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UNIFORM SPACES AND WEAK SLICE SPACES

STEPHEN M. BUCKLEY AND DAVID A. HERRON

Abstract. We characterize uniform spaces in terms of a slice condition. We
also establish the Gehring–Osgood–Väisälä theorem for uniformity in the met-
ric space context.

1. Introduction

Uniformity in the metric space setting was introduced in [BHK01]; this gener-
alizes the uniform domains in Rn whose importance in geometric analysis is well
established as documented in [Geh87] and [Väi88]. Uniform domains in Euclidean
space were first studied by John [Joh61] and Martio and Sarvas [MS79]. More
recently, uniform subdomains of the Heisenberg groups, as well as more general
Carnot groups, have become a focus of study; see [CT95], [CGN00], [Gre01]. Every
bounded Lipschitz domain in Rn is uniform, but generic uniform domains may have
fractal boundary.

The following characterization of uniform domains is a consequence of our main
result, Theorem 4.2, which is our metric space version.

Theorem. An Euclidean domain D � Rn, n ≥ 2, is uniform if and only if it is
quasiconvex, LLC with respect to paths, and a weak slice domain. This equivalence
is quantitative: the associated parameters depend only on each other, but not on n.

By definition, uniform domains are quasiconvex, and it is not difficult to see
that they are LLC with respect to paths and satisfy a weak slice condition, so
the significance of the above result is that these three conditions are sufficient for
uniformity. One notable upshot of the above is the following.

Corollary. Suppose D = G \ E, where G � Rn is a uniform domain and E ⊂ G
is closed and removable for the Sobolev space W 1,n. Then D is uniform if and only
if it is a weak slice domain.

This allows construction of nice domains that fail to satisfy a weak slice condition;
for instance, simply remove a countable set from a uniform domain in such a way
that the double cone condition is destroyed. For more on W 1,p removability, see
[Kos99] and the references cited therein.

This document is organized as follows: Section 2 contains preliminary informa-
tion including basic definitions, notation, and terminology descriptions. There we
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also include Propositions 2.1 and 2.2 which may be of separate interest. In Section 3,
we state our definition of uniform spaces, discuss some examples, and then estab-
lish Theorem 3.1 which is our metric space version of the Gehring–Osgood–Väisälä
characterization for uniformity. In Section 4, we define the weak slice condition
and prove our main result, Theorem 4.2, as well as the Theorem and Corollary
mentioned above.

2. Preliminaries

2.A. General Information. Our notation is relatively standard. We write C =
C(a, . . .) to indicate a constant C which depends only on the parameters a, . . . .
Typically a, b, c, C, K, . . . will be constants that depend on various parameters, and
we try to make this as clear as possible, often giving explicit values. However, at
times C may denote some constant whose value depends only on the data present
and may differ even in the same line of inequalities. For real numbers we employ
the notation

a ∧ b := min{a, b} and a ∨ b := max{a, b} .

Except where explicitly stated otherwise, (X, d) is a metric space with no pre-
sumed special properties. We write |x− y| := d(x, y) for the distance between x, y.
The metric completion of (X, d) is (X̄, d) and ∂X = X̄ \X is the metric boundary
of X. We let B(x; r) := {y : |x − y| < r} (and S(x; r) := {y : |x − y| = r}) denote
the open ball (and sphere) with center x and radius r; also, λB(x; r) := B(x; λ r)
for λ > 0. We put

d(x) := dist(x, ∂X) and B(x) := B(x; d(x)) .

Given λ ∈ (0, 1/2], we call λB(x) = B(x; λd(x)) a Whitney ball at x with parame-
ter λ.

In the above, we are tacitly assuming that (X, d) is locally complete which simply
means that for all x ∈ X, d(x) > 0; equivalently, ∂X is closed in X̄. All locally
compact spaces are locally complete. Subdomains of infinite dimensional Banach
spaces are locally complete but not necessarily locally compact.

Throughout this paper, d, l, and k will denote three metrics related to each
other in a special way. The space (X, d) will often be a rectifiably connected,
incomplete, locally complete metric space; we call such a space minimally nice.
The metric l, defined below, is the length metric (also called the inner or intrinsic
metric) associated with d, and k (discussed in §2.C) is the associated quasihyperbolic
metric. Minimally nice spaces include all Euclidean domains D � Rn as well as
domains in Banach spaces.

An arc is the homeomorphic image of an interval, and it is open or closed if
the interval is open or closed, respectively. When x, y are points on an arc α we
write α(x, y) and α[x, y] to denote the open and closed subarcs of α between x and
y, respectively. If γ is merely a path, then γ[x, y] refers to a fixed but arbitrary
subpath of γ with endpoints x, y.

The length of a (continuous) path γ : [0, 1] → X is defined, in the usual way by

�(γ) := sup
n∑

i=1

|γ(ti) − γ(ti−1)| where 0 = t0 < t1 < · · · < tn = 1 .
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We call γ rectifiable when �(γ) < ∞. We let Γ(x, y) = Γ(x, y; X) denote the
collection of all rectifiable paths joining x to y in X. Then X is rectifiably connected
precisely when Γ(x, y) �= ∅ for all x, y ∈ X.

A geodesic in X is the image ϕ(I) of some isometric embedding ϕ : I → X where
I ⊂ R is an interval; we use the adjectives segment, ray, or line (respectively) to
indicate that I is bounded, semi-infinite, or all of R. When ϕ is bilipschitz, we call
ϕ(I) a quasigeodesic.

Every rectifiably connected metric space (X, d) admits a natural (or intrinsic)
metric, its so-called length distance given by

l(x, y) := inf{�(γ) : γ a rectifiable curve joining x, y in Ω} .

A metric space (X, d) is a length space provided d(x, y) = l(x, y) for all points
x, y ∈ X; it is also common to call such a d an intrinsic distance function. Notice
that a length geodesic is a shortest curve joining x and y, but it need not be a
distance geodesic.

We require the following result which may be of independent interest; it is a
handy replacement for not having quasigeodesics.

2.1. Proposition. Suppose (X, l) is a length space. Let c > 1. Then for all
x, y ∈ X, there exists a path γ ∈ Γ(x, y) satisfying �(γ) ≤

√
c l(x, y) and with the

property that
∀ z ∈ γ , ∀w ∈ {x, y} : �(γ[w, z]) ≤ c l(w, z) .

Proof. Let x, y ∈ X. We construct γ as a limit of paths [tn, sn] σn→ X where
[tn−1, sn−1] � [tn, sn] � [0, 1], σn = σn+1|[tn,sn], an = σn(tn) → x, bn = σn(sn) →
y, and the desired property holds for all points z on each σn.

Put L = l(x, y), b =
√

c and Rn = L/bn. Select a path [0, 1]
γ0→ X in Γ(x, y)

with γ0(0) = x, γ0(1) = 1 and �(γ0) ≤ b L. Define

t1 := sup{t ∈ [0, 1] : l(γ0(t), x) = R1} and s1 := inf{t ∈ [0, 1] : l(γ0(t), y) = R1} .

Then σ1 := γ0|[t1,s1] is a subpath of γ0 with endpoints a1 := γ0(t1), b1 := γ0(s1)
and σ1 lies outside B(x; R1)∪B(y; R1). We claim that if γ ∈ Γ(x, y) satisfies σ1 ⊂ γ
and �(γ) ≤ b L, then

∀ z ∈ σ1 , ∀w ∈ {x, y} : �(γ[w, z]) ≤ c l(w, z) .

Indeed, given such points z, w on such a path γ, we have l(w, z) ≥ R1 and so

�(γ[w, z]) ≤ �(γ) ≤ b L = b2R1 ≤ c l(w, z) .

In particular, the above holds for the path γ0.
Now we modify γ0 to obtain a path [0, 1]

γ1→ X in Γ(x, y) as follows: γ1 is the
concatenation of paths α1, σ1, β1 where α1 : [0, t1] → X, β1 : [s1, 1] → X are paths
in Γ(x, a1), Γ(y, b1) (respectively) which are chosen to have lengths at most b R1,
and we use appropriate subpaths of γ0 if these are short enough. Thus �(γ1) ≤ �(γ0),
σ1 ⊂ γ1, and, in particular, the above claim holds for γ1.

As above, we define

t2 := sup{t ∈ [0, 1] : l(γ1(t), x) = R2} and s2 := inf{t ∈ [0, 1] : l(γ1(t), y) = R2} .

Then σ2 := γ1|[t2,s2] is a subpath of γ1 with endpoints a2 := γ1(t2), b2 := γ1(s2), σ2

lies outside B(x; R2)∪B(y; R2), and σ1 ⊂ σ2. We claim that if γ ∈ Γ(x, y) satisfies

σ2 ⊂ γ, �(γ) ≤ b L , and �(γ[x, a1]) ∨ �(γ[y, b1]) ≤ b R1 ,
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then

∀ z ∈ σ2 , ∀w ∈ {x, y} : �(γ[w, z]) ≤ c l(w, z) .

For suppose γ is such a path and z, w are such points. If z lies on σ1, the asserted
inequality follows from the claim two paragraphs above. Assume z lies on, say,
σ2[a2, a1] (i.e., on γ1|[t2,t1]). Then l(x, z) ≥ R2 and so

�(γ[x, z]) ≤ �(γ[x, a1]) ≤ b R1 = b2R2 ≤ c l(x, z) .

Also, l(y, z) ≥ R1, so

�(γ[y, z]) ≤ �(γ) ≤ b L = b2R1 ≤ c l(y, z) .

If z lies on σ2[b1, b2], we use a similar argument. In particular, the above holds
for γ1.

We modify γ1 to obtain a path [0, 1]
γ2→ X in Γ(x, y) as follows: γ2 is the con-

catenation of paths α2, σ2, β2 where α2 : [0, t2] → X, β2 : [s2, 1] → X are paths in
Γ(x, a2), Γ(y, b2) (respectively) which are chosen to have lengths at most b R2, and
we use appropriate subpaths of γ1 if these are short enough. Thus �(γ2) ≤ �(γ1),
σ2 ⊂ γ2, and in particular the above claim holds for γ2.

Continuing this process, we construct paths γ1, . . . , γn satisfying

∀ 1 ≤ i ≤ n : �(γ[x, ai]) ∨ �(γ[y, bi]) ≤ b Ri

with γn being the concatenation of paths αn, σn, βn where αn : [0, tn] → X, βn :
[sn, 1] → X are paths in Γ(x, an), Γ(y, bn) (respectively) which are chosen to have
lengths at most b Rn, and we use appropriate subpaths of γn−1 if these are short
enough. Here an := γn−1(tn), bn := γn−1(sn) are the last, first (respectively) points
of γn−1 in the balls B̄(x; Rn), B̄(y; Rn) (respectively) and σn := γn−1|[tn,sn] ⊃ σn−1.
Moreover, we find that σn enjoys the property that for any γ ∈ Γ(x, y) with

σn ⊂ γ , �(γ) ≤ b L, and ∀ 1 ≤ i ≤ n − 1 : �(γ[x, ai]) ∨ �(γ[y, bi]) ≤ b Ri ,

we have
∀ z ∈ σn , ∀w ∈ {x, y} : �(γ[w, z]) ≤ c l(w, z) .

In particular, the above hypotheses—hence the conclusion too—hold for the path
γ = γn.

Now we define

tn+1 := sup{t ∈ [0, 1] : l(γn(t), x)=Rn+1},
sn+1 :=inf{t ∈ [0, 1] : l(γn(t), y)=Rn+1},

σn+1 := γn|[tn+1,sn+1] and an+1 := γn(tn+1), bn+1 := γn(sn+1); so σn+1 lies outside
B(x; Rn+1) ∪ B(y; Rn+1), and σn ⊂ σn+1. We claim that for any γ ∈ Γ(x, y)
satisfying

σn+1 ⊂ γ, �(γ) ≤ b L, and ∀ 1 ≤ i ≤ n : �(γ[x, ai]) ∨ �(γ[y, bi]) ≤ b Ri ,

we have

∀ z ∈ σn+1, ∀w ∈ {x, y} : �(γ[w, z]) ≤ c l(w, z) .
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(E.g., this holds for γ = γn.) To check this claim, let γ be such a path. It suffices to
consider points z on σn+1 \σn. Suppose z lies on σn+1[an+1, an] (or more precisely,
on γn|[tn+1,tn]). Then l(x, z) ≥ Rn+1, so

�(γ[x, z]) ≤ �(γ[x, an]) ≤ b Rn = b2Rn+1 ≤ c l(x, z) .

Also, l(y, z) ≥ R1, so

�(γ[y, z]) ≤ �(γ) ≤ b L = b2R1 ≤ c l(y, z) .

If z lies on σn+1[bn, bn+1] we use a similar argument.
Next modify γn to obtain a path [0, 1]

γn+1→ X in Γ(x, y) by taking γn+1 to be
the concatenation of paths αn+1, σn+1, βn+1 where αn+1 : [0, tn+1] → X, βn+1 :
[sn+1, 1] → X are paths in Γ(x, an+1), Γ(y, bn+1) (respectively) which are chosen
to have lengths at most b Rn+1, and we use appropriate subpaths of γn if these
are short enough. Then �(γn+1) ≤ �(γn), σn+1 ⊂ γn+1, and �(γn+1[x, an+1]) ∨
�(γn+1[y, bn+1]) ≤ b Rn+1. Thus the above process can be continued ad infinitum.

Finally, set t = lim tn, s = lim sn and define [t, s]
γ→ X by γ(t) = x, γ(s) = y and

for t ∈ [tn, sn], γ(t) = σn(t). �

2.B. Quasiconvexity. A rectifiable path γ, with endpoints x, y, is c-quasiconvex,
c ≥ 1, if its length is at most c times the distance between its endpoints; i.e., if γ
satisfies

�(γ) ≤ c |x − y| .
A metric space is c-quasiconvex if each pair of points can be joined by a c-quasi-
convex path. A 1-quasiconvex metric space is usually called geodesic, and a space
is a length space if and only if it is c-quasiconvex for all c > 1. By cutting out any
loops, we can always replace a c-quasiconvex path with a c-quasiconvex arc having
the same endpoints; see [Väi94].

Quasiconvex spaces are precisely the spaces which are bilipschitz equivalent to
length spaces. Indeed, the identity map id : (X, l) → (X, d) is always Lipschitz
continuous because |x− y| ≤ l(x, y) for all x, y. Evidently, X is quasiconvex if and
only if this identity map is bilipschitz. In particular, if X is c-quasiconvex, this
map is c-bilipschitz.

Examples of quasiconvex spaces include quasiextremal distance Euclidean do-
mains and more generally upper regular Loewner spaces and doubling metric mea-
sure spaces which support a (1, p)-Poincaré inequality. This list includes Carnot
groups and certain Riemannian manifolds with non-negative Ricci curvature; see
[GM85, 2.7] and [HK98, 3.13, §6].

It is important to know when the identity map (X, l) id→ (X, d) is a homeomor-
phism; see the end of §2.C. We show below that this is true precisely when (X, d) en-
joys a ‘weak local quasiconvexity’ property. For later applications, we declare a min-
imally nice space (X, d) to be locally (c, λ)-quasiconvex provided c ≥ 1, 0 < λ ≤ 1/2,
and for all x ∈ X, each pair of points in λB(x) can be joined with a c-quasiconvex
path. Thus in such a space, the map id : (X, l) → (X, d) is uniformly locally
c-bilipschitz.

2.2. Proposition. For a rectifiably connected space, the identity map (X, l) id→
(X, d) is a homeomorphism if and only if each point x ∈ X has an open neighborhood
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U and an associated homeomorphism ϕ : [0,∞) → [0,∞) such that

∀ y ∈ U : ∃ γ ∈ Γ(x, y) with �(γ) ≤ ϕ(|x − y|) .

Proof. Since the identity map (X, l) id→ (X, d) is always Lipschitz, it suffices to
check that the stated condition is equivalent to continuity of its inverse. For this
we may consider a fixed point x ∈ X. The sufficiency is transparent; we verify the
necessity. So, assume id : (X, d) → (X, l) is continuous at x.

For each ε > 0, I(ε) := {δ > 0 : |z − x| ≤ δ =⇒ l(z, x) ≤ ε} �= ∅. In fact, I(ε)
is an interval. Put σ(0) = 0 and for ε > 0 define σ(ε) := sup I(ε) ∩ [0, ε]. We note
that σ : [0,∞) → [0,∞) is increasing and right-continuous. From this we find that

ψ(s) := sup σ−1[0, s]

is also increasing and right-continuous with the property that σ(ψ(s)) ≥ s for all
s ≥ 0.

Put t = |x − y| and ε = ψ(2t). Then |x − y| = t < 2t ≤ σ(ψ(2t)) = σ(ε), so by
definition of σ we deduce that l(x, y) ≤ ε = ψ(2t) = ψ(2|x − y|). Thus it remains
to replace ψ with a homeomorphism ϕ : [0,∞) → [0,∞) satisfying ϕ(t) > ψ(2t).

To this end, put tn = 2n (for n = 0, 1, . . . ) and select s1 = 1 > s2 > · · · >
sn ↘ 0 so that ψ(sn) are all distinct. (For example, put sn+1 := sup[0, 1/2n] ∩
ψ−1[0, ψ(sn)/2].) Now let Ψ be the piecewise linear function determined by setting

∀n ≥ 2 , Ψ(sn) := ψ(sn−1) and ∀n ≥ 0 , Ψ(tn) := ψ(tn+1) + 2n .

Note that Ψ is a homeomorphism which strictly dominates ψ. Then ϕ(t) = Ψ(2t)
‘works’. �

Minor modifications to the above argument reveal that (X, d) id→ (X, l) is lo-
cally uniformly continuous (e.g., this holds for continuous maps on locally compact
spaces) if and only if X is ‘uniformly weakly locally quasiconvex’ meaning that
each point z ∈ X has an open neighborhood U and an associated homeomorphism
ϕ : [0,∞) → [0,∞) such that

∀x, y ∈ U : ∃ γ ∈ Γ(x, y) with �(γ) ≤ ϕ(|x − y|) .

As a simple example, let X be the set in R2 defined as [(0, 0), (1, 0)] together with
the union over all positive integers n of the line segments joining the origin to the
points (1, 1/n) and take d to be Euclidean distance. Then X is not ‘weakly locally
quasiconvex’ at any point of ((0, 0), (1, 0)], it is ‘weakly locally quasiconvex’ at the
origin, but not uniformly so.

2.C. Quasihyperbolic distance. The quasihyperbolic distance between two
points x, y in a minimally nice space (X, d) is defined by

k(x, y) = kX(x, y) := inf
γ∈Γ(x,y)

�k(γ) where �k(γ) := inf
γ∈Γ(x,y)

∫
γ

|dz|
d(z)

;

here |dz| denotes d-arclength. Note that (X, k) is a length space. Quasihyperbolic
geodesics always exist in locally compact spaces. However, in general, quasihyper-
bolic geodesics may not exist; see [Väi99, 3.5] for an example due to P. Alestalo.

We do not assume local compactness. The role of quasihyperbolic geodesics is
subsumed by quasihyperbolically short arcs: a path γ ∈ Γ(x, y) is called h-short
provided h ≥ 0 and �k(γ) ≤ k(x, y) + h. We note that every subpath of an h-short
path is again h-short.
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We remind the reader of the following basic estimates for quasihyperbolic dis-
tance, first established by Gehring and Palka [GP76, 2.1]:

k(x, y) ≥ log
(

1 +
l(x, y)

d(x) ∧ d(y)

)
≥ j(x, y) := log

(
1 +

|x − y|
d(x) ∧ d(y)

)
≥

∣∣∣∣log
d(x)
d(y)

∣∣∣∣ .

See also [BHK01, (2.3), (2.4)]. The first inequality above is a special case of the
more general (and easily proved) inequality

�k(γ) ≥ log
(

1 + �(γ)/ min
z∈γ

d(z)
)

which holds for any rectifiable path γ in X. From the above estimates, we readily
get the following, where γ is a rectifiable path in X, u, v ∈ γ, and K = �k(γ):

v ∈ (eK − 1)B̄(u), 1 − e−K ≤ �(γ)
d(u)

≤ eK − 1 ,

e−K ≤ d(v)
d(u)

≤ eK , e−K ≤ �(γ)/d(u)
�k(γ)

≤ eK .

It follows from the above that the identity map (X, k) id→ (X, d) is continuous.
Note that this map is a homeomorphism if and only if id : (X, l) → (X, d) is a
homeomorphism; see [BHK01, A.4, p. 92] (which says that the k- and l-topologies
coincide). Proposition 2.2 provides a criterion for this to hold. The importance of
this property is its usefulness in demonstrating that (X, k) is complete, provided
id : (X, d) → (X, l) is continuous. This is explained in [BHK01, 2.8], but perhaps
worth mentioning here as well. The inequalities given above reveal that every
Cauchy sequence in (X, k) is Cauchy in (X, d) and cannot converge to ∂X.

3. Uniform spaces

Roughly speaking, a space is uniform when points in it can be joined by paths
which are not too long and which move away from the regions boundary. A min-
imally nice metric space (X, d) is called a uniform space provided there is some
constant c ≥ 1 such that each pair of points can be joined by a c-uniform path. A
rectifiable path γ joining x, y in X is a c-uniform path provided

�(γ) ≤ c |x − y|
and

∀ z ∈ γ : �(γ[x, z]) ∧ �(γ[y, z]) ≤ c d(z) .

We call γ a double c-cone path if it satisfies the second inequality above (the phrases
cigar path and corkscrew are also used). In [Väi88], Väisälä provides a description
of various possible double cone conditions (which he calls length cigars, diameter
cigars, distance cigars, and Möbius cigars). The work [Mar80] of Martio should
also be mentioned.

When our uniform space is an Euclidean domain with Euclidean distance, we
call it a uniform domain. Uniform domains in Euclidean space were first studied
by John [Joh61] and Martio and Sarvas [MS79] who proved injectivity and approx-
imation results for them. They are well recognized as being the ‘nice’ domains for
quasiconformal function theory as well as many other areas of geometric analysis
(e.g., potential theory); see [Geh87] and [Väi88]. Every plane uniform domain is a
quasicircle domain (each of its boundary components is either a point or a quasicir-
cle), and a finitely connected plane domain is uniform if and only if it is a quasicircle
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domain. However, the plane punctured at the integers is not uniform. Such nice
topological information is not true for uniform domains in higher dimensions. For
example, a ball with a radius removed is uniform; this is not true in dimension
n = 2.

For domains in Rn we can consider uniformity both with respect to Euclidean
distance and also with respect to the induced length metric. The latter class of
domains are usually called inner uniform; cf. [Väi98]. For example, a slit disk in
the plane is not uniform (with respect to Euclidean distance) but it is an inner
uniform domain. An infinite strip, or the inside of an infinite cylinder in space,
is not uniform nor inner uniform. The region between two parallel planes is not
uniform nor inner uniform. Every quasiball is uniform.

Uniform subdomains of Heisenberg groups and the more general Carnot groups
have become a focus of study; see [CT95], [CGN00], [Gre01]. Bonk, Heinonen, and
Koskela [BHK01] introduced the notion of uniformity in the locally compact metric
space setting and showed that there is a two way correspondence between these
spaces and the so-called Gromov hyperbolic proper geodesic spaces. Note that here
we do not assume our uniform spaces are locally compact.

Now we present a metric space version of the Gehring–Osgood–Väisälä char-
acterization of uniform domains. In the Euclidean setting, Gehring and Osgood
[GO79] demonstrated that these are precisely the domains having quasihyperbolic
distance bilipschitz equivalent to the j distance (defined in the basic distance esti-
mates given in §2.C). It turns out that the following seemingly weaker condition
also characterizes uniformity. For uniform subdomains of Banach spaces, this re-
sult is due to Väisälä [Väi91, 6.16, 6.17]. Bonk, Heinonen, and Koskela [BHK01,
2.13] established the necessary condition, k ≤ 4c2j; while stated for locally compact
c-uniform spaces, their proof does not use local compactness.

We denote the so-called relative distance between x, y by r(x, y) :=
|x − y|

d(x) ∧ d(y)
.

3.1. Theorem. A minimally nice locally (a, λ)-quasiconvex space (X, d) is uni-
form if and only if there is a homeomorphism ϑ : [0,∞) → [0,∞) satisfying
lim supt→∞ ϑ(t)/t < 1 and such that for all points x, y ∈ X, k(x, y) ≤ ϑ (r(x, y)).
The uniformity constant depends only on ϑ, a, and conversely in a c-uniform space,
one can always take ϑ(t) = 4c2 log(1 + t).

Proof. That uniform spaces satisfy such a condition is the content of [BHK01,
2.13]. Therefore, it suffices to prove the converse. Assume k ≤ ϑ ◦ r where ϑ has
the asserted properties. Put η = λ/a, fix 1 < Λ < (lim supt→∞ ϑ(t)/t)−1 and
choose T = T (ϑ) > 1 so that

1 + T−1 < Λ1/2 and ∀ t ≥ T : ϑ(Λ t) ≤ t .

Now let x, y ∈ X. Suppose d(x) ≤ d(y); so r(x, y) = |x − y|/d(x). We consider
three cases:

|x − y| < η d(x), or |x − y| ≥ η d(x) and k(x, y) ≤ T, or k(x, y) ≥ T .

Suppose |x − y| < η d(x). Let γ ∈ Γ(x, y) be an a-quasiconvex path. Then
γ ⊂ λB(x), so for all z ∈ γ,

d(z) ≥ (1 − λ)d(x) ≥ (1 − λ)|x − y|/η ≥ (1 − λ)�(γ)/λ ;

since λ ∈ (0, 1/2], λ/(1 − λ) ≤ 1 and we see that γ is an a-uniform path.
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Suppose |x − y| ≥ η d(x) and k(x, y) ≤ T . Let N be the smallest integer larger
than 2T/ log(1 + η). Select γ ∈ Γ(x, y) with �k(γ) ≤ 2 k(x, y). We show that γ is
a c-quasiconvex double b-cone path with c =

∑N
i=1(1 + η)i and b = η(1 + η)Nc.

Thus, e.g., γ is a 4e4T -uniform path. We start by dividing γ into N subpaths γi :=
γ[xi−1, xi] (1 ≤ i ≤ N) of equal quasihyperbolic length, so γ is the concatenation
of γ1, . . . , γN and

∀ 1 ≤ i ≤ N : k(xi, xi−1) ≤ �k(γi) =
�k(γ)

N
≤ 2T

N
< log(1 + η) ;

here x = x0, x1, . . . , xN = y are successive points along γ.
From the above, and the basic distance estimates (cf. §2.C), we see that for each

1 ≤ i ≤ N ,

log(1 + η) > �k(γi) ≥ log(1 + �(γi)/d(xi)) ≥ | log d(xi)/d(xi−1)| .
Thus, for each 1 ≤ i ≤ N ,

�(γi) ≤ η d(xi) and (1 + η)−1 ≤ d(xi)
d(xi−1)

≤ (1 + η) .

Recalling that |x − y| ≥ η d(x) we now deduce that

�(γ) =
N∑

i=1

�(γi) ≤ η
N∑

i=1

d(xi) ≤ η
N∑

i=1

(1 + η)id(x) ≤ c |x − y|

as desired. To check the asserted double cone condition, we note that for any z ∈ γi,

d(z) ≥ d(xi−1)/(1 + η) ≥ · · · ≥ d(x)/(1 + η)i ≥ �(γ)/b .

It remains to examine the case k(x, y) ≥ T . Note that by our choice of T :

ϑ(Λ T ) ≤ T ≤ k(x, y) ≤ ϑ(r(x, y)) =⇒ r(x, y) ≥ ΛT , so |x − y| ≥ Λ T d(x) .

Let γ ∈ Γ(x, y) be a 1-short path. We demonstrate that γ is a c-quasiconvex
double b-cone path where c = 3 exp(ϑ(4b) + 1), b = C2(2Λ1/4 − 1)/(Λ1/4 − 1) and
C = exp(T + 1). Our argument is based on the following fact. Here and below,
κ = (1/4) log Λ.

Claim. Let σ ∈ Γ(z, w) be a 1-short path. Suppose k(z, w) ≥ T and d(z) ≤ d(w).
Then there exists a point v ∈ σ such that

d(v) ≥ Λ1/4d(z) and κ ≤ k(z, v) ≤ T .

To prove this claim, we first show that there exist a point v ∈ σ with d(v) ≥
Λ1/2d(z). (We then apply this repeatedly to subarcs of σ.) To see this, note (again)
that

ϑ(Λ T ) ≤ T ≤ k(z, w) ≤ ϑ(r(z, w)) =⇒ r = r(z, w) ≥ ΛT , so r/Λ ≥ T

and therefore k(z, w) ≤ ϑ(r) ≤ r/Λ = |z−w|/[Λd(z)] ≤ �(σ)/[Λd(z)]. If every u ∈ σ
had d(u) < Λ1/2d(z), then, by our choice of T , we would obtain the contradiction

�(σ)
Λ1/2d(z)

≤ �k(σ) ≤ k(z, w) + 1 ≤ (1 + T−1)k(z, w) < Λ1/2 �(σ)
Λd(z)

.

We establish the claim for the point v := vM , where a positive integer M and
a finite sequence (vj)M

j=1 of points on σ are defined by a stopping time argument.
Applying the initial sub-claim to σ, we obtain a point v1 ∈ σ such that d(v1) ≥
Λ1/2d(z). Having defined vj for a given integer j ≥ 1, we stop and declare M := j
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if k(vj , z) ≤ T . Otherwise, the iterative step depends on whether j is odd or even.
For odd j, we always have d(vj) ≥ Λ1/2d(z), so the Intermediate Value Theorem
ensures that we can find vj+1 ∈ σ[z, vj ] such that d(vj+1) = Λ1/4d(z). On the
other hand, if j is even, then we always have d(vj) ≥ d(z), so we can use the
initial sub-claim to find vj+1 ∈ σ[z, vj ] with d(vj+1) ≥ Λ1/2d(z). In either case,
using the basic distance estimates, we find that k(vj , vj+1) ≥ κ, so the process must
eventually end, and v = vM satisfies both d(v) ≥ Λ1/4d(z) and k(z, v) ≤ T . Finally,
k(z, v) ≥ | log d(z)/d(v)| ≥ κ.

Now we return to the proof of the theorem. We produce integers m, n ≥ 0 and
successive distinct points x = x0, x1, . . . , xm, yn, . . . , y1, y0 = y along γ with the
properties:

γ =
m⋃

i=1

αi ∪ σ ∪
n⋃

j=1

βj ;

αi := γ[xi−1, xi] , βj := γ[yj , yj−1] , σ := γ[xm, yn] ;

�k(αi) ≤ T + 1 , �k(βj) ≤ T + 1 , �k(σ) ≤ T + 1 ;

d(xi) ≥ Λ1/4d(xi−1) and d(yj) ≥ Λ1/4d(yj−1) ;

the above conditions being valid for all 1 ≤ i ≤ m and 1 ≤ j ≤ n (when m > 0 or
n > 0).

To find these points, we use another stopping time process involving a positive
integer N and a finite nested sequence (γj)N

j=0 of paths γj := γ[wj , zj ] ⊂ γj−1 for
1 ≤ j ≤ N . To begin, we put w0 = x, z0 = y. Given γj , we declare N := j and stop
if k(wj , zj) ≤ T . When k(wj , zj) > T , we continue: If d(wj) ≤ d(zj), we apply the
Claim to γj to find a point wj+1 with d(wj+1) ≥ Λ1/4d(wj) and κ ≤ k(wj , wj+1) ≤
T ; in this case, we set zj+1 = zj . If instead d(zj) ≤ d(wj), we apply the Claim to
get a point zj+1 with d(zj+1) ≥ Λ1/4d(zj) and κ ≤ k(zj , zj+1) ≤ T ; now we set
wj+1 = wj . Since �k(γj+1) ≤ �k(γj) − κ, the process eventually ends.

The desired points xi, yj are now obtained by appropriately relabeling the points
wk, zk. Note that we have the following inequalities which are valid for all 1 ≤ i
≤ m:

∀ 1 ≤ k ≤ i , d(xk) ≤ Λ(k−i)/4d(xi) ;

∀ z ∈ αi , C−1 ≤ d(z)/d(xi) ≤ C;

�(αi) ≤ C d(xi) ;

where C = eT+1. There are similar inequalities for the points yj and the paths βj ,
and for σ.

To show that γ satisfies a double cone condition, suppose z ∈ αk for some
1 ≤ k ≤ m. Then d(z) ≥ d(xk)/C and thus

�(γ[x, z]) ≤
k∑

i=1

�(αi) ≤ C

k∑
i=1

Λ(i−k)/4d(xk) ≤ C Λ1/4

Λ1/4 − 1
d(xk) ≤ b d(z) .

A similar argument applies to points on any βk, so it remains to consider a point
z ∈ σ. From what was just established we have

�(γ[x, xm]) ≤ C Λ1/4

Λ1/4 − 1
d(xm) and �(γ[y, yn]) ≤ C Λ1/4

Λ1/4 − 1
d(yn) .
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Also, �(σ) ≤ C[d(xm) ∧ d(yn)]. Since d(z) ≥ [d(xm) ∨ d(yn)]/C, we conclude that
in all cases γ satisfies the double b-cone condition.

Finally, we prove the quasiconvexity condition. First, note that |x − y| ≥
1
2 [d(x)∨d(y)]; for if this were not the case, then we would have k(x, y) ≤ ϑ(1) < T .
Now pick x′, y′ ∈ γ so that �(γ[x, x′]) = |x − y|/2 = �(γ[y, y′]). Then

d(x′) ≤ d(x) + |x − x′| ≤ (5/2)|x − y| and likewise d(y′) ≤ (5/2)|x − y| .
Also, the double cone condition ensures that

d(x′) ≥ |x − y|
2b

and d(y′) ≥ |x − y|
2b

,

so r(x′, y′) ≤ 2|x− y|/[d(x′) ∧ d(y′)] ≤ 4b. Thus k(x′, y′) ≤ ϑ(4b), so �k(γ[x′, y′]) ≤
k(x′, y′) + 1 ≤ ϑ(4b) + 1. Therefore

�(γ[x′, y′]) ≤ [exp(ϑ(4b) + 1) − 1][d(x′) ∧ d(y′)] ≤ (5/2)[exp(ϑ(4b) + 1) − 1]|x − y| .
Finally,

�(γ)=�(γ[x, x′])+�(γ[x′, y′]) + �(γ[y′, y])≤3 exp(ϑ(4b) + 1)|x − y|. �

3.2. Remarks. (a) One can easily construct spaces with k ≤ ϑ ◦ r which fail to be
uniform. That is, the local quasiconvexity hypothesis cannot be dropped.

(b) We see from the above that any estimate k(x, y) ≤ ϑ(r(x, y)) for k(x, y) ≥ K
implies uniformity. Indeed, in the first two cases above we find that points x, y in
a locally (a, λ)-quasiconvex space with k(x, y) ≤ K can be joined by a c-uniform
path where c = a ∨ 4e4K .

(c) An important, and characteristic, property of locally compact uniform spaces
is that quasihyperbolic quasigeodesics are uniform arcs. See [GO79] for domains
in Euclidean space and [BHK01, 2.10] for general metric spaces, both of which
use quasihyperbolic geodesics. Slight alterations to their proofs generalize to the
quasigeodesic situation.

As an application of the above theorem, we corroborate that quasihyperbolically
short paths are uniform paths. More precisely, we prove the following.

3.3. Corollary. Suppose (X, d) is a c-uniform space. Let x, y ∈ X and put h =
1∧k(x, y). Any h-short path from x to y is a b-uniform path with b ≤ 3 exp(200 c6).

Proof. Thanks to [BHK01, 2.13], we know that k ≤ ϑ◦r where ϑ(t) = 4c2 log(1+t).
Put Λ = 81/16, so Λ1/4 = 3/2, and let T = 19 c4. We claim that for all t ≥ T ,
ϑ(Λ t) ≤ t. This follows from an elementary calculus argument. (Note that for
a > 0, the functions x �→ log(1+ ax)/x and x �→ log(1+ ax2)/x are decreasing; the
first for all x > 0, the second for 1 + ax2 ≥ 5.) Indeed, with the change of variable
t = c4s our claim becomes the assertion that for s ≥ 19,

4
s

x−1 log(1 + ax2) =
4

c2s
log(1 + c4Λs) ≤ 1 where x = c2 and a = sΛ .

Evidently, for all s ≥ 19 and c ≥ 1, 1 + ax2 = 1 + c4Λs ≥ 5, so it suffices to
prove the above inequality for c = 1 and all s ≥ 19. For s ≥ 19, s−1 log(1 + Λs) ≤
19−1 log(1 + 19Λ), so

4
s

log(1 + Λs) ≤ 4
19

log(1 + 19Λ) ≤ 1

as asserted.
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Now suppose γ ∈ Γ(x, y) is an h-short path. As in the proof of Theorem 3.1,
we consider three cases. In the first case, where |x− y| ≤ ηd(x) with η = 1/2c and
d(x) ≤ d(y), we select a c-quasiconvex α ∈ Γ(x, y) to deduce that

k(x, y) ≤ �k(α) ≤ c |x − y|
d(x)/2

≤ 1 , so �k(γ) ≤ 2 .

From the last inequality in §2.C we obtain
�(γ)
d(x)

≤ ek(x,y)�k(γ) ≤ 4 ce
|x − y|
d(x)

,

so γ is 4ce-quasiconvex; also, �(γ) ≤ 2e d(x). Next,

∀ z ∈ γ : d(z) ≥ e−k(x,z)d(x) ≥ e−3�(γ)/2 ,

which says that γ is a double e3-cone path and thus, e.g., a 4ce2-uniform path.
In the second case, where |x − y| ≥ ηd(x) and k(x, y) ≤ T , our proof of The-

orem 3.1 reveals that γ is a b-uniform path with b = 4 exp(4T ) = 4 exp(72 c4).
In the final case, where k(x, y) ≥ T , our proof indicates that γ is b-uniform
now with b = 3 exp(ϑ(16C2) + 1) and C = exp(T + 1) = exp(19 c4 + 1). As
log(1 + 16C2) ≤ log 17 + 2 log C ≤ (2 + log 17) + 2T , we obtain

ϑ(16C2) + 1 ≤ 1 + 4c2[(2 + log 17) + 2T ] ≤ 1 + 20c2 + 152c6 ≤ 173c6. �

4. Slice conditions

We begin with a few geometric conditions, each with an associated parameter.
A space (X, d) is c-linearly locally connected, or c-LLC, if c ≥ 1 and the following
two conditions hold for all x ∈ X and all r > 0:

points in B(x; r) can be joined in B(x; c r)(LLC1)

and

points in X \ B̄(x; r) can be joined in X \ B̄(x; r/c) .(LLC2)

Here the phrase ‘can be joined’ means ‘can be joined by a continuum’. We also
employ the terminology LLC with respect to paths in which case ‘can be joined’
means ‘can be joined by a rectifiable path’. Note that quasiconvexity implies LLC1

with respect to paths (but not conversely). These conditions, first introduced by
Gehring to characterize quasidisks, are well known in the literature.

The generic example of a space which does not satisfy the LLC2 condition is
the interior of an infinite Euclidean cylinder such as Bn−1 × R ⊂ Rn. However,
for 2 ≤ k < n the regions Bn−k × Rk ⊂ Rn are easily seen to be 1-LLC2. The
complement of a semi-infinite slab (e.g., Rn \ {(x1, . . . , xn) : x1 ≥ 0, |xn| ≤ 1}) fails
to be LLC1. Uniform domains are LLC, however uniform spaces may fail to be LLC2

(e.g., a metric tree). The so-called quasiextremal distance (aka, QED) Euclidean
domains and more generally Ahlfors regular Loewner spaces are quasiconvex and
LLC with respect to paths; see [GM85, 2.7] and [HK98, 3.13].

When a quasiconvex or LLC space is an Euclidean domain D � Rn, we call D
a quasiconvex domain or an LLC domain.

We say that a locally complete metric space (X, d) is c-locally externally con-
nected, abbreviated c-LEC, provided c ≥ 1 and the LLC2 with respect to paths
property holds for all points x ∈ Ω and all r ∈ (0, d(x)/c). Every Euclidean do-
main, in Rn with n ≥ 2, is c-LEC for all c > 1.
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There are various so-called slice conditions each designed to handle their own
specific problem. The exposition [Buc03] is a good place to begin reading about
this topic. The first author, and his many co-authors, have utilized an assortment
of slice conditions to investigate a number of different questions.

A non-empty bounded open set S ⊂ X is a C-slice separating x, y provided
C ≥ 2 and

C−1B(x) ∩ S = ∅ = S ∩ C−1B(y)
and

∀ α ∈ Γ(x, y) : �(α ∩ S) ≥ C−1 diam(S) .

A set of C-slices for x, y ∈ X is a collection S of pairwise disjoint C-slices separating
x, y in X. One can show (see [BS03, 2.9]) that in Euclidean spaces, and more
generally in C-LEC spaces, the cardinality of any such set S of C-slices separating
x, y is always bounded by cardS ≤ 4C3k(x, y). We are interested in knowing when
we can reverse this inequality. Since there may be no C-slices separating x, y, we
consider the quantity

dws(x, y) = dws(x, y; C) = dX
ws(x, y; C) := 1 + sup cardS

where the supremum is taken over all S which are sets of C-slices in X separat-
ing x, y.

We call (X, d) a weak C-slice space provided for all x, y ∈ X: k(x, y) ≤
C dws(x, y; C) . Thus in these spaces dws(x, y) � k(x, y) when k(x, y) ≥ 1. The
weak slice condition was introduced in [BO99, Section 5]; see also [BS03], [Buc03]
and [Buc04]. When the weak slice space is a domain D � Rn, we call D a weak
slice domain.

As a simple example we note that, when x and y are sufficiently far apart (e.g.,
say, |x − y| ≥ d(x) + d(y) ≥ 2d(x)), the concentric rings 2iB̄(x) \ 2i−1B(x) (with
0 ≤ i ≤ m = �log2 (|x − y|/d(x))� − 1) are 4-slices separating x, y. This provides
an easy lower estimate for dws(x, y) which in turn can be used to check that every
a-uniform space is a weak C-slice space with C = C(a). See [BS03, (2.3)] for details.

The following technical lemma is quite useful for obtaining an upper bound for
the cardinality of a set of slices; in weak slice spaces it thus provides an upper
bound for quasihyperbolic distances. It is the case α = 0 of [BS03, 2.17].

4.1. Lemma. Let A be a 1-rectifiable subset of a rectifiably connected metric space
(X, d). Suppose ϕ : A → [ε,∞) (with ε > 0) and S is a collection of disjoint
non-empty bounded subsets of X. Suppose also that there exist positive constants
b, c such that

(a) ∀S ∈ S : �(S ∩ A) ≥ c diam(S),
(b) ∀S ∈ S , ∀z ∈ S ∩ A : ϕ(z) ≤ diam(S),
(c) ∀ t > 0 : �(ϕ−1(0, t]) ≤ b t .

Then the cardinality of S is at most cardS ≤ 2(b/c) log2(4�(A)/cε).

Now we present our main result.

4.2. Theorem. A minimally nice metric space (X, d) is uniform and LEC if and
only if it is quasiconvex, LLC with respect to paths, and satisfies a weak slice con-
dition. These implications are quantitative.

Proof. Uniformity trivially implies quasiconvexity (and so LLC1 with respect to
paths). Also, as mentioned above, uniform spaces are weak slice spaces too. We
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show that an a-uniform b-LEC space is c-LLC2 with respect to paths, where c =
1+2ab2. To this end, fix z ∈ X, r > 0 and x, y ∈ X \B̄(z; r). Let γ be an a-uniform
path from x to y. We assume there is some u ∈ γ ∩ B̄(z; r/c), since otherwise there
is nothing to prove. Then

�(γ[x, u]) ∧ �(γ[y, u]) > r − r/c = (1 − 1/c)r ,

so uniformity implies that d(u) ≥ [(c − 1)/ac]r. Setting s := [(c − 1)/abc]r we find
that

s < d(u)/b , x, y �∈ B̄(z; s) and B(z; r/c) ⊂ B(u; s/b) .

Utilizing the LEC property we obtain a path α which joins x, y in X \ B̄(u; s/b)
and hence in X \ B̄(z; r/c).

Now we verify the converse. Suppose (X, d) is a-quasiconvex, b-LLC with respect
to paths, and C-weak slice. The LEC property follows trivially from LLC2 with
respect to paths. Thus it suffices to show that X is c-uniform with c = c(a, b, C).

Let x, y ∈ X with, say, |x−y| > C−1[d(x)+d(y)] (cf. Remark 3.2(b)). Appealing
to Proposition 2.1, we select a path γ ∈ Γ(x, y) satisfying

�(γ) ≤ 2 l(x, y) and ∀z ∈ γ : �(γ[x, z]) ≤ 4 l(x, z) , �(γ[y, z]) ≤ 4 l(y, z) .

Suppose S is a set of C-slices separating x and y. We use Lemma 4.1 to estimate
the cardinality of S. Define A := γ \ [C−1B(x)∪C−1B(y)], ε := [d(x)∧d(y)]/(abC)
and

for z ∈ A, let ϕ(z) := [l(x, z) ∧ l(y, z)]/ab .

Note that by definition, ϕ : A → [ε,∞). Also, requirement (a) in Lemma 4.1 follows
with c = 1/C directly from the fact that each S ∈ S is a C-slice separating x and y.
Next, by our choice of γ we see that if z ∈ A with ϕ(z) ≤ t, then �(γ[x, z]) ≤ 4abt
and �(γ[y, z]) ≤ 4abt. Thus ϕ−1((0, t]) is contained in the union of two end subpaths
of γ and �(ϕ−1((0, t])) ≤ 8abt.

It remains to check requirement (b) in Lemma 4.1. Fix an S ∈ S and let
z ∈ S ∩ A. By quasiconvexity, |x − z| ∧ |y − z| ≥ [l(x, z) ∧ l(y, z)]/a. Thus for
each r ∈ (0, [l(x, z) ∧ l(y, z)]/a), x, y �∈ B̄(z; r). Fix such an r. Employing the
LLC2 hypothesis, we find a rectifiable path α joining x, y in X \ B̄(z; r/b). Since
z ∈ S, and S intersects α, we deduce that diam(S) ≥ r/b. Letting r increase to
[l(x, z) ∧ l(y, z)]/a we obtain diam(S) ≥ ϕ(z), as required.

An appeal to Lemma 4.1 now provides the cardinality estimate

cardS ≤ 16 abC log2

4 abC2l(x, y)
d(x) ∧ d(y)

where we have used the information that �(A) ≤ �(γ) ≤ 2 l(x, y). Another applica-
tion of quasiconvexity, along with the weak C-slice condition, yields

k(x, y) ≤ C dws(x, y; C) ≤ C + 16abC log2

(
8a2bC2|x − y|
d(x) ∧ d(y)

)
≤ C + C ′ log r(x, y) .

Finally, Theorem 3.1 permits us to conclude that this implies uniformity. �

Proof of Theorem in Introduction. Euclidean uniform domains are LLC with re-
spect to paths, quasiconvex, and satisfy a weak slice condition. Since Euclidean
domains are LEC, Theorem 4.2 asserts that these three conditions together imply
uniformity. �
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Proof of Corollary in Introduction. This follows from the comments below once we
show that such a domain D is QED. Since G is uniform, it is QED; this follows
from Jones’ extension result for Sobolev spaces as explained in [GM85, 2.18]. That
D is QED now follows automatically because E is W 1,n-removable. �

We finish by discussing some Euclidean domains that explore whether or not we
can weaken any of the three conditions equivalent to uniformity in the Theorem in
the Introduction. First, it is easy to construct domains that are quasiconvex and
LLC with respect to paths but are not weak slice. The key point is that a (non-
uniform) QED or Loewner Euclidean domain is quasiconvex and LLC with respect
to paths (but is not weak slice); see [GM85, 2.7] or [HK98, 3.13]. In particular, a
QED or Loewner domain is uniform if and only if it is weak slice. This topic is
further elaborated upon in [BH07].

Next, it is also easy to construct domains that are weak slice and quasiconvex but
not LLC. Indeed since all simply connected planar domains are weak slice domains
[BS01, 3.1], a simply connected domain with an external cusp suffices as an example.
Finally, we do not have an example of a domain that is weak slice and LLC with
respect to paths but fails to be quasiconvex. Since LLC1 is a slightly weakened
form of quasiconvexity, it may be that weak slice plus LLC implies quasiconvexity.
Note that the slit disk is weak slice and LLC2 with respect to paths.
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