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Abstract

We derive variational formulae for natural first order energy function-
als and obtain criteria for the stability of isometric immersions. This
generalizes known results for the classical energy, the p-energy and the
exponential energy

AMS Subject Classification: 58E20 (53C43)

1 Introduction

By an energy-type functional defined on smooth maps f : (M" g) — (V¥ h)
of compact Riemannian manifolds we mean a functional obtained by integration
of a first order differential operator ¢(df) where df € I'(T*M @ f*T'V') denotes
the differential of f and ¢ : M(R,n x k) — R{ is invariant under the action
of O(n) x O(k). Especially ¢ yields a parallel function T*M ® f*TV — R.
We can rewrite ¢(df) = ®(df*df) for some function ® : M(R,n x n)*™ — R on
nonnegative symmetric matrices which is invariant under conjugation by O(n).
The functionals in question take the form

Es(f) = /MCID(df*df)dvolg,

where we have used the Riemannian metrics to identify T*M = T M and T*V =
TV to get the endomorphism df*df of T M.

Famous examples of this construction are the classical energy, ®(A) = TrA,
the exponential energy, ®(A) = exp(TrA) as in [EL3], the p-energy, ®(A) =
(TrA)P but also the volume, where ®(A) = (det A)'/2. Results similiar to ours in
the case where ® is a function of the Trace, ®(A) = F(TrA), have been obtained
in [A]. In particular the exponential energy was treated in [C-L] and the p-energy
in [C-L2]. There is a vast literature for the classical energy, see e.g. the survey
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papers [EL1], [EL2]. For a discussion of stability results in this case we refer to
[X] and the references there.

Here we will derive the first and second variational formulae for the ®-energy
functional. The Bochner formula for vector fields then implies that isometries
are ®-stable under certain conditions on the first and second derivative of ®. As
in the classical case, (see [EL], [X]) there is also a range of maps ® such that the
identity on the sphere S™ is unstable for the ®-energy.

2 Variation formulae for the ®-Energy

In order to derive variational formulae we will restrict ourselves to functionals
which can be expressed with smooth @, i.e we work with ® rather than ¢. This
has the advantage that the domain TM* ® T'M of ® is independent of f. For
polynomial (or even analytic) ¢ this is no loss of generality by the remark at the
end of this section. In the sequel we will always assume M compact or at least
that the variations are compactly supported. Consider a 2-parameter variation
of f,i.e. a map
F:IxJxM—=YV (st,m)— foi(m)

where I, J are intervalls around 0. Denote by V the Riemannian connections
on the bundles TM, F*TV and f*TV and let v := dF (&) = & foi(m), w =
dF( ) = 8fst( ) be the variation vector fields along f = fo = foo, ft =

Jot- We compute the variation at a point p € M. Let ey,...,e, be a local
orthonormal framing of 7'M in a vicinity of p with V.e; = 0 at p. Note that
for the commutators we have [e;, 2] = 0, [e;, 2] = 0 and [e;, e;](p) = 0. We also

write 5,~7j<1> = 0;;® + 0;,P. In the subsequent calculations summation over the
indices 1, j, k, [ is tacitely assumed. For the first variation of the ®-energy density
we obtain

d O(dfrdf,) = dd(Vdf @ df + df @ Vdf)
= 0,;(df*df)(V o dFe; | dFej)
= 0O (df* df)(Velv | df6j>
= ¢ (0;;Q(df*df){v | dfe;)) — (v | Ve, (0;;Q(df*df )dfe;))
= div ((9;®(dfdf){v | dfej)) es) — (v | Ta(f)) -
We thus get the

Proposition 2.1 Define the ®-tension of a smooth map f: M — V of compact
Riemannian manifolds to be the vector field along f

7o(f) = Ve (0;®(dfdf)dfe;)
= 8k,lal7]<1)(df*df) (Veidfek | df€l>df€j (22)
+ 0, ;O (df*df )V .. df e;
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Then f is ®-harmonic, i.e. critical for the ®-energy, if and only if T6(f) = 0.
For the second variation we get up to divergence

d? d
—® (df;,tdfs,t) = - £<U | Tq)(fs)

dsdt )
= (Vaul ()~ 0] Vara(f)
—(Vav|a(f) ~ (0| Vo Ve, (B,®(dfidf)AFe))
= —(Vaul7e(f)) = (v ] Rudge, (0 0(df df )dfe;))
— (0| VeV (8,;0(dfrdf,)dFe;))
where R denotes the curvature tensor of V. The last term is
- <v |VeVa (5i7j¢(df:dfs)dFej)>

_ <U v, <Wdfej + éi,jQ(df*df)vaadeej»

- <v |V, (5k,léi,jq>(df*df)<v%dFek | dfe)dfe; + (5,~7j(I>(df*df)Vejw)>>
- <U | Ve, (5k,15i,jq)(df*df)<vekw | dfer)dfe; + (5i,jq)(df*df)vejw))>
=+ 0k10,;0(df*df ){Veo [ dfe;)(Vew | dfer) + 0, @(df*df)(Vev | Vew)
where the last identity holds only up to divergence.

Proposition 2.3 The second variation of the ®-energy at a ®-harmonic map f
1s the integral over

Io(f)(v,w) = —(v| Ruase, (8;;P(df*df)dfe;))
+ D40 P(df*df )(Ve,v | dfe;)(Ve,w | dfey)
+ 0;,;P(df*df )(Ve,v | Ve,w)

for any vector fields v,w along f.

We finally compute the leading symbol of the second variation. We have

d2
dsthq) (fst) = /M<v | Pw)dvol, (2.4)

with a symmetric second order partial differential operator P acting on vector
fields along f, i.e on sections v, w of f*T'V — M . The restriction P/ of P (or
of the bilinear form given by (2.4)) to the orthogonal complement of the image
of df : TM — f*TV will be called second variation perpendicular to f. The
leading symbol of P is determined by the highest order term

— (v | DB P(df*df ) (Vo Veyw | dfe)dfe; + 85, O(df*df) Ve, Ve,w)

in Proposition 2.3. Hence we get



Proposition 2.5 The leading symbol of the second variation of the ®-energy is
(&) = Oka0; ;P(df*df )&k, df er @ dfe; + 0; ;P (df*df )&i&; (2.6)
for € =3, &ei. Thus
(0w [ w) = 00, P(df*df )&ki(w | dfer)(w | dfes) + 0 ;(df*df )& |w]|®
for & € T,M* and w € (f*TV),.

Remark: Let ¢ : M(n x k) — R be a polynomial function, invariant under
the action of O(n) x O(k), i.e. such that ¢(BXA) = ¢(X) for all B € O(k),
A€ O(n)and X € M(n x k). For any X € M(n x k) we can diagonalize X*X
and find othogonal matrices B and A as before such that

M _ 0 M 00
BXA = 0 - N or
q
0 .0 0 Ay 0

as ¢ := min{n,k} = n or ¢ = k. Hence ¢(X) = ¢(\1,..., ;) is a symmetric
polynomial and since ¢(£Ay,...,£X;) = ¢(A1,..., ;) this does not involve odd
powers of the A;. Thus we find a symmetric polynomial ® in n variables such
that ¢(A1,...,Ag) = ®(A],...,A2,0,...,0). This extends to a polynomial & :
M(n x n)™ — R{ such that ¢(X) = &(X*X). For analytic ¢ this construction
yields an analytic function .

Note that if ¢ is differentiable we do not necessarily get a differentiable func-
tion ® with the above properties. In general ® is only differentiable on the set of
matrices of full rank ¢. For instance ¢(X) := det (X*X)3/ is differentiable but
®(A) := det (4)%* is not.

For polynomial ¢ there are polynomials ° and ®“ such that

H(X) =D(X*X) = D%(s1,...,54) = P(01,...,0,)

where oy is the [th elementary symmetric polynomial in the eigenvalues A2, ..., )\2
of X*X determined by

> o(X Xt = det (1+1X°X)

=0

and
n

sk=Y AT=Tr((X*X)") .

=0

In the analytic case one can use a theorem of Glaeser, [Gl], to get analytic func-
tions ®° and P7.



3 Applications
3.1 Isometric Immersions

For isometric immersions the preceeding formulae simplify substantially. By in-
variance d®(id) must be some multiple ATr of the trace. We have the following

Theorem 1 Let f : M — V be an isometric immersion and assume that d®(id) #
0. Then

1. f is ®-harmonic if and only if it is harmonic.

2. If \ > 0 then the leading symbol of P/ is positive definite, hence the second
variation perpendicular to f has finite index.

Proof: (1) For an isometric immersion or a Riemannian submersion the first
term in (2.2) vanishes. Since an isometric immersion f has df*df = id we get

To(f) = 0,;(id)V,dfe; = 2ATeVdf = 2M7(f) .

(2) On vector fields w normal to f, i.e perpendicular to the dfe; in (2.6), the
first summand in (2.6) vanishes. As before the second summand is some multiple
of the trace which shows that

o(€) = 3, 0(dfdf)eic; = 2) €12 > 0

for £ # 0. Thus the restriction of P to (Image(df))t C f*TV is elliptic with
positive definite leading symbol and therefore has only finitely many negative
eigenvalues. °

3.2 Stability of Isometries

By invariance, the second derivative d?®(id) is a homogeneous polynomial of
degree 2. Therefore there are u, v € R such that

d*®(id)(H) = pTr (H?) + v(TrH)?

The second variation formula in Proposition 2.3 simplifies to

Io(f)(v,0) = —(v| Ry (3;0(id)e;))
+ 5k715i7j<1>(id)(veiv | e;)(Ve,v | e) + &'J(I)(id)(veiv | Ve,v)
= — 2)\Ric(v)

+ i (Vv | &) + (Vv | e))
+4v(Ve,v | €)(Ve,v | er) +2M(Ve,v | Ve,v)
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= —2)\Ric(v)

+ 20 (| Vo] + Tr ((V0)?)) + 4v (div(v))® + 2A][ Vo[
= — 2XRic(v) + 2(u + N)||[ Vo[ + 2uTr (Vv)?) + 4v (div(v))?
= —2)\Ric(v) + p||Log|® + 4v(div(v))? + 2X|| Vol >

since Tr(Vv) = div(v). Comparing this with the Bochner formula (see e.g. [Y]):
: 1 :
/ —Ric(v) = S| Lugl[* + (div(v))* + [|Vo|* = 0 (3.1)
M

we obtain

Theorem 2 Assume that u > —X\ and that 2v > X. Then any isometry of M is
d-stable.

We now derive a sufficient criterion for the identity map on a sphere to be unsta-
ble. To that end let v be the gradient vectorfield on S™ C R™*! of the restriction
of a linear map p : R*™ — R, p(x) = (p,z) for a unit vector p € R*"™! as
in [X]. Then [|v(x)||> + p(x)? = 1 and V,v = —pz for all z € T'S™, hence
(Ve,v,€5) = —pd; ;. Since the Ricci curvature of S™ is Ric(v) = (n — 1)|[v||?, the
formula for the index form yields

Ip(v,v) = —2X(n — 1)||v||* + (4un + 4vn® + 2\n)p* . (3.2)

Denoting by w,_; the volume of the standard (n — 1)-sphere we compute

w/2
lv]]* = wn_1/ cos(0)" ™ df
S?’L

—7/2
w/2

= Wn <[Sin(€) COS(Q)HK/:/z Jr/

—7/2
= n/ p? .

Inserting this into (3.2) shows the following

sin(6)? cos(#)" ! d@)

Theorem 3 If
An —2)>2u+2vn

then id : S™ — S™ is ®-unstable.

3.3 Examples

For some of the functionals mentioned in the introduction theorems 2 and 3 give:



1. For the p-energy, ®(A) = (Tr(A))” we compute A\ = pn’~! pu = 0 and
v = p(p—1)nP~2 Thus idg~ is unstable if n > 2p. Isometries are generally stable
if n <2(p—1).

2. The exponential energy, ®(A) = eB4 has A = e", u = 0, v = e”. Thus
isometries are always stable for Eg. This is the proof of [C-L].

3. For ®(A) = Tr(A?) we get A = p, p = p(p — 1) and v = 0. Thus idgn is
unstable if n > 2p.

4. For ®(A) = Trexp(A) we get A = e, u = e, v = 0. Therefore idg~ is unstable
if n > 4.

5. For ®(A) = det (A) we get A =1, p = —1, v = 1. Thus any isometry is stable
for Fget .

6. Let ay,...,a, be the eigenvalues of A and if n > 2 define the discriminant
®(A) := [li<icjenlai — a;)?. Then Eg has A = p = v = 0 and the second
variation at an isometry vanishes.
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