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Abstract

We derive variational formulae for natural first order energy function-

als and obtain criteria for the stability of isometric immersions. This

generalizes known results for the classical energy, the p-energy and the

exponential energy

AMS Subject Classification: 58E20 (53C43)

1 Introduction

By an energy-type functional defined on smooth maps f : (Mn, g) → (V k, h)
of compact Riemannian manifolds we mean a functional obtained by integration
of a first order differential operator φ(df) where df ∈ Γ(T ∗M ⊗ f ∗TV ) denotes
the differential of f and φ : M(R, n × k) → R

+
0 is invariant under the action

of O(n) × O(k). Especially φ yields a parallel function T ∗M ⊗ f ∗TV → R
+
0 .

We can rewrite φ(df) = Φ(df ∗df) for some function Φ : M(R, n × n)+ → R on
nonnegative symmetric matrices which is invariant under conjugation by O(n).
The functionals in question take the form

EΦ(f) :=

∫

M

Φ(df ∗df)dvolg ,

where we have used the Riemannian metrics to identify T ∗M = TM and T ∗V =
TV to get the endomorphism df ∗df of TM .

Famous examples of this construction are the classical energy, Φ(A) = TrA,
the exponential energy, Φ(A) = exp(TrA) as in [EL3], the p-energy, Φ(A) =
(TrA)p but also the volume, where Φ(A) = (det A)1/2. Results similiar to ours in
the case where Φ is a function of the Trace, Φ(A) = F (TrA), have been obtained
in [A]. In particular the exponential energy was treated in [C-L] and the p-energy
in [C-L2]. There is a vast literature for the classical energy, see e.g. the survey
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papers [EL1], [EL2]. For a discussion of stability results in this case we refer to
[X] and the references there.

Here we will derive the first and second variational formulae for the Φ-energy
functional. The Bochner formula for vector fields then implies that isometries
are Φ-stable under certain conditions on the first and second derivative of Φ. As
in the classical case, (see [EL], [X]) there is also a range of maps Φ such that the
identity on the sphere Sn is unstable for the Φ-energy.

2 Variation formulae for the Φ-Energy

In order to derive variational formulae we will restrict ourselves to functionals
which can be expressed with smooth Φ, i.e we work with Φ rather than φ. This
has the advantage that the domain TM∗ ⊗ TM of Φ is independent of f . For
polynomial (or even analytic) φ this is no loss of generality by the remark at the
end of this section. In the sequel we will always assume M compact or at least
that the variations are compactly supported. Consider a 2-parameter variation
of f , i.e. a map

F : I × J × M → V (s, t, m) 7→ fs,t(m)

where I, J are intervalls around 0. Denote by ∇ the Riemannian connections
on the bundles TM , F ∗TV and f ∗TV and let v := dF

(

∂
∂t

)

= ∂
∂t

fs,t(m), w :=
dF
(

∂
∂s

)

= ∂
∂s

fs,t(m) be the variation vector fields along f = f0 = f0,0, ft =
f0,t. We compute the variation at a point p ∈ M . Let e1, . . . , en be a local
orthonormal framing of TM in a vicinity of p with ∇ei

ej = 0 at p. Note that
for the commutators we have [ei,

∂
∂s

] = 0, [ei,
∂
∂t

] = 0 and [ei, ej](p) = 0. We also
write ∂̄i,jΦ := ∂i,jΦ + ∂j,iΦ. In the subsequent calculations summation over the
indices i, j, k, l is tacitely assumed. For the first variation of the Φ-energy density
we obtain

d

dt
Φ(df ∗

t dft) = dΦ(∇df ⊗ df + df ⊗∇df)

= ∂̄i,jΦ(df ∗df)〈∇ ∂
∂t

dFei | dFej〉

= ∂̄i,jΦ(df ∗df)〈∇ei
v | dfej〉

= ei

(

∂̄i,jΦ(df ∗df)〈v | dfej〉
)

− 〈v | ∇ei

(

∂̄i,jΦ(df ∗df)dfej

)

〉

= div
((

∂̄i,jΦ(df ∗df)〈v | dfej〉
)

ei

)

− 〈v | τΦ(f)〉 .

We thus get the

Proposition 2.1 Define the Φ-tension of a smooth map f : M → V of compact

Riemannian manifolds to be the vector field along f

τΦ(f) := ∇ei

(

∂̄i,jΦ(df ∗df)dfej

)

= ∂̄k,l∂̄i,jΦ(df ∗df)〈∇ei
dfek | dfel〉dfej (2.2)

+ ∂̄i,jΦ(df ∗df)∇ei
dfej
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Then f is Φ-harmonic, i.e. critical for the Φ-energy, if and only if τΦ(f) = 0.

For the second variation we get up to divergence

d2

dsdt
Φ
(

df ∗
s,tdfs,t

)

= −
d

ds
〈v | τΦ(fs)〉

= − 〈∇ ∂
∂s

v | τΦ(f)〉 − 〈v | ∇ ∂
∂s

τΦ(fs)〉

= − 〈∇ ∂
∂s

v | τΦ(f)〉 − 〈v | ∇ ∂
∂s
∇ei

(

∂̄i,jΦ(df ∗
s dfs)dFej

)

〉

= − 〈∇ ∂
∂s

v | τΦ(f)〉 − 〈v | Rw,dfei

(

∂̄i,jΦ(df ∗df)dfej

)

〉

− 〈v | ∇ei
∇ ∂

∂s

(

∂̄i,jΦ(df ∗
s dfs)dFej

)

〉

where R denotes the curvature tensor of V . The last term is

= −
〈

v | ∇ei
∇ ∂

∂s

(

∂̄i,jΦ(df ∗
s dfs)dFej

)

〉

= −

〈

v | ∇ei

(

d∂̄i,jΦ(df ∗
s dfs)

ds
dfej + ∂̄i,jΦ(df ∗df)∇ ∂

∂s
dFej

)〉

= −
〈

v | ∇ei

(

∂̄k,l∂̄i,jΦ(df ∗df)〈∇ ∂
∂s

dFek | dfel〉dfej +
(

∂̄i,jΦ(df ∗df)∇ej
w
)

)〉

= −
〈

v | ∇ei

(

∂̄k,l∂̄i,jΦ(df ∗df)〈∇ek
w | dfel〉dfej +

(

∂̄i,jΦ(df ∗df)∇ej
w
))〉

= + ∂̄k,l∂̄i,jΦ(df ∗df)〈∇ei
v | dfej〉〈∇ek

w | dfel〉 + ∂̄i,jΦ(df ∗df)〈∇ei
v | ∇ej

w〉

where the last identity holds only up to divergence.

Proposition 2.3 The second variation of the Φ-energy at a Φ-harmonic map f

is the integral over

IΦ(f)(v, w) = − 〈v | Rw,dfei

(

∂̄i,jΦ(df ∗df)dfej

)

〉

+ ∂̄k,l∂̄i,jΦ(df ∗df)〈∇ei
v | dfej〉〈∇ek

w | dfel〉

+ ∂̄i,jΦ(df ∗df)〈∇ei
v | ∇ej

w〉

for any vector fields v, w along f .

We finally compute the leading symbol of the second variation. We have

d2

dsdt
EΦ (fs,t) =

∫

M

〈v | Pw〉dvolg (2.4)

with a symmetric second order partial differential operator P acting on vector
fields along f , i.e on sections v, w of f ∗TV → M . The restriction P⊥f of P (or
of the bilinear form given by (2.4)) to the orthogonal complement of the image
of df : TM → f ∗TV will be called second variation perpendicular to f . The
leading symbol of P is determined by the highest order term

−
〈

v | ∂̄k,l∂̄i,jΦ(df ∗df)〈∇ei
∇ek

w | dfel〉dfej + ∂̄i,jΦ(df ∗df)∇ei
∇ej

w
〉

in Proposition 2.3. Hence we get
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Proposition 2.5 The leading symbol of the second variation of the Φ-energy is

σ(ξ) = ∂̄k,l∂̄i,jΦ(df ∗df)ξiξk dfel ⊗ dfej + ∂̄i,jΦ(df ∗df)ξiξj , (2.6)

for ξ =
∑

i ξiei. Thus

〈σ(ξ)w | w〉 = ∂̄k,l∂̄i,jΦ(df ∗df)ξiξk〈w | dfel〉〈w | dfej〉 + ∂̄i,jΦ(df ∗df)ξiξj||w||2

for ξ ∈ TpM
∗ and w ∈ (f ∗TV )p.

Remark: Let φ : M(n × k) → R
+
0 be a polynomial function, invariant under

the action of O(n) × O(k), i.e. such that φ(BXA) = φ(X) for all B ∈ O(k),
A ∈ O(n) and X ∈ M(n × k). For any X ∈ M(n × k) we can diagonalize X∗X

and find othogonal matrices B and A as before such that

BXA =











λ1 0
. . .

0 λq

0 · · · 0











or







λ1 0 0
. . .

...
0 λq 0







as q := min{n, k} = n or q = k. Hence φ(X) = φ(λ1, . . . , λq) is a symmetric
polynomial and since φ(±λ1, . . . ,±λq) = φ(λ1, . . . , λq) this does not involve odd
powers of the λi. Thus we find a symmetric polynomial Φ in n variables such
that φ(λ1, . . . , λq) = Φ(λ2

1, . . . , λ
2
q, 0, . . . , 0). This extends to a polynomial Φ :

M(n × n)+ → R
+
0 such that φ(X) = Φ(X∗X). For analytic φ this construction

yields an analytic function Φ.
Note that if φ is differentiable we do not necessarily get a differentiable func-

tion Φ with the above properties. In general Φ is only differentiable on the set of
matrices of full rank q. For instance φ(X) := det (X∗X)3/4 is differentiable but
Φ(A) := det (A)3/4 is not.

For polynomial φ there are polynomials Φs and Φσ such that

φ(X) = Φ(X∗X) = Φs(s1, . . . , sq) = Φσ(σ1, . . . , σq)

where σl is the lth elementary symmetric polynomial in the eigenvalues λ2
1, . . . , λ

2
q

of X∗X determined by

n
∑

l=0

σl(X
∗X)tl = det (1 + tX∗X)

and

sk =

n
∑

l=0

λ
2q
l = Tr

(

(X∗X)l
)

.

In the analytic case one can use a theorem of Glaeser, [Gl], to get analytic func-
tions Φs and Φσ.
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3 Applications

3.1 Isometric Immersions

For isometric immersions the preceeding formulae simplify substantially. By in-
variance dΦ(id) must be some multiple λTr of the trace. We have the following

Theorem 1 Let f : M → V be an isometric immersion and assume that dΦ(id) 6=
0. Then

1. f is Φ-harmonic if and only if it is harmonic.

2. If λ > 0 then the leading symbol of P⊥f is positive definite, hence the second

variation perpendicular to f has finite index.

Proof: (1) For an isometric immersion or a Riemannian submersion the first
term in (2.2) vanishes. Since an isometric immersion f has df ∗df = id we get

τΦ(f) = ∂̄i,jΦ(id)∇ei
dfej = 2λTr∇df = 2λτ(f) .

(2) On vector fields w normal to f , i.e perpendicular to the dfel in (2.6), the
first summand in (2.6) vanishes. As before the second summand is some multiple
of the trace which shows that

σ(ξ) = ∂̄i,jΦ(df ∗df)ξiξj = 2λ||ξ||2 > 0

for ξ 6= 0. Thus the restriction of P to (Image(df))⊥ ⊂ f ∗TV is elliptic with
positive definite leading symbol and therefore has only finitely many negative
eigenvalues. •

3.2 Stability of Isometries

By invariance, the second derivative d2Φ(id) is a homogeneous polynomial of
degree 2. Therefore there are µ, ν ∈ R such that

d2Φ(id)(H) = µTr
(

H2
)

+ ν(TrH)2

The second variation formula in Proposition 2.3 simplifies to

IΦ(f)(v, v) = −〈v | Rv,ei

(

∂̄i,jΦ(id)ej

)

〉

+ ∂̄k,l∂̄i,jΦ(id)〈∇ei
v | ej〉〈∇ek

v | el〉 + ∂̄i,jΦ(id)〈∇ei
v | ∇ej

v〉

= − 2λRic(v)

+ µ
(

〈∇ei
v | ej〉 + 〈∇ej

v | ei〉
)2

+ 4ν〈∇ei
v | ei〉〈∇ek

v | ek〉 + 2λ〈∇ei
v | ∇ei

v〉
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= − 2λRic(v)

+ 2µ
(

||∇v||2 + Tr
(

(∇v)2
))

+ 4ν (div(v))2 + 2λ||∇v||2

= − 2λRic(v) + 2(µ + λ)||∇v||2 + 2µTr
(

(∇v)2
)

+ 4ν (div(v))2

= − 2λRic(v) + µ||Lvg||
2 + 4ν(div(v))2 + 2λ||∇v||2

since Tr(∇v) = div(v). Comparing this with the Bochner formula (see e.g. [Y]):

∫

M

−Ric(v) −
1

2
||Lvg||

2 + (div(v))2 + ||∇v||2 = 0 (3.1)

we obtain

Theorem 2 Assume that µ ≥ −λ and that 2ν ≥ λ. Then any isometry of M is

Φ-stable.

We now derive a sufficient criterion for the identity map on a sphere to be unsta-
ble. To that end let v be the gradient vectorfield on Sn ⊂ R

n+1 of the restriction
of a linear map p : R

n+1 → R, p(x) = 〈p, x〉 for a unit vector p ∈ R
n+1 as

in [X]. Then ||v(x)||2 + p(x)2 = 1 and ∇xv = −px for all x ∈ TSn, hence
〈∇ei

v, ej〉 = −pδi,j . Since the Ricci curvature of Sn is Ric(v) = (n − 1)||v||2, the
formula for the index form yields

IΦ(v, v) = −2λ(n − 1)||v||2 + (4µn + 4νn2 + 2λn)p2 . (3.2)

Denoting by ωn−1 the volume of the standard (n − 1)-sphere we compute

∫

Sn

‖v‖2 = ωn−1

∫ π/2

−π/2

cos(θ)n+1 dθ

= ωn−1

(

[sin(θ) cos(θ)n]
π/2

−π/2
+

∫ π/2

−π/2

sin(θ)2 cos(θ)n−1 dθ

)

= n

∫

Sn

p2 .

Inserting this into (3.2) shows the following

Theorem 3 If

λ(n − 2) > 2µ + 2νn

then id : Sn → Sn is Φ-unstable.

3.3 Examples

For some of the functionals mentioned in the introduction theorems 2 and 3 give:
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1. For the p-energy, Φ(A) = (Tr(A))p we compute λ = pnp−1, µ = 0 and
ν = p(p−1)np−2. Thus idSn is unstable if n > 2p. Isometries are generally stable
if n ≤ 2(p − 1).
2. The exponential energy, Φ(A) = eTrA, has λ = en, µ = 0, ν = en. Thus
isometries are always stable for EΦ. This is the proof of [C-L].
3. For Φ(A) = Tr(Ap) we get λ = p, µ = p(p − 1) and ν = 0. Thus idSn is
unstable if n > 2p.
4. For Φ(A) = Tr exp(A) we get λ = e, µ = e, ν = 0. Therefore idSn is unstable
if n > 4.
5. For Φ(A) = det (A) we get λ = 1, µ = −1, ν = 1. Thus any isometry is stable
for Edet .
6. Let α1, . . . , αn be the eigenvalues of A and if n ≥ 2 define the discriminant
Φ(A) :=

∏

1≤i<j≤n(αi − αj)
2. Then EΦ has λ = µ = ν = 0 and the second

variation at an isometry vanishes.
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