  R. L. Fulton, J. Chem. Phys., 61, 4141, (1974). 
19  T. Shibuya, J. Chem. Phys., 78, 5175, (1983). 
20  The refractive indices of Ar, Kr and Xe are 1.29, 1.28 and 1.49 recorded at 60 K and λ 

= 488 nm from H. J. Jodl, Solid-state Aspects of Matrices in The Chemistry and 

Physics of Matrix-Isolated Species, North-Holland, 1989. 
21  The index of refractive used for solid Ar at 233 nm is 1.32 at 6 K.  That of Kr is 1.428 

at 241 nm at 12 K.  (P. Gürtler, unpublished results, 1996). 
22  K. Huang and A. Rhys, Proc. Roy. Soc. (London) 204A, 406 (1950), reprinted in 

Selected papers on Photoluminscence of Inorganic Solids, edited by M.J. Weber, SPIE- 

The International Society of Optical Engineering, Washington, 1998. 
23  C.W. Struck and W.H. Fonger, Understanding Luminscence Spectra and Efficiency 

Using Wp and Related Functions, Springer-Verlag, Berlin, 1991. 



Chapter III, Hg(3PJ)/RG Luminescence 

69 

                                                                                                                                           
24  J. Zuniga, A. Bastida, A. Requena, N. Halberstadt and J. Beswick, J. Chem. Phys., 98, 

1007 (1993). 
25  M. Okunishi, H. Nakazawa, K. Yamanouchi and S. Tsuchiya, J. Chem. Phys., 93, 7526 

(1990). 
26  M. C. Duval, O. B. D’Azy, W. H. Breckenridge, C. Jouvet and B. Soep, J. Chem. 

Phys., 85, 6324 (1986). 



Chapter IV, Hg(3P1)/RG Sims. 

70 

Chapter IV  
A pair-potentials analysis of the optical spectroscopy of 3P1 state 

atomic mercury isolated in solid Ar, Kr and Xe. 
 

IV.1 Introduction 

In the sections which follow, a method of simulating the optical (absorption and 

emission) spectroscopy of metal atoms isolated in solid rare gases is outlined.  This 

theoretical approach was developed by the Maynooth Group1 for metal atoms with 

ns2 ground states and utilises known Metal (M)⋅Rare Gas (RG) diatomic pair–

potentials available from spectroscopic studies and ab initio calculations of 

interaction potentials for M⋅RG 1:1 van der Waals complexes.  A pair–wise sum of 

these known M⋅RG potentials is used to construct a M/RG18 cluster and simulate the 

solid matrix, where the matrix can be considered as an infinite cluster RGn.  Allied 

with the availability of known interaction potentials is the particularly simple face 

centered cubic (fcc) packing structure exhibited by all the solid rare gases.  These 

factors allowed the localized M/RG18 cluster model to be applied successfully in 

investigating the absorption and emission spectroscopy of atomic zinc1 in rare gas 

matrices. 

Here the localised, pair-potentials approach1 is used to investigate the 

characteristics of the absorption and emission spectroscopy of the atomic mercury 3P1 

↔ 1S0 transition isolated in solid Ar, Kr and Xe.  The validity of the pair potentials 

approach has been examined by Beswick et al.2 for the triatomic Hg(3P1)⋅Ar2 

complex by simulating the vibronic structure in the resonance two-photonionization 

(R2PI) spectra recorded for this cluster by Jouvet and co-workers3.  A similar 

theoretical approach has also been used by Alexander and coworkers4 on the ground 

state B(2PJ)⋅Ar2 system.  McCaffrey and Kerins adapted Beswick’s cluster method for 

the solid state in a simulation of the spectroscopy of atomic zinc1 in the solid rare 

gases. The calculations originally employed for zinc were recently extended to cover 

atomic cadmium5 and sodium6 isolated in rare gas solids. 

The most detailed spectroscopic study of matrix-isolated7 atomic mercury 

(Hg/RG) has focused on the 6p 3P1 ↔ 6s 1S0 transition and was conducted a decade 

ago by the Orsay group8. The present work has extended the experimental 
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information because of the need to examine aspects of the Hg/RG matrix emission 

revealed in Hg⋅RG pair-potentials9 simulations.  The new experimental work 

presented in Chapter III has shown that the 3P1 emission bands are multi-component, 

requiring the use of three broad Gaussian functions to obtain satisfactory fits.  

Excitation spectra recorded for these emission components were all identical, 

indicating that the effect arises from single site occupancy.  In this Chapter details of 

the pair-potential calculations are presented and highlight aspects of the luminescence 

not evident in the original experimental work, in particular the quenching of very 

strongly bound excited states in the Hg/Xe system. 

In the following sections, an examination of the Hg atom 3P1 ↔ 1S0 matrix 

spectroscopy is presented using experimental Hg⋅RG pair potentials for the ground X 

and excited A and B states2,10,11 in Hg⋅RG18 cluster calculations. In addition to the 

tetragonal (4-fold symmetry) “body” (Q2) and “waist” (Q3) modes described in earlier 

work1,5, calculations of trigonal (3-fold symmetry) 6-atom “body” (Q4) and “waist” 

(Q5), modes are performed on the Hg/RG systems. Details of the two–fold symmetry 

‘body’ (Q6), and ‘waist’ (Q7), modes are also presented for each of the excited state 

p–orbital orientations. The new calculations presented in this contribution cover the 

three symmetry poles of a cubo-octahedral point group12 to which the substitutional 

site occupancy (M⋅RG12 system) belongs. This high symmetry approach has been 

adopted as it provides the most extreme energetics, i.e., the attractive orbital 

orientations yield the most stabilised energies while the repulsive orientations are the 

most destabilised.  All lower symmetry selections will provide intermediate energies 

between these extreme values.  In the high symmetry approach insight can be gained 

especially into the stabilised modes, which determine the excited state relaxation and 

produce emission.  Molecular dynamics or Monte Carlo simulations can yield more 

general dynamics information but requires detailed analysis of the nuclear co-

ordinates to identify the symmetry of the active vibrational modes. 

For the purpose of illustration, a full account of the interaction details is 

presented for Hg/Xe, while only a summary of results, showing stabilised modes, is 

provided for the Hg/Ar and Hg/Kr systems.  Predictions made in the theoretical 

analysis are compared with matrix absorption and emission spectra presented in 

Chapter III, revealing information on the site occupancy and excited state dynamics. 
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IV.2 Methods and Results 

The assumptions on which the localized cluster model is based are I) the photo-

physical properties (absorption and emission energies) of the metal atom 

chromophore are governed by its immediate environment within the rare gas solid.  

II) The interactions between the metal atom and the surrounding RG atoms can be 

described completely by the sum of diatomic pair potentials13.  III) The atomic 

electronic angular momentum, Je, at the molecular asymptote is conserved within the 

cluster.  The validity of the pair potentials approach has been examined by Beswick et 

al.2 for the triatomic Hg(3P1)⋅Ar2 complex by simulating the vibronic structure in the 

resonance two-photonionization (R2PI) spectra recorded for this cluster by Jouvet 

and co-workers3.  A similar theoretical approach has also been used by Alexander and 

coworkers4 on the ground state B(2PJ)⋅Ar2 system.  McCaffrey and Kerins1 adapted 

Beswick’s cluster method for the solid state in a simulation of the spectroscopy of 1P1 

↔ 1S0 transition of atomic zinc in the solid rare gases based on metal atom occupancy 

in a substitutional site. 

 The most fundamental aspect of the solid-state calculations is the site 

occupied by the ground state metal atom in the rare gas lattices. From the ground 

state bond length (Re) data presented in Table IV.1 for the mercury atom-rare gas 

atom diatomics and the rare gas dimers, very good matches exist between the Xe2 and 

Kr2 systems and their Hg⋅RG counterparts.  Very favourable matches also exist for 

the Hg⋅RG van der Waals bond lengths and the substitutional site (ss) sizes of the 

solid rare gases.  Thus in solid Xe, ss is 4.334 Å, calculated from the lattice 

parameter14 a = 6.13 Å, while the Hg⋅Xe bond length is 4.25 Å and in solid Kr, ss is 

3.991 Å while Re Hg⋅Kr is 4.07 Å.  The match that exists for Hg in Ar is not quite as 

good, where ss is 3.756 Å and Re Hg⋅Ar is 3.98 Å.  However, even in Hg/Ar, 

substitutional site occupancy is also expected15. 

Following identification of the site of isolation, the energy of a guest metal 

atom (M) occupying a substitutional site in a solid rare gas (M/RG) system is 

calculated for an M⋅RG18 cluster.  The rare gas atoms in this cluster fall, as shown in 

Figure  IV.1, into two categories based on whether they are located in the first or 

second sphere of host atoms surrounding the guest atom M.  The first category has a 

cubo-octahedral arrangement of 12 host atoms located at a nearest neighbour (nn) 

distance of a/√2 from M. The other set, consisting of 6 atoms are located at a next 
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nearest neighbour (nnn) distance of the lattice parameter, a, from the guest atom and 

are arranged as a regular octahedron on the X, Y and Z axes. 

 

Table  IV.1 Spectroscopic constants used to generate the Morse potential energy curves for 
the Hg⋅RG and RG2 diatomics.  Data source are indicated by the references. 

Hg⋅RG 

State 

Morse 

Parameters 

Hg⋅Ar2 Hg⋅Kr10,11 Hg⋅Xe11 

X 1Σ 

(10+) 

 

 

 

 

µHg-RG (amu) 

De(cm-1) 

ωe(cm-1) 

ωexe(cm-1) 

Re(Å) 

β(Å-1) 

33.3614162 

130.25 

23.5 

1.1 

3.98 

1.448348 

59.2819820 

178 

20 

0.54 

4.07 

1.40557 

79.7926882 

254 

18.3 

0.33 

4.25 

1.249072 

A 3Π 
(30+) 

 
 
 

 

De(cm-1) 

ωe(cm-1) 

ωexe(cm-1) 

Re(Å) 

β(Å-1) 

353.63 

41.2 

1.2 

3.34 

1.54104964 

517, (628.7) 

43.5, (40.63) 

1.5, (0.691) 

3.52, (3.35) 

1.793813, (1.5193512) 

1380.9 

54.17 

0.565 

3.15 

1.585736 

B 3Σ 
(31) 

 
 
 

 

De(cm-1) 

ωe(cm-1) 

ωexe(cm-1) 

Re(Å) 

β(Å-1) 

51.57 

11.4 

0.6 

4.66 

1.1166067 

96, (104.8) 

11.3, (11.1) 

0.32, (0.301) 

4.57, (4.58) 

1.081374, (1.0166592) 

187.6 

9.71 

0.215 

4.47 

0.77118 

  Ar⋅Ar16 Kr⋅Kr16 Xe⋅Xe16 

X 1Σ 

 

 

De(cm-1) 

Re(Å)17 

β(Å-1) 

99.545 

3.7565 

1.40218 

138.4 

4.017 

1.604 

196.24 

4.3634 

1.509 

 

The expectation of substitutional site occupancy of atomic Hg within solid Ar, 

Kr and Xe lattices is tested by comparison of the predicted and observed absorption 

energies.  The absorption energy is calculated as the difference between the energy of 

the cluster in the ground and excited state within the Frank – Condon principle.  The 

method of evaluating the cluster energies for the ground Hg(1S0)/RG18 and excited 

Hg(3P1)/RG18 states is outlined in the following sections. 
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Figure  IV.1 The guest atom-based co-ordinate system used to calculate the energy of a metal 
atom, M in a substitutional site of an fcc lattice. The 12 nearest neighbour (nn) 
Rg atoms surrounding the guest atom located at the origin are shown as grey 
spheres on the edges of the cubic unit cell.  The 6 next nearest neighbour (nnn) 
atoms in the second surrounding sphere are shown as the dark spheres on the 
X, Y, Z axes at the lattice parameter distance, a, from the guest metal atom. The 
axis system shown is co-incident with the three, fourfold (C4) symmetry axes of 
the cubo-octahedral fcc unit cell and is referred to in the text as 4-atom mode 
calculations. The image was generated by the gOpenMol18 programme. 

IV.2.I  Ground 1S0 state 

The ground 1S0 electronic state of a closed shell ns2 metal atom within a M/RG18 

cluster is simple to evaluate given the spherical symmetry of the atomic electronic 

angular momentum.  The interactions between the ground 6s2 1S0 state mercury atom 

and the RG18 cluster is then simply a pair–wise sum of the interaction potentials at a 

specific distance (Rk).  Because for Je = 0, there is no angle dependence.  This is 

evident in Equation IV.1, used to evaluate the ground state energy of the cluster, in 

which the energy is obtained as a sum of the Hg⋅RG and RG2 pair-potentials. 

WX(R) = Erreur !   Equation (IV.1) 

Morse functions19 are used for the ground state potentials for the Hg⋅RG diatomics 

and for the rare gas dimers, RG2 (RG = Ar, Kr and Xe). The parameters used for these 

functions are listed in Table IV.1. 

IV.2.II Excited 3P1 state 

In order to calculate the mercury atom 6p 3P1  ↔ 6s 1S0 absorption and emission 

energies in the solid, it is necessary to obtain the energy of the electronically excited 
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3P1 state mercury atom in the Hg⋅RG18 cluster.  This is more difficult than the ground 

X state due to the axial symmetry of the electronic angular momentum, Je = 1. The 

method and notation used by Beswick and coworkers2 was followed throughout. The 

Hg⋅RG molecular states arising from the approach of the Hg (3P1) to the closed shell 

rare gas atom with the internuclear axis defined as the Z–axis have pure Π and Σ 

arising from the projection of the atomic angular momentum onto the internuclear 

axis corresponding to px, py and pz orbital occupancy. The cluster potentials are 

generated by applying the Wigner rotation matrices using Hund’s case-(a) quantum 

numbers as the diatomic basis set.  The general solution for Je = 1 corresponding to 

the three 6p-orbitals of the excited 3P1 state mercury atom give rise to the following 

cluster states, where n is number of metal-rare gas bonds in the cluster. 

(pz)  W1(R) = Erreur !    Equation (IV.2) 

(px)  W2(R) = Erreur ! Equation (IV.3) 

(py)  W3(R) = Erreur ! Equation (IV.4) 

In contrast to the ground state potential, given by Equation IV.1, the excited state 

energy is not a simple sum of the VΠ(R) and VΣ(R) pair potentials, but now depends 

on the angle variables1 θk and φk. In a Cartesian co-ordinate system having the metal 

atom positioned at the origin, θk is the angle subtended between a rare gas atom k and 

the Z-axis, while φk is the angle obtained by projecting the vector connecting this 

atom and the origin onto the XY plane as shown in Figure  IV.2. 

The VΠ(R) and VΣ(R) terms appearing in Equations IV.2-4 are the pure Π and 

pure Σ spatial state potentials and not the spectroscopic A and B states of the Hg⋅RG 

diatomics presented in Table IV.1.  As the B(ΩA = ± 1) state is a linear combination 

of Π and Σ orientations, it is necessary to extract the pure Σ potential for use in 

Equations IV.2-4.  This was achieved using the relationship20 VB = ½[VΣ
e + VΠ

e] 

which yields the spatial Σ component of the original B state. 

VΣ(R) = 2VB(R) – VA(R)   Equation (IV.5) 

Since the A(ΩA = 0) state is of pure Π symmetry (VA = VΠ
e) this potential was used 

directly. The result of the deconvolution of the pure Σ component from the B state is 

shown in Figure  IV.3 for the Hg⋅RG diatomics (RG = Ar, Kr and Xe). 
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Figure  IV.2 Diagram of the metal atom based coordinate system illustrating the origin of the 
variables used in Equations (IV. 2-4) for the calculation of the excited state 
energies. 

 

It is clear from Figure  IV.3 (dashed line) that the Σ states deconvoluted with 

Equation IV.5 are not completely repulsive as they all show weakly bound regions at 

long range. This behaviour is consistent with a slightly attractive van der Waals 

interaction which exists between the metal atom Hg(pz) orbital and the rare gas atoms 

at long range. At short range, however, it was observed for all the Hg⋅RG systems, 

that the deconvoluted Σ state curves exhibited a non-physical minimum, instead of 

increasing exponentially like the B State.  Fortunately, this non-physical behaviour of 

the Σ state (not shown in the plot) does not occur in the range of distances involved in 

the solid-state simulations. Even in Hg⋅Xe (the worst case of the Hg⋅RG diatomics) 

the Σ state becomes non-physical at distances less than 2.8 Å.  As this is less than the 

shortest distance encountered for substitutional site occupancy (3.065 Å, half the 

lattice parameter of Xe), the raw deconvoluted Σ potential was used in all the excited 

state calculations. 
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Figure  IV.3 The Hg(3P1)⋅RG 3Σ states extracted with Equation IV.5 from the spectroscopic 
[A 30+ (3Π)] and [B 31] states whose constants are presented in Table IV.1.  All of 
these states share the Hg atom 6p 3P1 asymptote at 39424.1 cm-1 but are shown 
dissociating to zero-energy for the purpose of comparison.  Note that all the 
deconvoluted Hg⋅RG 3Σ states show a weakly bound region at long internuclear 
distance.  These distances are listed as Rmin in the plots while the binding 
energies are indicated by De. 

 

Excited 3P1 state energies were calculated for the body and waist vibronic (2) 

modes for the three p-orbital (3) orientations.  The energetics of the two modes and 

the three orbital orientations were determined for three co-ordinate systems based on 

the three symmetry poles (3) of the cubo-octahedron.  The symmetry poles12 are 

fourfold, threefold and twofold symmetric and their calculations are referred to in this 

presentation as 4-atom, 6-atom and 2-atom modes respectively.  The co-ordinate 

systems of the cubo-octahedron based on the three symmetry poles are shown in 

Figure  IV.4. 

Thus for a given rare gas host, a total of 18 excited state potential energy 

curves were calculated for an Hg⋅RG18 cluster. Energies of the co-ordinate 

displacements were calculated at 0.001 Å intervals.  As a check of the correctness of 

our code, absorption energies were compared for the three co-ordinate systems 

calculated.  This can be used as a check since the three p-orbitals are degenerate at the 

centre of the cubo-octahedral substitutional site. Hence at R = 0, all modes must 
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produce identical absorption values irrespective of the vibronic mode, the symmetry 

co-ordinate system used or the orbital selected. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  IV.4 Three co-ordinate systems based on the three symmetry poles of the cubo-
octahedron with the metal Hg atom positioned in a substitutional site within the 
RG18 cluster.  In fourfold symmetry the Z-axis is aligned with one of the six 
fourfold symmetry poles of the cubo-octahedron (the centre of the cubic faces).  
In the threefold and twofold symmetries, the Z-axis is aligned with one of the 
eight threefold symmetry poles (eight vertices of the cube) and the twelve 
twofold symmetry poles (one of the twelve edges of the cube) respectively. 

 
In generating the solid state localized model, individual calculations were 

preformed for smaller clusters and the resulting energies were used to obtain the 

energy of the Hg(3P1)/RG18.  These calculations simulated the motion of the excited 

state Hg atom along the symmetry poles of the cubo-octahedron and provided 

information on interactions involved in ‘body’ mode calculations, where the 3P1 Hg 

undergoes large amplitude motions within the rare gas lattice.  The specific details of 
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the high symmetry cluster calculations completed are now presented.  The results 

obtained and the connection between these smaller clusters (RGn, n ≤ 6) and the RG18 

model are highlighted in the sections that follow. 

IV.2.II.I Tetragonal (4-atom) symmetry modes 

a. Q2 is the 4-atom ‘body’ mode presented in earlier work1 on the Zn/RG 

systems.  In this contribution, the energetics of this mode are given not only for the pz 

orientation but also for the degenerate px/py set.  These orientations correspond to the 
3A and 3E states respectively of the excited Hg atom in a substitutional site.  Details 

of the Hg⋅RG interactions considered in the calculation of the 4–atom ‘body’ mode 

are presented in Figure  IV.5.  The energetics of the Q2 mode i.e., motion of the metal 

atom along the Z-axis in the four-fold symmetry system (Figure  IV.4 top panel), is 

constructed from the interaction of the excited state Hg atom with four smaller 

clusters, all of fourfold symmetry.  The smaller clusters are shown in Figure  IV.5, in 

which S.site1 and S.site2 represent two planar arrangements of four RG atoms 

positioned at the nearest neighbour distance (a/√2) and next nearest neighbour 

distance of the lattice parameter a respectively from the Hg atom positioned at the 

centre of the substitutional site.  The second set of fourfold symmetry clusters Ioh1 

and Ioh2 are two RG5 clusters forming square pyramids, whose base is located at the 

centre of the octahedral interstitial sites, at a distance of half the lattice parameter 

(a/2) from the centre of the substitutional site.  Prior to completing the 4-atom ‘body’ 

mode calculations, the interaction of the excited Hg atom with these RG4 and RG5 

clusters was examined. 

The highest symmetry motion modelled by these cluster calculations was that 

of the C4V approach of the Hg (3P1) atom towards a planar arrangement of four RG 

atoms1.  This motion is representative of the motion of the metal atom from the centre 

of the substitutional site towards an octahedral interstitial site. This motion was 

restricted to the Z-axis perpendicular to the plane of the four RG atoms, (Figure  IV.5) 

By choosing, the Cartesian co-ordinate system to coincide with the three 4-

fold symmetry axes of the cubo-octahedron (Figure  IV.4, top panel), the general sum 

expressions given by Equations IV.2-4, reduce1 to the simpler product expressions 

which provide the energies of the 3A(pz) and doubly degenerate 3E(px, py) states of an 

excited 3P1 state metal atom in a substitutional site. 

W3A1(R) = 4[ ]cos2θ V3Σ(R) + sin2θ V3Π(R)    Equation (IV.6) 
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W3E(R) = 2[ ]sin2θ V3Σ(R) + (cos2θ + 1)V3Π(R)   Equation (IV.7) 

S
.s

ite
 1

Ioh2

R4

R3

R2

R1

q2
θ2

θ3
θ4

θ1

Four - fold, 'body' mode
S.site 2

Ioh1

Hg atom

12 RG nn

6 RG nnn

Extended RG lattice 

 

Figure  IV.5 A diagram representing the distance and angle parameters used in the 
calculation of the Tetragonal fourfold symmetry, ‘body’ mode, Q2.  The motion 
of the metal atom from the substitutional site towards the octahedral interstitial 
site Ioh1 along in the fourfold symmetry Z-axis is represented as q2.  Shown are 
the 12 nearest neighbour (nn) RG atoms arranged as three RG4 square planar 
clusters in the XY plane.  The six next nearest neighbour (nnn) atoms are also 
shown, four of these identified as S.site2 are positioned as a RG4 cluster in the 
XY plane with each RG atom at the lattice parameter distance from the Hg 
atom at the centre of the substitutional site.  The final two nnn atoms are 
positioned on the Z-axis positioned in the apical position of RG5 square 
pyramidal clusters, the base of which corresponds to the octahedral interstitial 
site. 

 

Equations IV.6 and 7 were obtained upon summation of the expressions resulting 

after substituting values of φk = kπ/4, k=1, 2, 3 and 4 in Equations IV.3 and 4.  Plots 

of the 3A(pz) and 3E(px, py) states as a function of distance from the centre of mass 

Rcm of the Xe4 cluster are shown in Figure  IV.6. The variables, R and θ in Equations 

IV.6 and 7 are obtained from the relations R = √(Rcm
2 + r2) and θ = sin-1(r/R) where r 

= re/√2 is the distance of each Xe atom from the centre-of-mass of the Xe4 cluster.  

The distance between the Xe atoms arranged in the Xe4 (Figure  IV.2) cluster is set at 

the equilibrium internuclear separation (re) of the ground state Xe dimer (see Table 

IV.1). 

It is observed in Figure  IV.6 that the Hg(pz) 3A1 state is stabilised upon 

approaching the planar Xe4 cluster exhibiting a dissociation energy De = 5459.3 cm-1 

at Rcm = 0 Å, corresponding to the centre of mass of the cluster.  The doubly 
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degenerate 3E (px, py) states are also stabilized up to 2.38 Å from the centre of the 

cluster.  However, further approach results in destabilisation. 
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Figure  IV.6 Potential energy curves of the 3A1 and doubly degenerate 3E states calculated 
using Equations IV.6 and 7 as a function of distance of the Hg atom from the 
centre of mass (Rcm) of the Xe4 cluster.  The approach of the atomic Hg occurs 
along Z-axis perpendicular to the planar Xe4 cluster. 

 
The 4-atom ‘body’ mode, Q2 involves motion of the excited state metal atom 

along the Z-axis from the centre of the substitutional site towards the octahedral 

interstitial site located on the face of the unit cell as shown in the fourfold co-

ordination system Figure  IV.4, top panel.  The octahedral interstitial site (Ioh) is 

positioned at the base of a square pyramid of RG atoms.  Therefore, in simulating the 

approach of the excited state Hg atom to this site, an extension of the Xe4 cluster 

calculation to a C4v square pyramid of Xe5 atoms is required.  This is achieved with 

the addition to the Hg⋅Xe4 expressions of a VΣ(R + r) for the 3A1 electronic state 

(Equation IV.6) and a VΠ(R + r) for the 3E state (Equation IV.7) as shown in 

Equations IV.8 and IV.9 respectively. 

W3A1(R) = 4[ ]cos2θ V3Σ(R) + sin2θ V3Π(R) + VΣ(R + r) Equation (IV.8) 

W3E(R) = 2[ ]sin2θ V3Σ(R) + (cos2θ + 1)V3Π(R) + VΠ(R + r) Equation (IV.9) 
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In these equations r is the distance from the apical rare gas atom to the base of the 

square pyramid RG5 structure.  The exact value of r is calculated for the equilibrium 

geometries of the rare gas clusters as r = re/√2, where re is the equilibrium separation 

of the gas phase rare gas dimers quoted in Table IV.1.  R is now the distance from the 

Hg atom to the base of the square pyramid of five Xe atoms.  The potential energy 

curves calculated for the C4v approach of the Hg 3A1 and degenerate 3E states to the 

Xe5 cluster are shown in Figure  IV.7. 
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Figure  IV.7 Potential energy curves calculated for the C4v approach of the atomic Hg 3A1 
and 3E states to the Xe5 cluster calculated using Equations IV.8 and 9. 

 

The approach of the Hg(pz) orbital towards the Xe5 cluster results in 

stabilisation of the 3A1 state by 4503.9 cm-1 at the centre of the base of the square 

pyramid of Xe atoms.  A comparison between the energetics of the approach to the 

Xe4 and Xe5 clusters (Figure  IV.6 and Figure  IV.7 respectively) reveals the addition 

of the VΣ interaction arising from the apical Xe atom, reduces the stabilisation of the 
3A1 state.  However the addition of the VΠ term to the 3E electronic state leads to 

increased stabilisation, a decrease in the position of the shallow minimum for the 

state is also calculated due to the interaction with the apical atom.  The cluster models 

calculated are extended for the Hg⋅RG18 cluster species, the details of which are now 

presented. 
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The individual interactions are calculated using Equations IV.6 and 7 for the 

‘body’ mode as follows; I) Ioh1 / W(R1, θ1) + VΣ(a - q); motion towards the centre of 

the octahedral interstitial site equivalent to the C4v approach to the RG5 cluster 

presented earlier.  II) S.site1 / W(R2, θ2); Motion of the Hg atom from the centre of 

the planar arrangement of four nearest neighbour RG atoms forming S.site 1.  III) Ioh2 

/ W(R3, θ3) + VΣ(a + q); Motion of the metal atom away from the five RG atoms 

forming Ioh2.  IV) S.site 2 / W(R4, θ4); motion away from the four next nearest 

neighbour RG atoms in the XY plane S.site2 initially at the lattice parameter distance 

(a) from the Hg atom in the substitutional site.  The calculations are preformed linear 

in q with the four specific Rn and θn variables calculated from the trigonometric 

relationships presented earlier for the Hg⋅Xe4 cluster. 

The results of the individual interactions comprising Q2 are indicated by the 

legend and the solid line indicates the overall sum in the upper half of Figure  IV.8 for 

the Hg/Xe system. 
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Figure  IV.8 Potential energy curves calculated for the 4-atom (tetragonal, Q2 and Q3) modes 
based on substitutional site (ss) occupancy of the Hg atom in the Hg/Xe system. 
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Clearly the pz orbital orientation is the only one exhibiting stabilization for the 

4-atom body-mode, Q2. It is evident upon inspection of Figure  IV.8 that stabilisation 

is due to the approach of Hg(pz) atom to the octahedral interstitial site (Ioh1, dashed 

line).  This result reflects that calculated for the C4v approach of the Hg 3A1 (pz) and 

doubly degenerate 3E (px, py) Xe4 and Xe5 clusters where only the 3A1 state arising 

from the Hg(pz) orbital orientation was stabilized on approaching the clusters. 

 

b. The ‘waist’ mode, (Q3) involves contraction of 4 host atoms on a non-close 

packed plane towards the central metal atom.  The 4-atom ‘waist’ mode is simpler to 

evaluate than the corresponding ‘body’ mode, Q2 since the calculation involves, as 

shown in Figure  IV.9, a single variable arising from the motion of the four RG atoms 

(S.site1) surrounding the Hg fixed at the centre of the substitutional site.  

The overall energy of this vibronic mode for the M⋅RG18 cluster is obtained as 

a sum of the four 4-fold symmetry moieties making up what are the first and second 

spheres surrounding the metal atom in a substitutional site and the lattice 

contribution. Results calculated for the Q3 mode of Hg/Xe are presented in the lower 

half of Figure  IV.8.  As shown by the solid curves in the lower right panel of Figure 

 IV.8, this mode leads to excited state stabilisation only for the pz orbital orientation. 
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Figure  IV.9 A diagram representing the distance and angle parameters used in the 
calculation of the Tetragonal fourfold symmetry, ‘waist’ mode, Q3.  The motion 
as indicated by the solid arrows (R2) is the in-phase contraction of the four 
nearest neighbour RG atoms in the XY plane forming S.site1 towards the fixed 
Hg atom. 
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IV.2.II.II Trigonal (6-atom) symmetry modes 

Calculation of the 6-atom modes involves a 45° rotation of all three axes used for the 

4-atom modes, such that the Z-axis is co-incident with one of the four, threefold 

symmetry axes of the Hg⋅RG12 cubo-octahedron. As shown in Figure  IV.4, this co-

ordinate system results in a perpendicular intersection of the Z-axis through the 

centres of the two ‘end’ triangles and the central hexagon of rare gas atoms with the 

X and Y axes in the plane of the regular hexagon.  In this arrangement, the 12 nearest 

neighbour atoms surrounding the metal atom are positioned as 3, 6 and 3 atoms on 

planes perpendicular to the Z-axis.  The associated two triangles and hexagon are 

located on the close-packed A, B and C planes of the fcc structure.   

To achieve the required p-orbital degeneracy in the substitutional site, the 6 

next nearest neighbour (nnn) atoms in the second sphere surrounding the guest metal 

atom must be included.  The six additional atoms are arranged, as shown in Figure 

 IV.10, in the larger triangles on the A and C planes at a distance of the lattice 

parameter, a, from the guest metal atom.   

Figure  IV.10 The alternative guest atom-based co-ordinate system used to calculate the 6-
atom vibronic modes occurring for substitutional site occupancy.  The Z axis is 
chosen co-incident with one of the four threefold symmetry axes of the cubo-
octahedral fcc unit cell.  The X and Y axes are then located on the central 
hexagonal plane. The atoms located on the close packed A, B and C planes are 
shown on the shaded background. In the 6-atom ‘body’ mode (Q4), depicted on 
the left, the metal pz-orbital atom moves along the Z-axis perpendicular to the 
close-packed planes.  For the 6-atom waist mode, shown on the right, the 6 nn 
atoms move in phase on Plane B, towards the guest metal atom. 
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Two types of 6-atom modes are identified in the excited state. One involves 

the in-phase contraction of the 6 rare gas atoms on the X / Y plane towards the central 

metal atom.  The other is motion of the metal atom along the Z-axis. 

 
a. The 6–atom ‘body’ mode, Q4, as illustrated on the left hand side of Figure 

 IV.10, involves perpendicular motion of the excited state Hg atom from the centre of 

the hexagon of rare gas atoms on plane B to either plane A or C.  The motion of the 

excited Hg atom towards the triangles of RG atoms was calculated using the smaller 

cluster model where the energetics of the Hg 3A1 and doubly degenerate 3E states 

were calculated for the C3v perpendicular approach to the centre of mass of a planar 

RG3 cluster.  Equations IV.2-4 were used to evaluate the energetics of the system.  

Applying the metal-atom-based coordinate system shown in Figure  IV.2 to the RG3 

cluster where the distance to the centre of mass of the planar RG3 cluster is Rcm = 

re/√3 and φk = π/6, 5π/6 and 2π/3 and R = √((Rcm)2+r2) and θ = sin-1(r/R).  The 

expressions for the 3A1 (pz) and 3E (px, py) presented in Equations IV.10 and IV.11 

were obtained from Equations IV.2-4 upon substitution of the values of φk for the 

RG3 planar cluster.   
 

W3A1(R) =3[cos2θ V3Σ(R) + sin2θ V3Π(R)]   Equation (IV.10) 

W3E(R) = (3/2)[sin2θ V3Σ (R) + (cos2θ + 1) V3Π (R)]  Equation (IV.11) 

 
Figure  IV.11 shows the result of the calculation for the C3v approach of the Hg 

atom towards the centre of the Xe3 cluster.  The 3A1 state does not result in overall 

stabilisation however a local minimum is crossed upon approaching the Xe3 cluster.  

It is also evident from Figure  IV.11 that 3E states arising from the approach of the Hg 

px and py orbitals are stabilized approaching the Xe3 cluster, however this stabilisation 

of 1588 cm-1 occurs at 2.56 Å from the centre of mass of the xenon cluster. 
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Figure  IV.11 Hg 3A1 and doubly degenerate 3E potential energy curves calculated for the C3v 
approach to a planar arrangement of three Xe atoms. 

 

The energetics of the Hg 3A1 and doubly degenerate 3E states were also 

calculated for the C6v perpendicular approach to the centre of mass of a planar RG6 

cluster.  The approach to the RG6 cluster is the opposite of the motion occurring for 

the 6-atom ‘body’ mode, (Q4).  Equations IV.2-4 were used to evaluate the energetics 

of the C6v approach where R = √((Rcm)2+r2) and θ = sin-1(r/R) given Rcm = re and φk = 

0, π/3, π, 4π/3 and 5π/3 for the planar arrangement of six RG atoms1.  Equations 

IV.12 and IV.13 were obtained from Equations IV.2-4 upon substitution of the values 

of φk for the RG6 planar cluster. 
 

W3A1(R) =6[cos2θ V3Σ(R) + sin2θ V3Π(R)]   Equation (IV.12) 

W3E(R) = 3[sin2θ V3Σ (R) + (cos2θ + 1) V3Π (R)]  Equation (IV.13) 

Figure  IV.12 shows the potential energy curves calculated for the Hg 3A1 and 3E 

states for the C6v approach to the planar Xe6 cluster.  Upon inspection of Figure  IV.12 

it is evident that the 3A1 (pz) and 3E (px, py) states are both stabilised at the centre of 

mass Rcm = 0 Å of the Xe6 cluster.  The 3A1 state exhibits a stabilisation of De = 

2242.8 cm-1 at Rcm = 0 Å.  However, even though the 3E state is stabilised at the 

centre of the cluster, the potential minimum of 1168.8 cm-1 actually occurs at a 

distance of 1.22 Å from the centre of the cluster. 
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Figure  IV.12 Hg 3A1 and doubly degenerate 3E potential energy curves calculated for the C6v 
approach to a planar arrangement of six Xe atoms. 

 
Five categories of Hg⋅RG interactions are identified for the Q4 mode, the 

geometric details of which are illustrated in Figure  IV.10.  (I) S.site/W(R1, θ1), 

motion of the Hg atom away from the hexagon of 6 nn atoms on Plane B.  (II) 

Tri.1/W(R2, θ2), motion towards the centre of the 3 nn atoms on Plane A (small, light 

shaded triangle). The separation between the close packed A, B and C planes, b, is 

√(2/3)ss. (III) Tri.2/W(R3, θ3), motion away from the 3 nn atoms on Plane C, (small, 

light triangle), i.e. the opposite of (II). (IV) Tri.3/W(R4, θ4), motion towards the 3 nnn 

atoms indicated by the large, dark shaded triangle on Plane A. These atoms are 

initially at a lattice parameter distance, a, from the guest metal atom in the 

substitutional site. (V) Tri.4/W(R5, θ5), motion away from 3 nnn atoms on Plane C, 

the opposite of (IV).  The potential energy for each of the interactions was evaluated 

using Equations IV.2-4. 

The potential energy curves obtained by summing the five interactions, are 

shown by the solid traces in the top of Figure  IV.13 for the Hg/Xe system.  In contrast 

to the 4-atom body mode, the 3A1(pz) state in the 6-atom ‘body’ mode is not 

stabilised. The lack of stabilisation evident in Figure  IV.13, arises from strong 

destabilisation occurring with movement of the metal (pz) orbital away from the 

hexagon (S.site) on Plane B and the initially repulsive interaction it experiences as it 
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approaches the 3 nn Xe atoms positioned as a triangle on planes A or C.  The latter 

repulsive interaction is shown by the dash-dot line (Tri.1) in Figure  IV.13, the former 

destabilisation by the dashed line (S.site).  However, the 3E state of this mode, 

corresponding to the degenerate px/py orbital orientations of the excited 3P1 Hg atom, 

is slightly stabilised.  The stabilisation arises from the approach of the Hg px/py 

orbital to the 3nn atoms arranged as a triangle (Tri. 1) on Plane A.  This is nearly 

counteracted by the destabilisation incurred by movement away from the other nn 

triangle (Tri. 2) on Plane C, resulting in only a small net stabilisation.  The slight 

stabilisation calculated for the Hg 3E state is that indicated by the C3v approach to the 

RG3 cluster shown earlier.  The dominant interaction leading to the destabilisation of 

the 6-atom ‘body’ mode, (Q4) for the excited state Hg pz orbital orientation is the 

motion from the centre of the hexagon of Xe atoms forming S.site.  This excited state 

destabilisation was predicted by the Xe6 cluster calculation, inspection of Figure 

 IV.12 reveals that motion of the Hg 3A1 (pz) state from Rcm = 0 Å is a repulsive 

interaction. 

 
b. The 6-atom “waist” mode, Q5 involves, as shown on the right in Figure 

 IV.10, in-phase contraction of 6 nn lattice atoms on the close-packed B plane towards 

the central metal atom.  The total energies of the excited 3A1(pz) and 3E(px/py) states 

in the waist mode of the Hg(3P1)⋅RG18 cluster obtained from Equations IV.2-4 are 

given by the expressions 

W3A1(R) = 6[cos2θΑV3Σ(R1) + sin2θΑV3Π(R1)]   Equation (IV.14) 

   + 6[cos2θΒV3Σ(R2) + sin2θΒV3Π(R2)]  
   + 6[cos2θCV3Σ(R3) + sin2θCV3Π(R3)] + Erreur ! 

W3E(R) = 3[sin2θΑV3Σ(R1) + [cos2θΑ + 1]V3Π(R1)]   Equation (IV.15) 

 + 3[sin2θΑV3Σ(R2) + [cos2θΑ + 1]V3Π(R2)]  
 + 3[sin2θΑV3Σ(R3) + [cos2θΑ + 1]V3Π(R3)] + Erreur ! 

in which the angles θΑ, θΒ and θC  are defined with respect to the Z-axis and have 

values of π/5.104299, π/2 and π/3.288535 radians. R1 and R2 refer to the nearest 

neighbour distance (a/√2) and R3 refers to the next nearest neighbour (a) distance. 

In the calculation of the energetics of the 6-atom ‘waist’ mode, only the 

distance of the 6 Hg-RG interactions on Plane B (R1) is decreased, as shown on the 

right in Figure  IV.10.  Although the cluster size is restricted to an M⋅RG18 species, 24 
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additional on-plane RG-RG interactions arising inside the 4th surrounding sphere are 

included.  This term (m = 24 in Equation IV.14 and 15) is required21 to account for 

the strong lattice destabilisation that occurs on the close packed Plane B from 

contraction of the equilibrium rare gas distances. The results of the 6-atom “waist” 

mode calculations are shown on the bottom of Figure  IV.13 for the Hg/Xe system.  

As indicated by the dashed lines in this figure, stabilization arises only for the pz 

orbital orientation with the contraction of the 6 Hg-RG bonds on Plane B.  Strong 

destabilisation, shown by the broken grey line, comes from disruption of the nn Rg-

Rg distances on the close packed B plane of the lattice, greatly reducing the overall 

stabilisation (solid trace) of this mode. 
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Figure  IV.13 Energetics calculated for the five specific interactions involved in the 6–atom 
‘body’ (Q4) and ‘waist’ (Q5) mode for the Hg/Xe system are shown by the legend 
used. The total potential energy curves obtained by summing these five 
interactions and the lattice contribution are shown by the solid line. 

 

IV.2.II.III Two-fold (2-atom) symmetry modes 

Calculation of the 2–atom modes involves a 45° rotation of the Z and Y axes about the 

X–axis from the coordinate system used1 for the 4-atom modes, where the Cartesian 

axes were coincident with the three, four–fold symmetry axes. Figures IV.14 and 

IV.2 show the resulting arrangement of the 12 nearest neighbour (nn) RG atoms 
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around the guest metal atom in the substitutional site, (ss).  When counted along the 

Z–axis, there is a 1, 4, 2, 4, 1 arrangement of the 12 nn RG atoms on this axis with the 

metal atom at the origin.  It can be seen in Figure  IV.14 that there are 2 nn on both the 

Z and Y axes with the remaining 8 nn atoms located in two rectangles at right angles 

to the Z-axis.  Two types of 2-atom modes are identified in the excited state. One 

involves the in-phase contraction of the 2 nn rare gas atoms on the Y axis towards the 

central metal atom.  The other is motion of the metal atom along the Z-axis directly 

towards one nn atom. 

q
7

q
6

Y Z

X

ZY

X

2 - fold symmetry
2-atom body mode, Q

 6 2-atom waist mode, Q
 7

Hg Hg

 

Figure  IV.14 A representation of the co-ordinate system used for the 2–atom ‘body’ and 
‘waist’ mode Q6 and Q7 calculations respectively.  The co-ordinate system has 
been chosen to coincide with the one of the twofold symmetry axes of the cubo-
octahedron. 

 
a). 2–atom ‘body’ mode, Q6, involves motion of the excited state metal atom 

on the Z–axis towards one of the 12 nn RG atoms positioned on this axis. It is 

illustrated on the left in Figure  IV.14 and involves passage of the excited state metal 

atom through the 4 nn RG atoms arranged as a rectangle perpendicular to the Z-axis.  

With the length of the sides of this rectangle, the lattice parameter (a) and 

substitutional site size (ss), the distance of each of the four rare gas atoms to the 

centre of the rectangle is then Rcm = √⅜(a).  Using the associated values of φk in 

Equations IV.3 and 4, φ1 = (½)cos-1(1/3), φ2 = π - [(½)cos-1(-1/3)], φ3 = [(½)cos-1(1/3)] + 

π  and φ4 = 2π - [(½) cos-1(1/3)] the following expressions were obtained for the 
3B1(px) and 3B2(py) states,  
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py   ⇒ WB2(R) =  4/3[VΣ(R) sin2 θk + VΠ(R) (cos2 θk + 2)] Equation (IV.16) 

px   ⇒ WB1(R) =  8/3[VΣ(R) sin2 θk + VΠ(R) (cos2 θk + 1/2)] Equation (IV.17) 

The following expression for the 3A1(pz) electronic state was obtained from Equation 

(IV.2). 

pz   ⇒  WA1(R) =  4[VΣ(R) cos2 θk + VΠ(R) sin2 θk]  Equation (IV.18) 

Calculation of the 2-atom modes for a Hg/RG18 cluster involves consideration 

of the eight interactions illustrated in Figure  IV.14.  They are as follows; (1) End 

1/W(R1,θ1), motion of the Hg atom from the substitutional site towards one of the 

nearest neighbour nn atom on the Z–axis. R1 = ss – x where x represents displacement 

along the Z – axis.  (2) End 2/W(R2,θ2), the motion of the metal atom away from the 

other nn on the Z–axis.  This is the opposite of interaction (1) and the distance is R2 = 

ss + x.  (3) Rect. 1/W(R3,θ3), this interaction involves approach to the rectangle of 4 

nn atoms.  Initially the Hg(pz) atom is at a distance ss/2 from the centre of mass of the 

rectangle. During the motion this distance becomes ss/2 – x. The distance from each 

of the RG atoms to the centre of mass of the rectangle is r = √⅜(a), so this interaction 

occurs at a distance R3 = [(ss/2 – x)2+(⅜ a)2]1/2 and the angle θ3 = asin (r/R3).  (4) 

Rect. 2/W(R4,θ4), this interaction is the motion of the excited state guest atom away 

from the rectangle of 4 nn. It is the opposite of interaction (3), therefore R4 = [(ss/2 + 

x)2+(⅜ a)2]1/2 and θ4 = asin (r/R4).  (5) 2 nn Y/W(R5,θ5), motion of the metal atom 

away from the 2 nn rare gas atoms on the Y–axis.  This interaction takes place at R5 = 

[(ss)2 + (x)2]1/2 where θ5 = asin (ss/R5).  (6) 2 nnn X/W(R6,θ6), involves the interaction 

between the metal atom and the 2 nnn on the X–axis. Initially these 2 rare gas atoms 

are at the next nearest neighbour, (nnn) distance of the lattice parameter a from the 

metal atom.  During the motion the distance becomes R6 = [(a)2 + (x)2]1/2 where θ6 = 

asin (a/R6).  (7) 2 nnn YZ/W(R7,θ7), this motion involves approach of the Hg atom to 

the 2 nnn RG atoms positioned on the YZ-plane on the diagonal initially at a distance 

a. R7 = [(ss - x)2 + (ss)2]1/2 where θ7 = asin (ss/R7).  (8) 2 nnn YZ/W(R8,θ8), this 

interaction is the opposite of (VII) and R8 = [(ss + x)2 + (ss)2](1/2) and θ8= asin (ss/R8). 

The potential energy curves calculated for the interactions 1 to 8 involved in 

the 2-atom body mode, Q6 are shown for the Hg/Xe system in Figure  IV.15. The 

potential energy curves for Q6 are obtained by the summation of the eight 



Chapter IV, Hg(3P1)/RG Sims. 

93 

interactions, and are shown by the solid traces in Figure  IV.15. Only the py orbital 

orientation leads to stabilization22 for the Q6 mode in Hg/Xe. 
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Figure  IV.15 Energetics calculated for the eight specific interactions involved in the 2–atom 
‘body’ (Q6) and ‘waist’ (Q7) modes depicted in Figure  IV.14. The potential 
energy curves obtained by summing these eight interactions for the three p-
orbital orientation are shown by the solid lines for Hg/Xe. 

 
b). 2-atom ‘waist’ mode, Q7, involves, as shown on the right of Figure  IV.14, 

the in–phase contraction of 2 nearest neighbour rare gas atoms on the Y-axis to the 

central metal atom. The overall energies of the excited 3A1(pz), 3B1(px) and 3B2(py) 3P1 

states of the mercury atom in the M⋅RG18 cluster are obtained from Equations. IV.2-4. 

For the 3A1(pz) state the following expression is used 

W3A1(R) = 2[cos2θΑV3Σ(R1) + sin2θΑV3Π(R1)] + 8[cos2θΒV3Σ(R1) + sin2θΒV3Π(R1)] + 

2[cos2θCV3Σ(R1) + sin2θCV3Π(R1)] + 4[cos2θDV3Σ(R2) + sin2θDV3Π(R2)] + 

2[cos2θEV3Σ(R2) + sin2θEV3Π(R2)] + Erreur !   Equation (IV.18) 

 
In this equation the angles θA, θB, θC, θD and θE are defined with respect to the Z–axis 

and have values of 0, π/3, π/2, 2π/3 and π radians respectively. R1 and R2 refer to the 

nearest neighbour distance and the next nearest neighbour distances respectively. 
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Results calculated for the Q7 mode are shown on the bottom in Figure  IV.15 

for Hg/Xe. Excited state stabilization occurs for both the px and pz orbital 

orientations, whereas py is strongly repulsive due to the pure Σ interaction with the 

two approaching rare gas atoms on the Y-axis. The px and pz orbitals, although arising 

from different electronic states of the excited state Hg 3P1 atom, show the same 

excited state minimum due to symmetry. 

Lattice destabilization must also be included in these calculations as the waist 

mode Q7 involves motion of two rare gas atoms with respect to their nearest 

neighbours.  Since the RG atoms initially occupy equilibrium positions in the lattice, 

any displacement from these positions will destabilize the host lattice. 22 RG-RG 

interactions were considered, of which the motion of the two RG atoms on the Y–axis 

towards a rectangle of its nearest neighbours is the most important. This repulsive 

lattice interaction is represented by the grey line in the bottom panels in Figure  IV.15, 

and reduces considerably the stabilization of these modes for the px and pz orbital 

orientations. 

 

IV.3 Discussion 

A summary of the excited state calculations conducted on the three Hg/RG systems is 

presented in Figure  IV.16.  In constructing this figure, identical calculations to those 

shown in detail for the Hg/Xe system were performed on the Hg/Ar and Hg/Kr 

systems.  However, only the modes exhibiting stabilisation are shown, as they are the 

only ones that will lead to Stokes’-shifted emission. 

As indicated by the solid curves in Figure  IV.16, the 4-atom waist mode, Q3, 

leads to excited state stabilisation for all the Hg/RG systems but only for the pz orbital 

orientation. In contrast, the 4-atom body mode, Q2, exhibits stabilisation only in the 

Hg/Xe system.  The 3A1(pz) state in the 6-atom ‘body’ mode, Q4, is not stabilised in 

any of the solid rare gases. It is evident in the detailed Hg/Xe plot shown in Figure 

 IV.13, that the reason for the lack of stabilisation is the repulsive interaction the metal 

(pz) orbital experiences as it approaches the 3 nn Xe atoms positioned as a triangle on 

planes A or C.  This repulsive interaction (shown for Hg/Xe in Figure  IV.13 by the 

dash-dot line, Tri.1), is much stronger in Hg/Kr and stronger still in Hg/Ar as the 

lattice parameters get smaller. The 3E(px,py) state of this mode shows a shallow 
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minimum in Hg/Xe.  The 6-atom ‘waist’ mode, Q5, exhibits excited state minima in 

the pz orbital orientation for all the Hg/RG systems. 
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Figure  IV.16 A comparison of the excited Hg(3P1) state potential energy curves of the 
vibronic modes exhibiting stabilisation in the Hg/RG systems.  Shown also is the 
ground Hg(1S0) state potential energy curves calculated for the breathing mode, 
Q1.  Particularly noteworthy is the crossing of this curve with the very strongly 
stabilized 4-atom modes in the Hg/Xe system. 

 

Stabilisation is not found for the 2-atom ‘body’ mode, Q6, in any of the orbital 

orientation for Hg isolated in Ar and Kr.  However, the py orbital orientation exhibits 

a stabilisation for the body mode, Q6, in Hg/Xe.  In contrast, the ‘waist’ mode of this 

symmetry, Q7, is stabilised for the px,py orbital orientations in all three rare gas 

systems.  In the next section a comparison of the predicted absorption and emission 

energies is made with recorded matrix spectra presented in Chapter III. 

IV.3.I  Absorption Energies 

The absorption energy of the guest mercury atom isolated in a solid rare gas lattice is 

calculated as the difference between the ground Hg(1S0)⋅RG18 and the excited state 

Hg(3P1)⋅RG18 cluster energies at the centre of a substitutional site, R = 0 Å.  Within 

the Frank-Condon approximation no movement will occur between the Hg and the 

cluster atoms during the electronic transition, so the absorption energy is given by  
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Eabs = E[Hg(3P1)⋅RG18]Q(R=0) – E[Hg(1S0)⋅RG18]Q(R=0) Equation (IV.19) 

where Q(R = 0) represents zero displacement for a vibronic mode, Qn (corresponding 

to the centre of a substitutional site). Accordingly, for a given site occupancy, the 

calculated absorption energies must be identical for all vibronic modes.  The level of 

agreement between the 4-atom modes and the new 6-atom and 2-atom mode 

calculations is evident for Hg/Xe in Figure  IV.8, Figure  IV.13 and Figure  IV.15 by 

the identical ‘Eabs’ values (39270 cm-1) obtained for the Q3, Q5 and Q7 modes. Table 

 IV.2 shows a comparison of the observed absorption wavelengths with those 

calculated for substitutional site occupancy.  

Table  IV.2 A comparison of the observed absorption wavelengths (nm units) for the 3P1 ← 
1S0 transition of matrix-isolated atomic mercury with the calculated absorption 
values.  The difference between the observed band maxima and the predicted 
values are quoted as δObs-Cal in cm-1.  For a given Hg/RG system, the quoted 
predicted value was found for the three symmetry systems used, the three p-
orbital orientations and the body and waist vibronic modes. 

Hg/RG  ECal λCalc λObs δObs-Cal 

Hg/Ar 40495 246.94 246.0 +155 

Hg/Kr 39922 250.49 249.1 +227 

Hg/Xe 39270 254.65 253.4 +192 

 
The 246.94 nm absorption wavelength calculated for Hg/Ar, compares very 

well with the observed band centre at 246 nm.  The recorded8 absorption band centre 

for Hg isolated in solid Kr is at 249.1 nm while the calculated value is 250.49 nm.  

Better agreement with observed data is achieved in Hg/Xe where the calculated value 

of 254.64 nm compares favourably with the observed absorption centered at 253.4 

nm. From the comparison presented in Table  IV.2, it is clear that the calculated 

absorptions match the red component of the threefold-split bands for all three Hg/RG 

systems. It thereby supports the assumption of substitutional site occupancy inherent 

in the pair-potential calculations conducted.  It is not within the scope of the present 

calculations to examine the threefold absorption splitting effect because as indicated 

by Equation IV.19, the absorption values are determined only at the centre of the 

substitutional site i.e., at R = 0.  Simulation23 of the Jahn-Teller structure on the 

absorption profiles requires displacement of the ground state metal atom from the 

centre of the substitutional site, a task difficult to implement in the code developed 

for the calculations presented. 
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IV.3.II Emission Energies 

The Hg(3P1 → 1S0) emission energies are calculated with the formula 

Eem = E[Hg(3P1)⋅RG18]Q(Rmin’) – E[Hg(1S0)⋅RG18]Q(Rmin’) Equation (IV.20) 

where Rmin’ represents the nuclear configuration of a given excited state vibronic 

mode, Q, at its energy minimum.  In accordance with the Franck-Condon 

approximation, the energy of this vibronic mode on the ground state is obtained at the 

Rmin’ value identified in the excited state.  The results calculated in this way for the 

vibronic modes exhibiting excited state stabilisation (shown in Figure  IV.16) in the 

Hg/RG systems are collected in Table  IV.3. 

 

 Hg/Ar: The 4-atom (pz), 6-atom (pz) and 2-atom (px and pz) ‘waist’ modes 

exhibit excited state stabilisation in solid argon.  The emission wavelengths 

calculated for these Q3, Q5 and Q7 modes are 256.14, 250.51 and 248.29 nm 

respectively.  From the comparison made in Figure  IV.16 of the three excited state 

vibronic modes, it is expected that Hg/Ar emission is dominated by the 6–atom 

‘waist’mode, (Q5) as it exhibits more rapid stabilisation (i.e., a steeper gradient) than 

the more deeply bound 4–atom ‘waist’, (Q3) or the 2-atom ‘waist’ mode. As shown in 

Figure  IV.17, the 250.51 nm emission calculated for the Q5 mode closely matches the 

deconvoluted central component at 250.69 nm in the observed band.  The two other 

predicted emission bands lie to the blue and red of the two remaining deconvoluted 

emission components. 
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Figure  IV.17 A comparison of the observed and calculated atomic Hg (3P1 ↔ 1S0) 
spectroscopy. The experimental emission spectra shown were recorded at 12 K 
and the underlying dotted lines show the deconvoluted components extracted in 
the Gaussian lineshape fits shown in Chapter III. 

 
Hg/Kr: As found in Hg/Ar, only the Q3(pz), Q5(pz) and Q7(px, py) modes 

exhibit excited state stabilisation in Hg/Kr leading to predicted emission at 261.16, 

256.12 and 252.71 nm respectively. The 6-atom ‘waist’ mode Q5 in this system also 

exhibits the steepest stabilization gradient (middle plot of Figure  IV.16) and is 

therefore expected to dominate the emission.  The associated predicted emission at 

256.12 nm is red of the deconvoluted central component at 254.22 nm.  The 2-atom 

waist mode at 252.7 nm agrees well with the blue component at 253.25 nm.  As in the 

Hg/Ar system, the 4-atom waist mode (261 nm) is red of the deconvoluted red 

component (255 nm). 
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Table  IV.3 A comparison of the calculated Hg atom 3P1 → 1S0 emission wavelengths with  
the experimental data reported in Chapter III and Ref. 8 for the Hg/Ar, Hg/Kr 
and Hg/Xe systems.  All the vibronic modes of Hg⋅RG18 clusters which lead to 
excited state stabilisation are presented and compared with the bands 
deconvoluted in Gaussian fits of the emission bands centered at 250.3, 254.1 and 
273 nm in Ar, Kr and Xe respectively. 

Hg/RG Mode Motion 
Calculated 

E(cm-1) / λ(nm) 

Observed 

E(cm-1) / λ(nm) 

Hg/Ar 

 

Q3 (pz) 

Q5 (pz) 

Q7 (px, pz) 

4-waist 

6-waist 

2-waist 

 

39041 / 256.14 

39919 / 250.51 

40275 / 248.29 

39719 / 251.77 

39890 / 250.69 

40034 / 249.78 

 

Hg/Kr 

 

Q3 (pz) 

Q5 (pz) 

Q7 (px, pz) 

 

4-waist 

6-waist 

2-waist 

 

38290 / 261.16 

39044 / 256.12 

39571 / 252.71 

39149 / 255.43 

39335 / 254.22 

39487 / 253.25 

 

Hg/Xe 

 

Q2 (pz) 

Q3 (pz) 

Q4 (px, py) 

Q5 (pz) 

Q6 (py) 

Q7 (px,pz) 

4-body 

4-waist 

6-body 

6-waist 

2–body  

2-waist 

27875 / 358.74 

26474 / 377.73 

38025 / 262.98 

37829 / 264.34 

35919 / 278.40 

38020 / 263.02 

N/A 

N/A 

- 

36619 / 273.08 

35729 / 279.88 

37535 / 266.42 

 

Hg/Xe: Stabilisation was found in Hg/Xe for the six excited state vibronic 

modes shown on the right in Figure  IV.16.  In addition to the three modes stabilised 

in the Hg/Ar and Hg/Kr systems, the Q2 (4-fold symmetry, pz), Q4 (3-fold symmetry 

px, py) and the Q6 (2-fold symmetry py) modes are stabilised in Hg/Xe. 

The calculated emission wavelengths for the Hg/Xe system, collected in Table 

 IV.3, occur at 358.74, 377.73, 262.98, 264.34, 278.4 and 263.02 nm for the Q2(pz), 

Q3(pz), Q4(px/py), Q5(pz), Q6(py) and Q7(px, pz) modes respectively.  The predicted 

Q6(py) value at 278.4 nm provides the best match with the red emission component at 

279.88 nm.  Stabilisation of this mode, the 2-atom body mode, is due to the 

favourable interaction between the Hg atom py orbital and a single Xe atom.  This 

attractive interaction with one Xe atom is possible only for the Π(py) orbital as the 

metal atom in this orientation can pass through the long side of the rectangle of nn Xe 

atoms, whose length is the lattice parameter, a, without experiencing strong repulsive 

interactions.  In contrast, motion in the Π(px) orbital orientation involves, as shown 

on the left in Figure  IV.14, passage through the short side of the rectangle which, a 
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substitutional site size in length, and experiences repulsive interaction as indicated by 

the dotted lines in Figure  IV.15.  The 6-atom waist mode yields emission at 264.34 

nm to the blue of the deconvoluted blue component at 273.08 nm.  The remaining two 

modes in Hg/Xe (Q4 and Q7) are located at 263 nm in the vicinity of the blue 

deconvoluted component at 266 nm. 

Conspicuous in Figure  IV.16 is the fact that the 4-atom body Q2 and waist Q3 

modes of Hg/Xe exhibit much larger excited state stabilisation energies than the 2- 

and 6-atom modes. Thus, an obvious question arises as to the role these modes play in 

emission as it is very likely that the former modes will lead to some relaxation of the 

excited state population.  This is especially so for the 377 nm, 4-atom ‘waist’ mode, 

Q3, as it exhibits a steep stabilisation gradient, so that even at low temperatures, 

excited state relaxation must occur along this vibronic mode.  At higher temperatures, 

the branching ratios should favour the strongly stabilised modes leading to a 

reversible enhancement of the Q2 and Q3 modes (358 and 377 nm, near-UV bands) at 

the expense of the 6-atom waist mode Q5 (273 nm, UV band) and the 2-atom body 

mode. 

According to the present Hg/Xe18 calculations, the Q2 and Q3 modes are 

predicted to produce emission in the near-UV (350-400 nm) spectral region where 

mercury dimer and several unassigned emission bands have recently24 been observed 

in Hg/Xe samples. Hg/Xe samples reported in Chapter III showed no atomic emission 

in the near-UV and no reversible temperature dependence was observed.  However, 

the growth of Hg2 bands was observed with prolonged atomic excitation, signalling 

that non–radiative processes must be considered which quench the atomic emission. 

The following quenching mechanism has become evident in our pair-potentials 

calculations of Hg/Xe and is illustrated in Figure  IV.16. 

It involves the deeply-bound, 4-atom excited state vibronic modes being 

crossed by the breathing mode of the electronic ground state.  The ‘breathing’ mode, 

Q1, presented in Chapter V involves in-phase motion of the 12 nearest neighbour 

atoms and the curves calculated with Equation IV.1 for the Hg/Ar, Hg/Kr and Hg/Xe 

systems are shown in Figure  IV.16.  It is clear in this figure that Hg/Xe is the only 

system exhibiting a crossing between stabilized excited state vibronic modes and the 

repulsive ground state.  The origin of this difference lies in the much greater 

stabilization that the Hg/Xe 4-atom modes exhibit compared with the corresponding 

modes in the Hg/Ar and Hg/Kr systems.  Quenching will then arise for the most 
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strongly stabilized excited state modes in Hg/Xe due to their crossing with the ground 

state.  Because of the large spin-orbit coupling in atomic mercury, the crossing of 

these states of different spin will give rise to very efficient intersystem crossing and 

will quench the near–UV emission. 

Although emission quantum yields have not been measured in the Hg/RG 

systems it is known that prolonged excitation of the atomic resonance in Hg/Xe 

produces mercury dimer. Thus the quenching mechanism presented would also 

rationalize this surprising observation of photo-clustering in a solid whose 

substitutional sites ideally accommodate atomic mercury. Thus the atomic quenching 

mechanism will dispose up to 30,000 cm-1 energy into the host lattice, providing 

sufficient energy for the migration of the atomic mercury in the solid. 

 

IV.4 Conclusions 

From the close agreement found with observed absorption energies8, pair-potentials 

calculations indicate that atomic mercury occupies essentially undistorted 

substitutional sites in solid Ar, Kr and Xe.  Calculation of the excited state energies 

for Hg/Ar and Hg/Kr show that three vibronic modes lead to emission in these 

matrices.  Of these, the 6-atom ‘waist’ mode, Q5, is expected to dominate the low 

temperature spectra as it has the steeper stabilization gradient.  In Hg/Ar matrices, 

this mode predicts emission in close agreement with the observed bands but in Hg/Kr 

it is slightly to the red of the observed band8. Hg/Xe calculations indicate that 

emission can arise from six modes. The 2–atom ‘body’ Q6(py) mode leads to emission 

which most closely matches the observed band centre at 273 nm.  This mode involves 

motion of the Hg(py) atom to one of the 12 nn Xe atoms and corresponds to the 

proposal made by C&T, that excimer type behaviour was responsible for the emission 

in Hg/Xe.  However, the results presented here indicate that this motion must occur in 

a specific orbital orientation (py) to achieve stabilization and produce emission. 

Calculations conducted on the 4–atom ‘waist’ (Q3) and the 4–atom ‘body’ 

modes (Q2) predict emission in the 350-400 nm region in Hg/Xe which has never 

been detected in the spectra recorded.  A quenching mechanism of these modes is 

identified in the calculations, involving the crossing of these strongly bound, excited 

state vibronic states by the repulsive ground state potential.  This crossing does not 

occur in the Hg/Ar and Hg/Kr systems. 
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Chapter V  
A pair-potentials analysis of I) the Hg (3P1 ↔ 1S0)/Ne luminescence and 

II) Hg (3P0 → 1S0)/RG (RG = Ar, Kr and Xe) emission spectroscopy. 

V Introduction 

This Chapter consists of two parts both of which employ the M/RG18 localised model 

to simulate the observed luminescence of atomic mercury isolated in solid rare gases.  

In Part I, the Hg/RG18 pair-potentials approach, presented in Chapter IV for the rare 

gases Ar, Kr and Xe, is extended to model the luminescence of the atomic Hg 6p 3P1 

↔ 6s 1S0 transition isolated in solid neon.  Part II focuses on Hg isolated in Ar, Kr 

and Xe in an attempt to simulate the emission spectroscopy of the Hg atom 3P0 → 1S0 

transition reported in Chapter III.  These two sections provide insights into 1) ground 

and excited state metal atom solvation, 2) the effect of local lattice perturbations 

caused by the dopant and 3) the importance of the site of isolation occupied by the 

metal atom in determining the observed luminescence. 

V.I A pair-potentials analysis of the Hg (3P1 ↔ 1S0)/Ne luminescence 

V.I.1 Introduction 

The localised pair-potentials approach1 is employed here to investigate the absorption 

and emission spectroscopy of the atomic 3P1 state Hg in solid neon.  The 

spectroscopic studies of matrix-isolated2 atomic mercury focusing on the 6p 3P1 ↔ 6s 
1S0 transition reported by the Orsay group3 and recently by our group at Maynooth4 

outlined the luminescence in solid Ar, Kr and Xe as 12 K.  This was the minimum 

temperature available with those experiments but recently Chergui and co-workers5,6 

have conducted spectroscopic studies of atomic Hg in neon matrices at 4 K.  The 

deposition temperature was achieved on a LiF window cooled by a liquid helium 

cryostat. The atomic Hg(3P1 ↔ 1S0)/Ne excitation and emission spectra reported by 

Chergui and co-workers5 are presented in the top panel of Figure  V.1.  The emission 

spectrum and fluorescence-excitation reported by Chergui were produced with UV 

laser excitation.  Emission was detected using a UV-enhanced CCD camera or 

photomultiplier tube following dispersion by an Acton Research UV-Vis 

monochromator equipped with a 150-grooves/mm diffraction grating.  Table  V.1 

presents a comparison of the photo-physical characteristics of the Hg(3P1 ↔ 1S0)/Ne 
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results5 and those recorded for Hg/Ar, Hg/Kr and Hg/Xe in this work and presented in 

Chapter III. 
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Figure  V.1 A comparison of the emission spectra recorded for Hg/Ne, Ar, Kr and Xe 
systems (shown right) produced with excitation of the Hg 3P1 ← 1S0 transition.  
The Hg/Ne emission spectrum shown (top right) was produced with laser 
excitation and recorded at 4 K using CCD detection, as reported by Chergui 
and co-workers5.  The Hg/Ar, Kr and Xe data presented are time-integrated 
emission spectra recorded following deuterium lamp excitation at 12 K as 
outlined in Chapter III.  The excitation spectra shown left were produced 
monitoring the Hg 3P1 → 1S0 fluorescence emission maximum for each Hg/RG 
system. 

 
Table  V.1 Photophysical characteristics of the triplet 6p 3P1 ↔ 6s 1S0 transition of matrix – 

isolated atomic mercury. λEx indicates the position of the central component of 
the three–fold split excitation spectrum and λEm indicates the emission band-
centre in nm units. The full-width at half-maximum intensity of the 
excitation/emission features is denoted by ∆ and the Stokes’ shift by SS - both in 
wavenumber (cm-1) units. 

Excitation Emission Hg/RG 

System λEx (nm) ∆ (cm-1) λEm (nm)      ∆ (cm-1)         SS (cm-1) 

Ne5,7 247.8 470 252.5 ± 0.5 300-500 668 

Ar 245.9 484 250.3 399 715 

Kr 248.9 397 254.1 465 816 
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It is evident from the comparison made in Figure  V.1 and Table  V.1 that the 

Hg(3P1)/Ne excitation and emission spectra do not follow the overall trend exhibited 

by the other Hg/RG systems, where a progressive blue-shift in the excitation and 

emission band maxima (λEx and λEm) is observed from Xe to Ar.  However the Hg/Ne 

emission spectrum conforms to the trends evident for Hg/Ar and Kr where the 

Stokes’ shift (SS) and the emission linewidth (∆) increase from Ne to Xe.  The 

expected blue-shift of the excitation band maximum (λEx) with decreasing rare gas 

polarizability for a given site of isolation of the metal atom within the RG matrix is 

not exhibited by the Hg/Ne system.  A linear correlation between the gas phase – 

matrix absorption/excitation band maximum and rare gas polarizability was presented 

by Laursen and Cartland8 (L&C) for the M(1P1 and 3P1 ← 1S0)/RG transitions of the 

metal atoms Zn, Cd and Hg in Ar, Kr and Xe matrices.  The polarizability model held 

true for the Hg (3P1 ← 1S0) transition in Ar, Kr and Xe matrices but until recently5,6, 

Hg/Ne results were not available for comparison.  The Hg(3P1 ↔ 1S0)/Ne18 pair-

potentials simulations presented in this Chapter allow an investigation of the 

deviations shown by the Hg(3P1)/Ne excitation and emission spectra from the trends 

exhibited by the other Hg/RG systems. 

The availability of the Hg(3P1)/Ne matrix data5 and diatomic Hg(3P1)⋅Ne [X 
10+ (1Σ)], [A 30+ (3Π)] and [B 31] state potentials9,10 allowed the application of the 

Hg⋅RG18 model to solid Ne.  In the sections which follow, an examination of the Hg 
3P1 ↔ 1S0 Ne matrix spectroscopy is conducted using the Hg⋅RG18 cluster 

calculations.  The tetragonal (4-fold symmetry), trigonal (3-fold symmetry) and 2-

fold symmetry calculations outlined in Chapter IV are performed for atomic Hg 

isolated in solid Ne matrices.  The calculations presented in the previous Chapter are 

based on atomic mercury occupying unperturbed substitutional sites in solid Ar, Kr 

and Xe. The Hg/Ne simulations presented are based on substitutional site occupancy 

but allow the ground state Hg 6s2 1S0 atom to deform its immediate neon matrix 

environment.  The original and deformed matrix environments are referred to in the 

text as “rigid” and “relaxed” lattice calculations respectively.  Therefore, in addition 

to the calculations outlined in Chapter IV, details of a lattice expanding symmetric 

‘breathing’ mode, (Q1) and modifications to the trigonal, 6-atom ‘waist’ mode, (Q5) 

are presented.  The ‘breathing’ mode Q1 involves the symmetric expansion (or 

contraction) of the first solvation shell of Ne atoms surrounding the metal atom 
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thereby allowing relaxed substitutional site occupancy.  Comparison of the calculated 

Hg(3P1 ← 1S0)/Ne absorption energies with the observed Hg/Ne spectroscopy allowed 

the assignment of relaxed substitutional site occupancy for atomic mercury in solid 

neon.  The emission comparison allows an assessment of the effects of a ground state 

perturbation on the Hg(3P1) excited state dynamics.  In solid neon a significantly 

Stokes’ shifted emission is predicted by the Hg/Ne18 cluster model only for relaxed 

lattice calculations.  A combination of the re-establishment of the equilibrium neon 

lattice and stabilisation of the Hg⋅Ne interactions lead to energy values which 

compare well with observed emission.  These conditions are fulfilled by ‘waist’ 

modes calculated where the Hg 3P1 state is stabilised by the trigonal 6-atom ‘waist + 

limited stretch’ mode, (Q8
*) - a modification of the 6-atom ‘waist’ mode (Q5) 

presented in Chapter IV. 

V.I.2 Method and Results 

The pair-potentials analysis of the Hg(3P1 ↔ 1S0)/Ne luminescence spectroscopy 

outlined in this section employs the localized M/RG18 model1 presented in Chapter 

IV.  Therefore only the modifications required to simulate the Hg/Ne spectroscopy 

are presented here. 

V.I.2.I  Ground State Site occupancy 

The starting point for the Hg/Ne18 simulations is the selection of the site occupied by 

the ground state Hg atom within the host neon matrix.  This is achieved by 

comparison of the Hg⋅Ne X (1Σ) ground state bond length with that of neon dimer 

Ne2.  As presented in Table  V.2, the Hg⋅Ne ground state bond length is 3.89 Å 

whereas the neon dimer bond length is 3.091 Å. 

The substitutional site (ss) size available in solid Ne is 3.155 Å11, calculated 

from the lattice parameter12 a = 4.462 Å, using the relationship ss = a/√2 Å.  The 

comparison of the substitutional site size available and the Hg⋅Ne van der Waals bond 

length reveals a difference of 0.735 Å.  This unfavourable comparison makes rigid 

substitutional site occupancy unlikely within solid neon.  Therefore, an expansion of 

the substitutional site may be required to facilitate the isolation of the mercury atom.  

Whether Hg atom occupancy in a substitutional site leads to the deformation of the 
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original site can be determined by comparing the predicted and observed Hg(3P1 ← 
1S0)/Ne absorption energies. 

The ground state energy of the cluster is evaluated with the method presented 

in Chapter IV, Section IV.2.I.  The Morse parameters used to describe the Hg⋅Ne and 

Ne⋅Ne interactions are provided in Table  V.2. 

 
Table  V.2 Spectroscopic constants used to generate the Morse potential energy curves for 

the Hg⋅Ne and Ne2 diatomics.  Data source are indicated by the references. 

Hg⋅Ne10  Morse 

Parameters X 1Σ (10+) A 3Π (30+) B 3Σ (31) 

Ne⋅Ne13 

X 1Σ 

µHg-RG (amu) 

De(cm-1) 

ωe(cm-1) 

ωexe(cm-1) 

Re(Å) 

β(Å-1) 

18.191701 

42 

17.2 

1.77 

3.89 

1.378517 

- 

79 

26.9 

2.28 

3.497 

1.57198 

- 

13.3 

7.7 

1.12 

4.71 

1.09666 

9.996219 

29.4 

29.1 

- 

3.091 

2.090614 

 

 Ground State ‘breathing’ mode, (Q1) 

Due to the unfavourable match between the substitutional site size available in solid 

Ne and the Hg⋅Ne ground state bond length, the 12 nearest neighbour (nn) Ne atoms 

surrounding the Hg atom undergo a radial expansion.  The ground state ‘breathing’ 

mode, (Q1) is akin to the previously described ‘waist’ mode as the motions of the 

lattice atoms are ‘in-phase’ relative to the fixed metal atom.  Q1 lowers the energy of 

the Hg⋅Ne12 cluster as the Hg-Ne interaction distance is increased by +X Å from ss 

Ne = 3.155 Å to ss + X Å allowing the Hg-Ne distance to approach the Hg⋅Ne ground 

state bond length listed in Table  V.2.  The interactions involved in Q1 are shown in 

Figure  V.2.  The motion of the 12 nn Ne atoms results in a destabilisation of the Ne 

lattice as the Ne-Ne distances are displaced from their equilibrium value, (Re). The 

lattice destabilisation caused by the motion of the 1st sphere limits the amount the 

Hg⋅RG12 cluster can be stabilised.  Therefore, the extent of the expansion occurring in 

the 1st sphere surrounding the metal atom is identified as the point where the Hg⋅Ne 

stabilisation and the Ne lattice destabilisation energies are equal.  To identify this 

point, the energies at the equilibrium positions of the Hg⋅Ne12 (the Hg⋅Ne ground 

state bond length) and Ne lattice (where all Ne⋅Ne interactions occur at the distance 
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of the Ne2 equilibrium bond length) are both set to zero.  Equation IV.I is applied 

with the number of Hg⋅Ne and Ne⋅Ne interactions occurring i.e., n = 12 and m = 120 

respectively. 

 

Ground state ‘breathing’ mode Q1

Hg 1S0                                                             3rd Sphere a(√1.5)
1st Sphere (a/√2)                          4th Sphere a(√2)
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q1
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Figure  V.2 Representation of the interactions involved in the calculation of the energetics 
of the ground state ‘breathing’ mode (Q1).  The symmetric expansion of the 12 
nearest neighbour (nn) Ne atoms forming the 1st co-ordination sphere of the Hg 
atom isolated in a substitutional site, shown by q1.  The relative positions of the 
2nd and successive metal atom co-ordination spheres are indicated by shaded 
spheres and the radial distances to the Ne atoms forming the different shells are 
provided as a function of the lattice parameter of solid Ne (a = 4.462 Å). 

 
A total of 120 Ne⋅Ne interactions occurring within the 4th sphere are 

considered in the calculation of the lattice destabilisation due to the motion of the 12 

nn.  The Ne⋅Ne interactions considered are shown in Figure  V.2 the geometric details 

of which are now presented, labelled I-V.  I) The expansion of the 12 nn Ne atoms 

surrounding the Hg atom results in the contraction of the distance between the 

moving atoms and 12 RG atoms positioned in the 4th sphere (spotted circles), 

resulting in the contraction of 12 ‘on-axis’ RG interactions from the initial 
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substitutional site distance ss = a/√2 Å to ss – x Å.  II) Each of the moving 12 nn Ne 

atoms approach a rectangle of Ne atoms located in the 3rd sphere by a distance 

a
x a

2
3
8

2

2−








 + .  There are 48 of these Ne⋅Ne interactions.  III) The 12 nn Ne 

atoms move away from the 6 next nearest neighbour (nnn) atoms located in the 2nd 

co-ordination sphere by the amount 
a

x
2

2

2








 + , contributing another 24 Ne⋅Ne 

interactions.  IV) The radial expansion of the 12 nearest neighbour atoms on the 

surface of the cubo-octahedron results in the extension of 24 Ne⋅Ne distances from 

the substitutional site distance ss = a/√2 to ss + x.  V) 12 Ne⋅Ne next nearest 

neighbour (nnn) interactions on the surface of the cubo-octahedron are extended from 

the lattice parameter, a to (a+√2x). 

The potential energy curves calculated for the expansion of the 1st sphere 

atoms from the Hg atom isolated in a substitutional site in solid Ne are shown in 

Figure  V.3.  Upon inspection of Figure  V.3 it is evident that a lattice expansion of 

0.293 Å occurs representing an increase in the substitutional site diameter of 9.29%.  

With this expansion the Hg⋅Ne12 cluster is stabilised by 353.0 cm-1 (Ne lattice 

destabilisation is -∆E cm-1) from the initial value (Esubs) for Hg atom isolated in a 

rigid site within the Ne12 cluster.  The relaxed substitutional site size [ssRel = (3.155 + 

∆Q)] is 3.448 Å.  The stabilisation observed for Hg⋅Ne12 can be understood in terms 

of the Hg(1S0)⋅Ne ground X state potential shown in the right panel of Figure  V.4, 

where the vertical lines crossing the potential energy curve indicate the rigid (NeSS) 

and relaxed (NeSS + ∆Q) substitutional site diameters. The ground state energy of the 

Hg(1S0)/Ne18 cluster is calculated for both rigid and relaxed substitutional site 

occupancy following the method detailed in Chapter III. 
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Figure  V.3 Potential energy curves for the Hg⋅Ne12 and 120 Ne⋅Ne interactions occurring 
for the symmetric ground state ‘breathing’ mode, (Q1).  R = 0 Å, for the mode 
Q1 represents the undistorted substitutional site.  The extent of the lattice 
expansion calculated is indicated as ∆Q = 0.293 Å. 

 

V.I.2.II Excited 3P1 state 

The excited state energy of the Hg(3P1)/Ne18 cluster was calculated as outlined in 

Chapter IV; Section IV.2.II.  The known diatomic Hg(3P1)⋅Ne A [30+ (3Π)] and B (31) 

state potentials10 are used to construct the excited state Hg/Ne18 cluster following 

deconvolution of the 3Σ state from the experimentally observed B state using 

Equation IV.5.  The A (3Π), B and deconvoluted 3Σ states for Hg⋅Ne are shown in the 

left panel of Figure  V.4.  The deconvoluted 3Σ state exhibits a long range minimum as 

observed for Hg⋅Ar, Kr and Xe in Chapter IV. 

 Excited 3P1 state energetics were calculated for the body and waist vibronic 

modes in the three orbital orientations (px, py and pz) for the fourfold (4-atom), 

threefold (6-atom) and twofold (2-atom) co-ordinate systems shown Figure IV.4, 

Chapter IV.  The calculations were completed for atomic mercury isolated in rigid 

and relaxed substitutional sites within the neon lattice.  The absorption energies were 

compared for the three co-ordinate systems calculated and identical absorption 

energies were obtained for all modes given the condition of the site of isolation (rigid 
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or relaxed).  As the absorption energy is calculated as the difference in the energy of 

the cluster in the ground and excited state within the Frank – Condon principle the 

absorption energies should be different for rigid and relaxed site occupancy. 
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Figure  V.4 The Hg(3P1)⋅Ne 3Σ state extracted with Equation IV.5 from the spectroscopic [A 
30+ (3Π)] and [B 31] states (left panel) whose constants are presented in Table 
 V.2.  Note: the most recent spectroscopic data on the Hg⋅Ne 1:1 van der Waals 
complex presented in Ref. 10 was used to generate the potential energy curves 
presented. The 3Σ state shows a weakly bound region at long range 
corresponding to Rmin and the binding energy is indicated by De. All of the states 
share the Hg atom 6p 3P1 asymptote at 39424.1 cm-1 but are shown dissociating 
to zero-energy for the purpose of comparison with the potential energy curve 
for the Hg(1S0)⋅Ne X (1Σ) state shown right panel. 

 

Thus for Hg isolated in solid Ne, 18 excited state potential energy curves were 

calculated for both rigid and relaxed substitutional site occupancy.  However, only 

the vibronic modes exhibiting stabilisation, are discussed as these are the only ones 

leading to emission.  The tetragonal (4-atom) and the twofold (2-atom) ‘body’ and 

‘waist’ modes Q2, Q3, Q6 and Q7 presented in the previous chapter were not stabilised 

for any p-orbital orientation.  The trigonal (6-atom) ‘body’ mode Q4 was not 

stabilised for Hg/Ne.  However the 6-atom ‘waist’ mode was stabilised and the results 

are now presented.  The details of two new vibronic modes (Q8 and Q8
*) based on the 
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6-atom ‘waist’ mode, (Q5) presented in Chapter IV are discussed in the following 

section. 

 
 Hg/Ne18 Trigonal (6-atom) symmetry modes 

The co-ordinate system used to calculate the 6-atom ‘body’ (Q4) and ‘waist’ (Q5) 

vibronic modes is presented in Figure IV.4 where the Z-axis is co-incident with one 

of the four, threefold symmetry axes of the Hg⋅Ne12 cubo-octahedron.  The details of 

the modes and the calculation of the excited state energetics are presented in detail in 

Chapter IV; Section IV.2.II.II.  The potential energy curves calculated for the 6-atom 

modes for rigid and relaxed neon lattice are shown in Figure  V.5 and Figure  V.6 

respectively. 
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Figure  V.5 Energetics calculated for the Hg/Ne18 trigonal (6-atom) ‘body’ and ‘waist’ 
modes, Q4 and Q5 respectively based on rigid substitutional site occupancy as 
indicated by ∆Q = 0.00 Å.  The individual interactions (I–V) involved (the 
specific details of which are presented in Chapter IV) are shown by the legend.  
The total potential energy calculated for the mode is shown by the solid line 
obtained by summation of the individual interactions. 

 
 Figure  V.5 reveals that the excited state Hg(3P1)/Ne18 cluster is not stabilised 

by the 6-atom vibronic modes for Hg isolated in a rigid substitutional site in solid Ne.  

However the 6-atom ‘waist’ mode (Q5) does lead to stabilisation for the pz orbital 
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orientation upon relaxing the neon lattice by 0.293 Å.  Closer inspection of Figure 

 V.6 shows that although the in-phase contraction of the 6 Ne atoms forming S.site 

does not lead to an energy minimum, this coupled with the lattice stabilisation leads 

to an overall excited state minimum for the vibronic mode.  The comparison between 

the rigid and relaxed threefold symmetry calculations reveals that the absorption 

energies calculated are different.  The 6-atom ‘body’ mode Q4 presented in the top 

panels of Figure  V.5 and Figure  V.6, although not stabilised, provided evidence of the 

cramped nature of the substitutional site occupancy in solid Ne as the only 

interactions producing minima for Q4 are those where the Hg⋅Ne distance is 

increased, i.e., S.site and Tri. 3. 
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Figure  V.6 Energetics calculated for the Hg/Ne18 trigonal (6-atom) ‘body’ and ‘waist’ 
modes, Q4 and Q5 respectively based on relaxed substitutional site occupancy as 
indicated by ∆Q = 0.293 Å. 

 
The excited state stabilisation exhibited by the relaxed lattice 6-atom ‘waist’ 

mode Q5 (pz) Figure  V.6 (bottom left) is due to a combination of factors.  Thus a) the 

Hg⋅Ne Π interaction is optimised as the 6 atoms involved in the ‘in-phase’ 

contraction (S.site) interact with the Hg 3P1 pz orbital orientation. b) The restoration 
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of the Ne lattice atoms on the close packed plane B (Figure IV.10) and c) The 

relaxation of the lattice reduces the repulsive Σ interaction between the excited state 

Hg atom the two triangles of nearest neighbour Ne atoms (Tri.1 and 2) and to a lesser 

extent the two triangles of next nearest neighbours (Tri.3 and 4.).  Therefore the 6-

atom ‘waist’ mode Q5 is modified to minimise the repulsive Σ interactions. 

 The modification to the 6-atom ‘waist’ mode is the addition of a 6-atom 

stretch where the six nearest neighbour atoms forming Tri.1 and Tri.2 are allowed to 

move away by a distance +X Å from the excited state Hg atom. This excited state 

vibronic mode, the trigonal 6-atom ‘waist + stretch’ mode, (Q8) is presented in Figure 

 V.7, left panel. The original Q5 mode is presented in the right panel for the purpose of 

comparison.  The original Q5 vibronic mode calculations, presented in Chapter IV, 

requires only slight modification to implement the 6-atom ‘waist + stretch’ mode, 

(Q8).  Equations IV.10 and IV.11 employed to calculate the total energetics of the 

excited 3A1(pz) and 3E(px/py) states in the waist mode are modified such that the 

interaction distance R2 initially set at the nearest neighbour distance (a/√2) is 

increased to R2 + X where +X represents the stretch. 

 

Figure  V.7 The threefold guest atom-based co-ordinate system used to calculate the 6-atom 
‘waist’ modes occurring for substitutional site occupancy.  The 6-atom ‘waist + 
stretch’ mode (Q8) and the original 6-atom ‘waist’ mode (Q5) are depicted. 
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The energies calculated for the trigonal 6-atom ‘waist + stretch’ mode (Q8) are 

presented in Figure  V.8 and Figure  V.9 for the rigid and relaxed substitutional site 

occupancy respectively. 
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Figure  V.8 Potential energy curves calculated for the 6-atom ‘waist + stretch’ mode, (Q8) 
based on rigid substitutional site occupancy of the Hg atom in solid Ne. 

 
Upon inspection of Figure  V.8 it is evident that the modification of the 6-atom 

‘waist’ calculation to include the 6-atom stretch, produces excited state stabilisation 

for a rigid lattice calculation.  The absorption energy calculated for the Q8 mode 

agrees with that achieved for the Hg(3P1 ← 1S0)/Ne18 rigid lattice simulations. 
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Figure  V.9 Potential energy curves calculated for the 6-atom ‘waist + stretch’ mode, (Q8) 
based on relaxed substitutional site occupancy of the Hg atom in solid Ne. 
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The addition of the 6-atom ‘stretch’ to the relaxed lattice calculation results in 

the increased stabilisation of the Hg 3P1 excited state in solid neon.  However the 

increased stabilisation introduced is believed to be over-estimated since the 6-atom 

‘stretch’ calculated is not restrained by repulsive interactions for the neon lattice that 

would limit such a free expansion.  A simple modification is suggested to limit the 

free ‘stretch’.  It involves the addition of a Ne⋅Ne nearest neighbour interactions 

occurring at an initial distance of ss = a/√2 (the nearest neighbour distance) from each 

of the moving Ne atoms.  This will limit the free expansion of the 6-atoms forming 

Tri.1 and 2 and thereby represent the solid-state environment better.  The 

modification is denoted 6-atom ‘waist + limited stretch’ mode (Q8
*). 
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Figure  V.10 Potential energy curves calculated for the 6-atom ‘waist + limited stretch’ mode, 
(Q8

*) based on rigid substitutional site occupancy of the Hg atom in solid Ne. 

 

0.0 1.0 2.0

3.9

4.0

4.1

4.2x104

En
er

gy
(c

m
-1

)

S.site
Tri. 1
Tri. 2

Rmin=0.223 Å
Eem= 39580 cm-1

Eabs= 40172 cm-1

pz

Q8* waist + limited stretch mode (Å)

Hg(3P1)/Ne18

0.0 1.0 2.0

Tri. 3
Tri. 4
Lattice
Sum

px / py

Relaxed Lattice
∆Q = 0.293 Å

3-fold Symmetry

 

Figure  V.11 Potential energy curves calculated for the 6-atom ‘waist + limited stretch’ mode, 
(Q8

*) based on relaxed substitutional site occupancy of the Hg atom in solid Ne. 
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 A comparison of the 6-atom ‘waist + stretch’ (Q8) and the modified 6-atom 

‘waist + limited stretch’ (Q8
*) calculations for both the rigid and relaxed neon lattice 

reveals that the excited stabilisation calculated for Q8 is as anticipated greater than 

that observed for the Q8
* mode.  In the following section the absorption and emission 

energies calculated for the Hg(3P1 ↔ 1S0)/Ne18 are compared to the Hg/Ne matrix 

luminescence recorded by Chergui and co-workers5,6. 

V.I.3 Absorption and Emission Energies 

The absorption energy of the guest mercury atom was calculated as the difference 

between the ground Hg(1S0)/Ne18 and the excited Hg(3P1)/Ne18 cluster energies using 

Equation IV.16.  Within the Frank-Condon approximation no movement will occur 

between the Hg atom and the Ne cluster during the electronic transition. This implies 

two different absorption energies must be obtained for the Hg/Ne18 simulations 

presented in this chapter corresponding to the 3P1 ← 1S0 electronic transition of 

atomic mercury occurring within the rigid and relaxed substitutional site 

environments respectively.  This requirement was used as a check of the validity of 

the calculations throughout, and the values of Eabs (rigid) and Eabs (relaxed) calculated 

although different, were identical for all the vibronic modes, Qn calculated for the 

rigid and relaxed lattice calculations.  The absorption energies calculated are 

compared to those observed for the 3P1 ← 1S0 transition of atomic mercury isolated in 

solid neon in Table  V.3. 

 

Table  V.3 A comparison of the observed7 absorption wavelength (nm units) for the 3P1 ← 
1S0 transition of matrix-isolated atomic mercury with the calculated absorption 
values for Hg isolated in a rigid and relaxed substitutional site in solid neon.  
The difference between the observed band maxima and the predicted values are 
quoted as δObs-Cal in cm-1. 

Hg/Ne18 ECal λCalc λObs δObs-Cal 

Rigid Lattice 40339 247.9 247.8 +16.1 

Relaxed Lattice 40172 248.93 247.8 +183.1 

 

 The comparison of the absorption energies obtained for the rigid and relaxed 

lattice Hg⋅Ne18 show good agreement with the observed spectroscopy leading to the 

identification of substitutional site occupancy for atomic Hg in solid neon. 
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 The Hg(3P1 → 1S0)/Ne emission energies were calculated as outlined in 

Chapter IV.  The results calculated for the vibronic modes exhibiting Hg 3P1 excited 

state stabilisation are summarised in Table  V.4 for both the rigid and relaxed lattice 

calculations.  Overall the 6-atom ‘waist’ mode (Q5) and the two modifications 

presented for this mode, Q8 and Q8
*, are the only vibronic modes calculated for Hg 

isolated in solid neon that are stabilised and will produce emission.  The 4-atom and 

2-atom waist modes are not stabilised and will thereby not produce emission.  The 

‘body’ modes, which simulate the internal motion of the excited state mercury atom 

within the solid, are not stabilised for any of the co-ordinate systems examined.  The 

best agreement observed between the calculated and observed emission energies is 

achieved for the trigonal 6-atom ‘waist + limited stretch’ mode (Q8
*) predicting the 

3P1 emission at 39580 cm-1 (252.65 nm) in neon. 

 

Table  V.4 A comparison of the calculated Hg atom 3P1 → 1S0 emission wavelengths with  
the experimental data reported by Chergui and co-workers5,6,7 for the Hg/Ne 
system.  All the vibronic modes of Hg⋅Ne18 cluster that lead to excited state 
stabilisation are presented and compared with the observed emission feature 
reported. 

Hg/Ne18 Motion Mode 

Calculated 

Rigid Lattice 

E(cm-1) / λ(nm) 

Calculated 

Relaxed Lattice 

E(cm-1) / λ(nm) 

Observed 

E(cm-1) / λ(nm) 

6-waist 

6-waist + stretch 

6-waist + limited stretch 

 

Q5 (pz) 

Q8 (pz) 

Q8
* (pz) 

 

- 

39888 / 250.70 

39921 / 250.49 

 

40025 / 249.84 

39461 / 253.41 

39580 / 252.65 

 

 

 

39682 / 252.0 (± 0.5) 

 

 

V.I.4 Discussion 

On first inspection the absorption comparison made in Table  V.3 suggests that atomic 

Hg occupies undistorted substitutional sites in solid Neon.  However the absorption 

energy predicted by the Hg/Ne18 relaxed lattice calculations occurs on the red wing of 

the observed spectrum.  This result is in line with those presented in Chapter IV for 

the Hg/Ar, Hg/Kr and Hg/Xe systems as shown in Figure  V.12. The absorption 

calculations completed simulate the pure electronic transition (i.e. ν0,0 the position of 

the zero-phonon line, ZPL). 
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Figure  V.12 A comparison of the observed excitation spectra and calculated atomic Hg (3P1 
← 1S0) absorption energies.  The Hg/Ne spectrum (top) is that recorded at 4 K 
by Chergui and co-workers.  The excitation spectra presented for Hg/Ar, Kr 
and Xe are those recorded at 12 K presented in Chapter III.  The absorption 
energies calculated for atomic Hg isolated in rigid substitutional site in solid Ar, 
Kr and Xe reported in Chapter IV are indicated by the double dash dot (DD-D).  
The absorption energies calculated for Hg isolated in rigid and relaxed 
substitutional sites in solid Ne are indicated by DD-D and dashed lines 
respectively. 

 
Further evidence that atomic Hg occupies a relaxed substitutional site in solid neon is 

provided by the ground state lattice expansion of 9.29% required to accommodate the 

Hg atom and the observation that the shift of the excitation band maximum from the 

gas phase 3P1 ← 1S0 observed for Hg/Ne does not show the linear correlation with the 

rare gas polarizability15.  Table  V.5 presents the gas phase to matrix frequency shifts 

and the rare gas polarizabilities.  A plot of the frequency shift (δ cm-1) of the Hg 3P1 

← 1S0 transition from the gas phase position to the Hg/RG matrix position (λEx) 

versus rare gas polarizability is shown in Figure  V.13. 
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Table  V.5 Gas phase to matrix frequency shifts of the atomic Hg 3P1 ← 1S0 transition, δ in 
wavenumber units.  The rare gas polarizabilities and λEx the position of the 
Hg(3P1 ← 1S0) transition in the rare gas hosts. 

 
Hg/RG System λEx (nm) δ (cm-1) RG Polarization (Å3)15 

Ne 247.8 + 942.83 0.400 

Ar 245.9 + 1254.64 1.640 

Kr 248.9 + 764.47 2.485 

Xe 253.6 + 19.88 4.050 
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Figure  V.13 A plot of the gas phase to Hg/RG matrix frequency shifts (δ cm-1) observed for 

the 3P1 ← 1S0 transition of atomic mercury versus the polarizabilities of the host 
rare gas solids.  The solid line shown highlights the linear correlation between 
the frequency shifts and rare gas polarizability observed by the Hg 3P1 ← 1S0 
transition in solid Ar, Kr and Xe. 

 
The calculated emission energies (E cm-1) for atomic Hg isolated in an 

expanded substitutional site (i.e. relaxed lattice) are compared to the observed matrix 

emission spectra in Figure  V.14.  The best agreement is achieved using the 6-atom 

‘waist + limited stretch’ mode, (Q8
*) for the pz orbital orientation.  The stabilization 

arises from the ‘in-phase’ contraction of the six Ne atoms on the close packed plane B 

towards the metal atom and in so doing, these Ne⋅Ne interactions approach their 

equilibrium lattice positions.  The role of the metal atom is revealed as Q8
* is 

stabilised for the pz orbital orientation thus maximising the pure Π Hg⋅Ne interaction.  
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The 6-atom ‘stretch’ contributes in reducing the overall energy of the Hg 3P1 excited 

state by reducing the Σ interaction. 
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Figure  V.14 A comparison of the observed and calculated Hg(3P1 ↔ 1S0)/Ne spectroscopy.  
The experimental spectra shown reported by Chergui and co-workers5,6,7 were 
recorded on deposition at 4 K.  The vertical lines represent the absorption and 
emission energies calculated for Hg isolated in an expanded substitutional site 
in solid neon presented in Table  V.3 and Table  V.4 respectively.  The vibronic 
modes leading to the stabilisation of the excited state are indicated in the legend. 

 

V.I.5 Conclusion 

The agreement between the calculated and observed5 absorption energies 

indicate that atomic Hg occupies distorted (relaxed) single substitutional sites in solid 

neon.  This accounts for the observation that the Hg 6p 3P1 ← 6s 1S0 transition occurs 

to lower energy than that predicted by an extrapolation of the polarizability model8.  

However, as the expansion of the substitutional site produces essentially a different 

matrix environment than the rigid substitutional sites occupied by atomic Hg isolated 

in solid Ar, Kr and Xe, Hg/Ne will deviate from the linear behaviour. 

The observed emission spectroscopy is also best predicted by simulations 

based on relaxed substitutional site occupancy for Hg in neon.  It is observed that the 
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excited state lattice reorganisation is both dependent on the lattice energy and the 

stabilisation of the metal atom excited state.  Solid neon provided an ideal system to 

probe the effect of ground and excited state solvation as the cramped lattice site 

allowed an investigation of the lattice contribution to the overall excited state cluster 

stabilisation.  This insight is not provided by the calculations presented in Chapter IV 

for atomic Hg isolated in rigid substitutional sites in solid Ar, Kr and Xe as the lattice 

interactions calculated for these systems, always showed a destabilising effect since 

these modes move the lattice atoms away from there equilibrium positions.  Therefore 

the calculations presented for Hg/Ne show the importance of the equilibrium lattice 

restoration in producing the observed luminescence in cases where there is an 

unfavourable match between the site of isolation and the M⋅RG ground state bond 

length.  They also show that for a cramped site of isolation, the ‘waist’ type vibronic 

modes are of greater importance than the ‘body’ modes in producing excited state 

stabilisation of a metal atom.  This can be understood on the basis that the internal 

motion of the metal atom within such a cramped lattice is not feasible because of the 

immediate on-set of repulsive interactions. 

 

V.II Hg (3P0 → 1S0)/RG emission spectroscopy (RG = Ar, Kr and Xe) 

V.II.1 Introduction 

The remaining sections of this Chapter present pair-potential simulations of the 

emission spectroscopy of the 3P0 → 1S0 transition of atomic mercury isolated in solid 

Ar, Kr and Xe.  The most recent experimental study of the Hg(3P0 → 1S0)/RG (RG = 

Ar, Kr and Xe) emission spectroscopy was conducted in the present study4.  Chapter 

III presents the observed emission spectroscopy of the 3P0 state produced as a result 

of intermultiplet relaxation following pulsed laser excitation of the 3P1 ← 1S0 

transition. The 3P0 state emission spectra exhibited a progressive red shift and 

decreasing linewidth from Ar to Xe.  Recording the emission spectra at higher 

temperatures than 12 K suggested the presence of zero phonon lines and phonon 

sidebands for the Hg(3P0 → 1S0) emission in solid Kr and Xe.  A lineshape analysis of 

the high-resolution emission spectra, using the Wp optical function allowing the 

identification of ZPL in Kr and Xe.  Figure  V.15 presents a summary of the Hg 3P0 → 
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1S0 emission spectroscopy reported in Chapter III.  The spectral positions of the 

observed phonon sidebands and the calculated ZPL’s (ν0,0) are provided in Table  V.6. 
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Figure  V.15 A summary of the emission features assigned in Chapter III to the 6p 3P0 → 6s 
1S0 transition of atomic Hg recorded in Ar, Kr and Xe at 12 K.  These emission 
spectra were produced with pulsed laser excitation of the Hg atom 3P1 ← 1S0 
transition.  The calculated positions of the zero-phonon lines ν(0,0) are indicated 
by the solid lines. 

 
Table  V.6 The location of the ZPL for the atomic Hg 3P0 ↔ 1S0 emission in solid Ar, Kr 

and Xe.  The location of the phonon sideband and the difference in energy 
between the ZPL and the phonon sideband denoted by ∆ both of which are 
presented in wavenumber units. 

Hg/RG 
ZPL, ν(0,0)  

E (cm-1) / λ (nm) 
Phonon sideband 

EPSB (cm-1) / λ (nm) 
∆ = ν(0,0) - EPSB (cm-1) 

 
Hg/Ar 38740 / 258.13 38625 / 258.9 + 115 

Hg/Kr 38366 / 260.65 38314 / 261.0 + 52 

Hg/Xe 37718 / 265.13 37672 / 265.4 +  46 

 
The pair-potential calculations presented assume ground state rigid 

substitutional site occupancy for atomic mercury in Ar, Kr and Xe (identified in 

Chapter IV from a comparison of the calculated and observed Hg(3P1 ← 1S0) 

absorption energies).  A pair-wise sum of the Hg(3P0)⋅RG (0) ã state potentials 

extracted from the experimental Hg(3P1)⋅RG [A 30+ (3Π)] and [B 31] states16,17,18 is 

used to examine the vibronic mode coupling with the excited 3P0 state metal atom 
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which lead to stabilization.  Unlike the Hg 3P1 excited state which has axial 

symmetry, the Hg 3P0 state exhibits spherical symmetry as the atomic electronic 

angular momentum, Je is 0.  A comparison of the calculated and observed emission 

energies lead to the identification of the excited state ‘breathing’ mode (Q1
*) as the 

vibronic mode coupling with this excited state. The theoretical model predicts excited 

state stabilisation for the ‘breathing’ mode in Hg/Ar, Hg/Kr and Hg/Xe systems.  The 

Hg(3P0 → 1S0) emission energies calculated are progressively red-shifted of the 

observed band maxima. 

V.II.2 Method and Results 

The localised pair-potential approach is applied to the simulation of the 6p 3P0 → 6s 
1S0 transition of atomic Hg isolated in solid Ar, Kr and Xe.  The simulations 

undertaken represent extensions to those presented in Part I of this chapter for the 

analysis of the Hg (3P1 ↔ 1S0)/RG luminescence for solid Ne and outlined in Chapter 

IV in simulating the observed luminescence in solid Ar, Kr and Xe.  Therefore only 

the modifications necessary to complete the Hg(3P0)/RG calculations are presented. 

V.II.2.I Ground 1S0 and Excited 3P0 states 

Normally the simulated absorption energies are calculated and compared to the 

experimental data allowing the identification of site of occupancy. The Hg (3P0 ← 
1S0) absorption cannot be observed experimentally, due to the negligible oscillator 

strength of the transition, making this comparison impossible. However, the pair 

potentials simulations presented in Chapter IV for the Hg 3P1 ↔ 1S0 transition 

concluded that Hg occupies rigid (unperturbed) substitutional sites (ss) only in solid 

Ar, Kr and Xe. Assuming exclusive substitutional site occupancy, a comparison of 

the experimental and calculated emission energies is completed, which provide 

insight into the vibronic modes coupling with the excited 3P0 state metal atom. 

 Calculation of the solid-state Hg (3P0 ↔ 1S0) atom absorption and emission 

energies is achieved by calculating the energy for both the ground and excited states 

of the guest metal atom, (Hg) occupying a substitutional site in a Hg⋅RG18 cluster.  

The method employed to calculate the energy of the ground state for the Hg⋅RG18 

cluster using a simple sum of the Hg(1S0)⋅RG and RG⋅RG pair potentials was 

described in Chapter IV. 
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 Due to the spherical symmetry of the 3P0-excited state (Je = 0) the energy of 

the excited state cluster is also a simple summation of the Hg(3P0)⋅RG and RG⋅RG 

pair potentials, modifying Equation IV.1 for the excited state. The Hg(3P0)⋅RG 

diatomic potentials are not available experimentally for all the Hg⋅RG pairs (except 

Ar19). However the Hg[3P0 (0) ã]⋅RG potential can be calculated from the known 

Hg(3P1)⋅RG [A 3Π (30+)] and [B 3Σ (31)] state potentials presented. The A state is pure 

Π whereas the B state is a linear combination Π and Σ atomic orbitals. The pure Σ 

component was extracted from this B state, as outlined previously. The expressions 

for VΠ and VΣ were then used to obtain an expression for the diatomic Hg(3P0)⋅RG 

interaction using the following equation presented previously by Duval et al19.  

  V(3P0) ã30 = 1/3[(VΣ
e + VΠ

e) + VΠ]   Equation (V.1) 

 The Morse function parameters and the energy curves calculated for the 

Hg(3P0)⋅RG diatomics are presented in Figure  V.16. 
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Figure  V.16 Potentials of the Hg⋅RG diatomic the X and the A(Π) state potentials are 
obtained directly from spectroscopic data of the Hg⋅RG diatomics presented in 
Table IV.1, Chapter IV while the ã30- state potential was obtained with 
Equation V.1 which assumes case-(c) coupling.  The available spectroscopic 
data for the Hg(3P0)⋅Ar system reported by Duval et al19 is also presented. 

 
It is evident from the potential energy curves shown in Figure  V.16 that the 

Hg (3P0) excited state is similar to the Hg⋅RG ground state interaction. By inspection 
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of Figure  V.16, it is also clear that the Ar ground state bond length is less than that of 

the excited state, whereas in Xe, the reverse is the case. The ground and excited states 

for Hg⋅Kr show very little difference in bond length. 

 The zero total angular momentum of the 3P0 state suggests that only a solid-

state vibronic mode which conserves the spherical symmetry of the Hg(3P0)⋅RG18 

cluster will couple with this excited state. The details of the interactions involved for 

the lattice expansion or contraction ground state ‘breathing’ mode (Q1) calculation are 

outlined in Section V.I.2.II.  In this case the Q1* calculation pertains to the excited 

state of the metal atom where the same lattice interactions considered for Q1 are used 

to identify excited state stabilisation of the Hg 3P0 metal atom.  The results of the 

excited state ‘breathing’ mode (Q1
*) calculations are shown in Figure  V.17.  

Inspection of the potential energy curves calculated for the excited state Q1
* reveals 

that the preference for an expansion or contraction of the 12 RG nearest neighbour 

atoms is in line with the trends observed for the Hg(3P0)⋅RG and Hg(1S0)⋅RG states 

for the 1:1 van der Waals complexes.   
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Figure  V.17 Energetics calculated for the Hg/RG18 (RG = Ar, Kr and Xe) symmetric excited 
state ‘breathing’ mode (Q1

*) based on rigid substitutional site occupancy.  The 
individual interactions involved are shown by the legend.  The total potential 
energy calculated for the mode is shown by the solid line obtained by 
summation of the individual interactions. 
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Q1
* involves a contraction in solid Xe as the Hg⋅Xe excited (3P0) and ground 

state bond lengths are 3.6 Å and 4.25 Å respectively.  The Hg/Ar and Kr systems 

exhibit an expansion due to Q1
* as the Hg⋅Ar and Hg⋅Kr ground state bond lengths are 

less than the excited state bond lengths as shown in Figure  V.16. 

 

V.II.2.II Hg(3P0 ↔ 1S0)/RG18 Absorption and Emission Energies 

As stated earlier, neither absorption nor excitation spectra exist for the ‘forbidden’ 3P0 

↔ 1S0 transition of atomic Hg in solid Ar, Kr or Xe.  However, assuming mirror 

symmetry between the 3P0 absorption and emission (equivalent full width at half 

maximum, (fwhm) and intensity) allows the creation of an estimated ‘best guess’ 

absorption spectra.  The estimated absorption spectra presented in Figure  V.18 were 

achieved by assuming mirror symmetry about the ZPL’s identified in Chapter III for 

the Hg(3P0 → 1S0)/RG, listed in Table  V.6.  Comparison of calculated absorption 

energies for the Hg 3P0 ← 1S0 transition in the RG solids are then made.   
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Figure  V.18 A comparison of the observed and calculated Hg(3P0 → 1S0)/RG emission 
spectroscopy recorded at 12 K (reported Chapter III), and the estimated Hg(3P0 
← 1S0)/RG absorption spectra (shown left). The vertical lines represent the Q1

* 
absorption and emission energies calculated (Table  V.7) for Hg isolated in 
substitutional sites in the solid RG’s.  ** Indicates the calculated absorption 
energy for Q1

* using the experimental Hg⋅Ar experimental data19. 
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Table  V.7 A comparison of the observed emission wavelength (nm units) for the 3P0 → 1S0 
transition of matrix-isolated atomic mercury with the calculated emission 
values for the excited state ‘breathing’ mode (Q1

*) for Hg isolated in 
substitutional sites in solid Ar, Kr and Xe.  The Hg/Ar** results presented were 
achieved using the spectroscopic available parameters19 reported.  The 
difference between the observed band maxima and the predicted values are 
quoted as δObs-Cal in cm-1. 

Hg/RG ECal λCalc λObs δObs-Cal 

Hg/Ar 38635.2 258.83 258.9 - 10.2 

Hg/Ar** 37965.0 263.40 258.9 + 660.0 

Hg/Kr 38142.1 262.18 261.0 + 172.0 

Hg/Xe 37375.5 267.55 265.4 + 296.5 

 

The estimated absorption energy is obtained by subtraction of the difference 

in energy between the ZPL position and that of the phonon sideband labelled ∆ cm-1 

in Table  V.6.  The estimated Hg(3P0)/RG absorption positions are 38855, 38418 and 

37764 cm-1 for Ar Kr and Xe respectively, shown in Figure  V.18 and collected in 

Table  V.8. 

 
Table  V.8 A comparison of the estimated experimental absorption wavelength (nm units) 

for the 3P0 ← 1S0 transition of atomic mercury with the calculated absorption 
values for Hg/Ar, Kr and Xe.  The difference between the estimated band 
maxima and the calculated values are quoted as δObs-Cal in cm-1.  ** Indicates the 
calculations were completed using the spectroscopic parameters for the 
Hg(3P0)⋅Ar system reported by Duval et al19. 

Hg/RG EAbs Cal λCalc λEstm δEstm-Cal 

Hg/Ar 38716.3 258.29 257.37 + 138.7 

Hg/Ar** 37984.2 263.27 257.37 + 870.8 

Hg/Kr 38143.1 262.17 260.29 + 274.9 

Hg/Xe 37467.1 266.90 264.80 + 296.9 

 

V.II.3 Discussion 

A comparison of the experimental data and the results of the pair potential 

simulations, shown in Figure  V.18, reveals that the predicted emission is within the 

broad-band profile of the phonon sideband in solid Ar (using the extracted 3P0 

potential). The calculations outlined in this report predict the position of the ZPL in 

absorption as the calculation assumes a pure Frank Condon transition.  Table  V.7 

presents the calculated emission energy for the excited state ‘breathing’ mode of 

atomic Hg 3P0 excited state in solid Ar.  Upon inspection it is observed that the 
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extracted 3P0 ã30 potential for Hg⋅Ar provided better agreement with the observed 

matrix emission spectroscopy reported in Chapter III. 

 In Kr and Xe the pair potentials model however predicts emission energies red 

shifted from the observed band maxima see Table  V.7. The Stokes’ shift calculated 

for both of these systems is very small therefore predicting the presence of the 

observed ZPL. The red shift between the calculated and observed emission energies 

may suggest that the extracted potentials used are inaccurate for these systems. Two 

reasons are suggested for the inaccuracy 1) the potential used assumes that the pure 

case-c coupling (3P0) is maintained between the 3P0 state Hg metal atom on 

interaction with the RG. This approximation becomes inaccurate, as the excited state 

interactions (well depths) increase from Ar to Xe. 2) The localised cluster approach 

employed assumes that the spherical symmetry of the Hg 6p 3P0 state from the 1:1 

van der Waals complex is preserved in the solid. This may be inaccurate as the p 

orbital which give rise to the excited state may interact with the RG host in the 

octahedral field of the substitutional site and lead to a symmetry breaking. These 

effects may account for the red shifted emissions calculated in solid Kr and Xe. 

However the increase in the importance of 1) may account for the good agreement 

observed in solid Ar. These possibilities must be taken into account when accessing 

the theoretical results reported here for the Hg 3P0 ↔ 1S0 luminescence spectroscopy. 

 

V.II.4 Conclusion 

The pair-potential simulations outlined in the previous sections to predict the 

spectroscopy of the 6s6p 3P0 ↔ 6s2 1S0 transition of atomic mercury in Ar, Kr and Xe 

indicate that the excited state ‘breathing’ mode (Q1
*) leads to emission for each 

system.  The simulations predict excited state absorption and emission energies with 

small Stokes’ shifts consistent with the observation (or calculated) of zero-phonon 

lines reported in Chapter III.  The emission energies calculated are progressively red-

shifted of the observed band maxima.  The red shift discrepancy is attributed to a 

breakdown in the pure Hund’s Case–c coupling of the Hg (3P0) state in the solid. 
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Chapter VI  
The absorption spectroscopy of atomic manganese isolated in solid Ar, 

Kr and Xe 

VI.1 Introduction 

The luminescence spectroscopy of matrix–isolated metal atoms with ns2 ground state 

electronic configurations has lead to considerable insights into the behaviour of 

ground and excited electronic state atoms in condensed matter. The Maynooth Group 

have reported on the spectroscopy of Zn1, Cd2 and Hg3 isolated in solid rare gases.  

Chapter III presented the luminescence spectroscopy of the 3P1 and 3P0 ↔ 1S0 

transitions of atomic mercury isolated in RG solids (RG = Ar, Kr and Xe).  Chapter 

IV described the M⋅RG18 localised pair-potentials model used to investigate ground 

and excited state interactions of the guest metal atom within the solid.  This analysis 

allowed identification of 1) the site occupancy and 2) the localised M-RG interactions 

leading to the excited state stabilisation which produce the observed solid-state 

luminescence.  Therefore, luminescence work on metal atoms such as Hg3,4 and Mg5 

in solid rare gases has provided insight into the link between the solid state and the 

behaviour of the corresponding diatomic M⋅RG van der Waals complexes6 stabilized 

in cold supersonic expansions. 

This Chapter presents the absorption spectroscopy of matrix-isolated atomic 

manganese.  This experimental work was motivated by the similarities between 

atomic manganese, which exhibits an ns2 ground state electronic configuration like 

the M/RG systems (M = Zn1, Cd2, Hg3,4 and Mg5) where the solid-state spectroscopy 

has been studied in detail.  The lowest energy electronic configuration of atomic Mn 

is [Ar]3d54s2 giving rise to the spherically symmetric a6S5/2 ground state.  UV/Vis 

absorption spectra presented for each of the Mn/RG (RG = Ar, Kr and Xe) systems 

allowed the assignment of s → p type electronic transitions from the ground a6S5/2 

state to the excited Mn [Ar]3d54s4p states.  The electronic absorptions observed were 

those corresponding to the ‘singlet-like’ [3d5(6S)4s4p(1P°)] y6P and ‘triplet-like’ 

[3d5(6S)4s4p(3P°)] z6P states known to occur in the gas phase7 at 35,725.85 cm-1 

(279.91 nm) and 24,788.05 cm-1 (403.42 nm) respectively.  The quoted energies 

correspond to the transition from the ground a6S5/2 state to the J = 5/2 spin-orbit level 

of the y6P and z6P excited states. 
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Atomic Mn also exhibits a third more exotic x6P excited state resulting from 

the [Ar]3d6(5D)4p excited electronic configuration.  The x6P5/2 ↔ a6S5/2 transition 

occurs in the gas phase at 45,156.11 cm-1 (221.45 nm) and unlike the y6P and z6P 

states, involves a two-electron transition from the ground 3d54s2 state configuration.  

Absorption features are assigned to the x6P5/2 ← a6S5/2 transition of atomic Mn 

isolated in all the Mn/RG systems investigated. 

Like mercury8, manganese9 was one of the earliest metal atom systems to be 

investigated with the matrix-isolation technique.  Since the first report of the 

spectroscopy of atomic Mn/RG solids by Schnepp9, Lee and Gutmacher10 and Mann 

and Broida11 completed further work focusing on the UV/Vis atomic absorption 

spectroscopy in solid argon matrices deposited at 4.2 K.  A summary of these earlier 

results obtained from absorption spectroscopy has appeared in Gruens’ review12.  

Mn/RG solids containing isolated Mn atoms and higher aggregates have been 

investigated using the Magnetic Circular Dichroism (MCD) technique in Ar, Kr and 

Xe13. Many reports of spectroscopic analysis of the van der Waals, antiferromagnetic 

manganese dimer14,15,16, Mn2 and bimetallic clusters (containing Mn) isolated in RG 

solids have appeared in the literature17.  In contrast, no reports of the luminescence 

spectroscopy of atomic manganese have appeared to date.  These new results are 

presented in Chapters VII to IX inclusive, while in this Chapter the absorption spectra 

are reported for samples prepared with controlled guest:host (Mn:RG) ratios.  These 

concentration studies allowed the identification of Mn atom and dimer absorption 

bands and their distinction from higher Mn cluster species.  Spectra recorded 

following matrix annealing and / or at different deposition temperatures (Td) are 

presented which allow the identification of matrix site effects produced during 

condensation.  Secondly, the absorption spectroscopy is discussed with reference to 

the previous reports for each Mn/RG system9-11, 13-17.   

The atomic Mn/RG absorption spectra reported in this Chapter showed good 

agreement with previous investigations.  However, the Mn/RG samples prepared 

during the course of this work are more ‘atomic’ than those reported in previous 

studies9-11, 13-17. This is attributed to the increased control of the Mn vaporisation 

afforded by electron bombardment vaporisation of Mn over the bulk heating that 

results from resistive heating of Knudsen cells.  The absorption spectra recorded 
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allowed the identification of multiple thermally stable sites of isolation for Mn 

isolated in solid Ar and Kr and single site of isolation in Xe. 

VI.2 Results – Mn/RG UV/Vis absorption spectroscopy 

The following sections presents the absorption spectra recorded for Mn/Ar, Mn/Kr 

and Mn/Xe in the UV/Vis spectral range (180–500 nm).  The Mn/RG samples were 

prepared with the method described in Chapter II.  Under low metal loading 

conditions the isolation of manganese atoms is favoured.  The atomic manganese 

absorption features are assigned from their proximity to the gas phase positions, as 

the weak van der Waals interaction between the Mn atom and its immediate matrix 

environment results in a small change of the transition energy from that observed for 

the free atom.  The assignment of Mn atomic absorptions may be simplified by the 

presence of resolved threefold splitting pattern indicative of the dynamic Jahn-Teller 

effect, (Chapter I, Introduction).  This effect has been observed for several matrix-

isolated metal atoms and in the present study, on the 3P1 ← 1S0 absorption of Hg in 

solid Xe, (Chapter III). 

Absorption bands of manganese clusters are identified from concentration 

studies as increasing the metal flux allows the formation of Mn aggregates while the 

solid condenses.  The metal aggregation occurs in the liquid phase (accretion layer) 

on the surface of the matrix host, before the condensation process is completed.  

Identification of the Mnx (x > 1) absorption features is achieved by inspection, as the 

absorption strength of these features increase in intensity with respect to the atomic 

transitions, as the metal concentration is increased. 

VI.2.I  Mn/Ar 

Absorption spectra recorded for manganese deposited in solid argon at 12 K are 

presented in Figure  VI.1.  The three panels, showing the effect of increasing the metal 

flux, provide a concentration study of Mn in solid Ar.  The gas phase positions7 of the 

x6P5/2, y6P5/2 and z6P5/2 ↔ 6S5/2 transitions are shown by the dashed vertical lines. 

Inspection of the bottom panel of Figure  VI.1 reveals absorption features at 211.8, 

278.1 and 397.4 nm under low Mn loading conditions with much weaker bands 

occurring at 254.4 and 311.6 nm.  The spectra shown in Figure  VI.1 are normalised 

with respect to the 278.1 nm feature. 



Chapter VI; Mn/RG Absorption Spectroscopy  

135 

The dominant absorption feature observed for Mn/Ar at 278.1 nm (35958 cm-

1) is assigned to the y6P5/2 ← 6S5/2 transition of atomic Mn.  The 278.1 nm (y6P5/2 ← 
6S5/2) absorption feature is shifted to higher energy from the gas phase (G.P.) 

position7 by 232 cm-1 and exhibits a resolved threefold splitting pattern.  A low-

energy shoulder is present 281.5 nm while a more discernable high energy shoulder is 

located at 273 nm.  The effect of annealing on these features is shown in Figure  VI.2. 
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Figure  VI.1 Mn/Ar UV/Vis absorption spectra recorded at 12 K following sample deposition 
at 12 K.  The three spectra shown indicate the changes in the relative intensities 
of the observed bands with increased metal flux, metal atom concentration. 

 
 Annealing Mn/Ar matrices resulted in the removal of the red shoulder at 281.5 

nm as presented in the right panel of Figure  VI.2.  In addition the annealing process 

had the effect of enhancing the structured features evident on the high-energy 

shoulder centered at 273 nm without reducing its intensity.  These effects indicate the 

presence of two thermally stable sites centered at 278.1 and 273 nm labelled the red 

(1°) and blue (2°) sites respectively.  The removal of the low-energy 281.5 nm 

shoulder reveals the presence of at least one thermally unstable site of atomic 

isolation present in Ar samples deposited at 12 K. 
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Figure  VI.2 Mn/Ar absorption spectrum recorded at 12 K upon deposition (Td) at 12 K, in 
the vicinity of the atomic Mn y6P5/2 ↔ a6S5/2 transition, shown left.  Sample 
deposition was completed at 12 K using a low manganese flux, and indicates the 
presence of sites on both the blue and red sides of the dominant feature centered 
at 278.1 nm.  A comparison of the absorption recorded on deposition and 
following matrix annealing to 29 K (TAn.) is shown right. 

 
The absorption feature observed at 397.4 nm in solid Ar is assigned to the 

z6P5/2 ← a6S5/2 transition, based on its proximity to the location of this transition at 

403.42 nm in the gas phase7.  Inspection of the bottom panel of Figure  VI.1 reveals 

the absorption band exhibits a progressive shift to lower energy with increased metal 

loading.  This red-shift is attributed to the production of Mn2.  The band maximum of 

this feature occurs at 402.3 nm but the high-energy blue wing, assigned to the atomic 

transition, is also evident, as shown in the top panel of Figure  VI.1.  The atomic z6P5/2 

← a6S5/2 transition of Mn is blue shifted in Ar by 375 cm-1 from its position in the gas 

phase.  The very different intensities of the recorded y6P and z6P absorption bands of 

atomic Mn result from their singlet and triplet characteristics respectively of these 

two excited states.  This is reflected in the reported Einstein Aki coefficients18, of the 

y6Po 3d5(6S)4s4p(1Po) ↔ 3d54s2 a6S and z6Po 3d5(6S)4s4p(3Po) ↔ 3d54s2 a6S 

transitions 3.7 x108 and 0.19 x108 sec-1 respectively. 

Inspection of the UV region shown in Figure  VI.1, close to the gas phase 

x6P5/2 ↔ a6S5/2 transition energy reveals the presence of two features at 211.8 and 
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226.4 nm.  The bottom panel shows that the 211.8 nm feature is present in very dilute 

Mn/Ar samples whereas the 226.4 nm19 feature gains in intensity relative to the 

dominant 278.1 nm band with increased metal loading.  Therefore the 211.8 nm 

feature is assigned to the x6P5/2 ← a6S5/2 absorption in Ar, blue-shifted by 2058 cm-1 

from the gas phase position at 221.45 nm, (45156 cm-1)7.  The observed gas phase-Ar 

matrix shift is greatest for the x6P atomic absorption.  This may arise because the 

excited electronic configuration ([Ar]3d64p) is reached by a two electron transition 

from the [Ar]3d54s2 ground configuration.  Table  VI.1 presents a summary of the 

absorption spectroscopy of atomic manganese isolated in solid Ar. 

 
Table  VI.1 Spectral positions of the atomic absorption features assigned for atomic 

manganese isolated in solid Ar on deposition at 12 K.  λabs indicates the position 
of the band centre or the central three-fold split component where possible.  
The gas phase transition energies for the Mn atom are also presented.  The gas 
phase – Ar matrix shift is denoted by δ in wavenumber units. 

            Mn/Ar Mn atom – Gas Phase7  
Transition λAbs (nm) EAbs (cm-1) λ  (nm) E (cm-1) δ (cm-1) 

z 6P5/2 ← a 6S5/2 

y 6P5/2 ← a 6S5/2 

 

x 6P5/2 ← a 6S5/2 

397.4 

278.1 (1°) 

273.0 (2°) 

211.8 

25163 

35958 

36630 

47214 

403.42 

279.91 

 

211.45 

24788 

35725 

 

45156 

+375 

+232 

+904 

+2058 

 

The Mn/Ar samples prepared at 12 K using low metal fluxes show very weak 

absorption features at 254.4 and 311.6 nm.  These features are observed to increase in 

intensity at medium metal fluxes, middle panel of Figure  VI.1.  Another 226.4 nm 

feature is present in the most concentrated samples19.  In addition to the 226.4, 254.4 

and 311.6 nm features, the red-shift of the band maximum of the 397.4 nm band to 

402.3 nm is assigned to an increased contribution from a manganese dimer 

absorption.  Therefore, the 254.4, 311.6 and 402.3 nm features are assigned to 

absorption transitions of manganese aggregates most probably Mn dimers in Ar 

matrices. 

 Inspection of the high metal flux deposition shown in the top panel of Figure 

 VI.1, for the most concentrated Mn/Ar samples prepared, show an additional set of 

features at 226.4 and 345.7 nm.  These bands are tentatively assigned to Mnx where x 

> 2.  The assignment to Mn2 species is rejected as Mn2 absorptions are identified even 

in the most dilute Mn/Ar samples at 254.4, 311.6 and 402.3 nm.  The van der Waals 
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nature of Mn2 can result in the efficient formation of larger cluster species Mnx (x > 

2) due to chemical bond formation in the higher metal aggregates.  The 226.4 and 

345.7 nm bands are assigned to absorptions of manganese aggregates with higher 

nuclearity than the dimer.  This assignment is consistent with the trends evident in the 

concentration studies completed.  The additional dimer features assigned from the 

concentration studies at 254.4, 311.6 and 402.3 nm showed no discernible 

temperature dependence. 

It is also evident from the top panel of Figure  VI.1 that increasing the Mn 

loading increases the complexity of the absorption spectra recorded.  This spectral 

congestion is most pronounced from 300 to 360 nm, where two weak bands appear at 

330 and 345.7 nm.  Additional features are also observed in the vicinity of the y6P5/2 

and z6P5/2 ← a6S5/2 transitions at 290 and 438.5 nm respectively.  The discussion and 

assignment of these features is postponed until the Mn/Kr absorption spectroscopy is 

presented. 

 

VI.2.II Discussion Mn/Ar absorption spectroscopy 

In the following section the absorption spectroscopy recorded for manganese isolated 

in solid Ar is discussed with reference to the previous Mn/Ar experimental work9,10-

13,17.  The first reports of the absorption spectroscopy of Mn/Ar are those of Schnepp9 

and Lee and Gutmacher10 who employed photographic detection methods to observe 

the atomic y6P and z6P ← a6S transitions in matrices deposited at 4.2 K.  Overall the 

earlier absorption spectra showed good agreement with those presented in this 

Chapter in that both studies assigned the y6P ← a6S transition of atomic manganese in 

Ar as a triplet centered at 277.54 and 277.7 nm in Refs. 9 and 10 respectively.  These 

results show close agreement with the centre of the threefold split absorption reported 

here, which occurs at 278.1 nm, Table  VI.1.  The weaker, absorption features to the 

blue of 278.1 nm were also observed and assigned9,10 to multiple site occupancy of 

Mn atoms in solid Ar. 

The z6P ← a6S transition in Ar was reported at 396.6 and 403.06 nm by 

Schnepp9 and at 392.77 and 402.25 nm by Lee and Gutmacher10.  The higher energy 

features shows good agreement with the z6P ← a6S absorption reported here at 397.4 

nm.  The absorption at 402.3 nm was assigned to Mn2 in the previous section from 
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concentration study completed (Figure  VI.1), as this feature is absent in dilute Mn/Ar 

samples.  All the earlier samples9,10 exhibited strong absorption at 402/403 nm and 

represents the larger metal fluxes which accompany Mn vaporisation by bulk resistive 

heating. 

 Shakhsemampour et al13 assigned two sites of isolation for atomic manganese 

in solid argon. The primary site (s1) was centered at approximately 279.5 and 393.5 

nm with the secondary site (s2) observed at 275.25 and 381 nm corresponding to the 

y6P ← a6S and z6P ← a6S atomic transitions respectively.  The spectral positions of 

the two sites reported for the y6P state are in good agreement with the red (1o) 278.1 

nm band and the blue shoulder (2o) 273 nm identified in this Chapter.  The report of 

the dominant site (s1) z6P ← a6S absorption occurring at 393.5 nm agrees with that 

assigned here at 397.4 nm.  The presence of a secondary site (s2) at 381 nm13 is not 

immediately evident in the absorption spectra reported here.  Its presence in Mn/Ar 

was identified however in luminescence excitation spectroscopy, the results of which 

are presented in Chapter VII. 

Lee et al10 reported an additional feature at 311.23 nm in solid Ar, which they 

assigned to the z4P ← a6S atomic transition, commenting that the absorption band 

appeared after annealing to 30 K.  Mann and Broida11 also assigned the 311.5 nm 

band to the z4P ← a6S transition of atomic Mn occurring as imperfectly isolated Mn 

atoms.  Given the weak oscillator strength of the z4P3/2 ← a6S5/2 transition (Aki = 

0.0027 x 108 sec-1), observation of this spin-forbidden transition using absorption 

techniques seems unlikely.  No evidence for this atomic absorption feature was 

observed upon deposition of dilute Mn/Ar samples (bottom panel Figure  VI.1).  

However under medium/high metal loading conditions, absorption at 311.6 nm is 

observed.  Consequently this band was assigned earlier in this Chapter to a Mn2 

absorption.  The observations of Lee et al10 that the intensity of the 311 nm 

absorption feature increased after matrix annealing and the assignment by Mann et 

al11 of the z4P ← a6S transition occurring within an imperfect matrix site are 

inconsistent, as annealing results in the production of a more crystalline matrix 

environment.  Annealing should therefore weaken the z4P ← a6S atomic absorption if 

it occurs from an imperfect lattice site.  However, both observations are consistent 

with the assignment of the 311 nm feature to a Mn2 absorption band whose presence 

on deposition is metal-loading-dependent and production after annealing resultant 
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from metal atom nucleation.  Mn/Ar concentration studies reported by Ozin and co-

worker17 also lead to the assignment of the 311 nm feature to that of a manganese 

aggregate. 

 Ozin and co-workers17 reported the absorption spectra for Mn/Ar in the 

vicinity of the x6P5/2 ↔ a6S5/2 transition7 of atomic manganese at 221.45 nm in the 

gas phase.  They assign a band at 226 nm in solid Ar to the x6P5/2 ← a6S5/2 transition.  

The concentration study for Mn/Ar shown in Figure  VI.1 shows that only samples 

prepared using high metal fluxes contain the 226 nm band.  This absorption intensity 

is enhanced relative to the dominant 278.1 nm (y6P5/2 ↔ a6S5/2) atomic absorption 

feature under higher metal loading conditions.  This behaviour is consistent with the 

assignment of the 226 nm feature to a Mn aggregate.  In addition the absorption 

observed at 211.8 nm in dilute Mn/Ar samples (bottom, Figure  VI.1) is in agreement 

with the assignment to the x6P5/2 ↔ a6S5/2 transition, blue shifted of the gas phase 

transition by 2058 cm-1.  Ozin and co-workers17 observed a similar absorption feature 

at 211 nm under low metal loading conditions and assigned the feature to the w6P5/2 

↔ a6S5/2 transition.  The assignment of the absorption feature to that of the w6P5/2 

state produces an inconsistency in the observed matrix-shifts as this w6P5/2 absorption 

would exhibit a red-shift of 445 cm-1 from the gas phase position at 209.82 nm 

(47659 cm-1)7, while both the y6P5/2 and z6P5/2 ← a6S5/2 absorption features show 

blue-shifts.  No data is available on the relative oscillator strengths of the w6P5/2 and 

x6P5/2 ↔ a6S5/2 transitions so assignment cannot be made from the observed 

intensities.  However, from the matrix shifts exhibited and the observation that higher 

Mn atom concentration lead to the increase in the 226 nm band relative to the 

dominant y6P5/2 absorption feature, the aggregate assignment made in this Chapter is 

reinforced. 

 In earlier work, the interpretation of the optical absorption spectroscopy of 

manganese species isolated in solid rare gases (especially Ar) has proven difficult due 

to the variety of species present on deposition.  The concentration studies of Mn/Ar 

reported in this Chapter allowed the assignment of the features at 254.4, 311.6 and 

402.3 nm to transitions of the manganese dimer.  In the literature however, one 

definitive assignment of a Mn2 transition appears corresponding to the A ← X 

absorption reported at 650 nm in solid Ar14.  Ozin and co-workers17 assigned two sets 

of small cluster species as Mnx and Mny from concentration studies completed.  Mnx 
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they assigned to the binuclear molecule showing absorption features at 253, 312 and 

400 nm.  These conclusions are in good agreement with the Mn2 absorption species 

assigned in this Chapter at 254.4, 311.6 and 402.3 nm.  The 226.4 nm absorption 

feature was identified here to a manganese aggregate of higher nuclearity than the 

dimer, however assignment to Mn2 cannot be rejected based on the absorption spectra 

reported earlier.  In addition the persistence of this band in the most ‘dilute’ samples 

prepared by Ozin and co-workers17 lead to their assignment of the 226 nm feature to 

the x6P5/2 ← a6S5/2 atomic transition.  However, from the concentration studies 

reported here this atomic assignment has been amended to an Mn2 absorption. 

 

VI.2.III Mn/Kr 

A comparison of the UV/Vis absorption spectra recorded at 12 K for manganese 

isolated in solid krypton using different metal fluxes is presented in Figure  VI.3. All 

the spectra shown were recorded at 12 K (Ts) for samples deposited at 12 K, (Td).  

Examination of the concentration study presented for Mn/Kr in Figure  VI.3 reveals 

that the dominant feature overlaps the gas phase7 y6P5/2 ↔ a6S5/2 transition of atomic 

manganese at 279.9 nm.  The bottom panel of Figure  VI.3 presents the absorption 

spectrum recorded for the most dilute Mn/Kr sample.  Three pairs of bands are 

observed at 210 / 213.1, 279.3 / 284.9 and 385.5 / 401.9 nm.  The dominant 

absorption feature occurring at 279.3 nm exhibits a threefold split pattern and is 

assigned to the y6P5/2 ← a6S5/2 transition, blue-shifted from the gas phase position by 

only 79 cm-1.  The 279.3 nm absorption band in Mn/Kr exhibits a weak low-energy 

shoulder, shown Figure  VI.4.  This is the reverse of the Mn/Ar situation where the 

pronounced shoulder occurred to the blue of the threefold split absorption assigned to 

the y6P5/2 ← a6S5/2 transition.  The shoulder occurs at 284.9 nm and is assigned to the 

y6P5/2 absorption occurring from a second site of isolation in solid Kr, red-shifted 

from the gas phase position at 279.9 nm7 by 626 cm-1. 
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Figure  VI.3 Mn/Kr UV/Vis absorption spectra recorded at 12 K following sample deposition 
at 12 K.  The three spectra shown indicate the changes in the relative intensities 
of the observed bands with increased metal flux.  Note the top panel presents 
the most concentrated sample prepared the dominant absorption feature 
located at ≈280 nm is fully absorbing. 

 

 Annealing Mn/Kr matrices to 37 K resulted, as presented in the right panel of 

Figure  VI.4, in the formation of a high-energy shoulder at 276 nm, increased 

resolution of the 284.9 nm feature and producing an additional band at 291.2 nm.  

The stability of these features was investigated by irradiation at the band maxima 

284.9 and 291.2 nm for 15 minutes.  Irradiation of the 291.2 nm feature lead to its 

removal and also the loss of the high-energy shoulder.  No additional absorption 

bands were produced by the removal of these features.  The production of the 276 and 

290.9 nm bands by the annealing process is assigned to the production of a thermally 

induced site of atomic isolation.  Mn′ is used to denote Mn atoms isolated in 

‘thermally-induced’ sites.  The 276 and 290.9 nm bands are assigned to the y6P5/2 and 

z6P5/2 ← a6S5/2 transitions occurring for Mn′.  The annealing process had the effect of 

resolving the 284.9 nm feature resulting from the removal of a broad low energy 

component. 
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These effects indicate the presence of multiple thermally stable sites centered 

at 279.3 and 284.9 nm labelled blue (1°) and red (2°) sites respectively.  The removal 

of the weak high-energy shoulder reveals the presence of at least one thermally 

unstable site of atomic isolation present in solid Kr on deposition at 13 K. 
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Figure  VI.4 Mn/Kr absorption spectra recorded in the vicinity of the y6P5/2 ↔ a6S5/2 gas 
phase transitions of atomic manganese recorded at 12 K following sample 
deposition at Td (Kelvin) using low manganese atom concentrations. 

 

 The absorption feature centered at 385.5 nm shows a resolved threefold 

splitting pattern and is assigned to z6P5/2 ← a6S5/2 transition exhibiting a blue matrix 

shift of 1152 cm-1.  The 385.5 nm absorption feature is overlapped by the lower 

energy 401.9 nm band.  The 401.9 nm band, like the 397.4 nm feature assigned to the 

z6P5/2 ← a6S5/2 transition in solid Ar, appears to red-shift at higher manganese 

concentrations.  This occurs due to the appearance of a Mn2 band at 413.2 nm, top 

panel Figure  VI.3.  Accordingly the 401.9 nm feature is assigned to the z6P5/2 ← 

a6S5/2 transition of atomic Mn isolated in a secondary site (2o) in solid Kr.   
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Table  VI.2 Spectral positions of the atomic absorption features assigned for atomic 
manganese isolated in solid Kr on deposition at 12 K.  λabs indicates the position 
of the band centre or the central three-fold split component where possible.  
The dominant/primary (1o) and secondary (2o) site absorptions are labelled blue 
and red respectively to reflect their relative absorption energies.  The gas phase 
transition energies for the Mn atom are also presented.  The gas phase – Kr 
matrix shift is denoted by δ in wavenumber units. 

Mn/Kr Mn atom – Gas Phase  
Transition 

 
Site λAbs (nm) EAbs (cm-1) λ  (nm) E (cm-1) δ (cm-1) 

z 6P5/2 ← a 6S5/2 

 

y 6P5/2 ← a 6S5/2 

 

x 6P5/2 ← a 6S5/2 

 

Blue (1o) 

Red (2o) 

Blue (1o) 

Red (2o) 

Blue (1o) 

Red (2o) 

385.5 

401.9 

279.3 

284.9 

210.0 

213.1 

25940 

24882 

35804 

35100 

47619 

46926 

403.42 

 

279.91 

 

211.45 

 

24788 

 

35725 

 

45156 

 

+1152 

+94 

+79 

-626 

+2463 

+1770 

 

The UV absorptions occurring at 210 and 213.1 nm, shown in Figure  VI.3 are 

assigned to x6P5/2 ← a6S5/2 absorptions from a dominant blue (1o) and secondary red 

(2o) site blue-shifted by 2463 and 1770 cm-1 respectively from the gas phase position.  

Higher metal loading reveals a complex overlapping set of bands where the 210 nm 

feature dominates confirming its assignment as the primary site of Mn isolation.  

Table  VI.2 presents a summary of the absorption spectroscopy of atomic manganese 

isolated in solid Kr matrices deposited at 12 K. 

 Absorption spectra recorded for concentrated Mn/Kr samples formed at 12 K 

contain additional absorption features at 255.3, 317.7 and 413.2 nm evident from a 

comparison of the top and middle panels of Figure  VI.3 recorded for high and 

medium metal concentrations respectively.  The isolation of atomic manganese in Kr 

is much more efficient than in Ar matrices.  This was manifest in the observation that 

producing samples with detectable amounts of dimer bands resulted in fully 

absorbing atomic transitions.  The 229.1, 255.3, 317.7 and 413.2 nm absorption 

features observed are assigned to the Mn2 species.  Further increasing the metal 

concentration in Kr results in additional absorption features at 330.7 and 349.1 nm, 

top panel of Figure  VI.3.  These features are also assigned to Mn2 absorptions, similar 

to the bands identified under high metal loading conditions in the 300-350 nm region 

in solid Ar by Vala and co-workers15. 
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VI.2.IV Discussion Mn/Kr absorption spectroscopy 

In this section the spectroscopy of manganese atoms and aggregates isolated in solid 

Kr are discussed in relation to the results and band assignments reported in earlier 

studies9,13,17.  The absorption features assigned to the atomic absorption transitions of 

manganese in solid Kr are presented in Table  VI.2.  The absorption spectra reported 

in this Chapter reveal the presence of multiple sites of isolation for dilute Mn/Kr 

samples deposited at 12 K. 

 Schnepp9 reported strong triplets of atomic Mn absorptions corresponding to 

the y6P5/2 and z6P5/2 ← a6S5/2 transitions centered at 279.1 and 395.1 nm respectively.  

Additional weaker absorption bands were observed at approximately 283.7 and 400.3 

nm.  The absorption features reported by Schnepp, using photographic detection 

methods, show good agreement with those identified during the course of this work 

(Table  VI.2) leading to the assignment of multiple occupancy for Mn in solid Kr.  

The relative absorption strengths identified by Schnepp9 on deposition at 4.2 K 

mirrored those achieved here with matrix deposition at 12 K.  Ozin and co-workers17 

achieved similar absorption spectra for dilute Mn/Kr samples. 

 However, Shakhsemampour13 observed absorption features only at 284.5 and 

387 nm corresponding to the y6P5/2 and z6P5/2 ← a6S5/2 transitions respectively in solid 

Kr.  The observed features match the red (2o) site for the y6P5/2 and blue (1o) site for 

the z6P5/2 identified from the results of concentration studies of Mn/Kr collected in 

Table  VI.2.  The observation of atomic absorptions correlated to different sites of 

isolation for the y6P5/2 and z6P5/2 ← a6S5/2 atomic transitions is difficult to resolve.  In 

addition, as in solid Ar, Vala and co-workers13 assigned the z4P3/2 ← a6S5/2 transition 

of atomic Mn to occur at 310 nm from MCD measurements.  This band was not 

present in the absorption spectra reported in the present study.  Given the weak 

oscillator strength of the z4P3/2 ↔ a6S5/2 transition (Aki = 0.0027 x 108 sec-1), 

observation of this spin-forbidden using optical absorption techniques is unlikely. 

 As in Ar matrices, the absorption spectroscopy of Mn clusters in Kr is 

difficult to assess due to the number of absorption bands observed for concentrated 

Mn/Kr samples.  Mn2 absorption features at 229.1, 255.3, 317.7 and 413.2 nm were 

assigned from concentration studies of Mn deposited in solid Kr at 12 K, (Figure 

 VI.3).  These bands show good agreement with the 254, 317 and 410 nm absorption 

features assigned to Mnx (where x is most probably two) by Ozin and co-workers17.  
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Vala and co-workers13 also assigned the 256.5 nm band to that of a Mn2 absorption 

but the 414 nm feature was assigned to Mnx where it is suggested that x = 5.  The 

assignment of an absorption band due to an Mn5 species was based on ESR 

measurements20. This assignment is rejected based on the growth patterns found in 

the concentration study presented in Figure  VI.3, in which the 413.2 nm feature 

shows approximately the same dependence on the metal flux used as the 255.3 nm 

feature. 

 

VI.2.V Mn/Xe 

Figure  VI.5 presents a comparison of the absorption spectra recorded on deposition at 

12 K for manganese isolated in solid Xe at various metal concentrations.  As shown 

in the bottom panel of Figure  VI.5, absorption features are observed at 214.3, 288.2 

and 395.5 nm for Mn/Xe samples produced using low metal fluxes.  The dominant 

absorption feature, centered at 288.2 nm, is assigned to the y6P5/2 ← a6S5/2 transition 

of atomic Mn red-shifted in solid Xe from the gas phase position by 1028 cm-1.  This 

absorption band exhibits, as shown in Figure  VI.6 (left panel), high and low-energy 

shoulders and a well resolved threefold splitting pattern.  The second threefold split 

band, centered at 395.5 nm, is assigned to the z6P5/2 ← a6S5/2 transition of atomic Mn 

isolated in Xe.  The z6P5/2 ← a6S5/2 transition exhibits a blue-shift of 496 cm-1 from 

that of the free atom.  The ratio of the oscillator strengths for the y6P and z6P 

transitions is approximately 19:1 in the gas phase.  Fitting the integrated area for the 

y6P and z6P ← a6S matrix absorptions bands yielded a matrix intensity ratio IAbs(y6P) : 

IAbs(z6P) of approximately 14:1.  This numerical analysis was completed following 

Mn/Xe matrix deposition at 35 K under low metal loading conditions and provides 

further confirmation of the assignments made in solid Xe.  The UV absorption at 

214.3 nm is assigned to the x6P5/2 ← a6S5/2 transition, blue-shifted by 1507 cm-1 from 

the gas phase transition energy.  Table  VI.3 presents the spectral positions of the 

electronic transitions assigned for atomic Mn isolated in Xe matrices. 

As discussed in Chapter I, solid Xe is the most efficient rare gas host for the 

isolation of metal atoms, due to the increased site sizes available.  The concentration 

study of Mn in solid Xe shown in Figure  VI.5, reflects this characteristic where no 

additional absorption bands appear under medium metal fluxes.  The most 
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concentrated Mn/Xe samples contain absorptions at 260.8 and 427 nm, features 

assigned to Mn2 transitions. 
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Figure  VI.5 Mn/Xe UV/Vis absorption spectra recorded at 12 K following sample deposition 
at 12 K.  The three spectra shown indicate the changes in the relative intensities 
of the observed bands with increased metal flux. 

 
The dependence of the y6P5/2 and z6P5/2 absorption bands on the deposition 

temperature was investigated I) to assess the stability of the high and low-energy 

shoulders observed on the 288.2 nm band, II) to investigate the presence of such 

features on the 395.5 nm band and III) to confirm the assignment of the dimer 

species.  Increasing the deposition temperature favours Mn dimer and smaller cluster 

formation as well as providing samples of greater crystallinity.  Figure  VI.6 presents a 

comparison of the absorption spectra recorded for samples deposited at 12 and 35 K.  

However, increasing the deposition temperature also favours the isolation of the guest 

metal atom in the most thermally stable sites.  Therefore, the production of M/RG 

samples, with predominant atomic isolation, is achieved by employing the lowest 

metal concentration at a particular deposition temperature so as to avoid substantial 

metal aggregate formation and ensure matrix crystallinity. 
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Table  VI.3 Spectral positions of the atomic absorption features assigned for atomic 
manganese isolated in solid Xe on deposition at 12 K.  λabs indicates the position 
of the band centre or the central three-fold split component where possible.  
The gas phase transition energies for the Mn atom are also presented.  The gas 
phase – Xe matrix shift is denoted by δ in wavenumber units. 

            Mn/Xe Mn atom – Gas Phase  
Transition λAbs (nm) EAbs (cm-1) λ  (nm) E (cm-1) δ (cm-1) 

z 6P5/2 ← a 6S5/2 

y 6P5/2 ← a 6S5/2 

x 6P5/2 ← a 6S5/2 

395.5 

288.2 

214.3 

25284 

34698 

46663 

403.42 

279.91 

211.45 

24788 

35725 

45156 

+496 

-1028 

+1507 

 

It is evident from the left panel of Figure  VI.6 that sample deposition at temperatures 

higher than 12 K reduces the intensities of the high and low-energy shoulders 

surrounding the main band centered at 288.2 nm.  This corresponds to the normal 

effect of matrix annealing as the absorption profile (solid trace in Figure  VI.6) 

assigned to the y6P5/2 ← a6S5/2 transition, is simpler.  Although deposition at 35 K did 

not remove all of the 283 and 293 nm absorptions, the overlapping band is reduced to 

such an extent that these features can be assigned to those of a thermally unstable site 

of isolation of Mn atoms in solid Xe.  There is also an additional band present at 300 

nm upon deposition at high temperatures.  This absorption feature is assigned to the 

y6P5/2 ← a6S5/2 transition of Mn atoms isolated in a high temperature thermally 

induced environment, (Mn′).  The 300 nm band is assigned to the y6P5/2 ← a6S5/2 

transition of Mn′ indicating the production of an absorption feature dependent on the 

deposition temperature.  The equivalent absorption feature was not identifiable for the 

z6P5/2 ← a6S5/2 transition probably because of the lower oscillator strength. 

 The panel on the right of Figure  VI.6 shows the effect of the deposition 

temperature on the atomic absorption feature assigned to the z6P5/2 ← a6S5/2 transition 

of atomic Mn isolated in solid Xe.  The low-energy absorption shoulder observed at 

12 K is removed upon deposition at high temperature.  Deposition at higher 

temperature also removes the high-energy shoulder of the y6P5/2 ← a6S5/2 transition 

(shown left), an effect that is not observed for the z6P5/2 transition shown right.  The 

loss of the high-energy shoulder on one transition only may indicate different site 

overlapping patterns for the different spectral regions.  Therefore deposition at higher 

temperatures than 12 K results in simpler atomic absorption spectra for the z6P5/2 ← 

a6S5/2 transition of Mn in Xe.  However, the higher deposition temperature results in 

the increased production of the Mn2 absorption at 427 nm relative to that of the atom 
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during the formation of dilute Mn/Xe samples.  This is confirmed by the growth 

patterns observed for the 262 and 427 nm bands with respect to the atomic 

absorptions on deposition at 12 K shown in Figure  VI.5. 
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Figure  VI.6 Comparison Mn/Xe absorption spectra recorded in the region of the UV y6P5/2 
↔ a6S5/2 (left panel) and visible z6P5/2 ↔ a6S5/2 gas phase transitions of atomic 
manganese.  Sample preparation was achieved using low (left) and medium 
(right) metal flux at different deposition temperatures (Td, Kelvin). 

 

VI.2.VI Discussion Mn/Xe absorption spectroscopy 

Previous work by Schnepp9 on the absorption spectroscopy of atomic Mn isolated in 

solid Xe assigned the bands at 286.5 and 395.1 nm to the y6P5/2 and z6P5/2 ← a6S5/2 

transitions respectively.  Three strong absorptions were observed using photographic 

detection corresponding to the threefold split pattern identified in the previous section 

for Mn/Xe atomic absorptions.  In this work the y6P5/2 and z6P5/2 ← a6S5/2 transitions 

of Mn in Xe are reported to occur at 288.2 and 395.5 nm respectively, see Table  VI.3. 

 Vala and co-workers13 reported the atomic Mn absorptions at 290 and 396.7 

nm for concentrated Mn/Xe samples deposited at 20 K.  This deposition temperature 

favours Mn cluster formation and two bands, like the dimer bands identified in this 
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Chapter (260.8 and 427 nm), are observed at 262 and 428 nm.  Shakhsemampour13 

assigned the 428 nm feature to a possible Mn5 species.  In addition, the spectra 

presented 13 show multiple absorptions not observed during the course of the Mn/Xe 

experiments reported here.  These absorption features are unassigned and occur at 

237, 262, 302, 330, (broad) 350, 334 and 357 nm.  The relative intensities of the 262 

and 428 nm bands allow the assignment of these features to manganese dimer 

absorption.  In line with the trend observed in Ar and Kr, the second set of 

absorptions at 237 and the broad band at 350 nm may result from Mn2 species.  This 

allows the assignment of the 237, 262, (broad) 350 and the 428 nm features to Mn2. 

Schnepp9 also observed a broad, weak absorption located at 427.4 nm.  

Temperature dependent deposition and concentration studies presented in Figure  VI.6 

and Figure  VI.5 confirm the assignment of the 427 nm absorption to that of the Mn 

dimer.  The assignment of this band to a high cluster such as Mn5 is rejected on the 

grounds that absorptions from the building blocks (smaller clusters) leading to the 

construction of such a high nuclearity species should also be present.  None of these 

smaller clusters are observed in our Mn/Xe samples. 

 

VI.3 Discussion Mn/RG UV/Vis absorption spectroscopy 

In this section trends evident in the UV/Vis absorption spectra recorded for dilute 

Mn/RG (RG = Ar, Kr and Xe) samples are highlighted.  The trends identified are 

discussed in order to extract some general conclusions on the sites of isolation 

occupied by atomic Mn in rare gas solids.  Observations such as the differences in the 

absorption band profiles of the atomic transitions and gas phase-to-matrix shifts are 

discussed.  Tables VI.1-3 provide summaries of the atomic absorption features 

present in Mn/Ar, Mn/Kr and Mn/Xe matrices. 

 The absorption spectra recorded on deposition in the most dilute Mn/RG 

samples at 12 K are shown in Figure  VI.7.  The vertical lines indicate the positions of 

the gas phase x6P5/2, y6P5/2 and z6P5/2 ↔ a6S5/2 transitions of atomic Mn.  The 

simplicity of the spectra and the location of the bands allow for easy assignment to 

the x6P5/2 ← a6S5/2, y6P5/2 ← a6S5/2 and z6P5/2 ← a6S5/2 absorptions in RG matrices.  

High quality atomic isolation of Mn was achieved with the electron bombardment 

‘metal sputtering’ technique, and indeed the absorption spectra reported in this 

Chapter are the most atomic recorded to date.  Ozin and co-workers17 refer to some of 
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the difficulties inherent in the vaporisation of Mn and the controlled production of 

Mn/RG samples that have clouded previous attempts at distinguishing Mn atom and 

cluster absorptions. 

 

24.028.032.036.040.044.048.0
x103 Energy (cm-1)

A
bs

or
pt

io
n

In
te

ns
ity

210 240 270 300 330 360 390 420
Wavelength (nm)

Ar

Kr

Xe

Mn/RG Absorption

x6 P__
__

6 S

y6 P__
__

6 S

z6 P__
__

6 S
 

Figure  VI.7 Mn/RG UV/Vis absorption spectra recorded at 12 K following sample 
deposition at 12 K.  The spectra shown correspond to the most dilute Mn/RG 
samples prepared.  The gas phase positions of the x6P5/2, y6P5/2 and z 6P5/2 ← 6S5/2 
transitions are shown by the dashed vertical lines. 

 

Analysis of the absorption features assigned to the y6P5/2 ← a6S5/2 transition of 

atomic Mn isolated in RG solids reveals the red-shift of the band maximum from Ar 

to Kr to Xe deviates from linearity.  Thus the shift from Ar to Kr is only 151 cm-1, 

while that from Kr to Xe is 1109 cm-1.  This irregular behaviour can be analysed in 

relation to the dominant / minor sites of isolation.  The dominant (1o) Mn/Kr 

absorption feature at 279.91 overlaps the gas phase transition while the y6P5/2 ← 

a6S5/2 absorption feature in solid Ar (278.1) shows a (blue) high-energy shoulder at 

273 nm.  The latter has been assigned by Vala and co-workers13 to a secondary site of 

isolation of Mn atoms in Argon.  However, the Mn/Kr y6P5/2 ← a6S5/2 absorption 

centered at 279.91 nm shows a low energy shoulder at 284.9 nm.  Comparison of the 
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Mn/Ar and Mn/Kr absorption features reveals a site reversal where the dominant red 

site (278.1 nm) in Ar corresponds to the minor, red (284.9 nm) feature in solid Kr.  A 

better linear correlation between the matrix shifts is identified when the blue, minor 

(2°) site in Ar (273 nm) is selected for comparison with the band maxima in Kr and 

Xe.  This provides more expected red matrix-shifts of 823 and 1109 cm-1 from Ar to 

Kr to Xe. 

The extension of this argument to the z6P5/2 ↔ a6S5/2 transition shown in 

Figure  VI.8 suggests the presence of a secondary site of isolation in solid Ar to higher 

energy than the band maximum observed.  However, inspection of the visible 

absorptions shows that a progressive red-shift from Ar to Xe is not observed, as the 

Mn/Kr z6P5/2 ← a6S5/2 absorption appears to higher energy than the Mn/Ar band.  

This is largely due to the presence of Mn2 absorption at 403 nm but the identification 

of a secondary site, blue-shifted from the assigned 1o absorption in Ar, would 

rationalize the behaviour of the trends exhibited by the matrix shifts for the z6P5/2 ← 

a6S5/2 absorption.  Excitation spectroscopy of the z6P excited state of atomic Mn 

isolated in solid Ar presented in Chapter VII, provides spectral evidence for the 

existence of a secondary high-energy site of atomic isolation, yielding the expected 

linear correlation between the gas phase-matrix shift and host polarizability. 

The absence of a linear correlation between the matrix-shifts of the dominant 

bands observed indicates Mn atoms isolated in Ar and Kr occupy more than one 

thermally stable matrix environment.  The absorption features recorded for the 

Mn/Xe system indicate the presence of a secondary site that is removed by high 

temperature deposition.  Thus only one thermally stable site of isolation is identified 

for manganese atoms in solid Xe. 

Figure  VI.7 presents a comparison of the spectral positions for the matrix 

absorption bands assigned to the y6P5/2 ← a6S5/2 and z6P5/2 ← a6S5/2 transitions of Mn 

atoms.  Inspection reveals the z6P5/2 ↔ a6S5/2 transition occurs to higher energy than 

the gas phase position in all three hosts.  In contrast, the y6P5/2 ← a6S5/2 absorption 

features overlap the gas phase position for Mn/Kr, while the Mn/Ar and Mn/Xe bands 

occur at higher and lower energies respectively.  As the ground state (a6S5/2) is 

common to both the y6P5/2 and z6P5/2 transitions, the overall interaction of the excited 

state (i.e. sum of both Σ and Π) with the matrix environment must be more repulsive 

for the z6P5/2 excited state than for the y6P5/2 state.  This effect has its origin in the 
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spin ‘triplet’ and ‘singlet’ like properties of the two excited states involved, such that 

the pure 1Π component exhibits a shorter excited state bond length than its 3Π 

equivalent.  This allows an increased excited state stabilization (also true of the Σ 

interactions) therefore lowering the observed ‘singlet-like’, y6P5/2 transition energy 

and inducing a red matrix shift in Xe. 
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Figure  VI.8 Mn/RG Visible absorption spectra recorded at 12 K following sample 
deposition at 12 K.  The spectra shown correspond to the most dilute Mn/RG 
samples prepared.  The gas phase position of the z 6P5/2 ← 6S5/2 transition is 
indicated. 

 

Discussion of the type of sites occupied by the Mn atoms is not attempted at 

this point.  It is postponed until Chapter X, when a complete analysis of the 

luminescence excitation spectroscopy reported for the y6P5/2 and z6P5/2 ↔ a6S5/2 

transitions of Mn/RG solids have been presented.  Excitation spectroscopy provides a 

much more sensitive method for site identification allowing the deconvolution of the 

observed absorption bands into individual site specific components.  The 

spectroscopic analysis on which this is based is presented in the Chapters that now 

follow. 
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VI.4 Conclusion 

The UV/Vis absorption spectroscopy reported for atomic manganese isolated in solid 

Ar, Kr and Xe allowed the assignment of the x, y and z6P5/2 ← a6S5/2 transitions in 

each of the RG hosts.  Multiple thermally stable sites of isolation were identified in 

solid Ar and Kr whereas single site occupancy is indicated in solid Xe.  The 

additional absorption features identified are assigned to Mn2 transitions only and the 

spectra recorded for the samples prepared in this study show no evidence for the 

production of higher Mn aggregates.  Thus the production of manganese vapour by 

electron bombardment is seen to be an ideal method for preparing solid rare gas 

samples containing predominantly isolated metal atoms.  This is a significant 

improvement over the resistive heating methods previously employed in Mn/RG 

sample formation. 
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Chapter VII  
Luminescence spectroscopy of the z6P state of atomic manganese isolated 

in rare gas solids, (RG = Ar, Kr and Xe). 
 

VII.1 Introduction 

The excitation and emission spectroscopy of atomic Mn isolated in solid Ar, Kr and 

Xe matrices resulting from excitation of the [Ar] 3d54s4p z6P ← a6S [Ar] 3d54s2 

transition is reported in this Chapter.  Although the absorption spectroscopy of atomic 

manganese has been extensively studied, no reports of the luminescence of Mn/RG 

solids have appeared in the literature.  Absorption spectra presented in the previous 

Chapter identified multiple absorption features in the vicinity of the z6P5/2 ← a6S5/2 

transition of atomic Mn occurring in the gas phase1 at 24788.05 cm-1 (403.42 nm).  

The analysis of concentration studies of manganese deposition in each of the RG host 

matrices, allowed the identification of experimental conditions ideal for atomic 

isolation.  Matrix annealing and high temperature deposition lead to the identification 

of Mn atom ‘trapping’ in multiple thermally stable sites in Ar and Kr.  The z6P5/2 ← 

a6S5/2 transition was observed to occur from a single thermally stable site in solid Xe.  

The absorption band profiles recorded showed resolved threefold splitting patterns 

characteristic of Jahn-Teller interactions and indicating Mn atom isolation in high 

symmetry sites in Kr and Xe. 

 This chapter reports the luminescence of Mn atoms in RG solids the analysis 

of which is challenging for a number of reasons.  I) The existence of multiple 

trapping sites of atomic isolation with each of these sites essentially presenting a 

different type of Mn atom capable of exhibiting individual excited state 

characteristics due to the guest – host interaction within the matrix cage.  II) Atomic 

Mn exhibits several excited state electronic configurations, [Ar] 3d64s1 and [Ar] 

3d54s2 like that of the ground state.  These excited state electronic configurations and 

the [Ar] 3d54s4p configuration accessed in absorption, give rise to many low lying 

excited states thereby providing multiple relaxation channels (both radiative and non-

radiative) for excited state populations.  The excited states energetically accessible 

with z6P excitation are shown in Figure  VII.1 by the region indicated by the broken 

box. 
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 The luminescence reported in the following sections allowed definitive 

identification of multiple site occupancy suggested by the absorption spectroscopy 

reported in Chapter VI.  Analysis of the emission-excitation bands allowed the 

assignment of the two distinct types of thermally stable Mn atom trapping sites in Ar 

and Kr and a single site in solid Xe. 

Figure  VII.1 Schematic representation of the energy levels of gas phase atomic manganese1.  
The allowed y6P5/2 ← a6S5/2 and z6P5/2 ← a6S5/2 transitions occur at 35726 cm-1 
(279.91 nm) and 24788 cm-1 (403.42 nm) respectively, are indicated by arrows.  
The area of the diagram shown in the dotted box highlights the low lying excited 
states that exist below and are available to participate in the relaxation 
processes following the z6P excitation. 

 

 High–resolution emission spectra and excited state lifetime measurements 

recorded with z6P5/2 ← a6S5/2 excitation, allowed the assignment of the atomic Mn 

fluorescent and phosphorescent transitions.  Mn/RG luminescence was shown to be 

very site specific, where Mn atoms isolated in different sites of isolation lead to the 

production of specific excited states.  Temperature dependent luminescence and 

lifetime measurements recorded for Mn isolated in Ar, Kr and Xe following site 

selective z6P5/2 ← a6S5/2 excitation point to complex excited state dynamics, non-
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radiative relaxation and inter-system crossing (ISC) processes that are both site and 

matrix host dependent. 

 This Chapter is structured as follows.  Firstly, time-integrated (steady-state) 

emission spectra recorded with continuous lamp excitation of the absorption features 

assigned to the z6P5/2 ← a6S5/2 transition of atomic Mn are presented separately for 

each of the Mn/RG systems.  Excitation spectra recorded by monitoring the resulting 

emission features are then presented.  These excitation spectra allowed the 

deconvolution of the broad, overlapped atomic absorption bands presented in Chapter 

VI, into individual site components.  The excitation spectra also allowed the 

determination of the relative amounts of Mn atoms isolated in the different matrix 

environments.  Primary (1°) and secondary (2°) sites of isolation are thereby 

established.  Secondly, the results of high temperature deposition and/or matrix 

annealing experiments are presented to identify the thermal stability of the sites.  

Thirdly, following site identification, high resolution time-integrated and time-

resolved emission spectra produced with continuous lamp and pulsed laser excitation 

of Mn atoms isolated in specific sites of isolation allow the assignment of excited 

states of atomic manganese producing the observed matrix emission features.  

Excited state lifetime measurements recorded at 12 K and lineshape analysis of the 

observed emission features are also used to assign the atomic transitions.  The 

temperature-dependent, site-specific emission spectra and lifetime measurements are 

reported to provide insight into non-radiative excited state dynamics and ISC 

processes leading to the observed atomic emission.  Where possible the radiative 

decay characteristics of the excited states assigned are presented.  Finally, the results 

achieved for each Mn/RG are discussed and a comparison of the luminescence 

resulting from Mn z6P5/2 ← a6S5/2 excitation in Ar, Kr and Xe solids is made. 

 

VII.2 Results Mn(z6P)/RG luminescence 

Mn/RG matrix deposition was completed as outlined in Chapter II.  The formation of 

dilute Mn/RG thin films using low metal fluxes ensured the production of samples 

containing predominately isolated Mn atoms.  The majority of the Mn/Ar and Mn/Kr 

samples were prepared at 12 K, as substantial amounts of Mn dimer and higher 

aggregates were produced at higher deposition temperatures.  As reported in Chapter 
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VI, metal nucleation is inefficient in solid Xe even at deposition temperatures up to 

35 K.  As solid Xe allowed the production of dilute samples containing Mn atoms 

isolated in one thermally stable site, solid Xe represents the simplest system with 

respect to site formation.  As such, it provides the ideal starting point for the analysis 

of the Mn/RG luminescence. 

 

VII.2.I Mn(z6P)/Xe 

The absorption spectra presented for Mn/Xe in Chapter VI indicated the z6P5/2 ← 

a6S5/2 transition of atomic manganese occurs from a single thermally stable site of 

isolation centered at 395.5 nm (25284 cm-1), Table VI.III.  A comparison of the 

absorption spectra recorded close to the gas phase z6P5/2 ← a6S5/2 transition at 

different deposition temperatures allowed the identification of an overlapping 

absorption feature formed at 12 K, shown on the top left of Figure  VII.2.  This broad 

feature was removed upon deposition at 35 K. 

 Figure  VII.2 presents time-integrated emission spectra resulting from 

continuous lamp excitation of the z6P5/2 ← a6S5/2 transition, following Mn/Xe sample 

deposition at 12 and 35 K.  Inspection of the emission spectra shown on the right 

hand side of Figure  VII.2 reveals only a single emission feature at 620.1 nm resulting 

from 395.45 nm excitation.  However, excitation at 409.25 nm corresponding to the 

absorption of Mn atoms isolated in the thermally unstable site, produces emission 

centered at 650 nm.  High-resolution excitation spectra recorded by monitoring the 

620.1 and 650 nm emission features upon deposition at 12 K (bottom right Figure 

 VII.2) confirm that these emission bands originate from the thermally stable and 

unstable sites respectively.  The excitation spectrum recorded by monitoring the 

620.1 nm emission shows a well resolved threefold split band, whose components are 

centered at 392.2, 395.5 and 399.2 nm.  The threefold pattern indicates the isolation 

of Mn atoms within high symmetry sites in solid Xe.  Gaussian lineshape analysis 

reveals an average linewidth (full width at half maximum, fwhm) of approximately 

270 cm-1 for each component.  The combination of the two recorded excitation 

spectra allow the reproduction of the absorption bands observed upon deposition at 

different temperatures as shown by the comparison of the upper and lower panels on 

the left of Figure  VII.2. 
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Figure  VII.2 Absorption spectra (top left) recorded for Mn/Xe in the vicinity of the gas phase 
z6P5/2 ← a6S5/2 transition of atomic Mn at 403.42 nm upon sample deposition at 
Td = 12 and 35 K.  Time-integrated emission spectra recorded (shown right 
panel) upon excitation into the central threefold split component of the 
thermally stable absorption band assigned to the z6P5/2 ← a6S5/2 transition at 
395.45 nm following sample deposition at 12 and 35 K.  The dashed line right 
panel represents the emission recorded with excitation into the thermally 
unstable site (λEx = 409.25 nm) formed at 12 K.  Excitation spectra recorded 
monitoring the observed emission band maxima at 620.1 and 650.0 nm upon 
deposition at 35 and 12 K respectively are shown bottom left.  Note all the 
spectra have been normalized. 

 

 It is concluded that only one thermally stable emission feature is produced at 

620.1 nm (16126 cm-1) upon excitation of the z6P5/2 ← a6S5/2 transition in Xe.  This 

broad band exhibits a linewidth of 240 cm-1 and a red matrix shift of 8662 cm-1 from 

the gas phase z6P5/2 ↔ a6S5/2 transition.  The large Stokes’ shift of 9162 cm-1 excludes 

the assignment of the 620.1 nm feature to resonance fluorescence of the z6P5/2 state.  

The spectral position suggests an assignment of the emission band to either the z8P5/2 

→ a6S5/2 transition or the relaxation of the metastable a6D9/2 state of atomic Mn.  The 

assignment to these states represents red matrix shifts of 2276 and 926 cm-1 from the 

gas phase1 positions of the z8P5/2 and a6D9/2 states at 543.4 nm, (18402 cm-1) and 

586.43 nm (17052 cm-1) respectively.  The broad lineshape observed is indicative of a 

P → S type electronic transition, however the clear asymmetry of the observed 

emission band suggests a D → S type transition.  Therefore, the assignment of the 
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emission feature based on the spectral characteristics (position and band-profile) is 

not possible. 

The temperature dependence of the 620.1 nm emission was used to probe the 

behaviour of the excited state and identify the non-radiative relaxation processes 

involved.  Steady-state emission spectra recorded at various temperatures showed a 

progressive red shift in the observed band maximum with increasing scan 

temperature, (Ts).  The temperature dependent red shift is shown in Figure  VII.3.  

Although not presented, the shift observed was completely reversible as the original 

spectrum was obtained upon returning to 12 K.  This effect is consistent with the 

thermal population of phonon bands easily achieved from an excited state exhibiting 

a strong electron-phonon coupling.  As an aid to the assignment of the emission 

feature, a Gaussian lineshape analysis of the 620.1 nm emission feature was 

completed at 12, 26 and 38 K, the results of which are presented in Figure  VII.4.  

Inspection of the fitted spectra reveals that three Gaussian functions are required to 

effectively reproduce the observed bands at each temperature.  Assessment of the 

relative intensities of the fitted curves reveals the growth of the central feature 

relative to the high and low energy components upon increasing temperature, thereby 

resulting in the observed red-shift of the band maximum.  The origin of the red-shift 

and the relative growth of the central component located at approximately at 625 nm, 

was investigated as shown in Figure  VII.4 over this temperature range.  The Gaussian 

analysis presented in Figure  VII.4 does not allow a precise identification of the origin 

of the observed emission lineshape, therefore, a Wp lineshape analysis was also 

completed as shown in Figure  VII.5.  Wp lineshape analysis allows, as shown in the 

Hg/RG work, identification of the band origin, ν0,0 (the zero phonon line, ZPL) and 

an assessment of the electron-phonon coupling strength from the Huang-Rhys Factor, 

S for the electronic transition involved.  The starting point for the Wp lineshape 

analysis was the selection of a value for the vibrational frequency (h,−ω) a difficult 

task given that no resolved features are present on the emission band.  For Mn/Xe, 

h,−ω = 27 cm-1 was selected, then the Wp function was calculated with Equation III.4.  

Lineshapes were generated at 12 K using various values for S until an adequate fit of 

the high-energy side of the asymmetric 620.1 nm emission profile was achieved.  The 

same parameters (h,−ω, ν0,0 and S) were then employed at higher temperatures (28 K) 

to fit the observed emission. 
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Figure  VII.3 Time-integrated emission spectra recorded at various temperatures (Ts) 
produced with z6P5/2 ← a6S5/2 excitation. 

 

 

 

 

 

 

 

 

 

Figure  VII.4 Gaussian lineshape analysis of the 620.1 nm emission observed for Mn/Xe.  The 
panel on the left shows an acceptable fit of the emission spectrum recorded at 12 
K.  Three broad Gaussian functions were required to completely represent the 
12 K spectrum (bottom left).  The result of the 12 K fit is shown top left where 
the simulated emission band and the residual is shown.  The fits completed at 26 
and 38 K are shown on the right. 

 
The Wp lineshape generated with ν0,0 = 16410 cm-1, (609.38 nm), h,−ω = 27 cm-1 and 

S = 11.0 compares well to the observed emission spectrum for T = 12 K as shown in 

Figure  VII.5.  At higher temperatures (T = 28 K) the Wp fit predicts the high-energy 

blue dominant component and the red-shift of the emission band maximum.  

However, the analysis is unable to reproduce the low energy wing observed, as the 

low energy wing may result from a minimum amount of the thermally unstable 

16.5 16.0 15.5 
Energy (x 103)

Mn/Xe 12 K                            λEx = 395.45 nm

16.5 16.0 15.5 15.0 

Fit Ts = 26 K

Fit Ts = 38 KFit Ts = 12 K

Energy (x 103)
16.5 16.0 15.5 

Energy (x 103)
16.5 16.0 15.5 

Energy (x 103)

Mn/Xe 12 K                            λEx = 395.45 nm

16.5 16.0 15.5 15.0 16.5 16.0 15.5 15.0 16.5 16.0 15.5 15.0 

Fit Ts = 26 K

Fit Ts = 38 KFit Ts = 12 K

Energy (x 103)



Chapter VII; Mn(z6P)/RG Luminescence 

163 

emission feature produced on deposition at 12 K.  The Wp analysis is therefore 

satisfactory but the growth of an additional emission component suggested by the 

Gaussian analysis must also be taken into account. 
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Figure  VII.5 The Wp lineshapes calculated with Equation III.4 for the 620 nm emission 

feature at 12 K (left) and 28 K (right) produced with pulsed laser excitation at 
395.45 nm.  The position of the ZPL is indicated by ν0,0 (cm-1). 

 
Overall, the temperature dependent emission spectra presented in Figure  VII.3 

show that the progressive red-shift of the band maximum is explained by the growth 

of the central component (revealed in the Gaussian analysis shown in Figure  VII.4).  

However, the Wp lineshape analysis is superior as it allows the identification of 

specific parameters such as the band origin and the electron-phonon coupling strength 

S for the electronic transition.  The Wp analysis shown in Figure  VII.5 predicts the 

high-energy rising portion and the overall asymmetry observed at 12 K and that the 

electronic transition involved in the production of the 620.1 nm feature is moderately 

coupled to the lattice phonon environment, suggesting that the z8P5/2 → a6S5/2 

transition gives rise to the observed band.  However, the band origin (ν0,0) is 

predicted to occur at 16410 cm-1 favouring the assignment to the relaxation of the a6D 

excited state. 
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Further lineshape analysis of the temperature dependence of the observed 

time-integrated emission spectra is shown in Figure  VII.6 and a comparison of the 

integrated area for the emission produced revealed the presence of a non-radiative 

component.  The overall emission intensity was reduced to 94.5, 83.5, 72.7 and 68.2 

% of the initial intensity I0 at 12 K at temperatures of 20, 32, 44 and 48 K 

respectively. 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure  VII.6 Temperature dependent time-integrated emission spectra recorded with CCD 
detection following excitation of the z6P5/2 ← a6S5/2 transition.  Sample 
deposition was completed at 35 K and subsequently annealed to 50 K. 

 
 Decay characteristics of the 620 nm emission feature were recorded using 

TCSPC following pulsed laser excitation at 395.45 nm corresponding to the central 

component of the threefold split z6P5/2 ← a6S5/2 absorption band.  Figure  VII.7 

presents the decay profile recorded at 12 K on a semi-log plot, following sample 

annealing to 62 K.  A double exponential (non-linear least squares) fit was required to 

reproduce the decay profile.  The result of the fit shown in Figure  VII.7 allowed the 

extraction of two decay times τ1 = 1.83 msec and τ2 = 0.98 msec both with substantial 

amplitudes.  The longer millisecond component (τ1) dominates the decay profile at 12 

K. 
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Figure  VII.7 Double exponential non-linear least squares fit of the decay profile recorded for 
the 620 nm Mn/Xe emission feature using the TCSPC technique following 
pulsed laser excitation at 393.45 nm corresponding to the z6P5/2 ← a6S5/2 
transition of atomic Mn isolated in Xenon. 

 
The decay characteristics of the 620 nm emission feature were also 

investigated at temperatures in excess of 12 K in an attempt to identify the radiative 

lifetime of the excited state involved in the transition.  Figure  VII.8 presents the 

temperature dependence of the decay profiles.  It shows that the radiative decay time 

for the 620 nm emission feature has not been identified, as the both decay 

components extracted are temperature sensitive over the range 12 to 54 K.  The 

longer msec component identified at 12 K, dominated the decay times extracted at all 

temperatures up to 54 K.  At 54 K τ1 and τ2 were identified as 0.85 and 0.23 msec 

respectively.  As the longer-lived component dominated at all temperatures, this is 

assigned as the observed lifetime τobs.  The trends of decreasing emission intensity 

and shortening decay time (τobs) with increasing temperature for the 620 nm band is 

assigned to the presence a non-radiative process competing with the emitting level.  

This non-radiative step is active even in the temperature range 12 to 16 K (as shown 

in Figure  VII.8) therefore, the true radiative lifetime of the excited state has not be 

identified. 
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Figure  VII.8 Decay profile recorded for the 620.0 nm emission feature following pulsed laser 
excitation at 393.45 nm at various temperatures following sample deposition 
(Td) at 35 K and matrix annealing TAn. = 62 K. 

 

However, the long lifetime extracted at 12 K of 1.83 msec suggests that the emission 

is produced via a forbidden transition.  The gas phase radiative lifetimes (τRad) for the 

z8P5/2 and metastable a6D9/2 states are reported as 149.3 µsec2 and 3.4 sec3 

respectively.  Although the decay characteristics of the 620.1 nm feature are 

complicated, the long observed lifetime represents a substantial relaxation of the 

theoretically calculated a6D gas phase lifetime by the effective field of the Xe matrix.  

However, it also suggests that the z8P state is not responsible for the emission.  Based 

on the results of direct a6D excitation presented in Chapter VIII, the transition is 

assigned to a6D9/2 excited state relaxation, the photophysical characteristics of which 

are presented in Table  VII.1. 
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Table  VII.1 Photophysical characteristics of excitation and emission bands assigned to the 
3d54s4p z6P5/2 ← 3d54s2 a6S5/2 transition and emission features produced 
following z6P5/2 ← a6S5/2 excitation of atomic manganese isolated in solid Xenon.  
λEx (x; where x = 1, 2 or 3) indicates the position of each of the components of 
the three–fold split excitation spectrum.  λEm indicates the emission band-centre 
in nm units. The full-width at half-maximum intensity of the excitation/emission 
features is denoted by ∆ in wavenumber units.  The gas phase to matrix 
frequency shifts for the assigned absorption and Stokes’ shifts for emission are 
denoted δ and presented in wavenumber (cm-1) units.  The decay characteristics 
extracted for the observed emission feature are also presented. 

Mn Gas Phase Mn/Xe Matrix – Excitation 
Transition 
nm / cm-1 Assignment λEx. (x) (nm) / ∆ (cm-1) δ (cm-1) 

z6P5/2 ↔ a6S5/2 
403.42 / 24788 Z6P5/2 ← a6S5/2 

392.20; (x = 1) 
395.45; (x = 2) / ≈ 270 

399.15; (x = 3) 
+500 

Mn/Xe Matrix – Emission 
                            λEm. (nm) / ∆ (cm-1) 
                              Wp Fit ν0,0 (cm-1) 

Decay 
(msec) δ (cm-1) 

 
 
 

a6D9/2 ↔ a6S5/2 
586.43 / 17052 a6D9/2 → a6S5/2 

620.1 / ≈ 240 
Fit; 16410 τ Obs  =1.83  -926 

 

VII.2.I.I Discussion - Mn(z6P)/Xe  

Excitation of the z6P5/2 resonance transition of atomic Mn isolated in solid Xe 

results in a single thermally stable emission feature at 620.1 nm.  High-resolution 

excitation spectra recorded in the vicinity of the z6P5/2 ↔ a6S5/2 gas phase transition 

by monitoring the 620.1 nm band reproduce, as shown in Figure  VII.2, the threefold 

split pattern evident in the absorption spectra reported in Chapter VI.  Excitation 

spectra recorded following matrix annealing and/or high temperature deposition 

allowed the identification of a single thermally stable site of isolation of Mn in solid 

Xe centered at 395.45 nm, (25288 cm-1). 

The luminescence measurements reported thus far do not allow a definitive 

assignment of 620.1 nm emission feature to radiative transitions from either the z8P5/2 

or the metastable a6D9/2 excited states to the ground state.  However, the excited state 

producing this band is populated via a 100% efficient relaxation process from the 

z6P5/2 excited state accessed in excitation, as only this low energy emission feature is 

observed.  The Wp lineshape analysis allowed identification of the electron-phonon 

coupling strength S for the electronic transition as S = 11.0 which is higher than 

expected for a D → S type transition.  Although, identification of the radiative 

lifetime of the observed emission was not possible at 12 K – the lowest temperature 

range accessible in our experiment – an observed lifetime of 1.83 msec was extracted 
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at 12 K.  This cannot be directly related to the gas phase lifetimes reported for either 

the z8P and a6D transitions of atomic Mn2,3. 

In addition, a non-radiative step that resulted in a completely reversible 

temperature dependence for the 620.1 emission feature, was identified in the emission 

spectra reported Figure  VII.3.  This non-radiative step was also apparent in the 

excited state lifetime measurements reported in Figure  VII.8.  A curve crossing 

process between the emitting state and the ground state a6S5/2 of atomic Mn is 

proposed as the origin of both of these temperature dependent observations. 

 

VII.2.II Mn(z6P)/Ar 

The absorption feature observed at 397.4 nm (25136 cm-1) under low metal loading 

conditions, Chapter VI (top panel Figure VI.8) was assigned to the z6P5/2 ← a6S5/2 

transition of atomic manganese isolated in Ar.  Figure  VII.9 presents the emission 

spectrum recorded with continuous tungsten lamp excitation of this absorption band.  

Inspection of Figure  VII.9 reveals emission features centered at 428.3 nm (fwhm ≈ 

120 cm-1) and a much weaker band at 590.1 nm exhibiting a resolved red shoulder at 

600 nm.  

 High-resolution excitation spectra recorded on deposition at 12 K for the 

428.3 nm emission, yielded a threefold split band centered at 393.4 nm (25419 cm-1) 

as shown in Figure  VII.10.  A Gaussian lineshape analysis of the excitation profile 

revealed three dominant components at 389.9, 393.4 and 397.2 nm each with an 

average linewidth of 253 cm-1.  The excitation spectrum recorded for the 590 nm 

emission shows the same bandwidth as that recorded for the 428.3 nm band but a less 

well resolved threefold split pattern.  Recording a higher resolution excitation 

spectrum was not possible due to the weak emission intensity at 590 nm.  The 

excitation spectrum recorded for the unresolved red wing at 625.0 nm revealed an 

additional threefold split band (shown Figure  VII.10) centered at 380 nm (26316 cm-

1).  A Gaussian lineshape analysis yielded three components at 375.5, 380 and 384.7 

nm each with an average linewidth of 392 cm-1.  The occurrence of two excitation 

profiles, both exhibiting resolved threefold split patterns indicates the presence of two 

sites of Mn atom isolation on deposition of Ar at 12 K. 
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Figure  VII.9 Emission spectrum recorded at 12 K for Mn/Ar with lamp excitation of the Mn 
z6P5/2 ← a6S5/2 transition.  The absorption spectrum recorded on deposition at 12 
K is shown left.  The vertical line indicates the gas phase position of the z6P5/2 ↔ 
a6S5/2 transition1 at 403.42 nm (24788 cm-1). 

 
The presence of a second site of isolation for Mn in Ar was identified in absorption of 

the y6P5/2 state in Chapter VI, in which the blue shoulder centered at 273.0 nm was 

assigned to the y6P5/2 ← a6S5/2 transition occurring from a minor site.  Subsequent 

annealing experiments showed the thermal stability of this site with respect to the 

high-energy shoulder at 281 nm.  The trends evident in Figure VI.8 revealed that the 

relative matrix shifts for the z6P5/2 ← a6S5/2 transition for Mn/Ar, Mn/Kr and Mn/Xe 

did not exhibit a linear correlation with the polarizability of the matrix host.  These 

observations lead to the suggestion that a second minor site of Mn atom isolation 

existed in Ar.  The excitation feature centered at 380 nm shown in Figure  VII.10 is 

assigned to the minor secondary site. 
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Figure  VII.10 High-resolution excitation spectra recorded monitoring the emission features 
produced with site selective z6P5/2 ← a6S5/2 excitation at λEx = 393.4 and 380 nm 
respectively.  Note the bands shown have been normalised.  The 1° feature is 6.0 
times more intense than the 2° and 11.3 times more intense than the 3°. 

 
Emission spectra recorded with excitation at 393.4 and 380 nm, corresponding 

to the central threefold split component of the observed excitation features, are 

presented in Figure  VII.11.  It is evident in Figure  VII.11 that site selective excitation 

produces spectrally different emission bands.  Excitation of the red (1°) site at 393.4 

nm) leads to narrow emission features centered at 428.3 and 590 nm, whereas, 

excitation of the blue (2°) site at 380 nm produces the broad emission features at 413, 

431 and 624 nm.  An additional unresolved red shoulder is observed at 437.0 nm with 

excitation at 380 nm.  The 600 nm emission feature, produced with excitation into 

both the blue and red sites, indicates the presence of a third site, whose absorption 

overlaps the red (1°) and blue (2°) sites identified. 

High-resolution excitation spectra recorded monitoring all the observed 

emission features are presented in Figure  VII.10.  Correlation of the excitation and 

the emission bands allows the identification of three sites of isolation labelled 1°, 2° 

and 3° in Figure  VII.10.  The photophysical characteristics of these sites are presented 

in Table  VII.2.  The red (1°) site centered at 393.4 nm leads to the emission features 

at 428.3 and 590 nm.  The blue (2°) site at 380 nm produces the broad 413 and 624 
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nm features.  Excitation of the 3° site at 389.5 nm leads to the 600 nm band4.  The 

sites of isolation identified in solid Ar with deposition at 12 K all exhibit resolved 

threefold splitting patterns indicating the isolation of Mn atoms in high symmetry 

environments. 
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Figure  VII.11 Emission spectra produced with site selective excitation corresponding to the 
central threefold split component of the excitation spectra presented in Figure 
 VII.10. 

 
Table  VII.2 Photophysical characteristics of the sites of isolation (1°, 2° and 3°) revealed in 

the excitation spectra of the 3d54s4p z6P5/2 ↔ 3d54s2 a6S5/2 transition of atomic 
manganese.  The spectral position and average full width at half maximum 
(fwhm) denoted as ∆AV of the three components identified in Gaussian lineshape 
analyses for the threefold split excitation spectra are presented in wavenumber 
units.  Gas phase to matrix frequency shifts (δ) are presented for the atomic Mn 
z6P5/2 ← a6S5/2 transition (G.P.: 24788 cm-1), in wavenumber units.  Note the 
frequency shifts are calculated with respect to the central feature of the 
observed threefold pattern. 

Mn/Ar Site Component E (cm-1) ∆AV (cm-1) δ (cm-1) 
 

1° 
1 
2 
3 

25644 
25421 
25174 

 
≈ 253 

 
+633 

 
2° 

1 
2 
3 

26632 
26319 
25992 

 
≈ 392 

 
+1531 

 
3° 

1 
2 
3 

26309 
25647 
25121 

 
≈ 710 

 
+859 
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The thermal stability of the three sites was investigated by comparison of the 

behaviour of the emission spectra on deposition at 12 K and following careful matrix 

annealing.  Emission spectra produced with excitation at 393.4 nm allow the 

assessment of the relative intensities of the 1° and 3° sites where the spectral overlap 

between these two sites is greatest, (see Figure  VII.10).  Figure  VII.12 presents the 

effect of matrix annealing on high-resolution emission spectra recorded in the 585-

650 nm spectral region following red (1°) site excitation, revealing a large reduction 

of the 601 nm emission band.  Therefore, matrix annealing reduces the 3° site of 

isolation which confirms its thermal instability.  The thermally unstable 3° site also 

produced the 431 feature which is also removed by the annealing procedure.  The 

apparent decrease in the emission intensity of the 590 nm band is due to the reduction 

of the underlying 601 nm band. 

Emission spectra produced with blue (2°) site excitation at 380 nm also show 

the effect of matrix annealing on the relative intensities of the 2° and 3° sites as there 

is a substantial spectral overlap between these two sites, as shown in Figure  VII.10 at 

this wavelength.  Figure  VII.13 presents the effect of matrix annealing on high-

resolution emission spectra recorded for the spectral regions 440-455 nm (left) and 

585-650 nm (right). 
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Figure  VII.12 Time-integrated emission spectra produced with red (1°) site excitation at 393.4 
nm on deposition at 12 K and following annealing to 29 K.  Spectra recorded at 
12 K.  Note the asterisk indicates the emission feature is thermally labile. 
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Figure  VII.13 Time-integrated emission spectra produced with 2° site excitation at 380 nm on 
deposition at 12 K and following annealing to 31 K.  Spectra recorded at 12 K. 
Note the relative intensities of the emission spectra shown left and right panels 
are not directly comparable as the spectrum shown right was recorded under 
lower resolution.  The emission features reduced by the partial removal of the 
3° site are highlighted using an asterisk. 

 
Inspection of the left and right panels of Figure  VII.13 reveals annealing results in the 

partial removal of the 431 nm and 601 nm emission bands.  The thermally sensitive 

emission features (denoted by an asterisk) are not completely removed.  The λEm 

(max) corresponds to the 428 nm feature resultant from spectral overlap between the 

1° and 2° sites.  It is also evident in the left panel of Figure  VII.13 that the emission 

intensity observed at 413 nm increases.  This effect represents the increased 

formation of the blue (2°) site occurring with the removal of the 3° site. 

 The recorded excitation spectra allow the extraction of features present but not 

resolved in the absorption spectrum.  As shown in Figure  VII.14, the dominant z6P 

state feature at 397.4 nm in the low metal loading samples is identified as the major, 

1° site of isolation.  The 2° site, identified at 380 nm corresponds to the weak band 

observed in absorption.  However, the low-energy side of the absorption band cannot 

be reproduced by the excitation spectra.  This is due to the presence of a Mn2 

absorption band occurring at 403 nm as concluded by the Mn/Ar concentration 

studies presented in Figure VI.I.  It is noteworthy that spectra recorded following 

excitation at 403 nm do not produce any emission features. 
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Figure  VII.14 Comparison of the band profiles identified from high-resolution excitation 
spectra recorded and absorption spectra recorded in the vicinity z6P5/2 ↔ a6S5/2 
transition of Mn for dilute Mn/Ar samples on deposition at 12 K. 

 

VII.2.II.I Mn(z6P)/Ar Site-specific Emission Spectroscopy 

Following the identification of two thermally stable Mn atom trapping sites, high-

resolution emission spectra were recorded following site-specific excitation.  Figure 

 VII.15 presents the highest resolution spectra recorded with red (1°) and blue (2°) site 

excitation at 393.4 and 380 nm respectively.  Upon inspection of the spectra recorded 

it is evident that the emission bands produced are very site specific.  The red (1°) site 

gives rise to the very narrow emission centered at 427.5 nm and the asymmetric 590 

nm5 emission, while blue (2°) site excitation produces three broad emission bands 

located at 413, 438 and 625 nm.  The additional features present at 431 and 601 nm 

have already been assigned to the excitation of the 3° thermally unstable site of 

isolation. 

 In the following two sections, the emission features produced with red and 

blue site excitation (shown in Figure  VII.15) are treated separately.  Excited state 

assignments are made based on I) comparisons of the spectral positions of the 

observed emission with respect to the gas phase transitions of atomic Mn (shown in 

Figure  VII.1), and II) the results of time-resolved emission spectra produced with 

pulsed laser excitation and excited state lifetime measurements conducted using both 
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gated iCCD detection and TCSPC methods.  Temperature dependence is also 

investigated to provide insight into the excited state dynamics leading the observed 

emission spectroscopy. 
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Figure  VII.15 High resolution emission spectra recorded with site specific continuous lamp 
excitation at λEx. = 393.4 and 380 nm corresponding to the central threefold split 
component identified in the 1° and 2° site excitation spectra reported earlier in 
this Chapter.  The locations of the gas phase z6P3/2 ↔ a6S5/2, a4D7/2 ↔ a6S5/2 and 
a6D9/2 ↔ a6S5/2 transitions are indicated by the vertical lines. 

 

VII.2.II.II Mn(z6P)/Ar – Red (1°) site luminescence 

Mn(z6P)/Ar – Red Site - λEm. ≈ 427.5 nm 

High-resolution emission spectra produced with red site excitation at 393.4 nm 

produces multiple, narrow emission bands, the most intense of which is, as shown in 

Figure  VII.16, located at 427.56 nm at 12 K.  Two other resolved features are 

observed at 427.8 and 428.15 nm.  The most intense 427.56 nm feature shows a 

linewidth of approximately 6.0 cm-1.  At higher temperatures, the splitting of the 

emission features is removed and a red shift of the band maximum to 427.65 nm is 

observed.  However, the 428.2 nm shoulder persists to higher temperatures.  The 

reduction of the intensity in the 427.56 nm feature at higher temperature is consistent 

with its identification as a zero phonon line (ZPL).  The temperature dependence 
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observed for the 427.56 nm band was completely reversible with the original 

spectrum obtained on returning to 12 K. 
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Figure  VII.16 Site specific high-resolution emission spectra produced with pulsed laser 
excitation at 393.4 nm at 12 K (solid) and 25 K (dashed) following Mn/Ar 
matrix deposition at 12 K and careful annealing to 30 K.  The vertical lines 
indicate the location of the individual spin-orbit levels of the gas phase a4DJ ↔ 
a6S5/2 transition. 

 
 The location of the emission feature at approximately 427.56 nm (23388 cm-1) 

and the narrow lines exhibited suggest an assignment to the a4D7/2 → a6S5/2 

transition1 of atomic manganese.  With this assignment, the band at 427.56 nm is blue 

shifted from the gas phase position at 23297 cm-1 by only 92 cm-1. 

 Time-resolved measurements allow the extraction of the decay characteristics 

of the resolved features at 427.56, 427.80 and 428.15 nm.  Figure  VII.17 presents a 

double exponential fit of the most intense 427.5(6) nm emission feature.  This 

analysis revealed two decay times, 25.28 and 11.40 msec, the longer of which 

dominates by more than an order of magnitude.  Temperature dependence 

measurements in the 427.5(6) nm decay profiles are shown in Figure  VII.18.  

Inspection of the temporal profiles presented for temperatures from 12 K to 27 K 

(following deposition at 12 K and annealing to 28 K) reveals that the decay does not 
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remain constant over the range of temperatures selected.  The decay times extracted at 

each temperature showed a decrease in both millisecond decay components with 

increasing temperatures (τ1 ranged from 25.28 to 16.55 msec and τ2 from 11.4 to 5.57 

msec).  The amplitude of the longer component remains an order of magnitude 

greater than that of the shorter component for temperatures from 12 K to 27 K.  

Plotting the τobs against temperature, as shown in Figure  VII.18 (inset), reveals that 

the radiative lifetime (τRad) has not been identified.  Therefore, the radiative lifetime 

for the excited state giving rise to the 427.5(6) nm emission is longer than the 25.3 

msec value measured at 12 K. 

Analysis of the decay curves recorded for the 427.8 nm feature show the same 

behaviour as the dominant 427.5 nm feature.  Double exponential functions were 

required to achieve an adequate fit of the decay profiles recorded at all temperatures 

accessible.  The dominant decay component was found to have a lifetime of 25.23 

msec and the minor had a value of 10.63 msec at 12 K.  The relative amplitudes 

showed a marked deviation from those observed for the 427.5 nm feature insofar as 

the amplitude of the dominant feature was only a factor of four times that of the 

minor. 
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Figure  VII.17 Decay profile of the 427.5(6) nm emission recorded at 12 K using TCSPC 
following pulsed laser excitation at 397 nm, corresponding to the low energy 
threefold split component identified for the 1° site.  The residuals present the 
difference between the double exponential fit completed and the decay 
recorded. 
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Figure  VII.18 Decay profiles recorded monitoring the 427.5(6) emission component produced 
with red site z6P5/2 ← a6S5/2 excitation at 397 nm at various temperatures as 
indicated.  Inset; temperature dependence of the observed excited state lifetime 
(τobs) extracted from double exponential fits of the decay profiles. 

 
 Lifetime measurements of the resolved shoulder at 428.1 nm also required a 

double exponential fit with τ values of 23.4 and 10.43 msec at 12 K as shown in 

Figure  VII.19.  Both components were temperature dependent becoming shorter with 

increasing temperature as presented on the left hand side of Figure  VII.20.  It was 

observed that the shorter 10.43 msec component dominated the decay profiles of the 

428.1 nm emission at all temperatures. 

 Overall the decay times of the 427.5 and 427.8 nm components are equivalent 

with observed matrix decay times of 25.28 and 25.23 msec respectively, whereas, the 

lifetime extracted for the 428.1 nm feature has a value of 10.43 msec.  All the decay 

profiles exhibited a shortening of the extracted decay times with increasing 

temperature, as shown on the right of Figure  VII.20.  The decay times extracted at 12 

K for the resolved emission features are collected in  

Table  VII.3 for comparison. 
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Figure  VII.19 Decay times recorded for the 428.1 nm emission at 12 K following site selective 
pulsed laser excitation of 1° site at 397 nm. 

 

Table  VII.3 Decay characteristics, components and amplitudes (A) extracted from double 
exponential fits of the three resolved features observed at ≈ 427.5 nm with red 
(1°) site excitation.  Note the dominant decay time (τObs) extracted at 12 K. 

λEm. (nm) A1
 τ1 (msec) A2

 τ2 (msec) 
427.5(6) 15558 25.28 1590 11.40 

427.8 6849 25.23 2107 10.63 

428.1 7251 23.40 15761 10.43 
 

12 15 18 21
Temperature (K)

10

15

20

25

Short component
Long component

τ o
bs

(m
se

c)

Mn/Ar - Temperature dependence in τobs
λEm = 428.1 nm

12 15 18 21 24 27
Temperature (K)

16

18

20

22

24

λEm. = 427.5 nm
λEm. = 427.8 nm
λEm. = 428.1 nm

 

Figure  VII.20 Temperature dependence of the observed excited state lifetime (τobs) extracted 
from double exponential fits of the decay profiles recorded for λEm. = 428.1 nm 
(shown left). 
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Following the extraction of the decay characteristics of the resolved emission 

features observed at 427.5, 427.8 and 428.1 nm and the observation that the intensity 

of the narrow 427.5 nm band is reversibly reduced at higher temperatures, a Wp 

lineshape analysis was conducted using the resolved splitting between the observed 

features as a guide to the identification of the phonon frequency h,−ω, (cm-1).  The 

comparison between the predicted intensity distribution and the observed emission as 

a function of phonon number at 12 K and higher temperatures was used to access the 

quality of the analysis.  As a first approximation, the emission band maximum at 

427.56 nm (23388 cm-1) was chosen as the band origin (ν0,0).  The phonon frequency 

h,−ω was selected as 32 cm-1 from the splitting observed between the most intense 

features at 12 K.  The result of the Wp lineshape analysis is presented for 

temperatures of 12 and 25 K in Figure  VII.21.  The Wp lineshape provides an 

adequate fit of the intense features observed at 12 K and allows the identification of 

the zero phonon line as 23388 cm-1.  The 12 K fit, shown on the left of Figure  VII.21, 

correctly predicts the relative intensities of the 427.56 nm (ZPL) and the 428.1 nm 

band assigned to the phonon side band using an electron-phonon coupling strength of 

S = 0.6 and a coupling frequency (h,−ω) of 32 cm-1.  Performing the analysis at a 

higher temperature (25 K) predicts a small increase in the intensity of the phonon side 

band with respect to the zero phonon line, both of which appear to the blue of the 

observed band maximum.  The Wp analysis also reveals the presence of a ‘hot’ 

phonon emission band at 23420 cm-1 at 25 K.  While the Wp lineshape analysis 

achieves good agreement at 12 K, not all of the resolved features are accounted for, 

most notably the feature at 427.8 nm.  This is evident upon inspection of Figure 

 VII.22, where Gaussian functions exhibiting linewidth of 6.6 cm-1, corresponding to 

the fwhm of the ZPL identified at 23388 cm-1, are shown.  The fitted Gaussian 

functions have been substituted for the Wp positions and scaled to reflect the intensity 

distribution at 12 K.  This was done by taking the Wp positions and intensities shown 

in the left panel of Figure  VII.21, and broadening with a linewidth6 of 6.6 cm-1. 
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Figure  VII.21 The Wp lineshapes calculated with Equation III.4 for the resolved emission 
features observed in solid Ar at 12 K and 25 K produced with site specific 
pulsed laser excitation at 393.4 nm corresponding to the z6P5/2 ← a6S5/2 
transition from 1° site.  The location of the zero phonon line is indicated as ZPL 
and ν0,0 in wavenumber units. 
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Figure  VII.22 Simulation of the emission band profile generated by the substitution of 

Gaussian functions for the Wp distribution as described in the text. 

 



Chapter VII; Mn(z6P)/RG Luminescence 

182 

A second Wp function was included for which ν0,0 = 23398 cm-1 was selected 

to coincide with the high-energy shoulder of the 12 K emission spectrum, (left, Figure 

 VII.21).  A phonon frequency of h,−ω = 23 cm-1 was selected corresponding to the 

splitting between the new band origin and the 427.8 nm emission component.  A 

satisfactory intensity distribution was achieved with S = 1.78 as shown in Figure 

 VII.23.  Table  VII.4 presents the parameters used to achieve the Wp lineshape 

analyses (Wp Fit 1 and Wp Fit 2) shown in Figure  VII.21 and Figure  VII.23 

respectively. 

The second Wp lineshape analysis, the result of which is shown in Figure 

 VII.23, provides an adequate fit of the observed intensity distribution observed in 

emission.  The second ZPL is assigned at 23398 cm-1, and the intensity distribution 

predicts the broad band profile and all but the resolved features identified in the first 

Wp analysis shown in Figure  VII.21.  However, the high temperature analysis 

presented in Figure  VII.23 is superior as it allows the assignment of the phonon side 

band more accurately than in the previous attempt. 
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Figure  VII.23 The second Wp lineshapes calculated for the emission features observed in solid 
Ar but not accounted for in the original analysis shown in Figure  VII.21 at 12 K 
and 25 K produced with site specific pulsed laser excitation at 393.4 nm 
corresponding to the z6P5/2 ← a6S5/2 transition from the 1° site.  The location of 
the second zero phonon line is indicated as ZPL. Note the intensity distribution 
predicted by the Wp analysis completed has been scaled to match the 427.8 nm 
feature at 12 K. 
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Table  VII.4 The location of the ZPL’s extracted in the Wp lineshape function analyses 
conducted on the atomic emission assigned to the a4D7/2 → a6S5/2 transition in 
solid Ar.  

Transition ZPL, ν0,0 (cm-1) S h,−ω (cm-1) 

a4D7/2 ↔ a6S5/2 - Wp Fit 1 

a4D7/2 ↔ a6S5/2 - Wp Fit 2 

23388 

23398 

0.6 

1.78 

32 

23 

 
 A summation of the intensity distributions broadened by a Gaussian function 

shows that two sets of Wp functions are required to generate the approximate 

emission band profile as shown in Figure  VII.24.  Inspection of the correspondence 

and the overlap of the Gaussian functions reveals a satisfactory fit of the high-energy 

side of the band profile.  In addition, the presence of two sets of the Gaussian 

components, which are out of phase due to the different phonon frequencies, allows 

for explanation of the broad 428.1 nm feature.  Therefore a combination of distinct 

electron–phonon interactions are assigned as the origin of the multiplet of resolved 

lines identified. 
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Figure  VII.24 Simulation of the emission band profile generated using Gaussian lineshapes 
(fwhm 6.6 cm-1) for both of the Wp distributions identified as described in the 
text.  The parameters and the positions of the two ZPL’s (ν0,0) identified are 
indicated. 
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 The decay times extracted (shown in Table  VII.3) for the 427.5 nm and 427.8 

nm emission decay profiles are the same within the error of the present analysis.  

Identification of the radiative decay time was not possible due to a temperature 

dependence observed over the smallest increment at the lowest temperatures 

available, 12 K to 13.5 K, (Figure  VII.20).  The decay characteristics extracted show 

the observed excited state lifetime at 12 K is approximately 25 msec.  This decay 

time is consistent with the assignment of the emission features to the spin and parity 

‘forbidden’ a4D7/2 → a6S5/2 phosphorescent transition.  In addition to these resolved 

features, the decay time of the 428.1 nm emission also exhibited marked temperature 

dependence where the observed lifetime was identified as 10.43 msec at 12 K.  The 

temperature dependence in the decay profiles of the resolved features indicates the 

presence of an active, non-radiative decay component competing with the radiative 

decay of the excited state.  Temperature dependence evident in the emission spectra 

allows the assignment of the 427.5 and 428.1 nm to a ZPL and phonon side band 

respectively.  The 428.1 nm band persisted at higher temperatures, a characteristic 

indicative of a phonon side band, while the 427.5 nm band was removed at 25 K.  

The observation of a resolved feature at 427.65 nm at 25 K suggested the presence of 

a second ZPL and phonon sideband where the decay time extracted at higher 

temperatures showed an intermediate relationship between the relative amplitudes of 

the 25 and 10 msec decay components.  The overlap of the ZPL and sideband is 

considered to be the origin of the double exponential decay profiles recorded. 

 The lineshape analysis of the emission band profile allowed the identification 

of a pair of ZPL’s occurring at 23388 and 23398 cm-1.  The selection of two sets of 

oscillators for the transition allowed the simulation of the band profile as the sum of 

two intensity distributions exhibiting different electron-phonon coupling strengths.  

As presented in Figure  VII.22 (and as summarised in Table  VII.4) the combination of 

both intensity distributions per phonon allowed a good representation of the overall 

lineshape at 12 K. 

Consideration of the decay characteristics presented in Table  VII.3 in light of 

the Wp lineshape analysis, indicated the longer 25 msec component corresponds to 

that of a ZPL.  Therefore, the decay time observed is a reflection of the radiative 

decay of the pure a4D → a6S electronic transition in the absence of phonon induced 

relaxation effects.  In contrast, the 10 msec lifetime extracted from the decay profiles 
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of the 428.1 nm emission feature is representative of the decay of the excited state 

with the assistance of the local lattice environment, through phonon-induced excited 

state coupling.  The relative electron-phonon coupling strengths and the spectral 

overlap of the individual Gaussian components (fitted to the Wp intensity 

distribution) are identified as the origin of the relative intensities of the bands 

assigned to the phonon sidebands at 427.65 and 428.1 nm.  On inspection of Figure 

 VII.21 and Figure  VII.23, the Wp progression with the higher electron-phonon 

coupling (S = 1.78) dominated the low energy wing and the 428.1 nm feature at 25 K.  

The overlap between the ZPL of Wp Fit 1 at 23398 cm-1 with the phonon side band 

from the second Wp set may bias the relative intensities of the decay characteristics 

even at higher temperature.  Therefore, double exponential functions were required to 

achieve adequate fits of the decay profiles recorded.  The observation that the 10 

msec decay component increases in importance monitoring the emission features 

from 427.65 to 428.1 nm is assigned to the effect of the increased overlap with the 

phonon sidebands. 

The origin of two ZPL’s and their associated phonon frequencies is not 

immediately obvious.  Some possibilities are now suggested and the deficiencies of 

each are discussed.  The observation of two sets of bands could result from atoms 

isolated in different sites, in which case the Wp fits would reflect the interaction of 

the excited state Mn atom and the site of isolation.  However, the emission features 

are only produced from the red (1°) site with narrow line laser excitation.  This rules 

the sites explanation out.  The assignment of the transition to the relaxation of more 

than one spin-orbit level of the a4D excited state of atomic manganese is unlikely 

given that the gas phase spin-orbit splittings1 for the different states are 253.5, 170.3 

and 99.0 cm-1 respectively between the 7/2, 5/2, 3/2 and 1/2 levels, as shown in Figure 

 VII.16.  These splittings are large when compared to the 10 cm-1 splitting between the 

observed bands.  Assuming, the gas phase spin-orbit splitting is maintained within the 

matrix environment, thermal population of the J = 5/2 level 253.5 cm-1 higher than the 

a4D7/2, is insignificant at temperatures of 12 K.  In addition, the decay times recorded 

for the 427.5 and 427.8 nm emission lines at 12 K are equal confirming the same 

electronic transition gives rise to the observed features.  The final option involves 

crystal field splitting of the J = 7/2 level of the 4D state by the site of isolation.  Thus 

the crystal field splitting observed is small (10 cm-1) corresponding to the difference 
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in energy between the two ZPL’s identified.  This effect may be manifested by the 

Mn atom in a ‘D’ state when isolated in either a site of octahedral or tetrahedral 

symmetry. 

 

Mn(z6P)/Ar - Red Site - λEm. ≈ 590.0 nm 

Emission spectra recorded with 393.4 nm excitation results in the production of the 

weak 590 nm (16949 cm-1) feature shown Figure  VII.15.  The red shoulder observed 

upon sample deposition at 12 K was previously identified as resulting from isolation 

of Mn atoms in thermally unstable (3°) sites of isolation.  The 590 nm emission 

feature exhibits an asymmetric lineshape that may be an intrinsic characteristic or a 

result of spectral overlap of the excitation of the 1° and 3° sites leading to the 

production of the 600 nm emission.  However annealing allowed the removal of the 

3° site.  Therefore, the asymmetric lineshape is assigned to an intrinsic characteristic 

of the electronic transition involved.  A Wp lineshape analysis of the 590 nm 

emission band profile was preformed using h,−ω = 32 cm-1, S = 3.3 and assigning the 

ν0,0 = 17020 cm-1 (587.54 nm).  The result of this analysis is presented in Figure 

 VII.25.  As no narrow resolved emission features are observed to identify the phonon 

frequency (h,−ω), the result of the Wp fit (Fit 2) of the 427.5 nm emission feature 

(presented in Figure  VII.23) was employed.  Recording the emission spectrum at 

various temperatures showed no pronounced changes in the observed band profile.  

From a comparison of the Wp intensity distribution and the emission profile shown in 

Figure  VII.25 it is evident that an adequate fit of the high-energy side of the observed 

band profile is provided. 
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Figure  VII.25 The Wp lineshapes calculated for the 590 nm emission feature at 12 K, 
produced with steady state excitation at 393.4 nm corresponding to the z6P5/2 ← 
a6S5/2 transition from red (1°) site.  The location of the zero phonon line (ZPL) 
for the transition is indicated numerically as ν0,0 in wavenumber units. 

 

Decay profiles recorded for the 590 nm emission band following pulsed laser 

excitation at 397 nm, revealed complex multi-exponential decays.  Excited state 

lifetimes were extracted using triple exponential functions to fit of the decay profiles.  

Figure  VII.26 shows the decay profile recorded at 12 K, following annealing to 28 K.  

Three decay components are identified as 654 µsec, 21.895 and 6.841 msec at 12 K.  

A comparison of the amplitudes shown in Figure  VII.26 identifies the microsecond 

lifetime as the dominant component in the decay profile. 

 At 12 K, the two smaller amplitudes A1 and A2, Figure  VII.26, contribute 26 

and 17 % of the overall temporal intensity of the emission.  The decay times of these 

components show a match to the decay characteristics of the 427.5 nm emission 

presented in Table  VII.3.  The two msec components on the 427.5 nm band were 

identified as 25.28 and 11.4 msec somewhat longer than the 22 and 7 msec values 

identified in the 590 nm emission.  The correlation of the two msec decay times 

extracted on these two emission bands suggests the presence of non-radiative 

relaxation from the a4D7/2 state to the terminal level producing the 590 nm emission7.  

The temperature dependence exhibited by the 427.5 nm band (Figure  VII.18) is also 
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observed for both the msec components in the 590 nm band.  The decay profiles 

recorded in the temperature range 12 to 22.5 K are presented in Figure  VII.27. 

 

0.00 0.02 0.04 0.06
Time (sec)

103

104

105

106

107

108

λ E
x.

=
39

7.
0

nm

Data
Fit (Range 0.00005 to 0.08 s)

τ 1 = 0.021895 s
τ 2 = 0.006841 s
τ 3 = 0.000654 s

A1 = 1082.51
A2 = 693.89
A3 = 2369.54

Mn/Ar Decay profile λEm. = 590.0 nm @ 12 K (Td = 12 K, TAn. = 28 K)

-200
0

200

R
es

id
ua

ls

 

Figure  VII.26 Decay profile recorded for the 590 nm emission feature at 12 K following site 
selective pulsed laser excitation of red (1°) site at 397 nm. 

 

Table  VII.5 Decay characteristics, components and amplitudes (A) extracted from non-
linear least squares analysis of the temporal profiles recorded monitoring 
emission at 590 nm at different temperatures, (Ts) following pulsed laser 
excitation at 397 nm. Note the dominant decay contribution is presented in bold. 

Ts. (K) Fit Range (sec) A1 τ1 (msec) A2 τ2 (msec) A3
 τ3 (µsec) 

12.0 
12.0 
13.5 
17.5 
20.0 
22.5 

5 x10-5 – 0.080 
5 x10-5 – 0.045 

 
 

5 x10-5 – 0.030 
5 x10-5 – 0.032 

1083 
1309 
2283 
272 

7093 
1449 

21.895 
19.574 
16.664 
16.764 
14.864 
13.895 

694 
562 

1378 
226 

12985 
4605 

6.841 
4.369 
2.380 
1.843 
1.096 
0.941 

2370 
2306 
4302 
537 

11473 
2876 

654 
613 
534 
509 
343 
283 
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Figure  VII.27 Comparison of the excited state decay profiles produced monitoring 590 nm 
emission following pulsed laser excitation at 397 nm.  λEx. corresponds to the red 
threefold split component of the excitation spectrum corresponding to the z6P5/2 
← a6S5/2 transition occurring for atomic manganese isolated in the 1° site in 
solid Ar. 

 
The 590 nm emission is exhibits a red matrix shift of 1453 cm-1 and 103 cm-1 

from the z8P5/2 ↔ a6S5/2 and a6D9/2 ↔ a6S5/2 transitions which occur at 543.4 nm 

(18402 cm-1) and 586.43 nm (17052 cm-1) respectively in the gas phase1.  The Wp 

lineshape analysis preformed, (Figure  VII.25) succeeded in predicting the asymmetric 

bandshape using an electron-phonon coupling strength of S = 3.3.  The small S value 

suggests a weak electron-phonon coupling, indicative of a D → S type electronic 

transition.  The Wp fit calculated the band origin for the transition to occur at ν0,0 = 

17020 cm-1
, blue-shifted by only 32.0 cm-1 from the gas phase a6D9/2 ↔ a6S5/2 

transition at 586.53 nm (17052.29 cm-1).  Therefore, the spectral position and the 

asymmetry of the observed emission lineshape and the weak electron-phonon 

coupling provide strong evidence for the assignment of the 590 nm emission feature 

to that of the radiative relaxation of the metastable a6D state. 

However, the complicated decay characteristics of the 590 nm feature do not 

allow a definitive assignment to that of the a6D9/2 → a6S5/2 transition which has a 

theoretically predicted gas phase lifetime of 3.4 sec3.  The decay components 
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observed at 12 K presented in Table  VII.5 are all substantially longer than the gas 

phase lifetime for the z8P5/2 ↔ a6S5/2 transition reported to be 165.5 µsec8.  All of the 

decay components extracted for the excited state relaxation are in excess of this value 

strengthening the assignment to the metastable emission, which has been shortened 

dramatically by the matrix environment.   

Although complicated by multiple feeding processes the assignment of the 

590 nm emission to the a6D9/2 → a6S5/2 transition produced by relaxation from the 

a4D state following resonance z6P5/2 excitation in solid Ar is preferred.  Following 

direct a6D excitation, the results of which are presented in Chapter VIII, the 590 nm 

emission feature has been assigned to the a6D9/2 → a6S5/2 transition.  

 

VII.2.II.III Mn(z6P)/Ar – Blue (2°) site luminescence  

Atomic manganese occupies another high symmetry, thermally stable site of isolation 

that was identified in optical excitation spectra (Figure  VII.13) at 380 nm.  In this 

section the observed steady-state and time-resolved emission spectroscopy and 

excited state decay measurements are presented to assign the observed features.  

Temperature dependent emission spectra and lifetime measurements made with site-

specific lamp and laser excitation are employed to assign the excited states as 

conducted in the previous section for the red (1°) site.  The emission features 

produced with blue (2°) site excitation are located at 413, 438 and 625 nm as shown 

earlier in Figure  VII.13.  The experimental data recorded for each of these emission 

bands are presented separately in the following sections. 

 

Mn(z6P)/Ar - Blue Site - λEm. = 413.0 nm 

Figure  VII.28 presents a comparison of time-integrated vs. time-gated emission 

spectra recorded with excitation at 380 nm corresponding to the central threefold split 

component identified in high-resolution excitation spectra shown Figure  VII.14.  The 

413 nm feature exhibits a broad lineshape as shown by the dashed trace, Figure 

 VII.28.  Features centered at 431 and 438 nm are also present in the emission 

spectrum recorded in the 400 – 460 nm region.  The 431 nm feature is present due to 

residue of the 3° site of isolation, some of which remains after matrix annealing to 30 

K.  The 438 nm feature is resultant from manganese atoms isolated in the 2° site and 
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is discussed at length in the section which directly follows.  The time-gated emission 

spectra show the 432 (red shifted slightly) and 438 nm features but with the notable 

absence of the 413 nm feature.  Time gating is intrinsic in emission spectra recorded 

with pulsed laser excitation and monitored with the photon counting PMT.  It was 

used in Chapter III to enhance the weak Hg 3P0 → 1S0 emission from the strong 

background 3P1 → 1S0 fluorescence.  Therefore, the absence of the 413 nm emission 

feature in Figure  VII.28 reveals the short lived nature of this band and suggests its 

assignment to the z6P state.  The gas phase1 z6P3/2 ↔ a6S5/2 transition occurs at 403.56 

nm (24779.32 cm-1) and exhibits a nanosecond lifetime in the range 63.29 nsec8 to 

66.1 ± 1.4 nsec9 depending on the literature cited. 

 Time-integrated emission spectra recorded at higher temperatures than 12 K 

following matrix annealing (although not presented) revealed that the emission 

intensity of the 413 nm feature decreased progressively with increasing temperature.  

This effect was completely reversible indicating the presence of a non-radiative step 

competing with the radiative process at temperatures above 16 K. 
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Figure  VII.28 Time-integrated and time-gated emission spectra recorded following site 
specific continuous W lamp and pulsed laser excitation at 380 nm.  The 
excitation wavelength corresponds to the central threefold split component 
identified in Figure  VII.10.  Note the time gating is achieved using a single 
photon counting PMT as the outlined in Chapter II, Experimental. 
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Figure  VII.29 presents time-resolved emission spectra recorded using iCCD 

detection with pulsed laser excitation showing the behaviour of the emission intensity 

as a function of time on a nanosecond scale.  The intensity of the 413 nm band 

maximum drops to approximately zero over the range 0 to 100 nsec as shown in 

Figure  VII.29 consistent with the time-gated spectra shown in Figure  VII.28.  The 

temporal decay characteristics of the 413 nm emission band were extracted from the 

time-resolved emission spectra using the method outlined in Chapter II, 

Experimental.  This analysis yielded the decay profile shown in Figure  VII.30 at 12 

K.  A double exponential function was used to fit the emission decay curve.  Two 

components of 28 and 10.5 nsec of equal weighting were identified.  The temperature 

dependence in the decay profiles recorded for the 413 nm emission band is shown in 

Figure  VII.31.  The 12 and 15 K decay curves in Figure  VII.31 are identical as are the 

extracted lifetime values, listed in Table  VII.6. This observation allows the 

identification of the matrix radiative lifetime (τRad) for the z6P3/2 → a6S5/2 transition to 

τ = 28 and 10.5 nsec. 

Figure  VII.29 Time-resolved emission spectrum recorded monitoring λEm. = 413 nm (at 12 K) 
following pulsed laser excitation at λEx. = 374 nm.  The temporal step and gate 
width used was 10 nsec with a delay time of td = 0.0 nsec. 
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Figure  VII.30 Decay profile of the 413 emission feature recorded at 12 K extracted from time–
resolved emission spectrum, Figure  VII.29.  The decay profile is convoluted 
with the temporal profile of the excitation laser source at 374.5 nm.  The 
residual shown represents the difference between the decay recorded and the 
double exponential fit. 

 
Double exponential functions were required to provide adequate fits of all the 

decay profiles recorded in the temperature range from 12 K to 24 K.  The lifetimes 

extracted from these decay profiles at all of the temperatures recorded are presented 

in Table  VII.6.  Upon inspection of Table  VII.6 it is evident that the amplitudes of the 

nanosecond lifetimes (τ1 and τ2) are within 95% of each other at temperatures up to 

19 K where a large deviation is observed and the shorter component dominates. 

 

Table  VII.6 Excited state lifetimes (τobs) and amplitudes (A) extracted using a double 
exponential function convoluted with the laser temporal profile to fit the decay 
curves recorded monitoring the 413 nm emission at different temperatures, (Ts) 
following pulsed laser excitation at 374.5 nm. Note the dominant decay 
contribution is presented in bold. 

Ts. (K) Fit Range (nsec) A1 τ1 (nsec) A2 τ2 (nsec) 

12.0 

15.0 

19.0 

24.0 

0 – 210 

0 – 210 

0 – 190 

0 – 090 

16000 

16000 

13500 

09500 

28.0 

28.0 

22.0 

14.5 

16300 

16300 

14000 

14000 

10.5 

10.5 

08.0 

07.5 
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Figure  VII.31 Comparison of the excited state decay profiles produced monitoring the 413 nm 
emission following pulsed laser excitation at 374.5 nm at various temperatures 
as indicated.  The temporal profile of the excitation source at 374.5 nm is also 
shown.  The Temperature dependence of the observed excited state lifetimes 
(τobs) extracted using a double exponential analysis of the decay profiles 
recorded is shown; Inset. 

 
The excited state lifetime measurements are consistent with the assignment of 

the 413 nm emission feature to the z6P3/2 → a6S5/2 transition, insofar as the decay 

occurs on a nanosecond timescale corresponding to the fully allowed transition.  

However, the presence of two components is difficult to resolve.  Figure  VII.31 inset 

shows a plot of the observed lifetimes against scan temperature, the intercept with the 

y-axis represents the radiative lifetime uncorrected for the effective field of solid Ar.  

Applying the effective field correction using Equation III.1 to the observed matrix 

radiative decays at 12 K requires the refractive index of solid Ar known to be 1.3210.  

Therefore, τRad for the z6P3/2 → a6S5/2 transition is 57.5 and 21.6 nsec in solid Ar.  The 

longer decay component (57.5 nsec) compares well to the known gas phase value of 

66.1 ± 1.4 nsec9. 

Lineshape analyses of the 413 nm emission resulting from z6P5/2 ← a6S5/2 

continuous lamp excitation at 12 and 22 K are presented in Figure  VII.32.  Using a 

phonon frequency of h,−ω = 44 cm-1, a satisfactory fit of the lineshape was achieved 
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using a high electron-phonon coupling S term of 23.  This allowed the identification 

of ν0,0 = 25200 cm-1, (396.8 nm).  The position identified for the zero-phonon line 

(ν0,0) shows good agreement with the blue (2°) site absorption of the z6P5/2 ← a6S5/2 

transition shown in Figure  VII.10. 
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Figure  VII.32 The Wp lineshapes calculated for the emission feature assigned to the z6P3/2 → 
a6S5/2 transition of atomic Mn isolated in solid Ar at 12 K and 22 K. 

 

Mn(z6P)/Ar - 2° Site - λEm. = 438.0 nm 

A time-resolved emission spectrum, shown in Figure  VII.33, recorded with pulsed 

laser excitation of the z6P5/2 ← a6S5/2 transition at 374.4 nm revealed the broad 438 

nm emission to be long lived, persisting up to 95 msec.  Inspection of the time-

integrated emission spectrum presented in Figure  VII.33 shows the weak emission 

intensity of the 438 nm band.  The broad emission linewidth (fwhm) of ≈230 cm-1, 

coupled with the lack of resolved structure suggests a P → S type electronic 

transition.  However, the 413 nm emission has already been identified as the z6P3/2 

state fluorescence, so it is proposed that the 438 nm emission results from the 

relaxation of the a4D7/2 state red shifted from the gas phase position by 466 cm-1.  

This assignment also poses difficulties as no resolved narrow lines are evident in the 

emission band profile, in contrast to the 427.5 nm feature, assigned to the a4D7/2 → 
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a6S5/2 transition.  The latter occurs for Mn atoms isolated in the red (1°) site and 

showed resolved features.  Also, the large gas phase to matrix red-shift exhibited by 

the 438 nm emission is difficult to reconcile for a D → S type electronic transition. 

Figure  VII.33 Time resolved emission spectrum recorded following pulsed laser excitation into 
the blue (2°) site z6P5/2 ← a6S5/2 absorption at 374.5 nm, using iCCD detection. 
Note the asterisk represents the positions of the emission band maxima at 413 
and 431 nm which have been removed for presentation purposes. 

 
The long-lived nature of the 438 nm emission supports its assignment to the a4D7/2 → 

a6S5/2 transition but, a conclusive assignment of this emission feature to either the 

z6P3/2 → a6S5/2 or a4D7/2 → a6S5/2 transitions is not possible, at present. 

 
Mn(z6P)/Ar - 2° Site - λEm. = 625.0 nm 

Figure  VII.34 presents emission spectra in the 600 nm region produced with red (1°) 

and blue (2°) site excitation.  Three emission features are observed at 590, 601 and 

625 nm, of which the 601 nm feature is thermally unstable as revealed by matrix 

annealing, see Figure  VII.13.  The high-resolution excitation spectra recorded near 

the z6P5/2 ↔ a6S5/2 gas phase transition (see Figure  VII.10) indicated that each 

emission feature is produced by excitation of Mn atoms in different sites of isolation.  

The 625 nm band is produced by blue (2°) site excitation and exhibits a broad 

linewidth (fwhm) of 285 cm-1.  The band profile observed is indicative of an P → S 

type electronic transition consistent with the assignment of the emission feature to the 

z8P5/2 → a6S5/2 transition of atomic manganese.  With this assignment the 625 nm 
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band is red shifted from the gas phase position (543.4 nm)1 by 2402 cm-1 – a rather 

large amount for Ar matrices. 
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Figure  VII.34 Time-integrated emission spectra recorded with red (1°) and blue (2°) site 
excitation at 393.4 and 380 nm respectively.  Spectral overlap of the thermally 
stable red and blue sites with the thermally labile third site results in the 
production of the 601 nm emission with both excitation wavelengths chosen.  
The thermally unstable emission feature is denoted by the asterisk. 

 
 Applying the Wp lineshape analysis with the phonon frequency of h,−ω = 44 

cm-1, used to model the 413 nm band assigned to the z6P3/2 → a6S5/2, a satisfactory fit 

of the intensity distribution of the observed band profile was achieved using a 

moderate electron-phonon coupling strength of S = 10.  The band origin identified 

16400 cm-1 is considerably to the red of the z8P3/2 ↔ a6S5/2 transition, which occurs 

in the gas phase at 18402 cm-1. 

 Figure  VII.36 presents a decay profile recorded monitoring the emission at 

625 nm employing the TCSPC technique.  A triple exponential function was required 

to obtain an adequate fit of the decay profile.  The decay times extracted are 168, 36 

and 662 µsec all with substantial amplitudes.  With the exception of the short 36 µsec 

component, all the decay times are longer than the gas phase lifetime for the z8P5/2 → 

a6S5/2 transition of atomic Mn of 149.3 µsec8.  The temperature dependence in the 

625 nm feature was not recorded. 
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Figure  VII.35 The Wp lineshape calculated for the 625 nm emission feature in solid Ar at 12 

K.  The phonon frequency (h,−ω = 44 cm-1) was selected to match that used to fit 
the resonance z6P3/2 → a6S5/2 transition, Figure  VII.32. 
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Figure  VII.36 Decay profile of the 625.0 nm feature recorded using TCSPC following pulsed 
laser excitation into the 2° thermally stable site of isolation at 374.54 nm.  Note 
the decay profile was recorded following fresh Mn/Ar matrix deposition at 12 
K. 
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VII.2.II.IV Discussion - Mn(z6P)/Ar  

The luminescence resulting from excitation of the z6P ↔ a6S transition of atomic Mn 

isolated in solid Ar is extremely rich spectroscopically.  This is highlighted by the 

identification in excitation spectroscopy of two high symmetry sites of atomic 

isolation blue-shifted of the z6P5/2 ↔ a6S5/2 gas phase transition1.  These sites, 

centered at 393.4 (25419 cm-1) and 380 nm (26316 cm-1) allowed deconvolution of 

the complex absorption spectra recorded for Mn in solid Ar.  The comparison 

between the absorption and excitation spectra presented in Figure  VII.14 provides an 

indication of the relative amounts of Mn atoms isolated in each matrix environment 

assuming the oscillator strength of the z6P5/2 ↔ a6S5/2 transition is independent of the 

site of isolation.  The ratio of the red site to blue site is approximately 10:1.  The 

excitation spectra (bottom panel, Figure  VII.14) recorded for both of these sites 

showed resolved Jahn-Teller threefold splitting patterns.  This structure was not 

evident in the absorption spectroscopy presented in Chapter VI, which was further 

complicated by the presence of Mn dimer absorption band at 403 nm. 

 The emission spectra recorded following site-specific excitation of the 1° and 

2° (393.4 and 380 nm) sites are summarised in Figure  VII.37 relative to the gas phase 

transitions of atomic Mn.  The spectral assignments made in the previous section are 

also presented for both sites of atomic isolation.  Inspection of the state assigned 

Mn/Ar matrix emission reveals that the site of isolation has a very strong influence on 

the relaxation of the z6P excited state of atomic Mn.  Table  VII.7 presents the 

photophysical characteristics of the observed atomic emission features produced with 

resonance z6P5/2 ← a6S5/2 excitation of Mn atoms occupying the 1° site in solid Ar.  

Selective excitation of the red (1°) site results in emission features assigned to the 

relaxation of the a4D7/2 → a6S5/2 at 427.5 nm and a6D9/2 → a6S5/2 at 590 nm.  The 

assignment of the 590 nm emission to the radiative relaxation of the a6D9/2 is not 

definitive and investigated further in Chapter VIII following direct a6D excitation.  

However, no resonance fluorescence corresponding to the z6P3/2 → a6S5/2 transition is 

observed following z6P excitation of the atom in this, the red and dominant site. 

The observation of the a4D7/2 → a6S5/2 phosphorescence centered at 427.5 nm 

without any evidence for the z6P3/2 → a6S5/2 fluorescence indicates a z6P ⇒ a4D curve 

crossing with 100% efficiency.  This crossing efficiency may originate from the 

freedom of the excited state Mn atom to move over large distances on the excited 
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state potential energy surface in the dominant, red site of isolation.  This is further 

discussed in Chapter IX where site occupancy is discussed at length.  The second 

feature observed at 590 nm is tentatively assigned to the emission of the metastable 

a6D9/2 level.  This feature exhibits an asymmetric lineshape and linewidth of 

approximately 100 cm-1.  The observed matrix lifetime of 654 µsec, presented in 

Table  VII.7, conceals the complex kinetics leading to the observed band.  Figure 

 VII.27 and Table  VII.5 indicate the multiple features that occur between the z6P and 

the terminal a6D9/2 level.  The presence of two millisecond components in the 590 nm 

emission provides compelling evidence for cascade kinetics from the a4D ⇒ a6D 

where this slower feeding step appears as a component in the final decay.  These 

mechanisms are discussed fully in Chapter VIII following the presentation of the 

luminescence of the z8P and a6D excited states of atomic Mn accessed by direct laser 

excitation. 
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Figure  VII.37 Emission spectra recorded at 12 K for the Mn/Ar system with site-selective 
lamp excitation of the Mn z6P5/2 ← a6S5/2 transition, shown right.  The excitation 
spectra (1° and 2° site), were recorded by monitoring emission at 428 / 590 and 
413 / 625 nm (shown left).  These spectra were recorded following Mn/Ar 
sample deposition at 12 K and matrix annealing to 28 K.  The spectral positions 
of the gas phase transitions of atomic Mn are shown by the vertical lines.  The 
observed Mn/Ar matrix absorption and emission bands assigned are indicated. 
Note * indicates the emission band is thermally unstable. 
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The lower panel in Figure  VII.37 presents the emission features produced with z6P5/2 

excitation of Mn atoms isolated in the blue (2°) site of isolation.  Table  VII.8 presents 

the photophysical characteristics and the assignments of the excited state emission 

features made in the previous sections.  The dramatic differences in the emission 

resulting from 1° and 2° site excitation is evident by comparing the band profiles of 

the observed emission features presented in Figure  VII.37.  As the lower panel shows, 

blue (2°) site excitation produces emission features centered at 413, 431, 438 and 625 

nm all of which show broad symmetric lineshapes indicative of strong electron 

phonon coupling and a high degree of excited state stabilisation. 

 
Table  VII.7 Photophysical characteristics and excited state assignments of the emission 

features produced following excitation of the 3d54s4p z6P5/2 ← 3d54s2 a6S5/2 
transition of matrix – isolated atomic manganese isolated in the low energy 1° 
site centered at 393.4 nm (25419 cm-1).  λEm, indicates the emission band-centre 
in nm units. The full-width at half-maximum intensity of the emission features 
is denoted by ∆ and the matrix shift by δ - both in wavenumber (cm-1) units.  
The excited state lifetimes (decay characteristics) are presented τObs. indicates 
the dominant decay characteristic at 12 K. 

Mn Gas Phase  Mn/Ar Matrix (1° site) 

Transition 
nm / cm-1 Assignment λEm. (nm) / ∆ (cm-1) δ (cm-1) Decay time  

a4D7/2 ↔ a6S5/2 
429.25 / 23297 a4D7/2 → a6S5/2 ≈ 427.5 / ≈ 7.0 + 92 25.28 msec  

a6D9/2 ↔ a6S5/2 
586.43 / 17052 a6D9/2 → a6S5/2 590.0 / ≈ 100 -103 654 µsec 

 

The 431 nm emission feature evident in Figure  VII.37 is thermally unstable.  The 413 

nm emission feature is assigned to the z6P3/2 state fluorescence.  The decay 

characteristics of the 625 nm feature reveal complex kinetics requiring a triple 

exponential fitting function.  Of the three decay components only the short decay 

extracted (see Table  VII.8) is in line with the known gas phase value of 149.3 µsec8 

for the z8P5/2 ↔ a6S5/2 transition.  However, the spectral location of the emission band 

does not support this assignment.  The final emission feature exhibiting a broad band 

profile produced with blue (2°) site excitation occurs at 438 nm.  This feature is 

unassigned as the spectral location and the broad linewidth observed indicate a large 

Stokes’ shifted P → S type transition but, the long decay time recorded (> 0.1 sec) of 

the 438 nm band is at variance with a resonance emission unless an interaction with a 

trapping level (a4D) is involved.  Clearly, due to the conflicting spectral and kinetic 

data recorded the 438 nm emission in Mn/Ar, the band cannot be definitively 
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assigned to the relaxation of an excited state of atomic Mn.  Further discussion of this 

feature is presented in Chapter VIII. 

Overall, the Mn/Ar emission spectroscopy is strongly site specific.  The most 

pronounced example being the presence of the z6P3/2 fluorescence from the blue (2°) 

site and its complete absence from the red (1°) site.  The preference of the Mn atoms 

isolated in the red (1°) site to relax via a more complex curve crossing process from 

the z6P ⇒ a4D is also evident.  In the following section, the luminescence of Mn 

atoms isolated in solid Kr is presented. 

 
Table  VII.8 Photophysical characteristics and excited state assignments of the emission 

features produced following excitation of the 3d54s4p z6P5/2 ← 3d54s2 a6S5/2 
transition of matrix – isolated atomic manganese isolated in the high energy 2° 
site centered at 380 nm (26316 cm-1).  λEm indicates the emission band-centre in 
nm units. The full-width at half-maximum intensity of the emission features is 
denoted by ∆ and the matrix shift by δ - both in wavenumber (cm-1) units.  The 
excited state lifetimes (decay characteristics, τ) are presented, the subscripts 
Rad. and Cor indicate the radiative lifetime of the excited state and the lifetimes 
corrected for the effective field. τObs. indicates the dominant decay characteristic 
at 12 K. 

Mn Gas Phase  Mn/Ar Matrix (2° site) 

Transition 
nm / cm-1 Assignment λEm. (nm) / ∆ (cm-1) δ (cm-1) Decay time  

z6P3/2 ↔ a6S5/2 
403.56 / 24779 z6P3/2 → a6S5/2 413.0 / ≈ 465 -566 τRad / Cor = 28.0/ 57.5 nsec 

τRad / Cor = 10.5 / 21.6 nsec 
z6P3/2 ↔ a6S5/2 
403.56 / 24779 

 
a4D7/2 ↔ a6S5/2 
429.25 / 23297 

(?) 438.0 / ≈ 230 

-1948 
 
 

-466 
τobs. > 0.1 sec 

z8P5/2 ↔ a6S5/2 
543.40 / 18402 

 
a6D9/2 ↔ a6S5/2 
586.43 / 17052 

(?) 625.0 / ≈ 260 

-2402 
 
 

-1052 

τ1 Obs.= 662 µsec 
τ2 Obs.= 165 µsec 
τ3 Obs.= 36 µsec 

 

VII.2.III Mn(z6P)/Kr 

In Chapter VI, the absorption features observed at 385.5 nm (25940 cm-1) and 401.9 

nm (24881 cm-1), shown in the middle panel of Figure VI.8, were both assigned to the 

z6P5/2 ← a6S5/2 transition of atomic Mn isolated in Kr.  Mn/Kr was the only system 

where analysis of the absorption spectroscopy lead to the identification of two sites of 

atomic isolation following matrix deposition.  The sites identified were labelled blue 

(1°) at 385.5 nm and red (2°) at 401.9 nm.  Given their relative abundance and 
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spectral positions, these labels are used throughout the following sections.  It should 

be noted that the labels are not interchangeable with the labelling used for the sites 

identified for Mn/Ar where the 1° and 2° corresponded to the red and blue sites 

respectively. 

 Figure  VII.38 presents a time-integrated emission spectrum recorded for 

Mn/Kr with continuous tungsten lamp excitation of the blue (1°) and red (2°) sites at 

385.5 and 400 nm respectively.  The top panel of Figure  VII.38 shows the emission 

spectrum produced with excitation at 385.5 nm into the central component of the 

threefold split blue (1°) absorption band.  Resolved, broad emission features are 

recorded at 416, 433.5, 440 and 626.8 nm exhibiting linewidths of 510, 285, 305 and 

290 cm-1 respectively.  Excitation into to the red (2°) site at 400 nm produces 

emission bands at 432.4, 603.8 and 626.5 nm with linewidths of 203, 320 and 300 

cm-1 respectively.  The dominant emission feature shows evidence of an unresolved 

blue shoulder at 428.9 nm.  Like Mn/Ar, the emission features produced with site 

selective excitation of the z6P ← a6S transition of atomic Mn in solid Kr are 

spectrally distinct. 
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Figure  VII.38 Emission spectra recorded at 12 K for Mn/Kr with lamp excitation of the 1° 
(385.5 nm) and 2° (400 nm) sites assigned to the Mn z6P5/2 ← a6S5/2 transition. 
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 High-resolution excitation spectra recorded monitoring the dominant emission 

features at approximately 417.1 and 432.4 nm produced with blue (1°) and red (2°) 

site excitation are presented in Figure  VII.39.  The excitation spectrum recorded 

monitoring the unresolved shoulder identified at 428.4 nm is also presented.  Each of 

the three excitation spectra presented exhibit well-resolved threefold split patterns 

corresponding to three high symmetry sites of isolation of Mn atoms.  The sites of 

isolation are labelled 1°, 2° and 3° and are centered at 385, 398.3 and 393.7 nm 

respectively.  The blue (1°) site shows resolved components at 381.4, 385 and 388.8 

nm each exhibiting an average linewidth of 295 cm-1.  Gaussian fits of the excitation 

spectra corresponding to the 2° and 3° bands revealed average linewidths of 203 and 

484 cm-1 respectively.  The photophysical characteristics of the three sites are 

presented in Table  VII.9 
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Figure  VII.39 High-resolution excitation spectra recorded near the gas phase z6P5/2 ↔ a6S5/2 
transition of atomic Mn occurring at 403.42 nm monitoring the dominant 
emission features produced with 1° and 2° site excitation at 415.8 and 431.4 nm 
and the unresolved 428.4 nm shoulder observed on deposition at 12 K.  The 
relative amounts of each site can be accessed from the emission spectra 
presented in Figure  VII.38. 
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Table  VII.9 Photophysical characteristics of the sites of isolation (1°, 2° and 3°) revealed in 
excitation spectra of the 3d54s4p z6P5/2 ↔ 3d54s2 a6S5/2 transition of atomic 
manganese.  The spectral position and average full width at half maximum 
(fwhm) denoted as ∆AV of the three components identified in Gaussian lineshape 
analyses of the three–fold split excitation spectra are presented in wavenumber 
units.  Gas phase to matrix frequency shifts (δ) are presented for the atomic Mn 
z6P5/2 ← a6S5/2 transition (G.P.: 24,788.05 cm-1) in wavenumber units.  Note the 
frequency shifts are calculated with respect to the central feature of the 
observed threefold pattern. 

Mn/Kr Site Component E (cm-1) ∆AV (cm-1) δ (cm-1) 
 

1° 
1 
2 
3 

26219 
25974 
25720 

 
≈295 

 
+ 1187 

 
2° 

1 
2 
3 

25259 
25107 
24900 

 
≈203 

 
+ 319 

 
3° 

1 
2 
3 

25800 
25400 
24900 

 
≈484 

 
+ 612 

 

 High-resolution excitation spectra allowed the correlation of the emission 

features resulting from z6P5/2 ← a6S5/2 excitation with Mn atoms in the three matrix 

sites.  The blue (1°) site centered at 385 nm resolved in excitation, is identified as the 

major contribution to the observed absorption band.  It leads to the emission features 

centered at 415.8, 440.2 and 626.4 nm.  The red (2°) site centered at 398 nm produces 

the emission bands observed at 428.4 and 585.8 nm on deposition at 12 K.  The 3° 

site whose absorption overlaps those of the 1° and 2° sites leads to both the 432.4 

(433.5) and 603.8 nm features.  The relative stability of these sites was assessed from 

emission spectra recorded following careful matrix annealing of Mn/Kr samples to 38 

K.  

Time-integrated emission spectra recorded following annealing to 38 K are 

presented in Figure  VII.40.  Comparison of the relative emission intensities before 

(Figure  VII.38) and after annealing (Figure  VII.40) for a specific site excitation 

reveals the thermal instability of the 3° site.  It is evident from a comparison of the 

emission resultant from red (2°) site excitation at 400 nm, that the emission features 

located at 428.4 and 626.8 nm dominate those at 431.7 and 603 nm.  This represents 

the reduction of the 3° site of isolation, therefore confirming its identification as a 

thermally labile site of atomic isolation.  It is also apparent from the comparison that 

an additional asymmetric emission band at 585.8 nm is enhanced by the annealing 

procedure for red (2°) site excitation.  Moreover, the 428.4 nm band has sharpened.  
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The emission spectra produced by blue (1°) site excitation at 385.5 nm before and 

after annealing revealed no dramatic changes in the relative emission intensities of the 

bands observed. 
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Figure  VII.40 Time-integrated emission spectra recorded at 12 K produced with lamp 
selective excitation of the 1° (385.5 nm) and 2° (400 nm) sites assigned to the Mn 
z6P5/2 ← a6S5/2 transition following annealing to 38 K.  The high-resolution 
excitation spectra recorded on deposition at 12 K are shown left.  The emission 
features resulting from 3° excitation reduced by the annealing procedure are 
indicated by the asterisk.  

 
The annealing experiments allowed the identification of the blue (1°) and red (2°) 

sites centered at 385.5 nm and 398.3 nm as the thermally stable sites of Mn atom 

isolation in solid Kr.  As revealed in Figure  VII.41 by the comparison of the 

excitation spectra of the 1° and 2° sites with the absorption spectrum recorded at 12 

K, it is evident that the absorption spectrum results from the presence of two 

thermally stable sites of isolation.  It is concluded that absorption spectra recorded on 

deposition provide an accurate reflection of the site occupancy for atomic Mn isolated 

in solid Kr, insofar as the blue (1°) and red (2°) site components are observed in a 3:1 
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ratio.  In the next section, the emission spectroscopy of atomic Mn isolated in solid 

Kr produced with site-specific z6P5/2 ← a6S5/2 excitation is analysed. 
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Figure  VII.41 Comparison of the high-resolution excitation spectra recorded and absorption 
spectra recorded in the vicinity z6P5/2 ↔ a6S5/2 transition of Mn for dilute Mn/Kr 
samples on deposition at 12 K. 

 

VII.2.III.I Mn(z6P)/Kr Site-specific Emission Spectroscopy 

Figure  VII.42 presents a summary of the emission spectra recorded in the 405 – 450 

nm range, following selective excitation of the z6P state of atomic Mn isolated in the 

blue and red sites in Kr.  Inspection of Figure  VII.42 highlights the difference in the 

emission features produced with excitation into the two sites.  Thus, broad emission 

features at 416 and 440 nm are produced with excitation into the blue (1°) site.  In 

contrast, red (2°) site excitation produces narrow linewidth emission at 428 nm.  The 

weak side band observed at 432 nm is due to a residual amount of the thermally labile 

3° site.  As shown in Figure  VII.42 this band is produced in the entire 380 – 405 nm 

excitation range.  In the next section, the photophysical and temporal decay 

characteristics of each of the observed bands are used to assign the emission features 

to atomic transitions. 
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Figure  VII.42 A 3d plot of time-integrated Mn/Kr emission spectra (X-axis) produced with 
lamp excitation of the Mn z6P5/2 state (Y-axis) recorded at 12 K following 
annealing to 38 K.  The asterisk indicated where scattered light was removed 
for presentational reasons. 

 

VII.2.III.II Mn(z6P)/Kr - 1° site luminescence 

Mn(z6P)/Kr - 1° Site - λEm. = 416.0 nm 

The dominant emission feature produced with blue (1°) site excitation at 385 nm 

occurs at 416 nm exhibiting, as shown in Figure  VII.38, a linewidth of 505 cm-1.  The 

observed broad band profile is indicative of a P → S type electronic transition and is 

reminiscent of the 413 nm emission feature assigned to the resonance z6P3/2 state 

fluorescence in solid Ar.  In attempting to assign the emission band, the temporal 

decay characteristics of the emission were analysed.  Figure  VII.43 presents ‘on a 

nanosecond scale’ time-resolved emission spectra recorded for the 416 nm feature.  It 

is apparent that the emission intensity decays on a nanosecond timescale. 

Figure  VII.44 presents, on a semi-log plot, the temporal decay profile extracted from 

the 416 nm intensity distribution shown in the time-resolved emission spectrum in 

Figure  VII.43.  Fitting the emission decay profile required the use of a double 

exponential function, convoluted with the temporal profile of the excitation laser.  

The two nanosecond decay components extracted are 46.4 and 30.5 nsec.  A 

comparison of the relative amplitudes A1 and A2 indicates the dominance of the 
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shorter component and its identification as the observed excited state lifetime, τObs. = 

30.5 nsec.   

 
 

Figure  VII.43 Time-resolved emission spectra recorded for the 416 nm band (at 12 K) 
following pulsed laser excitation at 385 nm.  The temporal step and width used 
was 10 nsec with a delay time of td = 0.0 nsec. 
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Figure  VII.44 Decay profile of the 416 nm emission feature recorded at 12 K extracted from 
time–resolved emission spectrum, Figure  VII.43.  The decay profile is 
convoluted with the temporal profile of the excitation laser source at 387 nm.   
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The temperature dependence of the 416 nm decay profile was recorded.  This 

allowed the identification of the observed emission lifetime (τObs.) as that of the 

radiative decay of the excited state (τRad), because as shown in Figure  VII.45, no 

change in the temporal profile was observed over the temperature range 12 to 18 K.  

Double exponential trial functions were required to provide an adequate model of the 

decay profiles at all temperatures from 12 to 31 K as shown in Figure VII.45. 

 

Table  VII.10 Excited state lifetimes (τobs) and amplitudes (A) extracted by applying a double 
exponential function convoluted with the laser temporal profile to the decay 
curves recorded monitoring λEm. = 416 nm at different temperatures, (Ts) 
following pulsed laser excitation at 387 nm. Note the dominant decay 
contribution is presented in bold. 

Ts. (K) Fit Range (nsec) A1 τ1 (nsec) A2 τ2 (nsec) 

12.0 

15.0 

18.0 

21.0 

24.0 

28.0 

30.0 

31.0 

0 – 320 

0 – 260 

0 – 300 

0 – 260 

0 – 260 

0 – 240 

0 – 200 

0 – 190 

5300 

6000 

6000 

7200 

9600 

8800 

21500 

22000 

46.4 

46.5 

46.5 

44.0 

37.6 

32.0 

24.0 

22.0 

12900 

16531 

16531 

16800 

16000 

14500 

20500 

22500 

30.5 

30.3 

30.3 

27.5 

23.2 

19.0 

12.5 

12.0 

 

Application of the effective field correction (Equation III.1), using the 

refractive index of solid Kr as 1.42811, leads to a corrected decay time of 55.3 nsec.  

The gas phase lifetime for the fluorescent transition is reported as 66.1 ± 1.4 nsec9.  

Although, the corrected matrix lifetime (τCor.) is shorter than the reported gas phase 

value, it allows the assignment of the emission feature to the resonance fluorescence.  

The emission band is therefore red shifted by 740 cm-1 from the gas phase position1 

of the z6P3/2 ↔ a6S5/2 transition at 403.56 nm (24779 cm-1). 
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Figure  VII.45 Comparison of the excited state decay profiles produced monitoring the 416 nm 
emission feature following pulsed laser excitation at 385 nm at various 
temperatures as indicated.  The temporal profile of the excitation source is also 
shown. 

 
Mn(z6P)/Kr - 1° Site - λEm. = 440.0 nm 

Blue site excitation produces the emission feature at 440 nm which exhibits a 

linewidth of approximately 280 cm-1.  This broad emission accompanies the 416 nm 

band (see left panel of Figure  VII.42) and suggests an assignment of resonance z6P3/2 

fluorescence, blue-shifted from the gas phase1 position (403.56 nm; 24779 cm-1) by 

2052 cm-1.  However, the broad 416 nm (24038 cm-1) feature also observed with blue 

(1°) site excitation is already assigned to the z6P5/2 → a6S5/2 transition in the previous 

section. 

Figure  VII.46 presents a time-resolved emission spectrum monitoring 

emission bands in the vicinity of the z6P5/2 → a6S5/2 transition.  Inspection of Figure 

 VII.46 shows very long excited state decay characteristics for the 440 nm band in 

comparison to the nanosecond 416 nm fluorescence.  Each temporal segment 

represents 5.0 msec and the 440 nm band is observed with significant intensity even 

at 100 msec, as shown by the inset of Figure  VII.46. 
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Figure  VII.46 Time-resolved emission spectrum recorded monitoring λEm. = 440 nm (at 12 K) 
following pulsed laser excitation at λEx. = 385 nm.  The temporal step and width 
used was 10 nsec with a delay time of td = 0.0 nsec.  Note the 431 nm feature 
observed is produced by excitation of the 3° thermally unstable site. 

 
Decay profiles of the 440 nm emission were also recorded using the TCSPC 

technique.  One such measurement made at 12 K following matrix annealing is 

shown in Figure  VII.47.  Least squares analysis of the decay profile required three 

exponential functions to achieve an adequate fit and extract the excited state decay 

characteristics.  It is apparent from the complicated decay profile containing a rise 

time portion, that the 440 nm emission band is produced by complex excited state 

kinetics.  The three decay times extracted, range from the shortest component τ3 = 2.4 

msec (identified as the rise time) to the dominant decay time τ1 = 0.1 sec. 
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Figure  VII.47 Decay profile of the 440.1 nm emission recorded at 12 K using TCSPC following 
pulsed laser excitation at 385.15 nm.  The residuals present the difference 
between the triple exponential non-linear least squares fit completed and the 
decay recorded. 

 
Decay profiles recorded at temperatures in excess of 12 K are presented in Figure 

 VII.48.  It is clear from the marked changes shown, that the excited state decay curves 

are extremely sensitive to temperature.  Of particular note is the removal of the rise 

time component at temperatures greater that 25 K, shown inset in Figure  VII.48.  A 

double exponential fit of the decay profile recorded at 32 K showed two msec 

components.  The strong temperature dependence and the multi-exponential nature of 

the decay profiles recorded do not allow a conclusive assignment of the excited state 

producing the 440 nm emission band. 

Inspection of the spectra presented in Figure  VII.49 shows the steady decrease 

in the emission intensity of the 416 nm band with increasing temperature.  This 

observation indicates the presence of a non-radiative step which becomes active 

between 18 and 20 K and increased phonon relaxation at higher temperatures.  

However, the inset shows that in the temperature range 12 to 18 K, where the 440 nm 

emission showed a rise time component (Figure  VII.48), there is an increase in its 

emission intensity.  At temperatures greater than 20 K the intensities of both 416 and 

440 nm features decreases. 
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Figure  VII.48 Decay profiles recorded monitoring the 440 nm emission feature produced with 
1° site z6P5/2 ← a6S5/2 excitation at 385.15 nm at various temperatures as 
indicated.  The behaviour of the rise time component at various temperatures is 
shown inset. 

 
These observations suggest that non-radiative steps are active in removing the 

population from the excited states leading to both the 416 and 440 nm bands at all 

temperatures above 20 K.  The increase in the emission intensity at 440 nm up to 20 

K is accompanied by the decrease in the intensity of the z6P3/2 fluorescence (416 nm) 

indicating a feeding step from the z6P excited state leads to the population of the 

emitting level which gives rise to the 440 nm band.  Unfortunately, the presence of a 

rise time and multiple long decay time components cannot be reconciled with this 

model as a direct feeding mechanism requires the appearance of the nanosecond 

decay time of the donor (the z6P3/2 excited state) as the rise time of the acceptor.  The 

rise time observed is much longer. 

Because of the conflicting spectral and temporal data recorded for the 440 nm 

emission, this feature, like the 438 nm band in solid Ar, cannot be definitively 

assigned to an electronic transition of atomic Mn in solid Kr.  The assignment of this 

broad spectral feature to the z6P → a6S transition would require the stabilisation of 

the excited state via a second mechanism and is not consistent with the very long 
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decay times measured.  The only alternative is the assignment of the emission feature 

to that of the relaxation of the a4D excited state.  However, the emission lineshape 

observed and the large matrix shift of 570 cm-1 observed from the gas phase position 

of the a4D7/2 → a6S5/2 transition make this assignment problematic as it is so different 

to the 428 nm band to be presented ahead. 

 

Figure  VII.49 Time-integrated emission spectra recorded following z6P5/2 ← a6S5/2 1° site 
specific continuous W-lamp excitation at 385 nm at various temperatures. 

 

Mn(z6P)/Kr - 1° Site - λEm. = 626.8 nm 

The broad emission band centered at 626.8 nm (15954 cm-1) resulting from blue (1°) 

site excitation of the z6P excited state is shown in the upper panel of Figure  VII.40.  A 

decay profile recorded monitoring the 626.8 nm feature produced with z6P excitation 

at 12 K is shown in Figure  VII.50.  Inspection of the decay profile reveals the 

complex kinetics leading to the observed emission, confirmed by the multi-

exponential fit completed.  The fit allowed the extraction of three decay components 

1.67 msec, 564 and 101 µsec.  The dominant 564 µsec decay component is assigned 

to the observed excited state lifetime at 12 K.  The observed decay time is longer than 

the gas phase lifetime of the z8P5/2 → a6S5/2 transition 149.3 µsec2 and shorter than the 

theoretically calculated lifetime for the a6D9/2 metastable state of 3.4 sec3.  However, 

the short-lived minor 101 µsec component extracted is comparable to the gas phase 
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lifetime of the z8P state.  Decay profiles recorded at higher temperatures showed 

increased complexity as shown in Figure  VII.51.  Lifetimes extracted at elevated 

temperatures confirmed the temperature sensitivity of all the decay components. 
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Figure  VII.50 Decay profile of the 626.0 nm (623.05 nm) emission recorded at 12 K using 
TCSPC following deposition at 25 K pulsed laser excitation at 385.15 nm. 

 

Temperature dependent time-integrated emission spectra recorded following 

excitation at 385 nm are shown in Figure  VII.52.  Comparison of these spectra 

reveals that increasing the temperature above 20 K enhances the 626.4 nm feature.  

This coincides with the removal of the emission intensity at 440 nm above 20 K.  The 

decay profiles shown in Figure  VII.51 reveal the decay time shortens up to 22 K, but 

at temperatures in excess of this value, the decay profiles appear longer and increase 

in complexity.  The proposal that the relaxation occurs via the excited state leading to 

the 440 nm emission is reinforced by the dominance of the 2.23 msec component in 

the decay time extracted for the 626.4 nm band at 35 K.  The rise time observed for 

the 440 nm feature at 12 K (2.4 msec, shown in Figure  VII.47) matches the decay 

time (2.23 msec) observed of the 626.4 nm emission indicating a feeding of the 

emitting level by the state producing the 440 nm band at 35 K. 
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Figure  VII.51 Decay profiles recorded monitoring the 626.4 emission feature produced with 1° 
site z6P5/2 ← a6S5/2 excitation at 385.15 nm at the temperatures indicated. 

 
The conflicting characteristics of the broad Gaussian lineshape, the spectral location 

and the complex emission kinetics do not allow the definitive assignment of the 626.4 

nm emission feature to either the z8P5/2 or the a6D9/2 states of atomic Mn in solid Kr. 

 

Figure  VII.52 Time-integrated emission spectra recorded following z6P5/2 ← a6S5/2 blue (1°) 
site specific continuous W-lamp excitation at 385 nm at various temperatures. 
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VII.2.III.III Mn(z6P)/Kr - 2° site luminescence 

In the following section, the narrow emission features located at 428.4 and 585.3 nm 

are assigned to electronic transitions of atomic Mn produced with red (2°) site 

resonance z6P5/2 ← a6S5/2 excitation.  Excitation spectra shown in Figure  VII.39 

reveal the presence of the 2° site centered at 398.3 nm (25107 cm-1).  Subsequent 

matrix annealing showed the thermal stability of the emissions at 428.4 and 585.3 nm 

over the 3° site that resulted in the labile 431.7 nm emission, (see Figure  VII.38 and 

Figure  VII.40). 

 

Mn(z6P)/Kr - 2° Site - λEm. ≈ 428.4 nm 

The left panel of Figure  VII.53 presents a high-resolution emission spectrum recorded 

with laser excitation at 400 nm.  Deposition was completed at 12 K and the sample 

was subsequently annealed to 38 K.  Inspection of Figure  VII.53 reveals five resolved 

emission components located at 427.68, 427.82, 427.88, 428.01 and 428.65 nm at 12 

K.  The spectral location and the narrow linewidth of the emission features are 

suggestive of a D → S type transition.  At higher temperatures, the overall emission 

intensity decreased and the emission lineshape broadened substantially as evident in 

Figure  VII.53. 
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Figure  VII.53 Site specific high-resolution emission spectra produced with pulsed laser 
excitation at 400 nm at 12 K (solid) and 25 K (dotted) shown left.  The right 
panel depicts the effect of increased spectral resolution as indicated. 



Chapter VII; Mn(z6P)/RG Luminescence 

219 

The narrow emission bands near 427.8 nm in Kr are reminiscent of those observed in 

Mn/Ar at 427.5 nm.  This latter emission resulted from red (1°) site z6P5/2 state 

excitation in solid Ar shown in Figure  VII.16.  Wp lineshape analyses of the Mn/Ar 

emission assigned to the a4D7/2 → a6S5/2 transition, required the use of two sets of 

oscillators and allowed the identification of two band origins (ν0,0) shown in Figure 

 VII.21 and Figure  VII.23 respectively.  The Mn/Ar Wp analysis also showed that the 

high temperature emission band profile was dominated by the component with the 

larger phonon frequency (h,−ω = 35 cm-1).  The same analysis was conducted on the 

resolved emission features in the 427.8 nm band of the Mn/Kr system.  The initial 

step in the Wp analysis, was estimating the phonon frequency of h,−ω = 42 cm-1.  This 

allowed a fit, shown in Figure  VII.54, of three of the emission features employing an 

electron-phonon coupling strength of S = 0.4.  This S value was selected from the 

relative intensities of the two resolved high energy emission components, as the low 

energy portion shows an increased emission intensity due to the spectral overlap with 

the 431.7 nm emission not fully removed by the annealing process.  As shown on the 

right hand side of Figure  VII.53, the contribution of the thermally labile emission to 

the 428 nm lineshape is reduced by recording the emission using the highest 

resolution possible.  The effect of the increased resolution is shown on the right of 

Figure  VII.53.  The Wp lineshape analyses presented in Figure  VII.54 was successful 

in fitting the dominant emission features at 12 and 20 K.  It is evident from the 

number of resolved features unaccounted for by the Wp Fit 1, that a second Wp 

function is required to complete the analysis at 12 K.  The blue shoulder band located 

at 427.66 nm (23383 cm-1) was selected as the second ZPL.  Using a phonon 

frequency of h,−ω = 19 cm-1 allowed an adequate fit of the remaining resolved features 

observed at 12 K, shown in Figure  VII.55.  The second Wp function also allowed a fit 

of the emission linewidth and the intensity distribution observed at 20 K, but is 

unable to fit the asymmetry observed at high energy as shown on the right panel of 

Figure  VII.55. 
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Figure  VII.54 The Wp lineshapes calculated with Equation III.4 for the resolved emission 
features observed in solid Kr at 12 K and 20 K produced with site specific 
pulsed laser excitation at 400 nm corresponding to the z6P5/2 ← a6S5/2 transition 
from 2° site.  The location of the zero phonon line is indicated as ZPL and ν0,0 in 
wavenumber units. 
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Figure  VII.55 The second Wp lineshapes calculated with Equation III.4 for the resolved 
emission features observed in solid Kr at 12 K and 20 K produced with site 
specific pulsed laser excitation at 400 nm corresponding to the z6P5/2 ← a6S5/2 
transition from 2° site.  The location of the zero phonon line is indicated as ZPL 
and ν0,0 in wavenumber units. 
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An assessment of the overall quality of the fits completed is presented in 

Figure  VII.56, where Gaussian functions exhibiting linewidths of 5.4 cm-1, 

corresponding to the linewidth of the ZPL identified at 23374 cm-1 are shown.  The 

fitted Gaussian functions have been substituted for the Wp positions and are scaled to 

reflect the intensity distribution at 12 K.  This analysis shows that both intensity 

distributions (Wp Fit 1 and 2) are required to simulate the band profile observed at 12 

K.  This analysis succeeds in reproducing the high-energy features corresponding to 

the positions of the ZPL’s.  In addition, the simulation predicts the weak features 

located at 428.45 and 428.65 nm.  However, the simulation is unable to reproduce the 

broad underlying low energy feature.  This feature is attributed to a residual amount 

to the thermally unstable 431.7 nm band, which exhibits a broad Gaussian lineshape 

as shown in Figure  VII.53. 
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Figure  VII.56 Simulation of the emission band profile generated using Gaussian lineshapes 
(fwhm 5.6 cm-1) for both of the Wp distributions identified as described in the 
text.  The parameters and the positions of the two ZPL’s (ν0,0) identified are 
indicated. 

 

Table  VII.11 summarises the results of the Wp lineshape analysis completed.  

Overall, the Mn/Kr Wp analysis strongly resembles that done for Mn/Ar (Section 

VII.2.II.II), which also showed that the high temperature emission band profile was 
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dominated by the component with the larger phonon frequency.  The spectral 

separation between the two ZPL’s identified is attributed to a crystal field effect 

generated by the site of isolation.  This indicates a crystal field splitting of 9.0 cm-1 

for the a4D state of atomic manganese in solid Kr. 

 

Table  VII.11 The location of the ZPL’s extracted in the Wp lineshape analyses of the 
emission assigned to the a4D7/2 → a6S5/2 transition in solid Kr.  

Transition ZPL, ν0,0 (cm-1) S h,−ω (cm-1) 

a4D7/2 ↔ a6S5/2 - Wp Fit 1 

a4D7/2 ↔ a6S5/2 - Wp Fit 2 

23374 

23383 

0.4 

1.4 

42 

19 

 

The decay profile recorded monitoring the most intense resolved emission feature 

centered at 427.84 nm (corresponding to the ZPL identified from the primary Wp 

lineshape function) at 12 K is presented in Figure  VII.57.  An adequate fit of the 

decay profile was achieved using a double exponential trial function that allowed the 

extraction of two excited state lifetime values of 23.97 msec and 12.49 msec.  The 

longer decay component of 23.97 msec, dominated at 12 K and is identified as the 

observed lifetime.  This excited state lifetime is consistent with assignment of the 

observed emission to that of the a4D7/2 → a6S5/2 phosphorescent transition of atomic 

Mn isolated in Kr matrices, as the transition is both spin and parity forbidden.  The 

same analysis was applied to the emission feature observed at 428.66 nm.  The decay 

profile recorded at 12 K (shown in Figure  VII.58) exhibited increased complexity and 

required the use of a triple exponential function to provide an adequate fit.  The 

dominant decay component had a lifetime of 11.9 msec.  This component compares 

well to the second short decay component extracted from the analysis of the 427.86 

nm feature.  As such this shortening of the observed decay time is assigned to the 

enhancement a4D7/2 → a6S5/2 transition from a selection rule relaxation induced by 

local phonon interaction.  The additional third component (τ3 = 5.0 msec) observed in 

the decay profile of the 428.66 nm feature of Figure  VII.58 originates from spectral 

overlap with the broad 431.7 nm emission.  This is confirmed by decay times of 26.4, 

9.9 and 2.2 msec which were extracted monitoring the 431.7 nm emission feature 

fitted with a triple exponential trial function. 
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Figure  VII.57 Decay profile of the 427.84 nm emission feature recorded at 12 K using TCSPC 
following pulsed laser excitation at 400 nm. 
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Figure  VII.58 Decay profile of the 428.66 nm emission recorded at 12 K using TCSPC 
following pulsed laser excitation at 400 nm.  The residuals present the 
difference between the triple exponential fit and the decay recorded. 
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The excited state lifetime identified for the pure electronic a4D7/2 → a6S5/2 transition 

(ZPL) in solid Kr is 24 msec.  However, the decay times were observed to be 

temperature dependent at 12 K hence the radiative lifetime of the a4D7/2 excited state 

has not been identified. 

 
Table  VII.12 Excited state decay components (τ) and amplitudes (A) extracted using 

exponential functions to fit to the decay curves recorded monitoring the 427.86 
nm corresponding to the ZPL identified in Wp fit 1 and the phonon sideband at 
428.66 nm at 12 K following pulsed laser excitation at 400 nm. Note the 
dominant decay contribution is presented in bold. 

λEm. (nm) Fit Range (msec) A1 τ1 (msec) A2 τ2 (msec) A3 τ3 (msec)

427.84 

428.66 

0.5 – 95.0 

0.2 – 80.0 

4071.2 

2363.7 

23.97 

27.48 

720.3 

3496.0 

12.49 

11.91 

- 

1901.8 

- 

5.0 

 
The resolved emission features centered at 428 nm in solid Kr following red (2°) site 

excitation at 400 nm are assigned to ZPL’s and phonon side-bands of the a4D7/2 → 

a6S5/2 transition of atomic Mn.  These assignments were based on the spectral and 

temporal characteristics presented in the previous sections.  A comparison of the 

observed matrix lifetimes (solid Ar and Kr) reveals the similarity in the relaxation 

time of the pure electronic transitions assigned.  In solid Ar and Kr the observed 

lifetimes for the a4D7/2 → a6S5/2 transitions are 25.28 and 23.97 msec respectively.  

The decay times recorded were temperature dependent so these lifetimes are not 

identified as the radiative lifetimes of the a4D7/2 → a6S5/2 transition of atomic Mn.  

Moreover, the gas phase lifetime for the a4D ↔ a6S transition which is both electric-

dipole and electric-quadrupole forbidden is unknown. 

 

Mn(z6P)/Kr - 2° Site - λEm. ≈ 585.8 nm 

The second, narrow emission present at 585.8 nm (17070 cm-1) as a result of red (2°) 

site excitation is shown in the top panel of Figure  VII.40.  This feature is blue shifted 

of the atomic Mn gas phase a6D9/2 ↔ a6S5/2 transition1 (586.43 nm, 17052 cm-1) by 

only 18 cm-1.  High-resolution emission spectra recorded in this spectral region at 12 

K employing pulsed laser excitation are indicated by the solid line in Figure  VII.59.  

A clear asymmetry in the emission band profile is evident.  Recording the emission at 

temperatures in excess of 12 K, resulted in the reduction of the intensity of sharp 

feature relative to the broad sideband, as shown in Figure  VII.59.  The temperature 
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dependence exhibited was completely reversible, an effect characteristic of phonon 

structure on the emission profile.  Therefore, the ZPL is assigned to 585.8 nm (17070 

cm-1) with the phonon sideband occurring to lower energy at 588 nm (17007 cm-1). 

 

16.917.017.1
x103 Energy (cm-1)

Em
is

si
on

In
te

ns
ity

585.0 588.0 591.0
Wavelength (nm)

TS = 12 K
TS = 22 K

Mn/Kr Emission λEx. = 400.0 nm

a6 D
9/

2__
__

a6 S 5/
2

 

Figure  VII.59 Mn/Kr time-resolved emission spectra produced with red (2°) site pulsed laser 
excitation (λEx. = 400 nm) at 12 K and 22 K, following annealing to 42 K. 

 

 Fitting the decay profile recorded at 12 K monitoring the ZPL at 585.8 nm, 

using a double exponential fitting function, allowed the extraction of the excited state 

decay characteristics as shown in Figure  VII.60.  The two decay components 

extracted are 287 and 147 µsec12. 

 No temperature dependent decay profiles were recorded.  Therefore, at present 

the dominant temporal component τ = 287 µsec is assigned as the observed lifetime 

for the electronic transition.  However, this value is substantially shorter than the 

lifetime of 3.4 sec calculated3 for the a6D9/2 ↔ a6S5/2 transition of atomic manganese 

in the gas phase.  Based on the spectral location of the band and the temperature 

dependence exhibited, the 585.8 nm emission is assigned to the a6D9/2 → a6S5/2 

transition of atomic Mn.  The assignment of this emission feature is discussed in 

greater depth in the next Chapter following the presentation of the luminescence of 

the a6D state produced with direct dye laser excitation of the forbidden a6D ← a6S 

transition. 
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Figure  VII.60 Decay profile of the 585.9 nm emission recorded at 12 K using TCSPC following 
pulsed laser excitation at 400 nm.  Note the early portion of the decay profile 
not accounted for by the double exponential fit12 and therefore truncated at ≈ 40 
µsec.  This was required due to pulse-pile up in emission. 

 

VII.2.III.IV Discussion - Mn(z6P)/Kr  

A summary of all the luminescence spectroscopy resulting from excitation of the 

z6P5/2 ↔  a6S5/2 transition of atomic Mn isolated in solid Kr is presented in Figure 

 VII.61.  The relative positions of the gas phase transitions of atomic Mn are indicated 

by the vertical lines and the emission features produced by excitation of the thermally 

unstable 3° site are indicated by an asterisk.  The emission features resultant from 

blue (1°) and red (2°) site-specific excitation are labelled with arrows to indicate the 

assigned electronic transition.  The emission features at 416, 440 and 626.8 nm 

produced by z6P5/2 excitation of Mn atoms isolated in the dominant (blue) site of 

isolation are shown in the bottom right of Figure  VII.61.  The photophysical 

properties and where possible, the electronic transitions assigned to the observed 

matrix emission bands, are presented in Table  VII.13.  In the following section, the 

mechanisms leading to the production of the observed features are discussed and the 

site specificity of the emission spectroscopy is highlighted. 
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Figure  VII.61 Emission spectra recorded at 12 K for the Mn/Kr system with site-selective 
lamp excitation of the Mn z6P5/2 ← a6S5/2 transition.  The excitation spectra (1° 
and 2° site), were recorded by monitoring emission at 428.4 (top) and 416 / 626 
nm (bottom) for the 1° and 2° sites respectively are shown by the dash-dot 
trances left.  Spectra were recorded following Mn/Kr sample deposition at Td= 
12 K and matrix annealing to TAn. >32 K.  The spectral positions of the gas 
phase transitions of atomic Mn are shown by the dashed vertical lines.  The 
observed Mn/Kr matrix absorption and emission bands assigned are indicated. 
Note * indicates the emission band is produced by excitation of the thermally 
unstable 3° site as the excitation band profile overlaps both the 1° and 2° sites 
see Figure  VII.39. 

 
Firstly, site-specific emission features are clear from inspection of Figure  VII.61 as 

reflected in the excited states assigned.  The blue (1°) site produces resonance z6P3/2 

→ a6S5/2 fluorescence at 416 nm - an assignment which is strong due to the close 

agreement between the gas phase lifetime, τG.P. = 66.1 ± 1.4 nsec9 and the matrix 

radiative lifetime τRad = 55.3 nsec identified.  However, the 440 nm emission that 

exhibits a linewidth of 280 cm-1 is unassigned due to the conflicting spectral and 

temporal data available. 

The 626.8 nm emission feature also remains unassigned.  Like the 440 nm 

emission, the linewidth observed and the spectral position alone do not allow a 

definitive state assignment of this feature.  Moreover, multiple non-radiative channels 

are believed to be involved in the production of the 626.8 nm band following z6P 
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excitation involving more than one low lying excited state, all of which lead to the 

complex cascade kinetics suggested by the temperature dependence observed in the 

decay profiles 

 
Table  VII.13 Photophysical characteristics and excited state assignments of the emission 

features produced following excitation of the 3d54s4p z6P5/2 ← 3d54s2 a6S5/2 
transition of matrix – isolated atomic manganese isolated in the high energy 1° 
site centered at 385 nm (25974 cm-1).  λEm indicates the emission band-centre in 
nm units. The full-width at half-maximum intensity of the emission features is 
denoted by ∆AV and the matrix shift by δ - both in wavenumber (cm-1) units.  
The excited state lifetimes (decay characteristics) are presented (τ) the 
subscripts Rad. and Cor indicate the radiative lifetime of the excited state and 
the lifetimes corrected for the effective field. τObs. indicates the dominant decay 
characteristic at 12 K.   

 
Mn Gas Phase  Mn/Kr Matrix (1° site) 

Transition 
nm / cm-1 Assignment λEm. (nm) / ∆ (cm-1) δ (cm-1) Decay time  

z6P3/2 ↔ a6S5/2 
403.56 / 24779 z6P3/2 → a6S5/2 416 / ≈ 505 -740 τRad = 55.3 nsec  

z6P3/2 ↔ a6S5/2 
403.56 / 24779 

 
a4D7/2 ↔ a6S5/2 
429.25 / 23297 

(?) 440.0 / ≈ 280 

-2052 
 
 

-570 
τobs. = 0.1 sec 

z8P5/2 ↔ a6S5/2 
543.40 / 18402 

 
a6D9/2 ↔ a6S5/2 
586.43 / 17052 

(?) 626.8 / ≈ 235 

-2448 
 
 

-1097 
τ1 Obs.= 564 µsec 

 
 The low energy (2°) site centered at 398.3 nm leads to the production of 
excited state emission bands at 428.4 and 585.8 nm as shown in the top panel of 
Figure  VII.61.  The photophysical characteristics of these emission features are 
presented in  
Table  VII.14.  Both of these emission features show narrow linewidths and occur 

relatively unshifted from the gas phase positions of the a4D7/2 and a6D9/2 ↔ a6S5/2 

transitions of atomic Mn.  As a result, these bands have been assigned to the a4D7/2 

and a6D9/2 states produced via an inter system crossing (ISC) mechanism.  The 

production of the 428.4 nm emission feature is 100% efficient from the z6P5/2 state 

accessed in absorption.  In addition, the lifetime measurements indicate the forbidden 

nature of the transition leading to the 427.8 nm band as the observed lifetime is 23.97 

msec.  The 585.8 nm emission feature produced with red (2°) site excitation was 

assigned based on the spectral location and the asymmetric lineshape to the a6D9/2 → 

a6S5/2 transition.  The dominant decay component extracted for the 585.8 nm 
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emission was 287 µsec, suggesting a direct z6P ⇒ a6D feeding mechanism leading to 

the production of the observed a6D9/2 state emission. 

 
Table  VII.14 Photophysical characteristics and excited state assignments of the emission 

features produced following excitation of the 3d54s4p z6P5/2 ← 3d54s2 a6S5/2 
transition of matrix – isolated atomic manganese isolated in the low energy 1° 
site centered at 400 nm (25000 cm-1).  λEm indicates the emission band-centre in 
nm units. The full-width at half-maximum intensity of the emission features is 
denoted by ∆ and the matrix shift by δ both in wavenumber (cm-1) units.  The 
excited state lifetimes (decay times) presented are those corresponding to the 
dominant decay characteristic at 12 K. 

Mn Gas Phase  Mn/Kr Matrix (2° site) 

Transition 
nm / cm-1 Assignment λEm. (nm) / ∆ (cm-1) δ (cm-1) Decay time 

a4D7/2 ↔ a6S5/2 
429.25 / 23297 

a4D7/2 → a6S5/2 427.8 / ≈ 5.4 +78 23.97 msec  

a6D9/2 ↔ a6S5/2 
586.43 / 17052 

a6D9/2 → a6S5/2 585.3 / ≈ 65 +18 287 µsec 

 

VII.3 Discussion  Mn(z6P)/RG luminescence 

In this section, the luminescence spectroscopy recorded with excitation of the z6P5/2 

← a6S5/2 transition of atomic Mn isolated in solid Ar, Kr and Xe is summarised in 

terms of site occupancy.  Figure  VII.62 and Figure  VII.63 present the luminescence 

excitation and emission spectroscopy from the blue and red sites of isolation assigned 

to the z6P5/2 ↔ a6S5/2 transition.  The spectral positions of the gas phase transitions 

are indicated for comparison purposes.   

 The excitation spectra presented in Figure  VII.62 for the blue site of isolation 

show an increasing shift away from the gas phase position for the z6P5/2 ↔ a6S5/2 

transition from Xe to Ar.  The matrix shift is blue in all cases with values of 1531, 

1187 and 500 cm-1 for Ar, Kr and Xe respectively.  A decrease in the linewidth of the 

excitation band profile is exhibited from Ar to Xe, as shown in Figure  VII.62.  This 

effect is also exhibited by the red sites occupied by Mn atoms in solid Ar and Kr as 

shown in Figure  VII.63. 

All the excitation spectra shown exhibit Jahn-Teller threefold split patterns 

indicative of atomic isolation in highly symmetric environments.  Given that a single 

site of isolation exists for Mn atoms in solid Xe and the trend in the Ar and Kr matrix 

shifts, evident in Figure  VII.62, the blue site of isolation is assigned to a single 

substitutional site in each rare gas.  Mn atoms isolated in solid Ar exhibit dominance 



Chapter VII; Mn(z6P)/RG Luminescence 

230 

of the lower energy (red site) suggesting a preference for isolation in a larger, multi-

vacancy type site. 

The emission spectroscopy that is observed is very site–specific.  Indeed the 

emission features produced with blue site excitation for Mn/Ar and Mn/Kr exhibit 

marked similarities, as shown in Figure  VII.62.  Thus both systems produce emission 

features assigned to z6P3/2 fluorescence occurring at 413 and 416 nm for Mn/Ar and 

Mn/Kr respectively exhibiting similar Stokes’ shifts of 2106 and 1936 cm-1 and 

linewidths of 465 to 505 cm-1.  The radiative lifetimes of 57.5 and 55.3 nsec were 

extracted for the z6P → a6S transitions in solid Ar and Kr at 12 K.  In contrast Mn/Xe 

exhibits no resonance z6P fluorescence at all.  This indicates that non-radiative 

relaxation processes occur for this state in Xe on a timescale faster than the 

nanosecond fluorescence observed in Ar and Kr. 

Two emission features located at 438 and 440 nm in Ar and Kr matrices 

cannot at this stage be assigned to electronic transitions of atomic Mn due to the 

conflicting spectral and temporal data available.  However, these features exhibit 

similar Stokes’ shifts of 1948 and 2052 cm-1 and linewidths of 230 and 280 cm-1 in 

Ar and Kr respectively.  They are discussed in Chapter VIII following further 

analysis of their associated features at 625 and 626.8 nm in Ar and Kr respectively.  

The aforementioned red features observed in Ar and Kr at 625 and 626.8 nm 

respectively are still unassigned.  The following Chapter presents the luminescence 

recorded following excitation of both the z8P and a6D excited states in an attempt to 

definitively assign these red emission features.  In solid Xe the single thermally stable 

emission feature at 620 nm is assigned to the a6D9/2 → a6S5/2 transition due to more 

efficient curve crossing processes occurring within the blue site which is thought to 

correspond to substitutional site occupancy.  The topic of site occupancy will be 

discussed in Chapter IX. 
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Figure  VII.62 Emission spectra recorded at 12 K for atomic Mn/Ar, Mn/Kr and Mn/Xe 
systems with site-selective lamp excitation of the high energy blue site 
corresponding to the Mn z6P5/2 ← a6S5/2 transition.  The excitation wavelengths 
used are shown (centre) as λEx. (nm). The excitation spectra shown (left), were 
recorded by monitoring emission bands as indicated by λEm. in wavelength 
units.  All spectra were recorded following Mn/RG sample deposition at Td= 12 
K and matrix annealing.  The spectral positions of the gas phase transitions of 
atomic Mn are shown by the dashed vertical lines. 

 

The emission features produced in Ar and Kr at 428 nm with red site 

excitation are assigned to the a4D7/2 → a6S5/2 transition occurring with 100% 

efficiency via z6P ⇒ a4D intersystem crossing.  Wp lineshape analyses completed on 

each system allowed the identification of two ZPL’s for the a4D7/2 → a6S5/2 transition 

in each system.  The splitting between the ZPL’s was identified as 9.0 and 10.0 cm-1 

for Ar and Kr respectively.  Low energy emission bands centered at 590 and 585.3 

nm were assigned to the a6D9/2 → a6S5/2 transition of atomic Mn produced via an ISC 

mechanism from the a4D state.  This assignment accounted for the complex kinetics 

observed, a topic that is discussed further in the next Chapter. 
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Figure  VII.63 Emission spectra recorded at 12 K for atomic Mn/Ar, Mn/Kr and Mn/Xe 
systems with site-selective lamp excitation of the low energy red-site 
corresponding to the Mn z6P5/2 ← a6S5/2 transition in Ar and Kr and the 
thermally stable site in solid Xe.  The excitation wavelengths used are shown 
(centre) as λEx. (nm). The excitation spectra shown (left), were recorded by 
monitoring emission bands as indicated by λEm. in wavelength units.  All spectra 
were recorded following Mn/RG sample deposition at Td= 12 K and matrix 
annealing.  The spectral positions of the gas phase transitions of atomic Mn are 
shown by the dashed vertical lines. 

 

VII.4 Conclusion 

The luminescence spectroscopy observed for the excited z6P state of atomic Mn 

isolated in solid Ar, Kr and Xe allowed the identification of multiple sites of isolation 

of Mn atoms in Ar and Kr and a single site in solid Xe.  The excitation-emission 

spectra reported for each Mn/RG system allowed the deconvolution of the 

complicated absorption spectra reported in Chapter VI into separate site 

contributions.  The steady-state and time-resolved emission spectroscopy (TRES) 

reported allowed the definitive assignment of two very site-specific relaxation 



Chapter VII; Mn(z6P)/RG Luminescence 

233 

channels in the Mn/Ar and Mn/Kr systems giving rise to z6P → a6S fluorescence and 

a4D → a6S phosphorescence from the blue and red sites respectively.  Excited state 

lifetime measurements definitively assigned z6P → a6S fluorescence at 413 and 416 

nm in Ar and Kr respectively.  In addition, a lifetime is reported for the first time for 

the forbidden a4D → a6S transition to be approximately 25 msec in both matrices.  

Currently, no experimental gas phase lifetime data is available for this transition.  The 

results of lineshape analyses of the emission features assigned to the a4D → a6S 

transition allowed the identification of zero phonon lines and sidebands and the 

relative lifetimes of each.  Also the requirement of two sets of phonon frequencies 

allowed the tentative assignment of the crystal field splitting parameter for the a4D 

state of Mn atoms isolated in the red sites in Ar and Kr to be approximately 10 cm-1.  

In solid Xe, no emission features were assigned to either the z6P → a6S or the a4D → 

a6S transitions of atomic Mn.  The luminescence spectroscopy reported in the 

previous sections highlights the importance of the site of atomic isolation in 

determining the resulting excited state relaxation processes.  Trends observed in the 

spectral analysis and knowledge of the site sizes available within the hosts, suggests 

single substitutional site occupancy in Xe, whereas Mn/Ar and Mn/Kr solids exhibit a 

combination of thermally stable sites that are tentatively assigned to substitutional 

and multi-vacancy type sites.  A preference for the larger site was observed to 

increase from Kr to Ar.  A definitive assignment of the site symmetries is not possible 

at present, as no data exists for the corresponding Mn⋅RG van der Waals complexes.  

The discussion of the site occupancy is postponed until Chapter IX. 
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Chapter VIII  
Direct laser excitation of the ‘forbidden’ z8P ↔ a6S and a6D ↔ a6S 

transitions of atomic Mn/RG solids, (RG = Ar, Kr and Xe) 
 

VIII.1 Introduction 

The luminescence spectroscopy resulting from z6P5/2 excitation of atomic manganese 

isolated in solid Ar, Kr and Xe presented in Chapter VII, yielded complex kinetics 

and only tentative assignment of both the z8P5/2 → a6S5/2 and a6D9/2 → a6S5/2 

transitions to emission bands in the red region of the spectrum.  The requirement of 

obtaining simpler kinetics and more definitive spectral assignments prompted an 

investigation of the excitation spectroscopy in the regions of the forbidden 3d54s4p 

z8P5/2 ↔ 3d54s2 a6S5/2 and 3d64s a6D5/2 ↔ 3d54s2 a6S5/2 transitions at 543.4 and 573 

nm, (18402.46 and 17451.52 cm-1) respectively in the gas phase1.  The weak 

oscillator strengths of the spin forbidden z8P5/2 and parity forbidden a6D9/2 transitions 

from the ground state a6S5/2 state required the use of a high intensity excitation 

source.  Hence a nanosecond pulsed laser was employed.  The relative weakness of 

these forbidden transitions versus the allowed 3d54s4p z6P5/2 ↔ 3d54s2 a6S5/2 

transition, is revealed in the recorded matrix absorption spectra where none of these 

forbidden transitions were detected.  This behaviour correlates with the long radiative 

lifetimes of 149.3 µsec and 3.4 sec calculated for the gas phase z8P ↔ a6S and a6D ↔ 

a6S transitions2,3,4 respectively as presented in Figure  VIII.1. 

Prior to the presentation of the results of the luminescence spectroscopy 

produced with direct z8P5/2 and a6D5/2 ↔ a6S5/2 excitations, a short review of the 

spectral assignments made, the questions posed and the trends evident in the emission 

spectroscopy reported in Chapter VII is given. 
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Figure  VIII.1 Schematic representation of the energy levels of gas phase atomic manganese.  
The z6P5/2 ; z8P5/2 and a6D5/2 ↔ a6S5/2 transitions occur at 24788 cm-1 (403.42 
nm); 18402 cm-1 (543.40 nm) and 17451 cm-1 (573.03 nm)1.  The arrows indicate 
the difference between the allowed (solid) and forbidden (broken) optical 
transitions.  The known gas phase radiative lifetimes2-4 (τ) for these transitions 
are indicated. 

 
Mn/Xe was observed to be the simplest of the rare gas systems as only a 

single thermally stable site of isolation was identified in absorption spectra, blue-

shifted with respect to the gas phase position of the z6P5/2 ← a6S5/2 transition.  A 

single emission band located at 620 nm (16129 cm-1) with a linewidth (fwhm) of 240 

cm-1 was tentatively assigned to the a6D9/2 → a6S5/2 transition, corresponding to a red 

matrix-shift of 926 cm-1, as shown in Figure VII.2.  Emission lifetime measurements 

recorded at various temperatures revealed long-lived but complex decay kinetics for 

the observed 620 nm emission band.  The spectral position, the asymmetric emission 

profile and the extracted decay times suggested an assignment of the 620 nm feature 

to the a6D9/2 → a6S5/2 transition.  However, the absence of z8P5/2 state emission bands 

and the moderately broad 620 nm lineshape did not completely preclude this 

alternative assignment.  Therefore, definitive assignment of the 620 nm emission 

feature required an investigation of the luminescence spectroscopy of Mn/Xe with 

direct excitation of the forbidden a6D ← a6S and z8P ← a6D transitions. 

The luminescence recorded with excitation of the Mn atom z6P5/2 ← a6S5/2 

transition in solid Ar and Kr was indicative of features due to the z8P3/2 and a6D9/2 → 

a6S5/2 transitions of atomic manganese.  The high-energy blue sites lead to emission 
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bands at 413 and 416 nm (shown in Figure VII.64) definitively assigned to the z6P3/2 

→ a6S5/2 fluorescence in both matrices.  However, the red spectral features at 625 and 

626.8 nm that exhibited matrix shifts of 2002 and 2448 cm-1 and linewidths of 

approximately 260 and 235 cm-1 in Ar and Kr respectively, were not assigned to 

either the z8P5/2 → a6S5/2 or the a6D9/2 → a6S5/2 transitions. 

The emission spectroscopy observed following red site excitation in solid Ar 

and Kr led to the tentative assignment of the narrow bands at 590 and 585.8 nm 

respectively to the a6D9/2 → a6S5/2 transition of atomic Mn.  However, this 

assignment also presents an inconsistency, because although the emission bands show 

a clear asymmetry and small matrix shifts from the gas phase position, the 585.8 nm 

feature in Kr is blue of the assigned features in Ar and Xe.  Definitive assignment of 

the emission features to the a6D9/2 → a6S5/2 transition following direct a6D excitation 

would allow a discussion of possible reasons for this observation.  Therefore analysis 

of the luminescence spectroscopy resulting from direct excitation of the forbidden 

a6D9/2 ← a6S5/2 and z8P5/2 ← a6S5/2 transitions of atomic Mn will provide simpler 

kinetics and thereby more definitive state assignments.  The excitation spectra 

recorded for both of these forbidden transitions also allows a critical comparison of 

the absorption characteristics of Mn atoms undergoing P ← S or D ← S transitions. 

 This Chapter is structured as follows; firstly the excitation spectroscopy 

recorded by monitoring the red emission features identified in the previous chapter 

are presented for each Mn/RG system.  Secondly, following an assessment of the sites 

of isolation, the excitation band profiles are analysed to extract detail on the excited 

state interaction within the specific sites of isolation.  Thirdly, time-resolved emission 

spectra (TRES) and excited state lifetime measurements, recorded with pulsed dye 

laser excitation tuned to a6D5/2 and z8P5/2 ← 6S5/2 matrix transition energies, are 

employed to state assign the observed emission.  Temperature dependent 

measurements are reported to provide insight into the non-radiative excited state 

dynamics and ISC processes leading to the observed emission.  The luminescence 

results are presented first for excitation into the lowest energy level of atomic Mn, the 

metastable a6D state.  The same analysis is then applied to the z8P5/2 state.  This 

allows an assessment of the extent of interaction between the z8P and the a6D states in 

determining the kinetics of the site-specific emission.  Finally, the spectral and 
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temporal characteristics of the site-specific emission features assigned to transitions 

of atomic Mn resulting from a6D, z8P and z6P excitation are presented. 

 

VIII.2 Results Mn(a6D)/RG luminescence 

Chapter VII presented the luminescence spectroscopy resulting from excitation of the 

z6P5/2 ↔ a6S5/2 transition of atomic manganese isolated in solid Ar, Kr and Xe.  

Analysis of the emission features produced and monitored using both time-integrated 

and time-resolved methods lead to possible assignment of the red emission bands in 

Ar and Kr at 590 and 585.8 nm (16949 and 17070 cm-1) respectively, to the a6D9/2 → 

a6S5/2 transition.  As shown in Figure VII.65 these emission bands are produced with 

red-site excitation only.  The photophysical characteristics of the Mn/Ar and Mn/Kr 

emission features at 590 and 585.8 nm respectively are presented in Tables VII.6 and 

VII.13.  In solid Xe, the single emission feature observed at 620 nm (16129 cm-1) 

following z6P5/2 excitation, was tentatively assigned to the a6D9/2 → a6S5/2 transition.  

The following sections present excitation spectra recorded in the vicinity of the gas 

phase position1 of the a6D5/2 ↔ a6S5/2 transition at 573.03 nm (17451 cm-1) using 

tuneable dye laser excitation.  Rhodamine 590 was the laser dye material employed.  

It is tuneable over the spectral range 555 to 580 nm (Chapter II, Table II.IX, middle 

panel). 

 

VIII.2.I Mn(a6D)/Xe 

Figure  VIII.2 presents the laser excitation spectra recorded for Mn/Xe in the region of 

the gas phase a6D5/2 ↔ a6S5/2 transition of atomic manganese monitoring the 

thermally stable and unstable emission features at 620 nm and 656 nm respectively.  

The excitation spectra shown have not been corrected for the wavelength response of 

the dye material, Rhodamine 590.  Inspection of Figure  VIII.2 reveals three resolved 

excitation features at 563.4, 565.4, 569.1 and a partially resolved band centered at 

574 nm, monitoring the 620 nm emission.  The excitation band profile recorded by 

monitoring the 656 nm feature is more diffuse, showing little resolved structure but is 

most intense at 572 nm.  The spectral overlap in the excitation profiles recorded by 

monitoring the 620 and 656 nm bands is greatest at 572 nm. 
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 The observation that the excitation band profiles remain relatively unshifted 

from the gas phase position of the a6D5/2 ↔ a6S5/2 transition is indicative of a weak 

interaction between the a6D excited state Mn atom and the immediate environment 

within the host matrix. 

 

17.217.417.617.818.0
x103 Energy (cm-1)

In
te

ns
ity

555 560 565 570 575 580
Wavelength (nm)

620.0
656.0

a6 D
5/

2__
__

a6 S 5/
2

Mn/Xe - Excitation Td = 12.5 K, TS = 12 K
λEm. (nm)

 

Figure  VIII.2 Dye laser excitation spectra recorded at 12 K, in the vicinity of the a6D5/2 ↔ 
a6S5/2 gas phase transition (dashed vertical line) monitoring the red emission 
features in solid Xe.  The spectra recorded monitoring the thermally stable 620 
nm emission and thermally unstable 656 nm emission bands are shown by the 
solid and dash-dot traces respectively. 

 
Emission spectra recorded following laser excitation at wavelengths corresponding to 

the excitation features identified in Figure  VIII.2 are presented in Figure  VIII.3.  It is 

evident from the emission features produced that irradiation at wavelengths 

corresponding to the resolved excitation features, blue of the gas phase a6D5/2 ↔ 

a6S5/2 transition, efficiently produce the 620 nm feature.  The 656 nm band is 

produced with excitation in the range 570 – 575 nm.   
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Figure  VIII.3 Time-integrated emission spectra recorded in Mn/Xe with iCCD detection 
following dye laser excitation at various wavelengths within the range shown in 
Figure  VIII.2.  

 
The spectral overlap of the excitation band profiles recorded monitoring the 

620 and 656 nm bands coupled with the previously identified thermal instability of 

the 656 nm band, (Figure VII.II) allows the subtraction of the 656 nm component 

from the excitation spectrum recorded for the 620 nm feature.  The corrected 

excitation spectrum is presented in Figure  VIII.4.  Comparison of the raw excitation 

spectrum, Figure  VIII.2 (solid trace), to that corrected for the presence of the 

overlapping 656 nm component Figure  VIII.4, leads to the enhancement of lowest 

energy feature centered at 574.6 nm (17402 cm-1).  The correction procedure 

therefore allows clear identification of four narrow excitation features located at 

563.38, 565.35, 569.12 and 574.6 nm. 

A comparison of the observed matrix band positions with the gas phase 

transition energies1 from the ground a6S5/2 state to the individual a6DJ spin-orbit 

levels, J = 9/2, 7/2, 5/2, 3/2 and 1/2 reveals the same splitting pattern.  The splittings 

between the observed excitation bands are 62, 117 and 169 cm-1, (Table  VIII.1), 

while the gas phase splittings between the adjacent spin-orbit levels of the a6DJ state 

are 69, 116, 170 and 230 cm-1, for the 1/2↔3/2; 3/2↔5/2; 5/2↔7/2; and 7/2↔9/2 levels 

respectively.  Based on this favourable comparison, the resolved excitation features 

are assigned as transitions to the individual spin-orbit levels of the a6D excited state 

of atomic Mn.  From the observed splittings, the four resolved features are assigned 
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to the Mn(a6DJ ← a6S5/2)/Xe transitions for J = 1/2, 3/2, 5/2, and 7/2.  While the a6D ↔ 

a6S transition is electric-dipole forbidden it is an electric-quadrupole allowed5,6 E2 

type transition, governed by the selection rules ∆J = 0, ±1, ±2 and ∆L = 0, ±1, ±2 for 

∆S = 0.  These conditions are fulfilled by the a6DJ ↔ a6S transitions therefore, 

transitions to each of the J = 1/2, 3/2, 5/2, 7/2 and 9/2 excited state spin-orbit levels from 

the ground J = 5/2 level should be observed. 
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Figure  VIII.4 Dye laser excitation spectrum recorded at 12 K, monitoring the 620 nm 
emission feature.  The excitation spectrum presented has been corrected (*) for 
the spectral overlap of the thermally unstable 656 nm emission band.  The 
dashed vertical lines indicate the spectral locations of the individual a6DJ ↔ 
a6S5/2 transitions in the gas phase1. 

 
However, the transition to the lowest energy a6D9/2 spin-orbit level is not discernible 

in the excitation spectrum shown in Figure  VIII.4.  Given the gas phase spin-orbit 

splitting pattern is maintained in the solid, this transition is predicted to occur at 

582.34 nm (17172 cm-1).  However, the dye response in this region is weak and it is 

likely the a6D9/2 ← a6S5/2 transition is outside the tuning range of Rhodamine 590 

from 555 to 580 nm, (Table II.9, middle panel).  As the spectra reported have not 

been corrected for intensity output of the laser dye material, the intensities observed 

reflect the tuning range.  Thus it is proposed that the a6D9/2 ← a6S5/2 transition was 

not observed in excitation for experimental reasons. 
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Table  VIII.1 The transitions assigned and the photophysical characteristics of the resolved 
excitation features recorded monitoring the 620 nm emission.  The spectral 
positions of the observed features and the gas phase transition energies1 for the 
individual a6DJ ↔ a6S5/2 are indicated in nm and wavenumber units (cm-1).  ∆ 
indicates the splitting between successive spin-orbit levels in the gas phase 
(G.P.) and Xe matrix environment (Mn/Xe).  The matrix-shift (δ) observed for 
the assigned transition is presented in wavenumber units. 

 
Mn Gas Phase  Mn/Xe Excitation  

Transition 
(nm / cm-1)1 ∆G.P. (cm-1)1 Assignment 

(nm) / (cm-1) ∆Mn/Xe (cm-1) δ (cm-1) 

a6D1/2 ↔ a6S5/2 
566.98 / 17637 

 
a6D3/2 ↔ a6S5/2 
569.21 / 17568 

 
a6D5/2 ↔ a6S5/2 
573.03 / 17452 

 
a6D7/2 ↔ a6S5/2 
578.63 / 17282 

 
a6D9/2 ↔ a6S5/2 
586.43 / 17052 

 
 

69 
 
 

116 
 
 

170 
 
 

230 
 
 

a6D1/2 ← a6S5/2 
563.38 / 17750 

 
a6D3/2 ← a6S5/2 
565.35 / 17688 

 
a6D5/2 ← a6S5/2 
569.12 / 17571 

 
a6D7/2 ← a6S5/2 
574.65 / 17402 

 
 
 

 
 

62 
 
 

117 
 
 

169 
 
 
 
 
 

+113 
 
 

+120 
 
 

+119 
 
 

+120 
 
 
 
 

 

 The assigned a6DJ ← a6S5/2 transitions all exhibit a matrix shift (δ) of 

approximately +120 cm-1 from the gas phase positions (Table  VIII.1).  The 

observation that the gas phase splittings between the individual spin-orbit states is 

maintained in the solid, infers that the observed matrix shift arises predominantly 

from stabilisation of the a6S5/2 ground state in its site of isolation in Xe.  Figure  VIII.5 

shows the effect of subtracting the matrix shift (δ = +120 cm-1) from the spectrum 

recorded.  Employing the matrix shift reveals how well the gas phase spin-orbit 

splitting of the a6D state is maintained for Mn atoms isolated in the thermally stable 

site in solid Xe.  This reinforces the assignments made and the conclusion that the 

observed matrix shift results from the stabilisation occurring on the ground state. 
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Figure  VIII.5 Corrected dye laser excitation spectrum recorded by monitoring the 620 nm 
emission band at 12 K.  The correction procedure red shifts the excitation 
spectrum (Figure  VIII.4) by the observed matrix shift (δ) of 120 cm-1.  The 
dashed vertical lines indicate the gas phase positions of the individual a6DJ ↔ 
a6S5/2 transitions1 and the labels indicate the transitions assigned to occur in 
solid Xe. 

 
 In Chapter VII the Mn/Xe emission spectroscopy produced with resonance 

z6P excitation revealed a single thermally stable band at 620 nm, (see Figure VII.2).  

As shown in Figure  VIII.3 and Figure  VIII.6 this thermally stable emission feature is 

also produced with a6D excitation.  It is red shifted from the a6D9/2 ↔ a6S5/2 gas 

phase position by 923 cm-1.  The luminescence spectra were recorded following 

annealing (TAn. = 38 K) of the Mn/Xe sample deposited at 12 K.  However, the true 

emission lineshape of the 620 nm feature produced with a6D ← a6S excitation is 

difficult to access due to the overlap of the 656 nm band and further complicated by 

the presence of two weak features at 600 and 700 nm7 due to contaminants.  The 

equivalent intensities of the thermally stable 620 nm band and ‘unstable’ 656 nm 

emission feature is attributed to the enhancement of the a6D ← a6S transition in the 

thermally unstable site.  This observation contrasts with those made in Chapter VII 

(Figure VII.II) as the annealing procedure lead to the reduction in the emission 

intensity at 656 nm (resulting from z6P excitation) corresponding to site removal.  
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This effect is discussed in more detail following the presentation of the results 

obtained on the Mn/Ar and Mn/Kr systems. 
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Figure  VIII.6 Dye laser excitation spectrum recorded monitoring the observed emission band 
at 620 nm, shown left, in the vicinity of the gas phase a6D5/2 ↔ a6S5/2 transition 
of atomic Mn at 573.03 nm upon sample deposition at 12.5 K and subsequent 
annealing to 38 K.  Emission spectra recorded (shown right) upon excitation 
into the low energy shoulder assigned to the a6D7/2 ← a6S5/2 transition.  The 
dashed vertical lines indicate the positions of the a6D5/2 and a6D9/2 ↔ a6S5/2 
transitions in the gas phase1. 

 
Excited state lifetime measurements were made using the TCSPC technique.  

Figure  VIII.7 presents the decay profile of the 620 nm feature produced with pulsed 

laser excitation of the a6D3/2 ← a6S5/2 transition at 565.55 nm.  An adequate fit of the 

decay profile was achieved using a trial function containing three exponential 

components, as shown by the residuals presented.  The three decay times identified 

are 1.34 msec, 346 µsec and 25 µsec.  Inspection of the relative amplitudes of the 

decay components reveals that the shortest, (25 µsec) component dominated at 12.5 

K.  However, the substantial amplitude extracted for the 346 µsec component reveals 

its importance.  Recording the decay profile of the 620 nm band at temperatures 

above 12.5 K revealed very little changes in the emission decay characteristics. 
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Figure  VIII.7 Decay profile of the 620 nm emission recorded at 12 K using TCSPC following 
pulsed laser excitation at 565.55 nm, corresponding to the excitation feature 
assigned to the a6D3/2 ← a6S5/2 transition of atomic Mn isolated in solid Xe. 

 

Table  VIII.2 Decay characteristics, components and amplitudes (A) extracted from non-
linear least squares analysis of the temporal profiles recorded monitoring the 
620 nm emission at different temperatures, (Ts) following pulsed laser excitation 
at 565.55 nm. Note the dominant decay contribution is presented in bold. 

Ts. (K) Fit Range (msec) A1 τ1 (msec) A2 τ2 (µsec) A3
 τ3 (µsec) 

12.5 

15.0 

18.0 

22.0 

27.0 

0.025 – 3.5 

0.025 – 3.5 

0.025 – 3.5 

0.025 – 3.5 

0.025 – 3.5 

312 

594 

545 

874 

493 

1.34 

1.21 

1.18 

1.11 

1.11 

760 

1278 

1218 

1859 

1139 

346 

307 

309 

301 

329 

996 

2340 

1720 

2404 

810 

25.0 

20.0 

23.5 

23.5 

26.2 

 

The decay times extracted monitoring the emission at 620 nm are believed to 

represent a combination of the temporal characteristics from the 620 and 656 nm 

features due, as shown in Figure  VIII.6 to their considerable spectral overlap.  

Although further analysis of the excited state lifetimes is required, an assessment of 

the extent of the spectral overlap in Figure  VIII.6 shows a 50/50 relationship of the 

two bands at 620 nm.  A comparison to the relative amplitudes extracted from the 

decay profile in Figure  VIII.7 reveals the same relationship between the short 

microsecond component (A3 = 996) and the sum of the amplitudes of the two 

millisecond decay times, (A1 + A2 = 1072).  The presence of the two long-lived 
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components (1.34 msec and 346 µsec), significantly longer than the 149.3 µsec 

lifetime of the z8P ↔ a6S transition suggests assignment of the 620 nm emission to 

the a6D9/2 → a6S5/2 transition.  The different linewidths displayed by the 620 

(asymmetric) and 656 nm (Gaussian) suggest radiative transitions from the a6D9/2 and 

z8P5/2 excited states respectively.  The broad linewidth exhibited by the 656 nm 

emission feature is indicative of a P → S type electronic transition.  The presence of 

the short 25 µsec decay time suggests assignment of the 656 nm band to the z8P5/2 → 

a6S5/2 transition. 

Thus the lifetime measurements made with direct a6D ← a6S excitation still 

does not allow a definitive identification of the unperturbed lifetime for the (a6D9/2 → 

a6S5/2 transition) emission at 620 nm.  Given the complex decay characteristics 

extracted for the 620 nm band, the observed excited state lifetime is thought to lie in 

the range 346 µsec to 1.34 msec at 12.5 K.  Table  VIII.3 presents the photophysical 

characteristics of the 620 nm band now assigned to the a6D9/2 → a6S5/2 transition but 

shifted by more than 900 cm-1 from its gas phase value. 

 
Table  VIII.3 Photophysical characteristics and excited state assignment of the emission 

feature produced following excitation of the a6DJ ←  a6S5/2 transition.  λEm, 
indicates the emission band-centre in nm and wavenumber units. The matrix 
shift for the transition is indicated δ in wavenumber (cm-1) units.  The decay 
characteristics of the emission feature is also presented at 12.5 K. 

Mn Gas Phase Mn/Xe Matrix – Emission 
Transition1 
nm / cm-1 Assignment λEm. (nm) / (cm-1) δ (cm-1) Decay Characteristic 

(τObs.) 

a6D9/2 ↔ a6S5/2 
586.43 / 17052 a6D9/2 → a6S5/2 620 / 16129 -923 τ1. = 347.0 µsec 

τ2 = 1.34 msec 
 

VIII.2.II Mn(a6D)/Kr 

In Chapter VII, emission spectra recorded following site-selective excitation of the 

z6P5/2 ↔ a6S5/2 transition of Mn isolated in Kr revealed bands centered at 585.8 and 

626.8 nm.  The asymmetric band shape of the emission at 585.8 nm (17070 cm-1) 

produced with red (2°) site excitation, (Figure VII.63, top panel) was tentatively 

assigned to the a6D9/2 → a6S5/2 transition in solid Kr.  The broad 626.8 nm (15954 

cm-1) emission produced with blue (1°) site excitation remains unassigned, (Figure 

VII.63, bottom panel).  In addition to these thermally stable emission features, the 3° 
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site of isolation identified for Mn/Kr solids produced a broad thermally unstable 

emission band centered at 603.8 nm. 

Excitation spectra recorded in the region of the a6D5/2 ↔ a6S5/2 gas phase 

transition with dye laser scans are presented in Figure  VIII.8 monitoring the 587, 600 

and 626.7 nm emission bands.  Inspection of the excitation spectrum recorded by 

monitoring the 587 nm emission feature (presented in Figure  VIII.8) shows four 

resolved components at 566.18, 568.44, 572.54 and 578.27 nm.  Excitation recorded 

monitoring the 626.7 nm emission revealed the same structured bands with a broad 

underlying feature, centered near the a6D5/2 ↔ a6S5/2 gas phase transition at 573.03 

nm (17452 cm-1).  The excitation spectrum recorded monitoring the thermally 

unstable 600 nm emission exhibits a broad band-profile centered also at 572 nm.  In 

general the excitation spectra shown in Figure  VIII.8, exhibit different lineshapes but 

remain spectrally unshifted with respect to each other, indicating the minor effect of 

the site of isolation on the a6DJ ← a6S5/2 transition energy. 
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Figure  VIII.8 Dye laser excitation spectra recorded at 12.5 K (following matrix annealing to 
33 K), in the vicinity of the a6D5/2 ↔ a6S5/2 gas phase transition monitoring the 
red emission features observed in Chapter VII with z6P5/2 ← a6S5/2 excitation.  
The sample deposition was completed at 12 K. 

 
A comparison of the signal-to-noise in the excitation spectra recorded 

monitoring the 587 and 626.7 nm features, shown by the solid and dotted traces in 

Figure  VIII.8 respectively, reveals the 587 nm band dominates the emission.  This 
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represents an apparent reversal of the site dominance observed in the z6P5/2 state 

absorption spectra reported in Chapter VI for Mn/Kr.  However, the tentative 

assignment of the 587 nm and the 626.7 nm emissions to site-specific relaxation of 

the a6D9/2 state, where the a6D ↔ a6S transition is enhanced in one site, provides a 

plausible reason for this observation.  Therefore, it is proposed that the broad 626.8 

nm feature results from the emitting a6D level undergoing a stronger interaction with 

the matrix in a distinct site of isolation which results in broadening and shifting the 

a6D → a6S transition.  If the site-specificity of the z6P state emission is maintained for 

the a6D state, the observation that the excitation spectra recorded for the 587 and 626 

nm emission bands are in the same narrow spectral range indicates the site occupancy 

has only a small influence on the a6DJ ← a6S5/2 transition energy.  These proposals 

are consistent with the unshifted positions of the excitation bands observed. 

 An analysis of the excitation spectrum recorded monitoring the 587 nm 

emission allows the assignment of the observed features to electronic transitions 

between the ground a6S5/2 state and the spin-orbit levels of the a6DJ excited state 

atomic Mn for J = 1/2, 3/2, 5/2, and 7/2 respectively.  This is revealed in Table  VIII.4 by 

comparing the splittings recorded for the resolved matrix excitation features (∆Mn/Kr) 

at 566.18, 568.44, 572.54 and 578.27 nm with the gas phase spin-orbit splittings, 

(∆GP).  The transitions identified in solid Kr occur to higher energy than the gas phase 

positions1 by 15 cm-1.  This effect is attributed to a weak stabilisation of the a6S5/2 

ground state of atomic Mn isolated in Kr.  As presented for Mn/Xe in the previous 

section, a transition to the a6D9/2 level was not observed in excitation.  On the basis of 

the conserved spin-orbit splittings, the a6D9/2 ↔ a6S5/2 transition is predicted to occur 

at 586.06 nm (17063 cm-1) in solid Kr. 

Emission spectra recorded at 12.5 K are shown in Figure  VIII.9 resulting from 

a6D5/2 excitation at 572.46 nm following Mn/Kr sample deposition at 12.5 K and 

subsequent annealing to 34 K.  The spectra presented show three emission features 

located at approximately 587, 604 and 628 nm.  The spectra have been normalised, so 

a comparison of the relative intensities of the observed features, before and after 

matrix annealing, reveals the thermally instability of the 604 nm emission feature and 

the enhancement of the 587 nm feature by the annealing procedure. 
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Table  VIII.4 The transitions assigned and the photophysical characteristics of the resolved 
excitation features recorded by monitoring the emission at 587 and 626.8 nm.  
The spectral positions of the observed excitation features and the gas phase 
transition energies for the individual a6DJ ↔ a6S5/2 are indicated in nm and 
wavenumber units (cm-1) for the individual spin-orbit levels.  ∆ indicates the 
splitting between successive spin-orbit levels in the gas phase (G.P.)1 and Kr 
matrix environment (Mn/Kr).  The matrix-shift (δ) observed for the assigned 
transition is presented in wavenumber units. 

 
Mn Gas Phase  Mn/Kr Excitation  

Transition 
(nm / cm-1) 1 ∆G.P. (cm-1)1 Assignment 

(nm) / (cm-1) ∆Mn/Kr (cm-1) δ (cm-1) 

a6D1/2 ↔ a6S5/2 
566.98 / 17637 

 
a6D3/2 ↔ a6S5/2 
569.21 / 17568 

 
a6D5/2 ↔ a6S5/2 
573.03 / 17452 

 
a6D7/2 ↔ a6S5/2 
578.63 / 17282 

 
a6D9/2 ↔ a6S5/2 
586.43 / 17052 
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116 
 
 

170 
 
 

230 
 
 

a6D1/2 ← a6S5/2 
566.18 / 17662 

 
a6D3/2 ← a6S5/2 
568.44 / 17592 

 
a6D5/2 ← a6S5/2 
572.54 / 17466 

 
a6D7/2 ← a6S5/2 
578.27 / 17293 
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Figure  VIII.9 Emission spectra recorded with dye laser excitation at 572.46 nm corresponding 
to the a6D5/2 ← a6S5/2 transition assigned.  The dashed vertical line indicates the 
gas phase position1 of the a6D9/2 ↔ a6S5/2 transition of atomic Mn. 

 
High-resolution emission spectra recorded at 12.6 and 15 K with excitation at 

568.4 nm (corresponding to the a6D3/2 ← a6S5/2 transition), are shown in Figure 
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 VIII.10.  At 12.6 K the emission band shows a clear asymmetry and exhibits a band 

maximum at 585.75 nm (17072 cm-1).  At a higher temperature (15 K) the intensity of 

the band maximum is reduced relative to the low energy wing.  This temperature 

dependence was completely reversible allowing the assignment of the 585.75 nm 

(17072 cm-1) band as the band origin (ν0,0) of the pure a6D9/2 → a6S5/2 electronic 

transition.  Excitation of the remaining J levels in the four possible a6DJ ← a6S5/2 

transitions produced the same 585.75 nm feature but with no additional emission 

bands.  This behaviour indicates efficient IMR amongst the J levels, which populates 

the lowest energy J level.  Given the slow radiative decay rate, the IMR rate must 

greater than 103 sec-1. 

A summary of the high-resolution excitation and emission spectroscopy 

corresponding to the electronic transitions to the a6DJ states is presented in Figure 

 VIII.11. 
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Figure  VIII.10 High-resolution emission spectra recorded at TS (Kelvin) upon excitation at 
568.4 nm (17593 cm-1) corresponding to the a6D3/2 ← a6S5/2 transition assigned. 
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Figure  VIII.11 High resolution excitation spectrum recorded monitoring emission at 587.05 nm 
assigned to the a6D9/2 → a6S5/2, shown left, and emission recorded with excitation 
at 568.39 nm assigned to the a6D3/2 ← a6S5/2 transition of atomic Mn in solid Kr 
at 12.5 K.  The dashed vertical lines indicate the gas phase positions of the a6DJ 
↔ a6S5/2 transitions.  The band origins, zero phonon lines (ZPL) assigned for the 
a6DJ ← a6S5/2 transitions observed in solid Kr are indicated. 

 
To further analyse the excitation spectrum shown on the left of Figure  VIII.11 and 

identify the origin of the lineshapes assigned to the transitions to the individual spin-

orbit levels of the a6D excited state, excitation spectra were recorded at temperatures 

in excess of 12.6 K.  Figure  VIII.12 presents the temperature dependence recorded for 

the 566.18 nm (17662 cm-1), 568.44 nm (17592 cm-1) and 572.54 nm (17466 cm-1) 

excitation features assigned in Table  VIII.4 to the a6D1/2; a6D3/2 and a6D5/2 ← a6S5/2 

transitions of atomic Mn.  Inspection of the right hand panel of Figure  VIII.12 reveals 

evidence for the presence of a zero-phonon line in excitation as the relative intensity 

of the bands at 572.54 nm (17466 cm-1) and 572.05 nm (17481 cm-1) changes with 

increasing temperature.  Although both features are diminished at higher temperatures 

(18 K) the rate at which this process occurs is different. 
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Figure  VIII.12 Excitation spectra recorded at sample temperatures TS (Kelvin) monitoring the 
emission at 587.05 nm assigned to the a6D9/2 → a6S5/2 transition of atomic Mn 
isolated in solid Kr.  The excitation features assigned to the a6D1/2 and a6D3/2 ← 
a6S5/2 transitions at 566.18 nm (17662 cm-1) and 568.44 nm (17592 cm-1) are 
shown left.  The feature assigned to the a6D5/2 ← a6S5/2 at 572.54 nm (17466 cm-1) 
and the resolved but unassigned 572.05 nm (17481 cm-1) feature, shown right. 

 

Increasing the sample temperature from 12.6 K (solid) to 15 K (dashed) results in an 

immediate reduction in the intensity of the sharp 572.54 nm feature while the 

intensity of the 572.05 nm feature is only slightly reduced.  This allows the 

assignment of the 572.54 nm (17466 cm-1) feature as the band origin of the a6D5/2 ↔ 

a6S5/2 transition (ν0,0).  The broader band at 572.05 nm (17481 cm-1) is then assigned 

to the phonon sideband.  In addition to this effect, all the excitation features manifest 

a decrease in intensity and a shift to lower energy. 

 Following the identification of the zero-phonon line (ν0,0) for the a6D5/2 ↔ 

a6S5/2 transition at 17481 cm-1, the matrix shift (δ) for the transition is then +15 cm-1.  

Subtracting this matrix shift from the recorded excitation spectrum monitoring the 

a6D9/2 → a6S5/2 emission, and the high-resolution emission spectrum allows a critical 

assessment of the transitions assigned.  Comparison of the location of the resolved 

excitation features corrected for the matrix-shift (δ = + 15 cm-1) with the gas phase 

positions in Figure  VIII.13 reveals how good the agreement is.  Slight deviation in the 

location of the features assigned to the a6D1/2 and a6D3/2 ← a6S5/2 transitions at 
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566.18 nm and 568.44 nm (17662 and 17592 cm-1) is also revealed.  The linewidths 

of the a6DJ ← a6S5/2 bands at 566.18, 568.44, 572.54 and 578.27 nm assigned to the J 

= 1/2, 3/2, 5/2 and 7/2 levels increase, as is evident upon inspection of Figure  VIII.13, 

with increasing J.  This behaviour may arise from the partial removal of the level 

degeneracy leading to band profiles broadening as 2J+1. 
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Figure  VIII.13 High resolution excitation spectrum recorded monitoring, λEm. = 587.05 nm 
corrected by subtraction of the matrix-shift (δ) of 15 cm-1 calculated from the 
position of the ZPL assigned to the a6D5/2 ← a6S5/2 transition, shown left.  The 
emission spectrum recorded with excitation at 568.39 nm assigned to the a6D3/2 
← a6S5/2 transition of atomic Mn in solid Kr at 12.5 K following correction for 
the matrix-shift (shown right).  The dashed vertical lines indicate the gas phase 
positions of the a6DJ ↔ a6S5/2 transitions to the excited state spin-orbit levels1. 

 
From its spectral position, the single emission band observed for atomic Mn 

isolated in solid Kr at 585.75 nm (17072 cm-1) is assigned to the a6D9/2 → a6S5/2 

transition.  The correction of the emission spectrum for the matrix-shift identified in 

excitation also succeeds in accounting for the ZPL assigned in emission.  A decay 

profile recorded with the TCSPC technique by monitoring the 585.7 nm emission 

feature at 12.5 K is presented in Figure  VIII.14.  An adequate fit was achieved 

employing a double exponential trial function.  Decay times of 227 and 26.5 µsec 

were extracted.  The longer microsecond component dominated the decay profile 
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recorded at 12.5 K.  Recording the decay profile at higher temperatures showed only 

minor temperature dependence, Table  VIII.5.  Therefore the observed 227 µsec 

lifetime at 12.5 K is assigned as the radiative lifetime of the electric quadrupole a6D9/2 

→ a6S5/2 transition of atomic manganese in solid Kr. 

 
Table  VIII.5 Decay characteristics, components and amplitudes (A) extracted from double 

exponential fits of the temporal profiles recorded monitoring 585.7 nm emission 
feature at different temperatures, (Ts) following pulsed laser excitation at 
567.55 nm. Note the dominant decay contribution is presented in bold. 

Ts. (K) Fit Range (msec) A1 τ1 (µsec) A2 τ2 (µsec) 

12 
14 

0.005 – 0.8 
0.005 – 0.8 

380 
217 

227 
224 

172 
111 

26.5 
22.6 
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Figure  VIII.14 Decay profile recorded by monitoring the 585.7 nm emission feature at 12 K 
using TCSPC following pulsed laser excitation at 567.55 nm. 

 
The resolved features assigned to the transitions to the a6D state spin-orbit 

levels are also present in the excitation spectra recorded monitoring the emission 

feature centered at 626.7 nm, Figure  VIII.8.  Analysis of the excitation spectra 

recorded monitoring the 585.7 and 626.7 nm features shows the spectral overlap of 

the bands.  However, the different linewidths indicate that the site specificity in 

emission is maintained with direct a6D excitation but less than that observed with 

z6P5/2 excitation. 
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 A time-resolved emission spectrum (TRES) recorded monitoring the emission 

features at 626.7 nm and 585.7 nm is presented in Figure  VIII.15 following pulsed 

laser excitation of the a6D5/2 ← a6S5/2 transition at 572 nm.  This figure shows the 

intensity of the 585.7 nm feature, assigned to the a6D9/2 → a6S5/2 phosphorescence, 

decreasing on a microsecond timescale.  This behaviour is in agreement with the 

TCSPC measurements presented earlier in this section, in which the observed 

radiative lifetime of the a6D9/2 state in the matrix that was identified as 227 µsec.  In 

contrast, the intensity of the 626.7 nm feature is observed, (as shown in Figure 

 VIII.15) to increase on this timescale.  The TRES spectrum in Figure  VIII.15 also 

reveals the presence of an emission feature centered at 603 nm corresponding to the 

thermally unstable red emission feature that is, as reported in Chapter VII, produced 

with z6P5/2 3° site excitation.  The broad emission is not completely removed by the 

annealing procedure and therefore may be the origin of the 23.5 µsec component 

present in the decay time recorded monitoring the 585.7 nm emission feature 

presented in Table  VIII.5.  This allows a correlation of this band to the 656 nm 

feature observed in solid Xe and strengthening the argument that the Mn/Xe 25 µsec 

component results from the z8P5/2 → a6S transition. 
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Figure  VIII.15 Time-resolved emission spectra recorded monitoring the red features (at 12 K) 
following pulsed dye laser excitation at 572 nm (a6D5/2 ← a6S5/2).  The temporal 
step and width used was 30 µsec with a delay time of td = 0.0 nsec.  Mn/Kr 
sample deposition was completed at 12.5 K and subsequently annealed. 
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Figure  VIII.16 presents a decay profile recorded at 12.5 K for the 626.7 nm 

emission feature using TCSPC.  First inspection of the recorded decay profile reveals 

a rising portion at short time, indicating the presence of the feeding step.  This was 

also observed in the time-resolved emission spectra, (TRES) presented in Figure 

 VIII.15 in which the 626.7 nm intensity increased on the microsecond timescale 

shown.  A trial function consisting of three exponential components allowed an 

adequate fit of the temporal profile as shown by the residuals.  Two decay 

components 2.19 and 1.61 msec and a rising component of 108 µsec were extracted. 
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Figure  VIII.16 Decay profile of the 626 nm emission feature recorded at 12.5 K using TCSPC 
following pulsed laser excitation of the a6D5/2 ← a6S5/2 transition identified in Kr 
to occur at 567.55 nm.  The residuals present the difference between the triple 
exponential fit completed and the decay recorded.  Note the negative amplitude 
A3 indicates the presence of a feeding step or rising portion in the decay profile 
recorded. 

 
 Analysis of the decay profiles was also done at 14 K.  The decay 

characteristics extracted from the analysis of the decay profiles at 12 and 14 K are 

presented in Table  VIII.6.  Comparison of the excited state lifetime components 

extracted at each temperature reveals that all the components are temperature 

sensitive over the small temperature range.  Therefore the radiative lifetime for the 

626.8 nm feature has not been observed.  The relaxation mechanism involved and the 
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state assignment of the 626.7 nm emission are discussed in detail at the end of this 

Chapter following a presentation of the luminescence spectroscopy recorded with 

direct laser excitation of the z8P excited state. 

 
Table  VIII.6 Decay characteristics, components and amplitudes (A) extracted from non-

linear least squares analysis of the temporal profiles recorded monitoring 
emission at 626 nm at different temperatures, (Ts) following pulsed laser 
excitation at 572 nm. Note the dominant decay contribution is presented in bold. 

Ts. (K) Fit Range (msec) A1 τ1 (msec) A2 τ2 (msec) A3
 τ3 (µsec) 

12 
14 

0.012 – 10.0 
0.005 – 8.0 

553 
605 

2.19 
2.09 

1184 
542 

1.61 
1.29 

-567 
-228 

108 
124 

 
Table  VIII.7 Photophysical characteristics and excited state assignments of the emission 

feature produced following excitation of the 3d64s a6DJ ← 3d54s2 a6S5/2 
transitions of matrix – isolated atomic manganese isolated in solid Kr.  λEm, 
indicates the emission band-centre in nm and wavenumber units. The matrix 
shift (δ) for the transitions are presented in wavenumber (cm-1) units. The 
positions of the band origins (ZPL) identified are presented in wavenumber 
units. 

Mn Gas Phase1 Mn/Kr Matrix – Emission 
Transition 
Nm / cm-1 Assignment λEm. (nm) / (cm-1) δ (cm-1) Decay Characteristic 

a6D9/2 ↔ a6S5/2 
586.43 / 17052 a6D9/2 → a6S5/2 

585.75 / 17072 
ZPL = 17072 +20 τRad = 227.0 µsec 

z8P5/2 ↔ a6S5/2 
543.4 / 18402 

 
a6D9/2 ↔ a6S5/2 
586.43 / 17052 

(?) 628.7 / 15906 
-2496 

 
-1146 

τObs. = 1.61 msec 
(τRise = 108 µsec) 

 

VIII.2.III Mn(a6D)/Ar 

The luminescence spectroscopy of the z6P5/2 excited state of atomic Mn isolated in 

solid Ar, presented in Chapter VII, identified three site specific emission features at 

590, 625 and 604 nm produced with 1° red, 2° blue and 3° site excitation 

respectively.  The 590 nm emission feature resulting from red (1°) site excitation, 

shown Figure VII.41, was tentatively assigned to the a6D9/2 → a6S5/2 transition. Table 

VII.6 presents the photophysical characteristics of this emission feature.  Blue (2°) 

site excitation produced emission at 625 nm, which has not been state assigned.  

Finally, careful annealing experiments showed the 604 nm feature to be a thermally 

unstable site for Mn isolated in solid Ar. 
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 Figure  VIII.17 presents high-resolution excitation spectra recorded in the 

region of the a6D5/2 ↔ a6S5/2 gas phase transition1 of atomic manganese at 573.03 nm 

(17452 cm-1).  Inspection of the spectra recorded monitoring the 590 (solid line) and 

625 nm (dashed line) features reveals similar broadband excitation profiles, 

overlapping the gas phase a6DJ ↔ a6S5/2 transitions for J = 1/2; 3/2; 5/2 and 7/2 spin-

orbit levels.  The most resolved excitation band profile was recorded monitoring the 

590 nm emission, showing components at 567.5, 569.6, 573 and 578.2 nm.  The 

excitation profile (dotted line) recorded monitoring the 604 nm emission feature is 

broad with a main band at 573 nm and an unresolved shoulder at 570 nm, Figure 

 VIII.17. 
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Figure  VIII.17 Dye laser excitation spectra recorded at 12.5 K, in the vicinity of the a6D5/2 ↔ 
a6S5/2 gas phase transition monitoring the red emission features. 

 
An overlap of the excitation spectrum recorded monitoring the 590 nm emission with 

the gas phase transitions from the ground state to the individual spin-orbit levels of 

the a6DJ state is presented on the left side of Figure  VIII.18.  The close agreement 

evident in Figure  VIII.18 between the gas phase spin-orbit levels and the partially 

resolved excitation features allows a definitive assignment of Mn/Ar bands as 

transitions to the individual spin-orbit states of the excited a6DJ states, Table  VIII.8.  

The narrow features are red shifted in the Ar matrix by approximately 23 cm-1 from 

the gas phase positions.  The right panel of Figure  VIII.18 shows the good agreement 

between the gas phase transitions and the observed matrix bands following the 
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correction for the matrix-shift.  The poorer resolution in Mn/Ar originates from the 

wider bandwidths of the transitions compared to those in Xe but especially in Kr. 
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Figure  VIII.18 Dye laser excitation spectrum recorded by monitoring emission at 590 nm, 
shown left.  Excitation spectrum corrected by a blue matrix shift of 23 cm-1 is 
presented right.  The dashed vertical lines indicate the gas phase positions of the 
a6DJ ↔ a6S5/2 transitions to the excited state spin-orbit levels1. 

 

Table  VIII.8 The transitions assigned and the photophysical characteristics of the resolved 
excitation features recorded by monitoring the emission at 590 nm.  The 
spectral positions of the observed excitation features and the gas phase 
transition energies1 for the individual a6DJ ↔ a6S5/2 are indicated in nm and 
wavenumber units (cm-1) for the individual spin-orbit levels.  ∆ indicates the 
splitting between successive spin-orbit levels in the gas phase (G.P.) and Ar 
matrix environment (Mn/Ar).  The matrix-shifts (δ) observed for the assigned 
transitions are presented in wavenumber units. 

Mn Gas Phase  Mn/Ar Excitation  

Transition1 
(nm / cm-1) ∆G.P. (cm-1) 1 Assignment 

(nm) / (cm-1) ∆Mn/Ar (cm-1) δ (cm-1) 

a6D1/2 ↔ a6S5/2 
566.98 / 17637 

 
a6D3/2 ↔ a6S5/2 
569.21 / 17568 

 
a6D5/2 ↔ a6S5/2 
573.03 / 17452 

 
a6D7/2 ↔ a6S5/2 
578.63 / 17282 

 
a6D9/2 ↔ a6S5/2 
586.43 / 17052 

 
 

69 
 
 

116 
 
 

170 
 
 

230 
 
 

a6D1/2 ← a6S5/2 
567.7 / 17615 

 
a6D3/2 ← a6S5/2 
570.0 / 17544 

 
a6D5/2 ← a6S5/2 
573.4 / 17440 

 
a6D7/2 ← a6S5/2 
579.8 / 17248 

 
 
 

 
 

71 
 
 

104 
 
 

192 
 
 
 
 
 

-22 
 
 

-24 
 
 

-12 
 
 

-34 
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 The right hand side of Figure  VIII.19 presents a high-resolution emission 

spectrum recorded with excitation at 569.9 nm corresponding to the excitation band 

of maximum intensity, (shown left).  The emission band centered at 590 nm exhibits 

a linewidth of 100 cm-1 and is red shifted from the a6D9/2 ↔ a6S5/2 gas phase position 

by 103 cm-1. 

Excited state decay profiles recorded for the 590 nm emission feature reveals 

complex kinetics even for the direct a6D excitation.  Figure  VIII.20 presents a decay 

profile monitoring the 590 nm feature produced with pulsed laser excitation at 572.9 

nm corresponding to the a6D5/2 ← a6S5/2 transition.  Inspection of the residuals shown 

in the top panel of Figure  VIII.20 reveals an adequate fit of the decay profile was 

achieved using a triple exponential function.  This analysis allowed the identification 

of the largest contribution to the excited state lifetime as 1.09 msec at 12 K.  

However, the two other decay components extracted, with lifetimes of 302 and 36 

µsec, both have substantial amplitudes. 
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Figure  VIII.19 Dye laser excitation spectrum recorded by monitoring the 590 nm emission 
feature, shown left.  Emission recorded with excitation at 569.9 nm, (shown 
right).  The dashed vertical lines indicate the gas phase positions of the a6D5/2 
and a6D9/2 ↔ a6S5/2 transitions. 
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Figure  VIII.20 Decay profile recorded for the 590 nm emission feature at 12 K using TCSPC 
following pulsed laser excitation at 572.9 nm. 

 
The observed lifetime of the 590 nm emission feature is identified as 1.09 msec at 12 

K.  Decay profiles recorded at temperatures between 12 and 25 K exhibit, as shown in 

Figure  VIII.21, a dependence on the acquisition temperature.  Therefore the radiative 

lifetime of the transition has not been observed at 12 K the lowest temperature 

attainable in the present experiment.  The excited state lifetime components extracted 

from fits of the decay profiles are presented in Table  VIII.9.  Inspection of the decay 

components identified shows that the millisecond component dominates at all 

temperatures.  Based on the spectral proximity of the 590 nm emission band in Ar to 

the a6D9/2 ↔ a6S5/2 gas phase transition and the asymmetric lineshape exhibited, this 

band is assigned to the a6D9/2 → a6S5/2 transition of atomic Mn.  The lifetime of this 

transition is taken as 1.09 msec at 12 K. 
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Figure  VIII.21 Decay profiles recorded for the 590 nm emission feature following pulsed laser 
excitation at 572.9 nm at various temperatures as indicated right in Kelvin, 
following sample deposition at 12.5 K and matrix annealing to 30 K. 

 

Table  VIII.9 Decay characteristics, components and amplitudes (A) extracted from non-
linear least squares analysis of the temporal profiles recorded by monitoring the 
590 nm emission at different temperatures, (Ts) following pulsed laser excitation 
at 572.9 nm. Note the dominant decay contribution is presented in bold. 

Ts. (K) Fit Range (msec) A1 τ1 (msec) A2 τ2 (µsec) A3
 τ3 (µsec) 

12 

19 

22 

25 

0.001 – 3.5 

0.01 – 3.5 

0.01 – 3.5 

0.01 – 3.0 

1413 

1169 

1484 

1013 

1.09 

0.93 

0.86 

0.78 

898 

749 

971 

774 

302 

253 

236 

207 

664 

580 

622 

518 

36 

25 

28 

24 

 

Figure  VIII.19 presents a summary of the luminescence spectroscopy of the a6D state 

of atomic Mn isolated in solid argon.  The emission feature at 625 nm was not state 

assigned in Chapter VII.  Fitting the 625 nm decay profile with a triple exponential 

trial function allowed the extraction of 1.08 msec, 425 and 124 µsec lifetime 

components.  The intermediate component dominates the emission decay profile 

recorded, so the observed excited state lifetime is identified as 425 µsec at 12 K.  

Like the Mn/Kr system, presented in the previous section, the high resolution laser 

excitation spectra recorded by monitoring the 590 and 625 nm emission features 
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exhibit different linewidths but are spectrally unshifted with respect to each other.  

Considering these two characteristics indicates that the 625 and 590 nm emissions 

result from different sites of isolation where the a6DJ ← a6S5/2 transition energy is 

independent of the matrix environment. 
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Figure  VIII.22 Decay profile recorded for the 627 nm emission feature at 12 K using TCSPC 
following pulsed laser excitation at 572 nm.  The residuals present the 
difference between the triple exponential non-linear least squares fit completed 
and the decay recorded. 

 
Table  VIII.10 Photophysical characteristics and excited state assignments of the emission 

feature produced following excitation of the 3d64s a6DJ ← 3d54s2 a6S5/2 
transitions of matrix – isolated atomic manganese isolated in solid Ar.  λEm, 
indicates the emission band-centre in nm and wavenumber units. The matrix 
shift for the transition is indicated δ in wavenumber (cm-1) units. 

Mn Gas Phase Mn/Ar Matrix – Emission 
Transition1 
nm / cm-1 Assignment λEm. (nm) / (cm-1) δ (cm-1) Decay Characteristic 

A6D9/2 ↔ a6S5/2 
586.43 / 17052 a6D9/2 → a6S5/2 590 / 16949 -103 τObs. = 1.09 msec 
Z8P5/2 ↔ a6S5/2 
543.40 / 18402 

 
a6D9/2 ↔ a6S5/2 
586.43 / 17052 

(?) 625 / 16000 
-2402 

 
-1052 

τObs. = 424 µsec 
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VIII.3  Discussion - Mn(a6D)/RG luminescence 

In this section, the observed luminescence of the a6DJ ↔ a6S5/2 transition of atomic 

Mn isolated in solid Ar, Kr and Xe is summarised and some trends evident in the 

recorded excitation and emission spectroscopy are presented. 

VIII.3.I Mn(a6D)/RG  Excitation spectroscopy 

The excitation spectra recorded in the region of the gas phase a6D5/2 ↔ a6S5/2 

transition, monitoring the red emission features tentatively assigned in Chapter VII to 

the a6D9/2 state of atomic Mn isolated in solid Ar, Kr and Xe, are presented in Figure 

 VIII.23.  All the excitation spectra exhibit resolved features, some with very narrow 

linewidths, and on the basis on the splitting exhibited and their proximity to the gas 

phase energies are assigned to transitions to the individual spin-orbit levels of the a6D 

state from the ground a6S5/2 state.  The assignments made to the individual resolved 

features are presented in Table  VIII.1, Table  VIII.4 and Table  VIII.8 for Mn/Ar, 

Mn/Kr and Mn/Xe systems respectively.  The excitation bands recorded for different 

sites in a given rare gas matrix overlap indicating that the energy of the a6D state does 

not shift significantly with different site occupancy in the matrices from the gas 

phase.  Hence, the site of isolation plays only a minor role in the observed excitation 

spectroscopy.  In the next section the role of host in determining the excitation 

spectroscopy is discussed. 

As evidenced in Figure  VIII.23, a progressive shift to higher energy is 

observed for the a6D levels from Ar to Xe matrices.  The matrix-shift was calculated 

to be -23, +15 and +120 cm-1 for Ar, Kr and Xe respectively.  As the relative splitting 

between spin-orbit levels is maintained in all three solids, the observed matrix shift is 

ascribed to the manifestation of the extent of ground state stabilisation for the Mn 

atom isolated in a given site of isolation within a particular host solid.  The 

comparison of the Mn/Kr high-resolution excitation spectra to the gas phase transition 

energies and the temperature dependence observed, allowed the assignment of the 

ZPL’s for the a6DJ (J = 1/2, 3/2, 5/2 and 7/2) ← a6S5/2 transitions in solid Kr. 

It is significant that the excitation spectra recorded here do not conserve the 

site dominance identified in the previous Chapter with resonance z6P excitation.  In 

Chapter VII the excitation spectra allowed the identification of specific sites of 

isolation (1°, 2°, red, blue etc) in the vicinity of the resonance z6P5/2 ↔ a6S5/2 gas 
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phase transition of atomic Mn.  However, in the a6D case the luminescence data 

suggests that although the site-specific emission features, identified in Chapter VII, 

are present, the emission features produced with blue site (z6P5/2) of isolation at 625 

and 627 nm are much weaker with direct a6D excitation.  This effect was most 

evident in solid Xe where the emission intensity for the thermally unstable 656 nm 

feature persisted after annealing and was observed to have an equivalent intensity as 

the 620 nm band.  As the 620 nm band is the only Mn/Xe thermally stable emission 

feature reported to date, the weak emission intensity observed with direct a6D 

excitation must be attributed to the site of isolation.  The sites of isolation are 

discussed in greater detail in Chapter IV where the blue sites are assigned to single 

substitutional site occupancy in Ar, Kr and Xe.  However, the blue site only allows 

the a6D ← a6S transition to occur efficiently in Xe, whereas the red sites in Ar and Kr 

allow an enhancement of the transition.  This effect may owe its origin to either the 

site size or the site symmetry. 
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Figure  VIII.23 Dye laser excitation spectra recorded monitoring the red emission features as 
indicated in wavelength units at 12 K for all the Mn/RG systems, in the vicinity 
of the Mn a6DJ ← a6S5/2 transition.  All spectra were recorded following Mn/RG 
sample deposition at 12 K and matrix annealing.  The dashed vertical line 
indicates the position of the a6D5/2 ← a6S5/2 gas phase transition of atomic Mn at 
573.03 nm (17452 cm-1) 1. 
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VIII.3.II Mn(a6D)/RG  Emission spectroscopy 

The emission spectroscopy reported in the previous sections following excitation of 

the a6D ↔ a6S transitions is summarised in Figure  VIII.24.  The transitions assigned 

and photophysical properties of the observed emission features are presented in Table 

 VIII.10, Table  VIII.7 and Table  VIII.3 for Mn/Ar, Mn/Kr and Mn/Xe respectively.  

The emission spectroscopy reported here allowed a more definitive assignment of the 

emission features observed at 590, 587 and 620 nm (presented in Chapter VII 

following z6P5/2 excitation) in Ar, Kr and Xe to the a6D9/2 → a6S5/2 phosphorescent 

transition of atomic Mn.  The most definitive assignment was achieved for the 587 

nm band in the Mn/Kr system.  Temperature dependence observed in the emission 

intensity of the 587 nm band of Mn/Kr allowed the assignment of the ZPL for the 

band to be at 585.75 nm (17072 cm-1) blue shifted from the gas phase a6D9/2 ↔ a6S5/2 

position1 by +20 cm-1.  The blue shift observed correlates well with the matrix-shift of 

+15 cm-1 extracted from excitation of the a6DJ (J = 1/2; 3/2; 5/2;and 7/2) ← a6S5/2 

transitions.  Inspection of the middle panel of Figure  VIII.24 shows the agreement 

achieved and the effect of increased resolution on the emission band profile observed. 

The emission features assigned to the a6D9/2 → a6S5/2 transition of Mn isolated 

in solid Ar, Kr and Xe at 590, 585.75 and 620 nm show uncharacteristic matrix-shifts 

of –103, +20 and –923 cm-1 respectively.  This effect is attributed to the Frank 

Condon accessible region in excitation for certain site types in the rare gases.  In the 

previous Chapter, Mn isolated in the red sites (identified on the z6P5/2 transition) in Ar 

and Kr lead to the production of the 590 and 585.75 nm features which are now 

assigned to the emission of the a6D9/2 state (shown Figure VII.65).  However the 620 

nm feature assigned to the same electronic transition was observed to occur from the 

blue site equivalent.  It is suggested that the site size available in Kr allows access to 

the minimum of the excited state potential energy surface, by allowing the 

observation of the ZPL for the a6D9/2 → a6S5/2 transition.  In solid Xe, the Mn atom 

occupies a different site type and the site size does not allow coincidence of the 

minima of the ground and excited state.  Subsequent interaction with the matrix host 

results in the broadening of the emission lineshapes and in the matrix-shifts observed. 
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Figure  VIII.24 Emission spectra (shown right) recorded at 12 K for all the Mn/RG systems 
investigated produced with laser excitation in the vicinity of the Mn a6D ← 
a6S5/2 transition.  The excitation wavelengths used are shown (right) as λEx. (nm). 
The excitation spectra shown (left), were recorded by monitoring emission 
bands as indicated by λEm. in wavelength units.  All spectra were recorded 
following Mn/RG sample deposition at 12 K and matrix annealing.  The dashed 
vertical lines show the spectral locations of the gas phase transitions of atomic 
Mn.  The asterix indicates that the Mn/Kr emission presented was recorded at 
lower spectral resolution over this range. 

 

VIII.4  Conclusion  Mn(a6D)/RG luminescence 

The excitation spectra recorded monitoring the emission features in the region of the 

gas phase a6D5/2 ↔ a6S5/2 transition are presented in Figure  VIII.23 for Mn atoms 

isolated in solid Ar, Kr and Xe.  The observation of the individual spin-orbit levels in 

excitation is attributed to weak coupling of the a6D excited state of Mn to the solid-

state environment provided by the site of isolation.  This contrasts with the excitation 

spectra recorded monitoring the same emission features, in the vicinity of the gas 

phase z6P5/2 ↔ a6S5/2 and z8P5/2 ↔ a6S5/2transitions, in the previous Chapter VII and 

later in this Chapter.  The P ← S excitation spectra show characteristic Jahn-Teller 

threefold splitting pattern and large shifts from the gas phase positions.  The 

comparison indicates the stronger interaction of the z6P5/2 excited state with the 
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matrix environment, highlighted by the observation of different matrix shifts for 

particular sites of atomic isolation. 

 The conservation of the gas phase spin-orbit splittings on the a6D state in the 

solid allows the identification of the matrix shift observed for the a6D5/2 ↔ a6S5/2 

transition in all RG hosts, to the extent of ground state stabilisation for the Mn atom 

isolated in a given site of isolation within a particular host.  The temperature 

dependence in the recorded spectra allowed the first observation of a ZPL for a 

matrix-isolated metal atom in excitation.  This is best illustrated for the a6D5/2 ← 

a6S5/2 transition for the Mn/Kr system. 

 The spectroscopy recorded following direct a6DJ excitation allowed a 

definitive assignment of the 585 nm emission to the a6D9/2 → a6S5/2 transition in the 

Mn/Kr system.  In Ar and Xe such a definitive assignment was not possible but the 

590 and 620 nm emission bands in these solids are attributed to the a a6D9/2 state.  

The emission features observed at 625, 626.7 and 656 nm in Ar, Kr and Xe matrices 

remain unassigned. 

 

VIII.5 Results Mn(z8P)/RG luminescence 

The following sections present the luminescence spectroscopy produced with direct 

laser excitation of the z8P5/2 excited state of atomic Mn isolated in solid Ar, Kr and 

Xe.  Excitation spectra recorded in the vicinity of the gas phase position1 of the 

3d54s4p z8P5/2 ↔ 3d54s2 a6S5/2 transition at 543.4 nm (18402 cm-1) allow the 

identification of the z8P5/2 ← a6S5/2 transition in each RG host. 

Time-resolved emission spectra and excited state lifetime measurements 

following pulsed laser excitation are used to attempt state assignments of the red 

emission bands reported at 625 and 627 nm in solid Ar and Kr respectively.  These 

measurements also serve as a probe of the excited state relaxation mechanisms 

leading to the observed emission.  This secondary role is of great importance in 

assessing the relaxation paths, which produce the emission features assigned to the 

a6D9/2 → a6S5/2 transitions produced from the higher lying z6P5/2 state, the 

luminescence spectroscopy of which was presented in Chapter VII. 

The dye material used for direct z8P state laser excitation was Coumarin 500.  

This is tuneable over the spectral range 485 to 535 nm (Chapter II, Table II.IX, 
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bottom panel) and exhibits a fluorescence maximum at 504 nm when pumped with 

the third harmonic of the Nd:YAG laser at 355 nm. 

 

VIII.5.I Mn(z8P)/Xe 

In Section VIII.2.I the emission at 620 nm produced with a6D7/2 ← a6S5/2 excitation at 

574.65 nm was cautiously (Figure  VIII.6) assigned to the relaxation of the a6D9/2 

state.  Figure  VIII.3 showed that the 620 nm emission was separable from the 

thermally unstable 656 nm feature, identified in Chapter VII, Figure VII.2.  Figure 

 VIII.25 now presents high-resolution excitation spectra recorded in the vicinity of the 

gas phase z8P5/2 ↔ a6S5/2 transition by monitoring the 621 (solid line) and 650 nm 

(dotted line) emissions.  Inspection of the 621 nm excitation spectrum reveals two 

well-resolved features at 521.24 and 527.31 nm and a third weaker feature at 533.21 

nm.  The overall band shape is characteristic of Jahn-Teller threefold splitting of the 

z8P5/2 ← a6S5/2 transition of atomic Mn, exhibiting a blue matrix-shift of 562 cm-1 

from the gas phase position1 at 543.4 nm, (18402 cm-1).  The average linewidth 

observed for the threefold split components is 192 cm-1.  The weak intensity of the 

lowest energy threefold component is due to the intensity drop-off of the Coumarin 

500 dye curve at 535 nm. 
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Figure  VIII.25 Mn/Xe dye laser excitation spectra recorded at 12 K, in the vicinity of the z8P5/2 
↔ a6S5/2 gas phase transition (dashed vertical line). 
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The most striking feature evident in the spectra presented in Figure  VIII.25 is 

the presence of the threefold splitting pattern.  This is attributed to the P ← S nature 

of the electronic transition involved and indicates a strong interaction of the excited 

state Mn atom with the matrix environment.  Earlier in this Chapter the excitation 

spectra recorded for the a6D excited state, allowed the identification of electronic 

transitions to the individual spin-orbit (J) levels.  This occurred due to the weak 

guest-host interaction in the a6D excited state of atomic Mn.  In the z8P case, the gas 

phase splitting between the spin-orbit levels1 (5/2 ↔ 7/2 and 7/2 ↔ 9/2) is 130 and 173 

cm-1.  The observed splittings between the threefold components identified in the 

solid are 221 and 210 cm-1.  From this comparison it is evident that the observed 

matrix splittings exceed the gas phase spin-orbit splittings1.  Moreover, the broad 

linewidth and the constant splitting further reinforces the assignment of the three 

observed bands as arising from Jahn-Teller interaction between the degenerate z8P 

state and the matrix environment. 

Following the identification of the z8P state in excitation, emission spectra 

were recorded with z8P ← a6S excitation at 529.4 nm.  The emission spectrum 

recorded is shown in Figure  VIII.26 – it exhibits no additional features to those 

observed previously. 
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Figure  VIII.26 Emission spectrum (shown right) recorded at 12.5 K following pulsed laser 
excitation at 529.4 nm, corresponding to the central threefold split component 
identified in excitation (shown left).  Sample deposition was completed at 12.5 K 
and subsequently annealed to 37 K. 
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Table  VIII.11 Photophysical characteristics of excitation and emission bands assigned to the 
3d54s4p z8P5/2 ← 3d54s2 a6S5/2 transition and emission features produced 
following z8P5/2 ← a6S5/2 excitation of atomic manganese isolated in solid Xenon.  
λEx  / λEm indicates the position of an individual threefold excitation feature and 
emission band-centre in nm units respectively. The full-width at half-maximum 
intensity of the excitation/emission features is denoted by ∆ and the gas phase to 
matrix frequency shifts (δ) are presented for the assigned absorption and 
emission features are presented in wavenumber (cm-1) units.  The decay 
characteristics extracted for the observed emission feature at 12.7 K are also 
presented. 

Mn Gas Phase Mn/Xe Matrix – Excitation 
Transition1 
nm / cm-1 Assignment λEx. (nm) / ∆ (cm-1) δ (cm-1) 

z8P5/2 ↔ a6S5/2 
543.4 / 18402 z8P5/2 ← a6S5/2 

521.24 
527.31 / ≈ 192 

533.21 
+562 

Mn/Xe Matrix – Emission 
λEm. (nm) / ∆ (cm-1) Decay (msec) δ (cm-1) 

 
 
 

a6D9/2 ↔ a6S5/2 
586.43 / 17052 

a6D9/2 → a6S5/2 620.0 / ≈ 240 τObs  = 1.75  -926 

 

Figure  VIII.27 presents the decay profiles recorded for the 620 nm emission band at 

12.7, 14, 22 and 27 K.  It is clear from Figure  VIII.27 that the radiative decay of the 

excited state has not been identified, as the decay profile observed is sensitive to 

temperature, even over the range 12.7 to 14 K.  Figure  VIII.28 presents a fit of the 

decay profile recorded by monitoring the 620 nm emission at 12.7 K.  Therefore, the 

observed lifetime of the 620 nm emission is identified as 1.75 msec.  The results of 

the fit of the decay profiles recorded at various temperatures (Table  VIII.12) show 

that the relative contributions of the three temporal components were constant over 

the range investigated.  However, all three decay characteristics decrease with 

increasing temperature.  The temperature dependence observed is consistent with the 

assignment of the emission feature to the a6D9/2 → a6S5/2 transition of atomic Mn, as 

the observed excited state lifetime τObs (λEx = z8P5/2) of 1.75 msec is longer than that 

observed with direct z6D5/2 excitation where a microsecond excited state lifetime 

dominated, as shown in Table  VIII.3.  Therefore, the temperature dependence 

exhibited by the decay profiles presented in this section is a manifestation of the 

efficiency of the z8P ⇒ a6D inter system crossing (ISC) process leading to the 

observed emission.  Accordingly, no z8P5/2 state emission features are identified in the 

spectra resulting from direct z8P5/2 excitation in solid Xe. 
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Figure  VIII.27 Decay profiles recorded monitoring the 620 nm emission recorded at various 
temperatures as indicated, following pulsed laser excitation at 528.25 nm. 
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Figure  VIII.28 Decay profile of the 620 nm emission recorded at 12.7 K using TCSPC following 
pulsed laser excitation at 528.25 nm.  The residuals presented allow an 
assessment of the fit quality as they represent the difference between the triple 
exponential fit completed and the decay recorded. 
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Table  VIII.12 Decay characteristics, components and amplitudes (A) extracted from non-
linear least squares analysis of the temporal profiles recorded monitoring 
emission at 620 nm at different temperatures, (Ts) following pulsed laser 
excitation at 528.25 nm. Note the dominant decay contribution is presented in 
bold. 

Ts. (K) Fit Range (msec) A1 τ1 (msec) A2 τ2 (µsec) A3
 τ3 (µsec) 

12.7 

14.0 

18.0 

22.0 

25.0 

28.0 

0.01 – 7.5  

0.01 – 7.5 

0.01 – 7.5 

0.01 – 6.0 

0.01 – 6.0 

0.01 – 4.7 

1060 

876 

869 

1263 

1010 

994 

1.75 

1.67 

1.59 

1.39 

1.34 

1.21 

867 

677 

810 

784 

733 

503 

725 

632 

724 

569 

592 

460 

350 

261 

322 

342 

283 

233 

128 

72.0 

124 

85.6 

81.2 

75.3 

 

VIII.5.II Mn(z8P)/Kr 

The luminescence spectroscopies resulting from z6P state excitation (presented in 

Chapter VII), and resulting from a6D state excitation, presented earlier in this 

Chapter, have shown the complexity of the Mn/Kr system, where multiple sites of 

atomic isolation and emission features have been identified.  The emission feature 

produced to lower energy than the z8P5/2 ↔ a6S5/2 gas phase transition1 of atomic Mn 

at 585.75 has been definitively assigned to the a6D9/2 → a6S5/2 transition.  However 

the 626.8 nm emission band has not been state assigned.  The production of the broad 

626.8 nm emission was only observed with blue (1°) site excitation of the z6P5/2 state, 

Figure VII.63.  The temperature dependence observed in the steady-state and decay 

time measurements indicated a complex inter-system crossing (ISC) process leads to 

the production of the emission feature.  The complexity of the relaxation process 

involved serve to make direct z8P5/2 resonance excitation important in deciphering the 

relaxation processes leading to the observed emission. 

High-resolution excitation spectra recorded with a dye laser monitoring the 

thermally stable 628.3 and 589.4 nm and unstable 605.2 nm emission features are 

presented in Figure  VIII.29.  These excitation restore the site-specific nature of the 

emission features previously observed for the z6P5/2 excited state luminescence, 

Chapter VII; Figure VII.43.  The dominant 1° site is located to higher energy and 

exhibits resolved threefold splitting.  The excitation spectrum obtained monitoring the 

589.4 nm emission is located at lower energy (2° site) and manifests two resolved 

features and a weaker, low energy feature8.  The excitation spectrum recorded 



Chapter VIII; Mn(z8P and a6D)/RG Lum. 

274 

monitoring the thermally unstable emission at 605.2 nm exhibits the broadest 

excitation lineshape, behaviour consistent with the results achieved for the z6P5/2 state, 

Chapter VII; Figure VII.43.  The photophysical characteristics of the excitation 

spectra shown in Figure  VIII.29 are collected in Table  VIII.13. 

The recorded excitation spectra allowed the assignment of the blue (1°) and 

red (2°) sites of isolation of Mn atoms.  Emission spectra recorded with 1° and 2° site 

excitation at 513.8 and 531.8 nm respectively are shown in Figure  VIII.30.  Blue (1°) 

site excitation leads to the production of three broad emission features centered at 

565.2 nm (17693 cm-1), 605 (16529 cm-1) and 627.4 nm (15938 cm-1) with linewidths 

of 523, 430 and 262 cm-1 respectively.  The higher energy 565.2 nm feature was not 

observed with any of the previous excitation methods used in this study. 
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Figure  VIII.29 Mn/Kr high-resolution excitation spectra recorded at 12.5 K, in the vicinity of 
the z8P5/2 ↔ a6S5/2 gas phase transition (dashed vertical line) by monitoring the 
emission features as indicated.  Sample deposition was completed at 12.5 K. 

 

Inspection of Figure  VIII.30 shows that red (2°) site excitation at 531.8 nm leads to 

the 586 nm emission feature assigned earlier in this Chapter to the a6D9/2 → a6S5/2 

transition.  In addition the 605 and 627 nm emission features are present due to the 

spectral overlap.  No further analyses of the 586 nm emission band, or excited state 

lifetime measurements are reported for the a6D9/2 → a6S5/2 transition. 
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Table  VIII.13 Photophysical characteristics of the 1°, 2° and 3° sites of isolation 3d54s4p z8P5/2 
↔ 3d54s2 a6S5/2 transition of atomic manganese.  The spectral position and 
average full width at half maximum (fwhm) denoted as ∆AV of the three 
components identified in Gaussian lineshape analyses for the three–fold split 
excitation spectra are presented in wavenumber units.  Gas phase to matrix 
frequency shifts (δ) are presented for the atomic Mn z8P5/2 ← a6S5/2 transition 
(G.P.: 18402 cm-1) in wavenumber units.  Note the frequency shifts are 
calculated with respect to the central feature of the observed three-fold pattern. 

Mn/Kr Site E (cm-1) ∆AV (cm-1) δ (cm-1) 
 

1° 
19696 
19397 
19114 

 
≈ 223 

 
+ 995 

 
2° 

19081 
18822 
18648 

 
≈ 150 

 
+ 420 

 
3° 

19408 
19129 
18778 

 
≈ 360 

 
+ 727 
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Figure  VIII.30 Emission spectra recorded at 12.5 K produced with site-selective laser 
excitation of the 1° (513.8 nm) and 2° (531.8 nm) sites assigned to the Mn z8P5/2 
← a6S5/2 transition on deposition at 12.5 K.  The spectra have been normalised 
and the scaling factors are shown.  Note the asterix denotes the presence of 
thermally unstable emission.  The positions of the z8P5/2 ↔ a6S5/2 and a6D9/2 ↔ 
a6S5/2 gas phase transitions are indicated. 
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VIII.5.II.I Mn(z8P)/Kr - 1° site luminescence 

This section presents time-resolved emission spectra, excited state lifetime 

measurements and the temperature dependence of the two site-specific emission 

features observed at 565.2 and 627.4 nm.  Figure  VIII.31 presents time-resolved 

emission recorded with iCCD detection following z8P5/2 ← a6S5/2 excitation of Mn 

atoms isolated in the blue (1°) site at 513.8 nm.  It is evident from Figure  VIII.31 that 

the excited state lifetimes of the emission features are very different. 

Figure  VIII.31 Time-resolved emission spectrum recorded monitoring emission at 565 and 626 
nm (at 12 K) following pulsed laser excitation at 513.8 nm.  The temporal step 
and width used was 15 µsec with a delay time of td = 0.0 nsec.  The excited state 
decay profiles extracted for the emission features are presented (Inset).  

 
Thus the 565.2 nm feature is observed to decrease in intensity over the 0 to 150 

microsecond timescale shown, whereas the intensity of the 627 nm band is still 

increasing in this time interval.  Decay profiles extracted from the time-resolved 

measurement are shown in the inset of Figure  VIII.31.  Comparison of the decay 

curves shows that the 565.2 nm emission occurs on a microsecond timescale, and the 

627 nm feature requires milliseconds to decay.  The rising portion of the 627 nm band 

is observed over the same timescale as the 565.2 nm decay.  A fit of the decay profile 

recorded for the 565 nm feature using a single exponential trial function allowed the 

extraction of an excited state lifetime of 43.4 µsec.  The temperature dependence in 

the 565 nm decay profile is shown in Figure  VIII.32 revealing that the radiative 
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lifetime of the feature has not been observed.  This is evident from the change in the 

decay profiles measured in the small temperature range 12.6 to 13.5 K.  Excited state 

lifetimes of 43.4, 29.3 and 20.1 µsec were extracted at temperatures of 12.6, 13.5 and 

16 K respectively. 
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Figure  VIII.32 Decay profiles recorded monitoring the 565 nm emission recorded at various 
temperatures as indicated, following pulsed laser excitation at 513.8 nm.  The 
excitation wavelength chosen corresponds to the central threefold excitation 
feature identified. 

 
As the radiative lifetime for the transition has not been identified, the observed 

lifetime at 12.6 K is taken to be 43.4 µsec.  Correction of the observed lifetime for the 

effective field of the Kr solid is achieved using Equation III.1, given the refractive 

index of Kr is 1.4289.  Applying the effective field correction yields a corrected 

excited lifetime of 112.4 µsec a value which compares well with the known gas phase 

lifetime2 for the z8P5/2 ↔ a6S5/2 transition of 149.3 µsec.  This value in conjunction 

with the spectral location, see Figure  VIII.30, allows a convincing assignment of the 

observed 565.2 nm emission feature to the z8P5/2 → a6S5/2 phosphorescence of atomic 

Mn.  Emission spectra recorded following blue (1°) site z8P5/2 ← a6S5/2 excitation at 

513.8 nm were recorded at various temperatures.  The emission spectra showed that 

the emission intensity of the 565.2 nm feature decreased to zero over the temperature 

range 12 to 24 K.  The 565.2 nm feature was not observed at temperatures above 22 

K. 

Figure  VIII.33 presents the decay profiles extracted for the 627 nm emission 

feature from time-resolved spectra.  The decay profile exhibits a rising portion 
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indicative of a complex relaxation process where the final relaxation step may be 

faster than the initial feeding step.  Inspection of Figure  VIII.33 also reveals that the 

626 nm decay profiles recorded with a6D5/2 (567.55 nm) and z8P5/2 (513.8 nm) state 

excitation are similar.  Figure  VIII.16 presented a triple exponential fit of the decay 

profile recorded monitoring 627 nm emission (at 12.5 K) following pulsed laser 

excitation of the a6D5/2 ← a6S5/2 transition.  Three excited state lifetime components 

of 2.19, 1.61 and 0.11 msec were extracted.  The dominant component corresponded 

to τ2 and the rise time was identified as τ3, Figure  VIII.16.  Earlier in this Chapter the 

decay profile recorded monitoring the 626.7 nm band was observed to show a rise 

time with a6D excitation, (Figure  VIII.16).   
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Figure  VIII.33 Comparison of the decay profiles recorded monitoring the 626 nm emission 
feature recorded following pulsed laser excitation at 513.8 and 567.55 nm 
corresponding to the blue (1°) site z8P5/2 ↔ a6S5/2 and the a6D5/2 ↔ a6S5/2 
transitions of atomic Mn isolated in solid Kr. 

 
The observation of site specificity with z8P excitation and the presence of 

approximately the same rise time (108 µsec) indicated the site-specific emission is 

maintained with a6D ← a6S excitation, even though the spectra were unshifted.  This 

suggests the 626.7 nm emission results from the relaxation of the a6D state via direct 

feeding from the z8P with the rise time representing the efficiency of the z8P ⇒ a6D 

ISC.  However, the broad emission lineshape and the large matrix shift observed do 

not favour this assignment.  These mechanisms are discussed at the end of this 
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Chapter following the presentation of the Mn(z8P)/Ar luminescence in tandem with a 

review of the site-specific relaxation mechanisms reported for the z6P and a6D excited 

states of atomic Mn in the RG solids.  The site-specific luminescence spectroscopy of 

the z8P5/2 ↔ a6S5/2 transition of atomic Mn isolated in solid Kr is summarised in 

Figure  VIII.34.  The photophysical characteristics and the transitions assigned to the 

emission features observed are collected in Table  VIII.14.  Overall the site-specificity 

reported in Chapter VII for Mn(z6P)/Kr luminescence is conserved by the z8P5/2 state.  

The excitation spectra reported showed the presence of multiple sites of isolation; two 

thermally stable and a single thermally unstable site were identified.  The blue (1°) 

site produced emission at 565 nm assigned from lifetime measurements to the z8P 

excited state phosphorescence.  The low energy emission at 627 nm remains 

unassigned due to the complexity of the dynamic processes leading to the observed 

feature.  The red (2°) site leads to the production of the 587 nm emission band, 

assigned earlier in the analysis of the a6D state luminescence.  In this case the 

relaxation occurred via a z8P ⇒ a6D ISC process of 100% efficiency10. 
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Figure  VIII.34 Emission spectra recorded with site-selective pulsed laser excitation of the Mn 
z8P5/2 ← a6S5/2 transition.  The excitation spectra (1° and 2° site), were recorded 
by monitoring emission at 588 (top) and 565 / 626 nm (bottom), shown left.  The 
spectra were recorded following sample deposition at 12 K and annealing to 32 
K.  The dashed vertical lines show the spectral positions of the gas phase 
transitions of atomic Mn.  Note the asterix indicates the spectral location of 
thermally unstable emission features. 
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Table  VIII.14 Photophysical characteristics and excited state assignments of the emission 
feature produced following site-specific 3d54s4p z8P5/2 excitation.  λEm. indicates 
the emission band-centre in nm and wavenumber units. The matrix shift (δ) for 
the transitions are indicated in wavenumber (cm-1) units.  

Mn Gas Phase Mn/Kr Matrix – Emission (1° Site) 
Transition1 
nm / cm-1 Assignment λEm. (nm) / (cm-1) δ (cm-1) Decay Characteristic 

z8P5/2 ↔ a6S5/2 
543.40 / 18402 

 
z8P5/2 ↔ a6S5/2 

 
a6D9/2 ↔ a6S5/2 

z8P5/2 → a6S5/2 
 
 
 

(?) 
 

565.2 / 17693 
 
 
 

627.4 / 15938 
 

-709 
 
 

-2464 
 

-1114 

τObs. = 43.4 µsec 
 
 
 

τObs. = 1.61 msec 
τRise = 108 µsec 

 Mn/Kr Matrix – Emission (2° Site) 
a6D9/2 ↔ a6S5/2 
586.43 / 17052 a6D9/2 → a6S5/2 586.75 / 17043 -9  

 

VIII.5.III Mn(z8P)/Ar 

In this section the luminescence spectroscopy of the z8P5/2 ↔ a6S5/2 transition is 

presented for Mn isolated in solid Ar.  Chapter VII; Section VII.2.II and Section 

VIII.2.III of this chapter presented the luminescence of the z6P5/2 and a6D excited 

states of atomic Mn.  The three emission features reported at 590, 605 and 625 nm, 

occurred to lower energy than the z8P5/2 ↔ a6S5/2 gas phase position1 at 543.4 nm 

(18402 cm-1).  The Mn(z6P5/2)/Ar spectroscopy identified multiple sites of isolation, 

and subsequently attributed the emission features at 590 and 625 nm as resulting from 

distinct sites of isolation.  Results from direct a6D state excitation allowed the 590 nm 

emission band to be assigned to the a6D9/2 → a6S5/2 transition, Figure VII.41.  

However, the 625 nm emission feature has not been assigned to either the a6D9/2 → 

a6S5/2 or z8P5/2 → a6S5/2 transitions of atomic Mn in solid Ar. 

Dye laser excitation spectra recorded monitoring the thermally stable 590 and 

625 nm and unstable 605 nm emission features are presented in Figure  VIII.35.  

These excitation spectra exhibit the same site-specific characteristics previously 

observed in excitation spectra of the z6P5/2 state, in Chapter VII.  The low energy, red 

site dominates (1° site) and exhibits very well resolved threefold splitting and a blue 

matrix shift (δ) of 636 cm-1 from the gas phase transition1.  Resolved threefold 

splitting was also recorded monitoring the 625 nm feature.  This corresponds to the 

blue (2°) site of isolation identified for the z6P5/2 transition.  The excitation spectrum 
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recorded monitoring the thermally unstable emission at 605 nm shows a broad 

lineshape consistent with that obtained for the z6P5/2 state, Chapter VII; Figure VII.12.  

The photophysical characteristics of the excitation spectra are shown in Figure 

 VIII.35 and presented in Table  VIII.13. 
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Figure  VIII.35 Mn/Ar high-resolution excitation spectra recorded at 12.5 K by monitoring the 
emission features as indicated.  The dashed vertical lines indicates the spectral 
location of the z8P5/2 ↔ a6S5/2 gas phase transition1. 

 
Table  VIII.15 Photophysical characteristics of the 1°, 2° and 3° sites of isolation 3d54s4p z8P5/2 

↔ 3d54s2 a6S5/2 transition of atomic manganese.  The spectral position and 
average full width at half maximum (fwhm) denoted as ∆AV of the three 
components identified in Gaussian lineshape analyses for the three–fold split 
excitation spectra are presented in wavenumber units.  Gas phase to matrix 
frequency shifts (δ) are presented for the atomic Mn z8P5/2 ← a6S5/2 transition1 
(G.P.: 18402 cm-1) in wavenumber units.  Note the frequency shifts are 
calculated with respect to the central feature of the observed three-fold pattern. 

Mn/Ar Site E (cm-1) ∆AV (cm-1) δ (cm-1) 
 

1° 
19354 
19038 
18798 

 
≈ 193 

 
+ 636 

 
2° 

19989 
19617 
19315 

 
≈ 320 

 
+ 1215 

 
3° 

19773 
19346 
18982 

 
≈ 428 

 
+ 944 

 



Chapter VIII; Mn(z8P and a6D)/RG Lum. 

282 

Emission spectra recorded with site-specific excitation at 528.8 nm (1°); 508.8 

nm (2°) and 515.8 nm (3°) are shown in Figure  VIII.36.  The emission spectra shown 

reveal the red (1°) site excitation at 528.8 nm leads to the production of the 590 nm 

emission feature previously assigned to the a6D9/2 → a6S5/2 transition.  Blue (2°) site 

excitation at 508.8 nm produced the 625 nm emission previously identified.  

However, unlike the 565 nm band in the Mn(z8P)/Kr system, no emission feature with 

a small Stokes’ shift is observed in Ar with direct z8P5/2 ← a6S5/2 excitation.  The 

sections that follow present a detailed analysis of the site-specific emission 

spectroscopy observed following z8P5/2 excitation, focussing on the excited state 

lifetime measurements conducted in an attempt to identify the excited state dynamics 

leading to the observed emission features. 
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Figure  VIII.36 Mn/Ar emission spectra recorded at 12.5 K produced with site-selective laser 
excitation of the 1°, 2° and 3° sites assigned to the Mn z8P5/2 ← a6S5/2 transition 
on deposition at 12.5 K.  The spectra have been normalised and the scaling 
factors are shown.  The dashed vertical lines indicate the positions of the z8P5/2 
↔ a6S5/2 and a6D9/2 ↔ a6S5/2 gas phase transitions1. 

 

VIII.5.III.I Mn(z8P)/Ar - 1° site luminescence 

As shown in Figure  VIII.36, laser irradiation at 528.8 nm corresponding to excitation 

of the red (1°) site, leads to the production of the 590 nm emission feature assigned in 
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Section VIII.2.III to the a6D9/2 → a6S5/2 transition.  Figure  VIII.37 presents the decay 

profile recorded monitoring the 590.5 nm feature at 12 K.  The decay times extracted 

using a trial triple exponential function are dominated by two long lived components 

of 1.28 and 0.51 msec.  These long-lived millisecond components dominate for all 

temperatures in the range 12 to 24 K. 
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Figure  VIII.37 Decay profile of the 590.5 nm emission feature recorded at 12 K using TCSPC 
following pulsed laser excitation at 527.7 nm.  The residuals present the 
difference between the triple exponential non-linear least squares fit completed 
and the decay recorded. 

 
Comparison of the decay times extracted at all temperatures following pulsed laser 

excitation of the z8P5/2 ← a6S5/2 transition in Table  VIII.16 can be made with those 

presented in Table  VIII.9 following a6D5/2 ← a6S5/2 excitation.  This reveals that the 

excited state decay characteristics are slightly longer with z8P5/2 excitation than with 

a6DJ.  This therefore suggests that the relaxation occurs by an efficient z8P ⇒ a6D 

ISC process which is 100% efficient with red (1°) site excitation as no rise times 

(non-radiative feeding rates) are evident in the decay profiles recorded. 
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Table  VIII.16 Decay characteristics, components (τ) and amplitudes (A) extracted from non-
linear least squares analysis of the temporal profiles recorded by monitoring 
emission at 590 nm at different temperatures, (Ts) following pulsed laser 
excitation at 528.8 nm. Note the dominant decay contribution is presented in 
bold. 

Ts. (K) Fit Range (msec) A1 τ1 (msec) A2 τ2 (µsec) A3
 τ3 (µsec) 

12.7 

15.0 

18.0 

21.0 

24.0 

0.01 – 7.0  

0.01 – 5.0 

0.01 – 5.0 

0.01 – 5.0 

0.01 – 5.0 

2332 

1054 

1482 

1414 

1781 

1.28 

1.08 

0.99 

0.91 

0.83 

2188 

641 

916 

908 

1201 

512 

330 

288 

240 

216 

1445 

464 

581 

574 

740 

89.0 

55.2 

41.9 

21.8 

21.9 

 

VIII.5.III.II  Mn(z8P)/Ar - 2° site luminescence 

Emission spectra recorded with blue (2°) site excitation at 508.8 nm yielded the 

single thermally stable emission centered at 625 nm.  Unlike Mn/Kr, presented in the 

previous section, no feature in the 560 nm region was observed in solid Ar, Figure 

 VIII.36.  However, the strong temperature dependence observed for the 565.2 nm 

band in Kr, suggests that the minimum temperature accessible of 12 K, may not allow 

the production of an emission feature due to fast non-radiative relaxation of the z8P 

excited state.  Therefore experiments below 12 K are suggested but cannot be realised 

using the current cryogenic apparatus. 

 Decay profiles recorded monitoring the 625 nm emission band show no 

indications of a rise time component unlike that present in the 627 nm feature in solid 

Kr.  Analysis of the decay profiles recorded monitoring the 625 nm emission required 

a triple exponential function, Figure  VIII.38 at 12 K.  The dominant millisecond 

decay components extracted at all temperatures are presented in Table  VIII.17. 

The conflicting spectral and temporal characteristics of the 625 nm emission 

feature preclude a definitive assignment to either the z8P5/2 → a6S5/2 or the a6D9/2 → 

a6S5/2 transitions of atomic Mn isolated in Ar.  Specifically, the broad symmetric 

lineshape is indicative of a P → S type transition, while the long decay time (980 

µsec) and the spectral location suggest an assignment to the a6D9/2 → a6S5/2 

transition.  The assignment of this emission band is discussed further at the end of 

this Chapter. 
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Figure  VIII.38 Decay profile of the 625 nm emission feature recorded at 12 K using TCSPC 
following pulsed laser excitation at 511.2 nm.  The residuals present the 
difference between the triple exponential non-linear least squares fit completed 
and the decay recorded. 

 
Table  VIII.17 Decay characteristics, components and amplitudes (A) extracted from non-

linear least squares analysis of the temporal profiles recorded monitoring λEm. = 
625 nm at different temperatures, (Ts) following pulsed laser excitation at 511.2 
nm. Note the dominant decay contribution is presented in bold. 

Ts. (K) Fit Range (msec) A1 τ1 (µsec) A2 τ2 (µsec) A3
 τ3 (µsec) 

12.7 

15.0 

18.0 

25.0 

0.001 – 4.5  

0.001 – 4.0 

0.001 – 4.0 

0.001 – 4.0 

1982 

711 

909 

1032 

980 

961 

960 

854 

1632 

641 

852 

827 

307 

290 

324 

270 

956 

369 

470 

564 

59.7 

39.7 

63.5 

40.9 

 

 The site-specific luminescence spectroscopy of the z8P5/2 ↔ a6S5/2 transition 

of atomic Mn isolated in solid Ar is summarised in Figure  VIII.39.  The 

photophysical characteristics and the transitions assigned to the observed emission 

features are presented in Table  VIII.18. 
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Figure  VIII.39 Emission spectra recorded at 12.5 K with site-selective pulsed dye laser 
excitation of the Mn z8P5/2 ← a6S5/2 transition (right).  The excitation spectra (1° 
and 2° site) were recorded by monitoring emission at 590 (solid trace) and 625 
nm (dotted trace), shown left.  Sample deposition was completed at 12 K and 
subsequently annealed to 28 K.  The dashed vertical lines show the spectral 
positions of the relevant gas phase transitions1 of atomic Mn.  The 600 nm 
emission band results from excitation of the thermally unstable 3° site.  The 
photophysical characteristics of the excitation and emission features are 
presented in Table  VIII.15 and Table  VIII.18 respectively. 

 
Table  VIII.18 Photophysical characteristics and excited state assignments of the emission 

features produced following site-specific 3d54s4p z8P5/2 excitation.  λEm, indicates 
the emission band-centre in nm and wavenumber units. The matrix shift for the 
transition is indicated δ in wavenumber (cm-1) units.  The observed excited state 
lifetimes are also presented as τObs. at 12 K.  Note additional decay times 
extracted of substantial amplitude are also presented. 

Mn Gas Phase Mn/Ar Matrix – Emission (1° Site) 
Transition1 
nm / cm-1 Assignment λEm. (nm) / (cm-1) δ (cm-1) Decay Characteristic 

a6D9/2 ↔ a6S5/2 
586.43 / 17052 a6D9/2 → a6S5/2 590 / 16949 -103 τObs. = 1.28 msec 

512 µsec 
 Mn/Ar Matrix – Emission (2° Site) 

z8P5/2 ↔ a6S5/2 
543.40 / 18402 

 
a6D9/2 ↔ a6S5/2 
586.43 / 17052 

(?) 625 / 16000 
-2402 

 
-1052 

τObs. = 1.03 msec 
360 µsec 
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VIII.6  Discussion  Mn(z8P)/RG luminescence 

In this section, the observed luminescence spectroscopy of the z8P5/2 ↔ a6S5/2 

transition of atomic Mn isolated in solid Ar, Kr and Xe is summarised and some 

trends evident in the excitation and emission spectroscopy are presented. 

 

VIII.6.I Mn(z8P)/RG  Excitation spectroscopy 

A summary of the excitation spectra recorded by monitoring the red emission features 

of Mn isolated in solid Ar, Kr and Xe in the region of the gas phase z8P5/2 ↔ a6S5/2 

transition is presented in Figure  VIII.40.  In all matrices and for all the sites, the 

excitation spectra exhibit resolved threefold split excitation patterns.  The 

photophysical characteristics of the sites of isolation identified from the excitation 

spectra are collected in Table  VIII.15, Table  VIII.13 and Table  VIII.11 for Mn/Ar, 

Mn/Kr and Mn/Xe respectively.  Of particular note in the excitation spectra is the 

occurance of threefold splitting patterns indicating the strong interaction of the z8P5/2 

excited state with its matrix environment.  This contrasts the excitation spectra 

recorded for the a6D ← a6S5/2 transition (Section VIII.3.I) in which the individual 

spin-orbit levels were identified reflecting the weak coupling of the a6D excited state 

to the local solid-state environment.  The sites of isolation identified with z8P state are 

spectrally well separated like those of the z6P, exhibiting large matrix shifts (100’s of 

cm-1).  It will be remembered that the excitation spectra of the a6D state all occurred 

within the same narrow spectral range.  Both of these observations support the 

conclusion that the interaction of the Mn atom within the site is much stronger for the 

z8P state than the a6D state.  In the next section the emission spectroscopy resulting 

from z8P excitation is discussed, highlighting the role of the site of isolation in 

determining excited state relaxation processes. 
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Figure  VIII.40 Mn/RG excitation spectra recorded at 12 K for all the Mn/RG systems 
investigated produced with laser excitation in the vicinity of the Mn z8P5/2 ← 
a6S5/2 transition.  The spectra shown were recorded monitoring emission bands 
as indicated by λEm. (left) in wavelength units.  All spectra were recorded 
following Mn/RG sample deposition at 12 K and matrix annealing.  The dashed 
vertical line indicates the position of the z8P5/2 ← a6S5/2 gas phase transition1 of 
atomic Mn at 543.3 nm. 

 

VIII.6.II Mn(z8P)/RG  Emission spectroscopy 

The emission spectroscopy presented in the previous sections with excitation of the 

z8P5/2 ← a6S5/2 transition is summarised in Figure  VIII.41.  The transitions assigned 

and photophysical properties of the observed emission features are collected in Table 

 VIII.18, Table  VIII.14 and Table  VIII.11 for Mn/Ar, Mn/Kr and Mn/Xe respectively.  

The Mn/Kr system provided an additional emission feature (shown centre, Figure 

 VIII.41) at 565.2 nm (17693 cm-1) with blue (1°) site excitation at 513.8 nm.  This 

band represents the only emission feature observed which has been definitively 

assigned to the phosphorescence of the z8P5/2 excited state.  This assignment was 

made on the basis of the excitation spectra recorded, the excited state lifetime 

measured and the spectral location of the emission.  This band was observed earlier in 

Moskovits’ work11 on Mn/Kr in which a fixed frequency Ar ion laser at 514.8 nm 
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was used as the excitation source.  Based on the presence of dimer bands at 667 and 

690 nm in the absorption spectra it was assumed in this earlier work that the 565 nm 

band was also related to Mn2.  The data recorded for this band in the present study 

clearly indicates the atomic origin of the 565 nm emission in Mn/Kr. 
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Figure  VIII.41 Mn/RG site-specific emission spectra (shown right) recorded at 12 K for all the 
Mn/RG systems investigated produced with laser excitation corresponding to 
the z8P5/2 ← a6S5/2 transition.  The excitation wavelengths used are shown 
(centre) as λEx. (nm). The excitation spectra shown (left), were recorded by 
monitoring emission bands as indicated (left) by λEm. in wavelength units.  All 
spectra were recorded following Mn/RG sample deposition at 12 K and matrix 
annealing.  The dashed vertical lines show the spectral positions of the gas phase 
transitions1 of atomic Mn. 

 

Excited state lifetime measurements and the temperature dependence observed in the 

emission spectra recorded, have not allowed a definitive assignment of the 627 nm or 

the 625 nm emissions in Kr and Ar respectively.  The possible state assignments of 

these emission features are discussed at the end of this Chapter. 

 The spectroscopy recorded with specific 1° site excitation in Ar and Xe and 2° 

site excitation in solid Kr revealed the emission features at 590, 620 and 585.8 nm 

respectively, shown in Figure  VIII.41.  These features were assigned to the a6D9/2 → 

a6S5/2 transition of atomic Mn earlier in this chapter.  These assignments are 
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suggested by excited state lifetime measurements made following z8P5/2 excitation, as 

the emission lifetimes extracted were longer than those recorded with direct a6D 

excitation.  Therefore, a z8P ⇒ a6D ISC process can efficiently produce the emission 

features assigned to the a6D9/2 → a6S5/2 transition. 

 

VIII.7 Conclusion  Mn(z8P)/RG luminescence 

The excitation spectroscopy reported and assigned in the previous sections to the 

z8P5/2 ← a6S5/2 transition of Mn atoms isolated in solid Ar, Kr and Xe showed 

threefold split bands.  The multiple sites of isolation identified in Chapter VII from an 

analysis of the Mn(z6P)/RG luminescence were also identified here for the z8P ← a6S 

transition.  The emission spectroscopy revealed the presence of an additional atomic 

feature at 565.2 nm in solid Kr, which was assigned to emission of the z8P5/2 state 

following direct dye laser excitation.  Moskovits and co-workers11 previously 

observed this emission feature in Mn/Kr samples but assumed it was manganese 

dimer.  Excitation spectroscopy and lifetime measurements reported here indicate 

conclusively this band is emission of the z8P excited state of atomic manganese.  

Moreover, the Mn/RG samples prepared in this work with electron bombardment 

contain little manganese dimer. 

 

VIII.8 Mn/RG  Discussion – Blue site-specific luminescence 

The following section reviews the emission spectroscopy reported for the unassigned 

features resulting from blue site excitation of the a6D ← a6S, z8P ← a6S and z6P ← 

a6S transitions of atomic Mn isolated in solid Ar and Kr.  These unassigned bands 

occur at 438 and 626.7 nm in solid Kr and 438 and 625 nm in Ar.  Earlier in this 

Chapter, blue (1°) site excitation of the z8P ← a6S matrix transition in Kr produced 

two emission features located at 565.2 and 627.4 nm exhibiting linewidths of 519 and 

260 cm-1 and matrix shifts of 709 and 2464 cm-1 respectively as shown in Figure 

 VIII.41, middle panel.  In solid Ar, blue site excitation produced the 625 nm feature 

with a linewidth of 260 cm-1 located 2402 cm-1 lower in energy than the gas phase 

z8P5/2 ← a6S5/2 transition, (Figure  VIII.41, top panel).  The Mn/Kr 565.2 nm emission 

feature was confidently assigned to the phosphorescence of the z8P5/2 excited state 
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based on its spectral location and the observed excited state lifetime.  Decay profiles 

recorded for the 626.7 nm emission (Figure  VIII.33) with z8P state excitation showed 

a rise time component (108 µsec) indicative of direct feeding of the emitting level 

from the z8P state accessed in excitation.  The observed decay time extracted at 12 K 

was 1.61 msec, (Table  VIII.14).  Such a long decay time suggests the assignment of 

the 626.7 nm feature to the forbidden a6D9/2 → a6S5/2 transition of atomic Mn whose 

gas phase lifetime is calculated to be 3.4 sec4.  However, the broad (Gaussian) 

lineshape and substantial matrix shift of 1114 cm-1 from the gas phase position of the 

D ↔ S transition are at variance with this assignment.  In addition, the emission 

spectroscopy recorded with red (2°) site a6DJ ← a6S5/2 excitation in Kr (Figure 

 VIII.24) allowed definitive assignment of the 586.75 nm (587 nm) asymmetric 

emission band to the a6D9/2 → a6S5/2 transition.   

Dye laser excitation spectra recorded in the vicinity of the a6D5/2 ↔ a6S5/2 

transition monitoring both the 587 and 626.7 nm bands showed resolved features in 

the same spectral region but with very different linewidths, (Figure  VIII.8).  This 

observation indicated that the two emission features were specific to the site of 

isolation in agreement with the results achieved for the z8P5/2 ← a6S5/2 and z6P5/2 ← 

a6S5/2 transitions.  The site specificity is shown in Figure VII.62 (z6P) and Figure 

 VIII.30 (z6P) where the 587 and 626.7 nm features are produced only with selective 

excitation of the red (2°) and blue (1°) sites identified.  Emission decay times 

recorded with a6D excitation revealed the same decay characteristics, as shown by the 

comparison made in Figure  VIII.33.  The observed 1.61 msec decay time allows the 

tentative assignment of the 626.7 nm feature to the a6D9/2 → a6S5/2 transition.  

Therefore, the rise time observed with z8P excitation may reflect an interaction of the 

excited state with the site of isolation, such as a structural rearrangement of the site of 

isolation by the a6D9/2 excited state Mn atom, prior to emission. 

 Further evidence for this is provided by the comparison of the photophysical 

characteristics (fwhm and Stokes’ shifts) exhibited by the 626.7 nm and the 

unassigned 440 nm emission in Mn/Kr produced with z8P ← a6S and z6P ← a6S 

excitation respectively.  Inspection of these bands in Figure  VIII.42 reveals that the 

linewidths of both of the unassigned features are approximately half of those assigned 

to the direct z6P fluorescence (416 nm) and z8P phosphorescence (565.2 nm) 

transitions. 
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Figure  VIII.42 A comparison of the emission spectra produced with blue site selective z6P ← 
a6S and z8P ← a6S excitation in solid Kr, shown top and bottom respectively.  
Note the thermally unstable emission is indicated using an asterix. 

 

In addition the Stokes’ shifts observed on the a6D9/2 → a6S5/2 transition are 1029, 

1110 and 1043 cm-1 for 625, 626.7 and 620 nm bands using the matrix-shifts 

observed in excitation for the a6D5/2 ← a6S5/2 transition in Ar, Kr and Xe solids 

respectively.  Figure  VIII.41 presents the emission features produced with z8P 

excitation for Mn/Ar, Mn/Kr and Mn/Xe allowing a direct assessment of the 

photophysical properties of the emission bands.  Inspection of the gas phase energy 

level diagram for atomic Mn in Figure  VIII.43 reveals that the splitting between the 

z8P5/2 and the a6D9/2 levels is 1350 cm-1.  This value is greater than the observed 

Stokes’ shifts of the tentatively assigned a6D9/2 → a6S5/2 transitions in all matrices 

and suggests that the large shift observed results from an increased interaction 

between the a6D9/2 and the site of isolation due to the size and symmetry of the blue 

matrix sites. 

 Extension of these arguments to the 438 and 440 nm features reported 

following z6P ← a6S excitation in Ar and Kr suggests an assignment of these bands to 

the a4D7/2 → a6S5/2 transitions, given the linewidths are 230 and 280 cm-1 
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respectively.  These features exhibit matrix shifts of 466 and 570 cm-1 from the a4D7/2 

↔ a6S5/2 gas phase transition1 in Ar and Kr.  The energy separation between the 

Figure  VIII.43 Summary of the three transitions of atomic manganese used for excitation of the 
Mn/RG thin films.  The solid line represents the fully allowed z6P ↔ a6S 
transition, whereas the dotted lines show the spin forbidden z8P ↔ a6S and the 
parity forbidden a6D ↔ a6S transitions.  The latter transition is electric 
quadrupole allowed.  Particularly noteworthy is the roughly similar gaps 
between the z6P/a4D levels and the z8P/a6D levels of 1428 and 1350 cm-1 
respectively. 

 
assigned matrix z6P3/2 → a6S5/2 fluorescence at 413 nm and the 438 nm bands is 1382 

cm-1 in Ar.  A corresponding splitting of 1310 cm-1 exists between the 416 nm z6P 

fluorescence and the 440 nm band in Kr.  As shown in Figure  VIII.43, the gas phase 

splitting between the z6P3/2 and the a4D7/2 levels is 1482 cm-1.  Thus, the qualitative 

agreement with the gas phase splitting and the matrix emission features suggest the 

438 and 440 nm features in Ar and Kr are a4D state emission.  Therefore, the broad 

emission bands in Ar at 438 and 625 nm are tentatively assigned to emission from the 

a4D and a6D states respectively.  Accordingly the bands at 440 and 626.7 nm in Kr 

have the same spectral assignments.  These emission are blue site specific and are 
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produced by z6P ⇒ a4D and z8P ⇒ a6D ISC processes.  In the Chapter, which 

follows, the blue and red sites of isolation are identified as matrix substitutional and 

tetravacancy sites respectively; therefore stronger interactions for Mn D-state atoms 

within cramped Ar and Kr substitutional sites is the likely cause of the broadened and 

shifted D → S emissions. 

Assuming the assignment of the red emission features at 625, 626.7 and 620 

nm in Ar, Kr and Xe to the a6D9/2 → a6S5/2 transition of atomic Mn, the asymmetric 

lineshape in Xe represents a decrease in the electron-phonon coupling.  The site of 

isolation is again considered the origin of the observed Gaussian lineshapes in Ar and 

Kr where the substitutional site of isolation maintains the same symmetry but 

decreases in size.  Overall the linewidths may result from an increased electron-

phonon coupling strength in the cramped sites of isolation.  In addition, inspection of 

Figure  VIII.41 reveals the matrix shifts of the red emission bands do not exhibit a 

specific trend.  This may also owe its origin to Mn atom occupancy in cramped sites 

of isolation where the minimum on the excited state potential energy surface does not 

coincide with that of the ground state for the blue site.  Mn atoms isolated in the 

larger red sites can access a region where there is a concurrence of the ground and 

excited state minima, producing more asymmetric emission lineshapes.  This is 

discernable for the larger red sites by comparison of the 590 and 587 nm bands in Ar 

and Kr, assigned to the a6D9/2 → a6S5/2 transition.  A broad (fwhm = 100 cm-1) matrix 

shifted (103 cm-1) feature was observed in Ar but the ZPL was assigned in solid Kr. 

 

VIII.9  Conclusion Mn(a6D and z8P ↔ a6S)/RG 

Laser excitation scans of Mn/RG emission features in the red spectral region reveals 

their atomic origin as they can be produced with excitation of the forbidden a6D ← 

a6S and z8P ← a6S transitions.  These emission bands were recorded in an earlier 

study of matrix-isolated manganese but assigned to dimer emission bands.  The 

reason for this mis-assignment is not clear from the published data11 but appears to be 

due to the presence of dimer absorption bands in their Kr samples, and the assumed 

negligible oscillator strength of the electric-dipole forbidden z8P ← a6S and the 

electric-quadrupole allowed a6D ← a6S transition.  The excitation spectra recorded in 
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the present work proves conclusively the atomic origin of these features.  This is 

confirmed by lifetime measurements. 

The laser excitation scans reveal very different spectral behaviour for the z8P 

and a6D excited states.  Thus, the former is typical of P ← S transitions with broad, 

threefold split profiles shifted considerably from the gas phase positions while the 

latter reveal narrow lines with spin-orbit splittings almost identical to the gas phase 

values.  Assignments of the red spectral features to emission of the metastable a6D 

state has been made.  The quality of these assignments ranges from confident for the 

narrow 586 and 590 nm features in Kr and Ar respectively to only tentative for the 

broad 625/627 nm bands.  A plausible explanation for the broad 625/627 nm 

linewidths is presented on the basis of the cramped substitutional sites occupied by 

the ‘blue-site’ atoms producing this emission.  In contrast the ‘red-site’ atoms, 

thought to originate from tetravacancy site occupancy, produce very narrow, 

unshifted D-state emission.  The case of Mn/Xe is intermediate between these two 

extremes where the observed band is asymmetric but shifted because its occupied 

substitutional site is considerably larger than those in Ar and Kr. 
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Chapter IX  
Sites of manganese atom isolation in RG solids, RG = Ar, Kr and Xe 

 

IX.1 Introduction 

The absorption and luminescence spectroscopy of atomic Mn isolated in solid Ar, Kr 

and Xe, reported in Chapters VI to VIII, identified multiple trapping sites and 

highlighted the importance of metal atom site occupancy in determining the excited 

state luminescence.  In addition emission bands recorded for the resonance z6P5/2 ↔ 

a6S5/2, the ‘forbidden’ z8P5/2 ↔ a6S5/2 and the quadrupole a6D ↔ a6S5/2 transitions for 

the Mn/Ar, Mn/Kr and Mn/Xe systems yielded high-resolution excitation spectra that 

permitted the extraction of the photophysical properties of the trapping sites present 

but not resolved in absorption.  Although, the spectral and temporal characteristics 

observed allowed the assignment of many of the features to the emission from 

specific atomic levels, a complete analysis has not been possible due to the presence 

of multiple intersystem crossing (ISC) and intermultiplet relaxation pathways (IMR) 

in each Mn/RG system.  Therefore, knowledge of the site of isolation occupied would 

provide great insight into the interactions occurring between the matrix cage and the 

excited state Mn atom that allow the radiative and non-radiative processes identified. 

 This Chapter collects the information extracted from the observed absorption 

and luminescence excitation spectroscopy and presents an analysis of these results to 

assign the sites occupied by Mn atoms in the RG solids.  Overall, the two thermally 

stable blue and red sites of isolation of atomic Mn in solid Ar and Kr are assigned to 

substitutional site and multi-vacancy (tetra-vacancy) sites respectively.  The single 

thermally stable site identified for Mn isolated in Xe is assigned to a substitutional 

site.  The assignments completed are based on the application of the polarizability 

model of Laursen and Cartland1 (L&C) to the z6P5/2 ← a6S5/2; z8P5/2 ← a6S5/2 and 

y6P5/2 ← a6S5/2 electronic transitions of atomic Mn.  This model allows the 

association of certain site types occupied by metal atoms in the rare gas solids from 

an analysis of the gas phase to RG matrix frequency shifts observed for P ← S type 

electronic transitions.  The required condition being a linear correlation of the matrix 

shifts with rare gas polarizability for those metal atoms ‘trapped’ in a particular site 

type.  As discussed in Chapter I, (Introduction), atomic Mn has a spherically 
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symmetric a6S ground state and therefore will favour isolation in spherical sites of the 

lattice.  Trends, such as the preference for Mn occupancy in certain sites of isolation 

in the rare gases (Ar, Kr and Xe), as evident from the absorption spectroscopy, are 

used to assess the trapping environment.  These trends, coupled with polarizability 

arguments form a major part of the sections which follow, as currently no information 

is available on the simpler Mn⋅RG 1:1 complexes from gas phase or ab initio studies.  

Instead, the similarities between atomic manganese, which exhibits an ns2 ground 

state electronic configuration and the M/RG systems (M = Zn2, Cd3, Hg4,5 and Mg6) 

where the solid-state and gas phase7 spectroscopy has been studied in detail are 

exploited.  The spectroscopic parameters such as the ground state bond lengths for 

these known systems are used to tentatively assess the sites occupied by atomic Mn.  

The comparison between these M(P ← S)/RG (M = Zn, Cd and Hg) and the Mn/RG 

systems allows the extraction of finer details regarding the ground and excited state 

interactions of Mn with the host matrix. 

 To achieve these goals this Chapter has the following structure.  Firstly, the 

absorption results and luminescence excitation results obtained for the P ← S 

transitions presented in the previous Chapters are reviewed and details specific to site 

occupancy are highlighted.  Secondly, the L&C polarizability model is applied to the 

excitation spectra recorded in the vicinity of the z6P5/2 ↔ a6S5/2 gas phase transition.  

Thirdly, as UV absorption spectra recorded for Mn/RG samples provided information 

on the multiple sites of isolation on the y6P5/2 ↔ a6S5/2 transition, excitation spectra 

recorded by monitoring the atomic emission features assigned in Chapter VII are 

presented for the first time.  This therefore allows a comparison of the matrix shifts 

observed for the ‘singlet – like’ y6P5/2 ↔ a6S5/2 and ‘triplet – like’ z6P5/2 ↔ a6S5/2 

transitions and an assessment of the extent of the Mn atom matrix interaction for 

these different excited states.  The results of this comparison are directly comparable 

to the ns2 metal atom 1P1 and 3P1 ← 1S0 transitions discussed by L&C1.  The analysis 

is extended by showing the relationship of the different ‘triplet – like’ excited state 

interactions that are manifest in the different matrix shifts observed for the z6P5/2 ← 

a6S5/2 and z8P5/2 ← a6S5/2 transitions. 

 Overall the application of the polarizability model to the P ← S type transitions 

of atomic Mn in RG solids allowed the correlation of the high-energy blue sites in Ar 

and Kr with the single site in solid Xe and the subsequent assignment of this site to 
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Mn atoms in single substitutional sites.  The analysis also allowed the grouping of the 

low energy red sites in Ar and Kr and their assignment to Mn atoms isolated in matrix 

tetra-vacancies.  This was achieved numerically using a comparison of the Mg⋅RG 

ground state bond lengths assuming the transference of the known Mg⋅RG parameters 

to the Mn⋅RG systems.  The site dominance showed that Mn atoms in solid Ar exhibit 

a preference for trapping in tetra-vacancy sites whereas single substitutional site 

occupancy is preferred in Kr, while this site is the single thermally stable site in solid 

Xe. 

 

IX.2 Site Analysis Mn(z6P ← a6S)/RG 

The UV/Vis absorption spectroscopy recorded near the gas phase z6P5/2 ↔ a6S5/2 

transition8 of atomic Mn isolated in Ar, Kr and Xe (see Chapter VI, Figure VI.8) 

allowed the identification of multiple thermally stable features to the z6P5/2 transition 

in solid Kr only.  Table VI.2 presented the spectral positions of the sites assigned as 

the blue (1°) and red (2°) sites.  In solid Ar the occurrence of multiple site occupancy 

was indicated by the apparent loss of the linear correlation between the observed 

matrix shifts in absorption.  Consideration of this effect predicted the existence of a 

secondary site of atomic isolation in solid Ar.  The results of the Mn(z6P)/Ar 

excitation spectroscopy reported in Chapter VII, revealed the presence of the weak 

blue (2°) site.  Therefore two thermally stable sites of isolation were identified in 

solid Ar and Kr but with intensity reversals.  In solid Xe absorption spectra recorded 

following sample deposition at various temperatures and/or matrix annealing 

following deposition at 12 K allowed the identification of only a single thermally 

stable trapping site. 

 The high resolution excitation spectra recorded by monitoring the atomic 

emission features produced with steady-state excitation of the z6P5/2 ← a6S5/2 

transition for all Mn/RG systems investigated are presented in Figure  IX.1.  The 

excitation spectra shown, reveal the presence of threefold split excitation patterns for 

each of the sites identified in all the RG gas solids.  The splitting observed is 

attributed to the Jahn Teller effect indicative of Mn atom occupancy in highly 

symmetric matrix environments. 
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Figure  IX.1 Excitation spectra recorded by monitoring the emission features as indicated 
reported in Chapter VII (at 12 K) resulting from z6P5/2 ← a6S5/2 excitation for 
the atomic Mn/Ar, Mn/Kr and Mn/Xe systems.  The excitation spectra shown 
were recorded following Mn/RG sample deposition at Td= 12 K and matrix 
annealing.  The dashed vertical line shows the spectral location of the gas phase 
transition. 

 

 Because of its spatial symmetry, the a6S ground state of atomic manganese will 

favour isolation in spherical sites of isolation.  Therefore, as discussed in the Chapter 

I, (Introduction) only spherically symmetric trapping sites within the RG fcc lattice 

are considered for atomic Mn isolation.  The simplest matrix system, with respect to 

site occupancy, is Mn/Xe as only a single thermally stable site was identified in 

absorption and excitation spectra of annealed samples.  This provides the starting 

point for this site analysis as Xe represents the ideal matrix host for atomic isolation 

due to the increased site sizes available as shown by the numerical analysis presented 

in Table I.1, Chapter I.  The similarity between the energetics of the 1P and 3P ↔ 1S 

gas phase transitions of atomic Mg and those of the y6P and z6P ↔ a6S transitions of 

Mn is clearly evident from the diagram presented in Figure I.5.  The Mg⋅RG (RG = 

Ar and Xe) diatomic ground state bond lengths, known from 1:1 complexes prepared 

in supersonic expansions7, are believed to be a good approximation to those of the 

Mn⋅RG systems.  The Mg atom exhibits a 3s2 ground state electronic configuration 
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while that of Mn is 3d54s2.  The presence of the half filled 3d5 shell and the small 

difference in energy to the 4s orbital makes the correlation with the 3s2 Mg ground 

state feasible.  The known Mg⋅RG (RG = Ar and Xe) ground state bond lengths (re) 

are presented in Table  IX.1.  Comparison of the ground state bond lengths with the 

available site sizes reveals either isolation of Mg (and therefore Mn) in deformed 

substitutional sites or tetra-vacancy sites in solid Xe.  The presence of a single 

thermally stable site of isolation in solid Xe shows the preference for the Mn atoms 

for a particular site type.  However, an assignment is not possible based solely on 

application of the Mg⋅Xe ground state bond length to the Mn system, as the 

comparison reveals the possibility of multiple site occupancy. 

 
Table  IX.1 Site sizes9 in angstrom units (Å) for specific spherically symmetric site types in 

the solid rare gases.  The details of these sites was presented in Chapter I, 
Introduction.  In addition, the polarizability of the solid rare gases and the 
known Mg(1S0)⋅RG diatomic ground state bond lengths are also presented. 

RG Solid ss (Å) TVac (Å) RG Polarization (Å3)10 Mg⋅RG, re (Å)7 

Ar 

Kr 

Xe 

3.756 

3.991 

4.335 

4.404 

4.679 

5.083 

1.640 

2.485 

4.050 

4.49 

 

4.56 

 

Therefore, trends shown by Mn atoms isolated in solid Ar and Kr are used to 

strengthen any assignment of site occupancy.  In solid Ar, the red site dominates the 

z6P state excitation spectra.  However, the dominant site of isolation in solid Kr is as 

shown in Figure  IX.1 the blue site.  This difference represents a reversal of the 

dominance of a particular site type from Mn/Ar to Mn/Kr.  To identify the trends in 

the site occupancy and the relationship of thermally stable sites of isolation in each 

RG solid, the polarizability model1 is employed.  This is achieved by plotting the gas 

phase to matrix frequency shifts for the z6P5/2 ← a6S5/2 transition, calculated from the 

central threefold split component for each of the thermally stable sites in the solid 

RG’s (observed in the excitation spectroscopy and shown in Figure  IX.1), against 

host RG polarizability data given in Table  IX.1.  The polarizability analysis is 

presented in Figure  IX.2 and it is evident that a linear correlation exists between RG 

polarizability and the matrix shifts (δ, cm-1) observed for the high-energy sites 

identified in Ar and Kr and the single site Xe.  An extrapolation of the red site Ar and 
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Kr data (triangles) in Figure  IX.2 clearly does not include the single site present in the 

Xe system. 
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Figure  IX.2 A plot of the gas phase to Mn/RG matrix frequency shifts (δ cm-1) observed for 
the blue and red sites identified for the z6P5/2 ← a6S5/2 transition of atomic 
manganese versus the RG host polarizabilities.  The squares (connected by the 
solid line) highlights the linear correlation between the frequency shifts and 
rare gas polarizability observed for the Mn z6P5/2 ← a6S5/2 transition occurring 
within the blue sites of isolation. 

 

 The red site, which dominates the Mn/Ar solid-state spectroscopy, is correlated 

with the red but minor site identified in Kr.  The site dominance is reversed from red 

to blue from Mn/Ar to Mn/Kr and there is a correlation between the blue sites 

identified in all three rare gas hosts.  The red/blue site dominance is attributed to the 

preference for a different site type in the heavier RG solids.  A comparison of the 

Mg⋅Ar ground state bond length (4.49 Å) with the site size available for the tetra-

vacancy in solid Ar (4.404 Å) and the substitutional site (3.756 Å) reveals a 

favourable match with the former site.  Therefore the red sites of atomic Mn isolation 

identified in solid Ar and Kr are assigned Mn atom trapping in tetra-vacancy sites.  

The preference for a single site in solid Xe, and the correlation of the matrix-shifts 

observed for the blue sites, allows the assignment of the blue sites to the trapping of 

Mn atoms in single substitutional sites of these matrices. 

 In the following section the results of excitation spectroscopy recorded in the 

vicinity of the y6P5/2 ← a6S5/2 transition are presented for the first time and the 
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polarizability model is applied to these results and those achieved in Chapter VIII for 

the z8P5/2 ← a6S5/2 transition, to check the trends with respect to site occupancy 

evident for the z6P5/2 ← a6S5/2 transition.  In addition some trends in the 

photophysical characteristics of the excitation bands observed for the P ← S type 

transitions related to the site occupancy are discussed.  The ‘singlet’ vs. ‘triplet’ 

nature of the excited state transitions are discussed with respect to the excited state 

matrix interactions leading to the observed matrix shifts. 

 

IX.3 Site Analysis Mn(y6P and z8P ← a6S)/RG 

IX.3.I  Mn y6P ← a6S Excitation spectroscopy 

The UV absorption features recorded for Mn/RG solids in the vicinity of the y6P5/2 ↔ 

a6S5/2 gas phase transition8 and presented in Chapter VI provided more direct 

information on the atomic trapping sites than the corresponding z6P5/2 ↔ a6S5/2 

transition.  This is in part due to the increased oscillator strength of the ‘singlet’ like 

y6P5/2 ← a6S5/2 over the ‘triplet’ like z6P5/2 transition but also the better separation on 

the former transition.  This is clear upon inspection of the Mn/RG absorption spectra 

shown in Figure VI.7 where the y6P5/2 absorption bands dominate the spectra.  In 

solid Xe, the ratio of the absorption intensity for the y6P5/2 and z6P5/2 ← a6S5/2 

IAbs(y6P) : IAbs(z6P) was found to be 14:1 providing a measure of the relative oscillator 

strengths.  The absorption bands assigned to the y6P5/2 state exhibited a red-shift of 

the band maximum from Ar to Kr to Xe which deviate from linearity, consistent with 

the reversal of red dominant / blue minor sites of isolation from Ar to Xe observed on 

the z6P5/2 ← a6S5/2 transition.  In solid Ar, the two thermally stable y6P5/2 ← a6S5/2 

absorption features were identified occurring to higher energy than the gas phase 

transition at 273 and 278.1 nm.  These bands were assigned to the blue (2°) and red 

(1°) sites of isolation respectively.  In Kr the 1o Mn/Kr absorption feature at 279.9 nm 

overlaps the gas phase transition and the 2° site occurred to lower energy.  In solid Xe 

high temperature deposition and matrix annealing experiments allowed the definitive 

identification of the band located at 288.2 nm to a single site.  Tables VI.I to VI.III 

present the details of the transition energies for the sites of isolation identified on the 

y6P5/2 ← a6S5/2 transition of atomic Mn occurring in solid Ar, Kr and Xe respectively. 
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 High-resolution excitation spectra recorded in the vicinity of the y6P5/2 ← a6S5/2 

transition monitoring the site-specific atomic emission features produced with z6P5/2 

excitation in the Chapter VII allowed the identification of the sites of isolation.  

Figure  IX.3 presents the UV excitation spectra recorded.  These all show resolved 

threefold split patterns indicative of Mn occupancy in high symmetry matrix sites for 

all the Mn/RG systems.  The photophysical characteristics of the 1° and 2° sites 

extracted from the excitation spectra shown in Figure  IX.3 are presented in Table 

 IX.2. 
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Figure  IX.3 Excitation spectra recorded in the vicinity of the y6P5/2 ↔ a6S5/2 gas phase 
transition by monitoring the emission bands reported in Chapter’s VII and VIII 
(at 12 K) to result from z6P; z8P and a6D excitation for each of the Mn/RG 
systems investigated.  Mn/RG sample deposition was completed at 12 K and 
matrix annealing.  The dashed vertical lines show the spectral position of the 
gas phase transition.  The photophysical properties of the sites of isolation 
identified are presented in Table  IX.2. 

 

As observed in the absorption spectroscopy, the y6P5/2 ← a6S5/2 transition occurring 

for Mn atoms isolated in the 1° site of solid Kr overlaps the gas phase transition 

(indicated by the vertical line in Figure  IX.3), while the Mn/Ar and Mn/Xe the bands 

occur at higher and lower energies respectively.  It is noteworthy that the matrix 
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excitation spectra of the z6P5/2 state are blue of the gas phase transition for all three 

hosts.  This observation is attributed to the spin ‘singlet’ characteristic of the y6P5/2 

state and ‘triplet’ nature of the z6P5/2 state.  Comparison of the y6P5/2 state excitation 

spectra presented in Figure  IX.3 reveals the same site specificity as observed with 

excitation of the z6P5/2 state shown in Figure  IX.2.  

 

Table  IX.2 Photophysical characteristics of the sites of isolation (1° and 2°) revealed in the 
excitation spectra of the 3d54s4p y6P5/2 ↔ 3d54s2 a6S5/2 transition of atomic 
manganese.  Where possible the spectral position and average linewidth (full 
width at half maximum, fwhm) is denoted as ∆AV of the three components 
identified in Gaussian lineshape analyses for the threefold split excitation 
spectra are presented in wavenumber units.  Gas phase to matrix frequency 
shifts are presented for the atomic Mn y6P5/2 ← a6S5/2 transition8 (G.P.: 35726 
cm-1), δ in wavenumber units.  Note the frequency shifts are calculated with 
respect to the central feature of the observed threefold pattern. 

 
Mn/RG Site Component E (cm-1) ∆AV (cm-1) δ (cm-1) 

Argon 
Red (1°) 

 
 

Blue (2°) 
 
 

1 
2 
3 
 

1 
2 
3 

36138 
35978 
35778 

 
36879 
36676 
36438 

 
≈ 215 

 
 
 

≈ 265 
 

 
+252 

 
 
 

+950 
 

Krypton 
Blue (1°) 

 
 

Red (2°) 
 
 

1 
2 
3 
 

1 
2 
3 

36030 
35851 
35656 

 
- 

35386 
35231 

 
≈ 200 

 
 
 

≈ 115* 
 

 
+125 

 
 
 

-340 
 

Xenon 
(1°) 

 

1 
2 
3 

34841 
34692 
34540 

 
≈ 206 

 

 
-1034 

 

 

IX.3.II Mn z8P ← a6S Excitation spectroscopy 

A summary of the site-specific excitation spectra recorded by monitoring the red 

emission features of Mn isolated in solid Ar, Kr and Xe in the region of the gas phase 

z8P5/2 ↔ a6S5/2 transition is presented in Figure  IX.4.  The excitation spectra 

presented were recorded monitoring atomic emission bands produced with direct dye 

laser excitation.  It is evident in Figure  IX.4 that all the sites exhibit excitation spectra 

with resolved threefold split excitation patterns in all matrices.  Chapter VIII presents 

the specific details of each system and comments on the effect of the intensity 
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distribution of the dye material on the observed spectra.  Significantly all the z8P5/2 ← 

a6S5/2 transitions are blue-shifted from the gas phase position and exhibit a 

progressive red shift from Ar to Xe.  The blue shifts observed, similar to that reported 

for the z8P5/2 ← a6S5/2 transition, is attributed to the ‘triplet’ like nature of both the z8P 

and z6P excited states. The photophysical characteristics of the sites of isolation 

identified from the excitation spectra are collected in Tables VIII.15, VIII.13 and 

VIII.11 for Mn/Ar, Mn/Kr and Mn/Xe respectively. 
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Figure  IX.4 Mn/RG excitation spectra recorded at 12 K for all the Mn/RG systems 
investigated produced with laser excitation in the vicinity of the Mn z8P5/2 ← 
a6S5/2 transition.  The spectra shown were recorded monitoring emission bands 
as indicated by λEm. in wavelength units.  The dashed vertical line indicates the 
position of the z8P5/2 ← a6S5/2 gas phase transition of atomic Mn at 543.3 nm 
(18402 cm-1)8. 

 
 Earlier in this Chapter, application of the matrix polarizability model allowed 

the assignment of the red and blue sites on the z6P5/2 ↔ a6S5/2 transition to two 

different sites types.  Furthermore trends evident in the dominance of the red and blue 

sites in solid Ar, Kr and Xe allowed the assignment of the blue and red sites to Mn 

atoms trapped in single substitutional sites (ss) and matrix tetra-vacancy sites (TVac.) 

respectively.  When the polarizability model is applied to all the blue (substitutional) 

sites identified on the z6P ← a6S, y6P ← a6S and z8P ← a6S transitions, the results 
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shown in Figure  IX.5 are obtained.  It is evident from the linear relationship between 

the matrix shifts and the host polarizability, that all the blue sites correspond to the 

same matrix-trapping environment.  The similarity in the matrix shifts and the slopes 

of the polarizability plots for both the z6P ← a6S and z8P ← a6S transitions is also of 

particular note and revisited in the discussion section which follows. 
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Figure  IX.5 A plot of the gas phase to Mn/RG matrix frequency shifts (δ cm-1) observed for 
the blue sites identified for the all the P ← S transitions of atomic manganese 
investigated.  The matrix shifts are plotted versus the RG host polarizability. 

 

IX.4 Discussion 

Figure  IX.6 provides a plot of the matrix shifts observed on all the sites for the y6P ← 

a6S, z6P ← a6S and z8P ← a6S transitions with RG polarizability.  The observed 

matrix shifts represent the relationship between the absolute frequency of the matrix 

absorption and the gas phase transition energy.  Since the ground state (a6S) is 

common to all the transitions investigated, this shift depends on the Frank Condon 

(FC) accessible region in the three excited states.  Essentially it is controlled by the 

shape of the excited state potential energy surface as controlled by the relative 

contributions of the Π and Σ interactions occurring between the excited state Mn 

atom and the matrix environment.  The transition energy occurring to lower energy 

than the gas phase results from a dominance of the attractive excited state Π metal 

atom RG interaction.  However a blue shift is observed if the repulsive Σ excited state 
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dominates the FC region accessed.  Therefore the extent of the Π and Σ excited state 

interactions occurring over the FC region governs the direction and magnitude of the 

observed shift.  The linear correlation between the observed matrix shift and the 

polarizability of the RG host arises from the Σ/Π interplay as the Π excited state 

binding energies are higher and dominate for metal atoms interacting with the heavier 

rare gases. 

 Laursen and Cartland’s application of the polarizability model to the Group 12 

metal atoms1 Zn, Cd and Hg undergoing 1P1 ← 1S0 and 3P1 ← 1S0 transitions revealed 

that the frequency shifts of the absorption bands were approximately linear with the 

RG polarizability.  This has also been shown to be the case for the P ← S type 

electronic transitions of atomic Mn.   
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Figure  IX.6 A summary plot of the gas phase to Mn/RG matrix frequency shifts (δ cm-1) 
observed for all the sites identified corresponding to the P ← S transitions of 
atomic manganese investigated.  The matrix shifts for the red and blue sites (as 
indicated by the dashed (B) and solid (R) lines used respectively) are plotted 
versus the RG host polarizability.. 

 
This was achieved in the previous sections by the correlation of the blue and red sites.  

However L&C also observed that the slope of the linear relationship of the matrix 

shifts was dependent on the multiplicity of the excited state.  This is also observed for 

Mn/RG solids because, as shown in Figure  IX.5, the slope of the ‘singlet’ like y6P 

state is much greater than the ‘triplet’ like z6P and z8P states.  This effect is attributed 
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to the different Π and Σ excited state interactions occurring for the Mn atom in a 

particular site of isolation.  The blue site for the y6P state transition occurs to higher 

and lower energy than the gas phase transition from Ar to Xe respectively, whereas 

the z6P ← a6S transition occurs to higher energy than the gas phase in all hosts.  The 

‘triplet’ like nature of the z8P ← a6S transition is also evident in Figure  IX.6 as the 

transition energy occurs to higher energy than the gas phase in all Mn/RG systems.  

The difference in the matrix shifts observed for the P ← S type transitions is most 

pronounced in solid Xe where the y6P transition is red shifted while both the z6P and 

z8P transitions exhibit a blue matrix shift as shown in Figure  IX.7. 
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Figure  IX.7 Excitation spectra recorded by monitoring the 620 nm emission feature 
observed in solid Xe to result from y6P5/2; z6P5/2 and z8P5/2 excitation.  Note the 
excitation spectra are shown relative to the appropriate gas phase transition 
where the zero position represents the gas phase transitions involved. 

 
This effect is attributed to the dominance of the 1Π like interaction over the 1Σ like 

occurring in the FC accessible region of the y6P excited state.  In the z6P and z8P 

excited states the repulsive 3Σ like interaction dominates the weaker attraction of the 
3Π state, resulting in the observed blue matrix shift.  It is also evident that in Xe 

matrices the difference in the matrix shifts observed for both the z6P and z8P ← a6S 

transitions is only 62 cm-1.  This effect is manifest in Figure  IX.6 where the slopes of 
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the polarizability plots are in close agreement.  This suggests that the excited 3Π and 
3Σ interactions occurring in the Frank Condon region of both z6P and z8P states are 

similar. 

 The analysis of the absorption and excitation spectroscopy of the z6P5/2 ← 

a6S5/2 transition of atomic Mn isolated in solid Ar, Kr and Xe revealed the presence of 

two types of thermally stable sites of atomic isolation in the lighter RG’s Ar and Kr 

and a single site in Xe matrices.  The application of the polarizability model1 in 

conjunction with an analysis of the trends regarding the observed site dominance 

established a connection between the high energy blue sites in Ar and Kr and the 

single site in Xe and allowed the identification of the same matrix vacancy in all 

solids.  The polarizability model also allowed the grouping of the low energy red sites 

in Ar and Kr.  A comparison of the Mg⋅RG ground state bond lengths allowed a 

comparison of the sites of Mn atom isolation assuming the transference of the known 

Mg⋅RG bond lengths to the Mn⋅RG systems.  Overall the blue sites were assigned to 

substitutional site occupancy of Mn in RG solids and the red sites to matrix tetra-

vacancy occupancy.  Therefore Mn atoms in solid Ar show a preference for trapping 

in tetra-vacancy sites whereas in solid Kr and Xe single substitutional sites are 

preferred. 

 The site-specificity observed in the luminescence spectroscopy of Mn atoms 

can be interpreted in terms of the freedom of the Mn atom to traverse regions of the 

excited state potential energy surface provided by the interaction of the excited state 

metal atom in the site of isolation.  The emission spectroscopy of the z6P excited state 

of atomic Mn reported in Chapter VII assigned two different relaxation pathways for 

the excited state populations.  Firstly the blue sites identified in Ar and Kr allowed 

direct z6P → a6S fluorescence whereas the red sites produced emission assigned to 

the a4D → a6S phosphorescence via a z6P ⇒ a4D intersystem crossing mechanism 

that is 100% efficient.  The preference for phosphorescent transitions of Mn atoms 

isolated in the red (tetra-vacancy) sites is attributed to the existence of energetically 

accessible 6P/4D excited state curve crossings on the more extensive excited state 

potential energy surfaces afforded to the Mn atoms in the larger tetra-vacancy sites in 

Ar and Kr matrices.  This curve crossing is not favoured or does not occur efficiently 

for Mn atoms isolated in the more restricted substitutional sites. 
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IX.5 Conclusion 

Analysis of the site occupancy has allowed the assignment of Mn atom isolation in 

substitutional and tetra-vacancy sites in solid Ar, Kr and Xe, with a preference for the 

larger site increasing from the heaviest rare gas host, Xe to the lightest Ar.  The 

application of the polarizability model to the y6P ← a6S, z6P ← a6S and z8P ← a6S 

transitions of atomic Mn showed the same overall trends as the ns2 metal atom 

systems investigated by Laursen and Cartland1 insofar as the behaviour evident on the 

y6P ← a6S and z6P ← a6S matrix shifts mirrored those reported for the 1P ← 1S and 
3P ← 1S transitions of Zn, Cd and Hg1.  This highlighted the differences in the 

relative contributions from the Π and Σ excited states in the Frank Condon accessible 

regions to the observed matrix shifts.  The importance of the excited state multiplicity 

on the observed shifts was evident in comparison of the ‘singlet’ like y6P ← a6S and 

‘triplet’ z6P ← a6S and z8P ← a6S transitions.  In addition the analysis of the of z6P ← 

a6S and z8P ← a6S transition energies reflected the similarity of the excited state 

interactions for these states. 
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Chapter X  
Conclusions 

 

IX.1 Hg/RG 

Hg/RG absorption and excitation spectra recorded in the vicinity of the gas phase 

6s16p1 3P1 ← 6s2 1S0 transition revealed bands at 245.9, 248.9 and 253.6 nm in Ar, Kr 

and Xe respectively.  Spectra were obtained with a deuterium lamp following matrix 

deposition at 22, 25 and 35 K for Ar, Kr and Xe.  The progressive red-shift of the 

excitation bands from Ar to Xe was accompanied with decreasing linewidths but with 

better resolved threefold splitting.  Excitation into the recorded absorption bands 

produced emission features centered at 250.3, 254.1 and 273 nm in Ar, Kr and Xe 

respectively.  These features all showed nanosecond emission lifetimes and from 

temperature dependent studies of the recorded decay curves, are identified as the 

matrix radiative lifetimes of the Hg atom 3P1 → 1S0 transition.  The emission bands 

exhibited an increased Stokes’ shift and linewidth from Ar to Xe - results in good 

agreement with those reported earlier by Crepin and Tramer.  At higher temperatures 

the linewidth of the Hg(3P1 → 1S0)/Xe band increases but the band maximum blue 

shifts – an effect which is completely reversible.  Gaussian lineshape analysis showed 

three components are required to reproduce the emission bands in Ar, Kr and Xe. 

They also revealed that the reduced intensity of central, 273 nm component is the 

origin of the blue shift observed in the Mn/Xe system at high temperature.  The multi-

component nature of the 3P1 state emission is shown from excitation spectroscopy not 

to arise from solid-state effects such as multiple site trapping.  Its origin is examined 

with a pair-potential method in which the energetics of excited state vibronic modes 

are calculated for Hg(3P1)/RG18 clusters.  The multi-component emission bands were 

identified as arising from the stabilisation of several ‘waist’ and ‘body’ type vibronic 

interactions occurring for the excited 3P1 state Hg atom isolated at single 

substitutional sites in each rare gas host. 

Time-gated emission spectra recorded following Hg 3P1 ← 1S0 excitation 

revealed the presence of weak, narrow linewidth features at 258.9, 260.8 and 265.1 

nm respectively in Ar, Kr and Xe.  The millisecond decay times measured for these 

emission bands allowed their assignment to the forbidden 3P0 → 1S0 transition of 
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atomic mercury.  The maximum contribution of this band to the time integrated 

emission intensity is found in Xe where it is only 0.5%, indicating the inefficiency of 

intramultiplet 3P1 → 3P0 relaxation compared with radiative decay of the 3P1 excited 

state. The efficiency of the intramultiplet relaxation increases only very slightly at 

higher temperatures.  The presence of resolved fine structure on the Hg 3P0 → 1S0 

emission in Xe (and partly in Kr) matrices and the temperature dependence exhibited, 

allowed the identification of a resolved zero phonon line and a phonon side band.  

This assignment is confirmed in the lineshape simulation conducted with the Wp 

function yielding small S values (1.3 and 2.2 in Xe and Kr respectively), which 

represent weak electron-phonon coupling.  The close match between the excited 

Hg⋅RG(3P0) ã30-(3Σ) and ground X Hg⋅RG(1S0) 10+(1Σ) state bond lengths is identified 

as the origin of the very weak electron-phonon coupling in the Hg(3P0)/RG matrix 

system.  This represents the first observation of a resolved zero-phonon line for an 

electronic transition of a matrix isolated metal-atom. 

 From the close agreement found with observed absorption energies, 

simulations based on the localised, pair-potentials approach developed by the 

Maynooth Group to Hg(3P1 ↔ 1S0)/RG18 indicated that atomic mercury occupies 

essentially undistorted substitutional sites in solid Ar, Kr and Xe.  The Hg⋅RG18 

calculations predict the spectral location of the pure 3P1 ← 1S0 electronic transition to 

occur red of the observed band maxima but within the observed band profile in all 

cases.  These calculations also succeeded in predicting multiple emission energies for 

Hg/Ar and Hg/Kr revealing that three vibronic modes lead to emission in these 

matrices.  Of the stabilised modes, the 6-atom ‘waist’ mode, Q5, is expected to 

dominate the low temperature spectra as it has the steepest stabilization gradient.  In 

Hg/Ar matrices, this mode predicts emission in good agreement with the observed 

bands, but in Hg/Kr, it is slightly to the red of the observed band.  Excited state 

calculations showed the importance of the site of isolation in determining the solid-

state luminescence, as Stokes’ shifted emission is only predicted for ‘waist’ vibronic 

modes. In the waist mode the RG atoms move with respect to the fixed Hg atom at 

the centre of a substitutional site.  The ‘body’ modes, involving internal motion of the 

excited state Hg atom from the substitutional site, do not lead to an excited state 

minimum in Ar and Kr.  However, for Hg/Xe calculations indicate that emission can 

arise from both ‘body’ and ‘waist’ modes to give a total of six stabilised modes. The 
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2–atom ‘body’ Q6(py) mode leads to emission which most closely matches the 

observed band centre at 273 nm.  This mode involves motion of the Hg(py) atom to 

one of the 12 nearest neighbour Xe atoms and corresponds to excimer type behaviour 

that Crepin and Tramer proposed was the origin of the emission in Hg/Xe.  The solid-

state calculations show, however, that to achieve stabilization, the excimer type 

interaction is specific to one orbital orientation.  Tetragonal calculations, namely the 

4–atom ‘waist’ (Q3) and the 4–atom ‘body’ modes (Q2), predict emission at 377.73 

and 358.74 nm respectively.  However, no Hg/Xe emission features have been 

observed in the 350-400 nm spectral region.  A mechanism by which these modes are 

quenched was identified in the calculations, involving the crossing of these strongly 

bound excited state vibronic states by the repulsive ground state potential.  This 

crossing does not occur in the Hg/Ar and Hg/Kr systems. 

 Hg(3P1)⋅Ne18 pair-potential simulations showed good agreement between the 

calculated and observed absorption energies for atomic Hg occupying distorted 

(relaxed) single substitutional sites in solid neon.  This accounts for the observation 

that the Hg 6p 3P1 ← 6s 1S0 transition occurs to lower energy than that predicted by 

an extrapolation of the polarizability model.  A radial expansion of 0.293 Å of the 1st 

co-ordination sphere surrounding the Hg atom occurs to allow the isolation of the 

ground state Hg atom in a single substitutional site.  The metal atom induced site 

deformation, calculated with the ground state ‘breathing’ mode (Q1) for the 

Hg(1S0)⋅Ne18 cluster, represents a 9.29% expansion of the nearest neighbour distance.  

The observed emission spectroscopy can only be predicted with simulations based on 

relaxed substitutional site occupancy for Hg in neon as no excited state stabilisation 

giving rise to substantially Stokes’ shifted emission is found for rigid site occupancy.  

It is observed that the excited state lattice reorganisation is dependent on I) the lattice 

energy and II) the stabilisation of the metal atom excited state.  Solid neon provided 

an ideal system to probe the effect of ground and excited state solvation as the 

cramped lattice site allowed an investigation of the lattice contribution to the overall 

excited state cluster stabilisation.  In emission the best agreement is achieved using 

the 6-atom ‘waist + limited stretch’ mode, (Q8
*) for the pz orbital orientation.  The 

stabilization arises from the ‘in-phase’ contraction of the six close packed Ne atoms 

towards the metal atom, a motion which allows half the Ne⋅Ne interactions to regain 

their equilibrium lattice positions.  Therefore, the simulations highlight the 
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importance of restoring the equilibrium lattice in producing the observed 

luminescence for metal atoms isolated in cramped sites.  The role of the metal atom is 

revealed as Q8
* is stabilised for the pz orbital orientation, thus maximising the 

attractive pure-Π Hg⋅Ne interaction.  The 6-atom ‘stretch’ contributes to the overall 

energy of the Hg 3P1 excited state by reducing the Σ interaction.  Overall, ‘waist’ type 

vibronic modes are more important than ‘body’ modes in producing excited state 

stabilisation of metal atoms located in cramped lattice sites, as internal motion of the 

metal atom is not feasible under these circumstances. 

 The pair-potential approach was also used to simulate the recorded Hg(3P0 → 
1S0)/RG spectroscopy.  The simulations predict excited state absorption and emission 

energies for an excited state ‘breathing’ mode (Q1
*), with small Stokes’ shifts 

consistent with the observation of zero-phonon lines for the transition in Ar, Kr and 

Xe.  The calculated emission energies do not show good agreement with the observed 

matrix emission bands.  A comparison reveals the emission energies calculated are 

progressively red-shifted of the observed band maxima.  The red shift discrepancy is 

attributed to a breakdown in the pure Hund’s Case–c coupling of the Hg (3P0) state in 

the solid.  In addition, the Hg(3P0)⋅RG diatomic potentials are not available 

experimentally for any of the Hg⋅RG pairs except Ar.  As such the [3P0 (0) ã] 

potentials used were calculated from the known [A 3Π (30+)] and [B 3Σ (31)] states of 

the Hg(3P1)⋅RG diatomics.  Overall the pair-potential calculations conducted during 

the course of this work demonstrate that given accurate Metal (M)⋅Rare Gas (RG) 

interaction potentials, available from spectroscopic studies or ab initio calculations, 

the M⋅RG18 localised cluster model succeeds in identifying the sites of metal atom 

isolation and provides insight into the ground and excited state interactions which 

lead to the observed solid-state luminescence. 

 

IX.2 Mn/RG 

Absorption spectra were recorded in the vicinity of the gas phase 3d54s4p y6P ↔ 

3d54s2 a6S; 3d54s4p z6P ↔ 3d54s2 6S and 3d64s1 x6P ↔ 3d54s2 6S transitions of 

atomic manganese at 279.91, 403.42 and 221.45 nm respectively, with deuterium and 

tungsten lamps.  The simplicity of the absorption spectra reported and the spectral 

location of the bands observed allowed easy assignment of the matrix equivalent of 
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these atomic P ← S type transitions.  The Mn/RG samples prepared during the course 

of this work were more ‘atomic’ than those reported in previous studies.  This was 

due to the increased control of the Mn vaporisation afforded by localised heating of 

Mn via electron bombardment compared to the bulk heating of Knudsen cells used in 

previous works.  As a result, the samples prepared under low Mn concentrations 

showed only small amounts of Mn aggregate absorptions and the spectra recorded in 

this study allowed easy distinction of Mn atom and Mn2 transitions.   

Multiple thermally stable sites of atomic isolation were identified in solid Ar 

and Kr whereas single site occupancy is indicated in solid Xe.  The Mn(y6P5/2 ← 

a6S5/2)/RG transitions were observed to occur at 273 / 278.1; 279.3 / 284.9 and 288.2 

nm in Ar, Kr and Xe respectively.  A progressive red shift was observed from Ar to 

Xe with respect to the gas phase y6P ↔ a6S transition energy for the Mn atom.  The 

red site at 278.1 nm dominated only in Mn/Ar.  The features assigned to the z6P5/2 ← 

a6S5/2 transition occur at 397.4, 385.5 / 401.9 and 395.5 nm in Ar, Kr and Xe 

respectively all of which are blue of the gas phase transition.  A progressive red-shift 

from Ar to Xe is not observed for the z6P5/2 ← a6S5/2 transition as the absorption band 

in Mn/Kr appears to higher energy than the Mn/Ar band.  The presence of a 

secondary site (corresponding to the 273 nm band on the y6P), blue-shifted from the 

assigned 397.4 nm absorption in Ar, (identified in excitation spectra) rationalized the 

behaviour exhibited by the matrix shifts for the z6P5/2 ← a6S5/2 absorption.  This 

allowed a linear correlation between the gas phase-matrix shift and host matrix 

polarizability.  The x6P5/2 ← a6S5/2 transition was also identified in absorption spectra 

and occured blue-shifted of the gas phase transition energy by approximately 2000 

cm-1 for all Mn/RG systems investigated. 

The luminescence spectroscopy observed for the z6P excited state of matrix- 

isolated atomic Mn confirmed the presence of multiple sites of isolation of Mn atoms 

in Ar and Kr and a single site in solid Xe.  The excitation-emission spectra recorded 

for each Mn/RG system allowed the deconvolution of badly overlapped absorption 

bands into separate site contributions.  The steady-state and time-resolved emission 

spectroscopy (TRES) allowed the identification of two very site-specific relaxation 

channels in the Mn/Ar and Mn/Kr systems giving rise to z6P → a6S fluorescence and 

a4D → a6S phosphorescence from the blue and red sites respectively.  The a4D state 

emission occurs by z6P ⇒ a4D intersystem crossing a process which is 100% 
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efficient.  Excited state lifetime measurements definitively assigned z6P → a6S 

fluorescence at 413 and 416 nm in Ar and Kr respectively.  In addition, the matrix 

lifetime for the forbidden a4D → a6S transition is reported for the first time to be 

approximately 25 msec in both matrices.  Currently no experimental gas phase 

lifetime data is available for this transition which is both electric-dipole and electric-

quadrupole forbidden.  The results of lineshape analyses of the very narrow emission 

features assigned to the a4D → a6S transition allowed the assignment of zero phonon 

lines and phonon sidebands with distinct lifetimes of 25 and 10 msec.  Also the 

requirement of two sets of phonon frequencies allowed the identification of a small 

(10 cm-1) crystal field splitting parameter for the a4D state of Mn atoms isolated in the 

red sites in Ar and Kr.  In solid Xe, no emission features were observed in the 400 – 

600 nm spectral range so neither the z6P → a6S nor the a4D → a6S transitions of 

atomic Mn occur in this host. 

High-resolution dye laser excitation spectra were recorded in the region of the 

gas phase a6D5/2 ↔ a6S5/2 transition by monitoring Mn emission features present in 

the red spectral region for solid Ar, Kr and Xe with z6P excitation but not definitively 

assigned.  The excitation spectra revealed that the gas phase spin-orbit splittings were 

maintained in all three solids.  The temperature dependence exhibited allowed the 

assignment of zero phonon lines for the excited state J = 1/2, 3/2, 5/2 and 7/2 levels of 

the a6DJ ← a6S5/2 electric-quadrupole transition in Mn/Kr.  This represents the first 

report of zero phonon lines observed in excitation for metal atoms isolated in RG 

solids.  Their occurrence is attributed to weak coupling of the a6D excited state of Mn 

to the solid-state environment provided by the site of isolation.  In addition, an 

enhancement of the transition was observed to occur for Mn atoms in the larger, red 

sites of isolation.  However, different excitation lineshapes were observed monitoring 

Mn atoms located in high symmetry sites in Ar and Kr but the excitation spectra 

recorded by monitoring site specific emission features showed no relative shifts.  This 

behaviour, different to P ← S transitions, occurs due to the weak coupling of the a6D 

state with different environments within the same matrix host.  The emission 

spectroscopy recorded following a6D state excitation allowed the definitive 

assignment of emission to the relaxation of the a6D9/2 state in the Mn/Kr system.  A 

comparison of the matrix radiative lifetime (227 µsec) to the calculated gas phase 

lifetime for the a6D ↔ a6S transition (3.4 sec) shows the extent of the enhancement 
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of this forbidden transition in the matrix environment.  Selective excitation of the 

individual levels assigned to the a6D state in Kr resulted in the production of only the 

a6D9/2 emission due to efficient intermultiplet relaxation.  The a6D9/2 → a6S5/2 

transition occurs with direct a6D red site excitation in Ar at 590 nm.  In this case the 

electronic transition occurs to lower energy than in solid Kr with a substantially 

longer lifetime (1.09 msec).  These observations are attributed to the smaller site size 

available in solid Ar.  In solid Ar and Kr, no rise times are observed in the decay 

profiles for the a6D emission bands suggesting direct feeding processes lead to the 

observed emission bands.  Blue site a6D excitation also produces direct 

phosphorescence emission features at 625, 626.7 and 620 nm in Ar, Kr and Xe 

matrices.  The emission bandbands are Gaussian in Ar and Kr and asymmetric in Xe, 

but linewidths of approximately 260 cm-1 are observed in all cases.  These bands were 

assigned to the a6D9/2 → a6S5/2 transitions from the long lifetimes recorded, (1 msec) 

and a comparison of the gas phase splittings between the z8P/a6D pair that is 

maintained in emission for Mn atoms isolated in cramped matrix environments.  The 

lifetimes recorded (1 msec) are substantially longer than the radiative lifetime 

extracted for the a6D state emission at 586 nm in solid Kr following red site 

excitation.  The long decay times and the substantial Stokes’ shifts observed for these 

bands arise due to size and symmetry reasons in the cramped substitutional site which 

for does not allow the enhancement of the transition like the red tetravacancy site. 

The excitation bands recorded for the forbidden z8P5/2 ← a6S5/2 transition of 

Mn atoms isolated in solid Ar, Kr and Xe showed well resolved threefold splittings, 

behaviour evident in the Mn z6P state absorption and excitation spectra.  Moreover, 

the z8P5/2 ← a6S5/2 transition reveals multiple Mn atom trapping sites consistent with 

the z6P and y6P states.  Emission spectra recorded with z8P5/2 ← a6S5/2 excitation 

allowed the identification of z8P5/2 state emission at 565 nm in solid Kr only.  

Moskovits and co-workers previously observed this emission feature with fixed 

wavelength excitation at 514 nm using an Ar+ laser but assigned it to Mn2.  The 

excitation spectroscopy and the lifetime measurements recorded here indicate, 

however, that the 565 nm band is emission of the z8P excited state of atomic 

manganese.  As observed with z6P excitation, the smaller, blue site in Mn/Kr leads to 

direct z8P state emission whereas the larger, red site leads to the a6D emission via an 

z8P ⇒ a6D ISC process of 100% efficiency.  Overall, the luminescence and excited 



Chapter X; Conclusion 

320 

state lifetime measurements reported allowed the definitive assignment of emission 

from all the excited states of Mn, which occur below the z6P state. 

Mn atoms are isolated in single substitutional and tetra-vacancy sites in solid 

Ar, Kr and Xe, with a preference for the larger site increasing from the heaviest rare 

gas host, Xe to the lightest, Ar.  The application of the polarizability model to the y6P 

← a6S, z6P ← a6S and z8P ← a6S transitions of atomic Mn showed the same overall 

trends as the ns2 metal atom systems investigated by Laursen and Cartland insofar as 

the behaviour evident on the y6P ← a6S and z6P ← a6S matrix shifts mirrored those 

reported for the 1P ← 1S and 3P ← 1S transitions of Zn, Cd and Hg.  This highlighted 

the differences in the relative contributions from the Π and Σ M⋅RG excited state 

interactions in the Frank Condon accessible regions of the excited states.  The 

importance of the excited state spin multiplicity on the observed matrix shifts was 

evident in comparison of the ‘singlet’ like y6P ← a6S and ‘triplet’ z6P ← a6S and z8P 

← a6S transitions.  In addition, the analysis of the z6P and z8P excited state energies 

reflected the spin triplet nature of these two states. 

IX.3 Summary 

The luminescence spectroscopy reported here for Hg and Mn isolated in rare gas 

matrices have shown that the solid state environment provides an ideal environment 

to study the interactions of the ground and excited state metal atoms.  It allows the 

extraction of information on long-lived electronic transitions (> 100 µsec) which 

cannot be observed in gas phase experiments.  The solid state simulations have shown 

that given accurate potentials, the interactions between the metal atom and the solid 

RG environment can provide information on the vibronic modes leading to the 

observed luminescence.  The results of the Mn/RG experimental work have shown 

that the site of isolation critically governs the excited state guest/host interactions.  

This observation therefore would allow the extension of this work to investigate site 

selective excited state reactions with reagents such as CH4, CH3F, NH3 and H2 doped 

RG matrices.  In addition studies of Mn/G matrices (G = CH4, CF4 and N2) are 

suggested.  However, the most pertinent information to allow a complete analysis of 

the Mn/RG luminescence reported would be the simulation of the solid state using 

diatomic pair–potentials which are unavailable at present for the Mn⋅RG 1:1 van der 

Waals complexes from either spectroscopic studies or ab initio calculations. 


