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SPHERICALIZATION AND FLATTENING

ZOLTÁN M. BALOGH AND STEPHEN M. BUCKLEY

Abstract. The conformal deformations of flattening and sphericalization of
length metric spaces are considered. These deformations are dual to each other
if the space satisfies a simple quantitative connectivity property. Moreover, the
quasihyperbolic metrics corresponding to the flat and the spherical metrics are
bilipschitz equivalent if a weaker connectivity condition is satisfied.

0. Introduction

Recent progress in geometric function theory: [AG], [AK], [Se1], [Se2], led to
the study of conformal deformations of domains in Euclidean space. Elaborate
results on quite general deformations defined on the unit ball have been developed
in several recent papers, notably [BKR], [BK], [BHR]. The extension of the theory
of quasiconformal mappings from Euclidean to general metric spaces [HK],[BKo],
[Ty1], [Ty2] motivated the study of conformal deformations in general metric spaces
[BHK], [BB], [He1], [He2].

One of the most important conformal deformations is the so-called quasihyper-
bolic metric k which, on a domain Ω � Rn, is defined by the equation

kΩ(x, y) = inf
γ∈Γ(x,y)

∫
γ

ds(z)
dist(x, ∂Ω)

,

where Γ(x, y) is the class of rectifiable paths λ : [0, T ] → X for which λ(0) = x
and λ(T ) = y, ds is the Euclidean length element, and dist(x, ∂Ω) is the Euclidean
distance to the boundary. This metric was extensively studied in [BHK], [He2],
[BB]. Notice however that if we instead use the spherical length element and
spherical boundary distance, we get an alternate quasihyperbolic metric k′

Ω. Both
kΩ and k′

Ω are used frequently in the literature, but how do they compare? This
question arises naturally from the results of [BHK] and [BB] which were proven for
the spherical quasihyperbolic metric k′

Ω; but in many instances one would like to
know what happens for the case of the usual quasihyperbolic metric kΩ.

Notice first that kΩ(x, y) can be much smaller than k′
Ω(x, y). For instance, if Ω

is a ball of Euclidean radius r > 2 centered at the origin, x is the origin, and y
is a point on the Euclidean unit sphere then, as r → ∞, kΩ(x, y) tends to 0 but
k′
Ω(x, y) is bounded away from 0. Despite this example, we will prove the following

result in §2.24.
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Theorem 0.1. Given x0 ∈ Rn and r0 > 0, let C be the class of all domains Ω � Rn

containing x0 for which dist(x0, ∂Ω) ≤ r0. For Ω ∈ C the quasihyperbolic metrics
kΩ, k′

Ω defined above are bilipschitz equivalent to each other, with a bilipschitz con-
stant dependent only on |x0| and r0.

In order to obtain this statement we have to consider carefully the relation
between the spherical and the Euclidean metric. In fact we examine the relation
between two classes of conformal deformations in a general metric space setting. We
call the first class of deformations sphericalization. If we sphericalize an unbounded
length space, we get an bounded length space which is usually incomplete; an ex-
ample is the process of deforming Euclidean space into the Riemann sphere minus
the north pole. We call the second class of deformations flattening. If we flatten an
incomplete bounded length space, we get an unbounded length space; an example is
the process of deforming the Riemann sphere minus the north pole into Euclidean
space. In the process of flattening, a selected part of the boundary (such as the
north pole) is pushed out to infinity, while sphericalization brings the boundary at
infinity back to a bounded distance. These two procedures are dual to each other
in a similar way as the procedures of quasihyperbolization and dampening from
[BHK]. We show in a general metric setting that a necessary and sufficient condition
for the quasihyperbolic metric associated with the original metric to be bilipschitz
equivalent to the quasihyperbolic metric associated with the sphericalized metric
(or flattened metric) is a surprisingly simple geometric property of the original
space which we call an escape property (or reverse escape property). Since all
Euclidean domains have such properties, Theorem 0.1 will follow almost imme-
diately.

As already indicated, the main motivation for this investigation lies in the results
of [BHK] and [BB]. Those papers investigate the question of when the quasihy-
perbolic metric associated with a general length metric is Gromov hyperbolic. The
assumption of boundedness is essential for some of the key results in those papers.
Since one is often interested in quasihyperbolic metrics on unbounded Euclidean
domains and other unbounded metric spaces, this analysis at first seems to be of
limited use in that context. However on a large class of unbounded spaces (includ-
ing all Euclidean domains), the quasihyperbolic metric on the original (unbounded)
space is Gromov hyperbolic if and only if the quasihyperbolic metric on the spher-
icalized (bounded) space is Gromov hyperbolic, allowing us in theory to apply the
results of those previous papers to unbounded spaces. Since sphericalization is a
fairly simple conformal distortion, it is often easy to get a rather explicit description
of the sphericalized space in terms of the original space, so this method of appealing
to the results of [BHK] and [BB] is in practice quite feasible.

After defining our main notation in Section 1, we introduce the class of conformal
deformations called sphericalization and flattening and discuss the procedures of
sphericalization in Section 2, and flattening in Section 3. We obtain, in conclusion,
the comparability of the spherical and the flat quasihyperbolic metrics. In Section 4,
we examine to what extent sphericalization and flattening are inverse processes.
We introduce the notion of dual deformations in the context of sphericalization-
flattening. We show that if we flatten a sphericalized space (or sphericalize a
flattened space) using “dual” sphericalizing and flattening functions, then we get
a space bilipschitz equivalent to the original one if and only if the original space
satisfies a stronger variant of the escape property (or reverse escape property). This
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makes it easy to give examples of incomplete bounded spaces that are not produced
by sphericalization, and unbounded spaces that are not produced by flattening.

1. Preliminaries

We write A <∼ B or B >∼ A whenever A ≤ CB for some positive constant C that
depends only on explicitly allowed parameters, and we write A ≈ B if A <∼ B <∼ A.
We denote by a ∨ b and a ∧ b the maximum and minimum, respectively, of any
a, b ∈ [−∞,∞].

In later sections, d, l, and σ will denote metrics on a space X that are related to
each other in special ways. In this section, we define some concepts that we need
for one or more of these metrics, so we do so for a generic metric space (X, m)
(satisfying any additional conditions that are listed).

Given x ∈ X and r ∈ R, we define Bm(x, r) = {y ∈ X : m(y, x) < r}. We denote
by Xm the metric completion of X and ∂Xm = Xm \ X. We say that (X, m) is
locally complete if distm(x, ∂Xm) > 0 for all x ∈ X; of course (X, m) is complete if
and only if distm(·, ∂Xm) ≡ ∞.

Given x, y ∈ Xm, Γ(x, y; m) denotes the class of m-rectifiable paths γ : [0, T ] →
Xm for which γ|(0,T ) is a rectifiable path in X, γ(0) = x, and γ(T ) = y. We
also define Γm(x, y) to be the subset of Γ(x, y; m) consisting of paths that are
parametrized by m-arclength. If γ is a path in (X, m), then γ(T−; m) is short-
hand for limt→T− γ(t), assuming this m-limit exists in Xm, and lenm(γ) is the
m-length of γ. We do not distinguish notationally between paths and their images.

1.1. Local length spaces. For x, y ∈ Xm, let l(x, y) = infγ∈Γd(x,y) lenm(γ). If
l|X×X is always finite, we call l the inner metric associated with m, and say that
(X, m) is rectifiably connected. Recall that (X, m) is a length space if l(x, y) =
m(x, y) for all x, y ∈ X; such an equality clearly extends to points x, y ∈ Xm.
More generally, (X, m) is a local length space, and m is a local length metric, if m
is rectifiably connected and satisfies the following pair of conditions:

(a) If x ∈ X, y ∈ Xm, and m(x, y) ≤ distm(x, ∂Xm), then there is a path
γ ∈ Γ(x, y; m) of arclength arbitrarily close to m(x, y).

(b) If x ∈ X, then distl(x, ∂Xl) = distm(x, ∂Xm).
Note that a complete local length space is trivially a length space. Also note that
condition (b) is necessary to ensure the existence of short paths to the boundary
in the case where the infimum infz∈∂Xm

m(x, z) is not attained.
In this paper, we are particularly interested in locally complete local length

spaces. Examples of such spaces include all Euclidean domains, and more generally,
all rectifiably connected open subsets of complete length spaces. Note that most
examples of this type are neither complete nor length spaces (consider, for instance,
the slit disk in R2).

1.2. Metric and accessible boundary. Let us pause to make some basic com-
ments on the relationship between Xm and Xl when (X, m) is a locally complete
local length space, with associated inner metric l. Cauchy sequences in (X, l) are
also Cauchy in (X, m), so there is a natural map I : ∂Xl → ∂Xm. The rectifiably
accessible boundary of (X, m), ∂raXm := I(∂Xl), is the set of all y ∈ ∂Xm whose
inner distance from some (and hence all) x ∈ X is finite. Equivalently,

∂raXm = {y ∈ ∂Xm : Γ(x, y; m) 
= ∅, x ∈ X}.
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The map I identifies each y ∈ ∂raXm with a subset I−1(y) of ∂Xl.
If m is a length metric, then trivially ∂Xm = ∂raXm = ∂Xl, but in other cases,

there may be no natural identifications between these sets. In particular, the map
I : ∂Xl → ∂Xm may be neither injective nor surjective. For instance, if m is the
Euclidean metric on a domain Ω ⊂ R2 consisting of the complement of a sufficiently
tight spiral about y ∈ R2, then y corresponds to a point in ∂Ωm \ ∂raΩm, while if
Ω ⊂ R2 is the complement of a line segment [a, b], then each point in the open line
segment (a, b) corresponds to two elements of ∂Ωl, but only to one point in ∂raΩm.
Condition (a) above says that ∂raXm contains at least all points y ∈ ∂Xm for which
there is an associated point z = zy ∈ X with m(z, y) = distm(z, ∂Ωm).

1.3. Metrics of quasihyperbolic type. Suppose (X, m, o) is a locally complete
rectifiably connected pointed metric space. Writing δm,C(x) = distm(x, ∂Xm) ∧
(C + m(x, o)) for 0 < C ≤ dist(o, ∂Xm), we define the C-quasihyperbolic metric on
X by the equation

(1.2) km,C(x, y) = inf
γ∈Γ(x,y;m)

∫
γ

dm(z)
δm,C(z)

.

We allow the maximal choice C = dist(o, ∂Xm) only when (X, m) is incomplete.
Note that local completeness is essential to ensure that the right-hand side of (1.2)
is finite. Whenever we omit the subscript C in the above notation, it is to be
assumed that C is maximal (and X is incomplete). Thus δm = distm(·, ∂Xm), and
km is the quasihyperbolic metric as it is usually defined for incomplete spaces, but
nonmaximal choices of C give variants of these concepts that are also defined on
complete spaces.

In this paper, we compare quasihyperbolic metrics of the above type for two
underlying metrics m, where one of the underlying metrics is obtained from the
other one by either sphericalization or flattening. We will see that the comparison
results do not depend on whether the above parameter C is maximal or not.

2. Sphericalization

Throughout this section, (X, d, o) is an unbounded locally complete pointed local
length space, and we write |x| = d(x, o), x ∈ Xd. We will “sphericalize” (X, d, o) to
get a related length space (X, σ); we use the term “sphericalization” because this
process generalizes that of obtaining the Riemann sphere from Euclidean space. The
main result, Theorem 2.28, compares the corresponding quasihyperbolic metrics
kd,C and kσ. For a basic example of this process, let (X, d) be a Euclidean domain.
Then σ is the inner spherical metric on X (if we make the standard choice of
sphericalizing function g). Alternatively, we can obtain the spherical metric by
sphericalizing the whole of Euclidean space and restricting the resulting metric σ
to Ω.

We denote by l the inner metric associated with d. We will use l only in two
contexts: the length element dl associated with d, and the l-boundary ∂Xl. We
write |x| = d(I(x), o) for all x ∈ ∂Xl where I : ∂Xl → ∂Xd is the natural injection
as in §1.2.

Given g : [0,∞) → (0,∞), we define a length metric S(d, o, g) on X by the
equation

S(d, o, g)(x, y) = inf
γ∈Γ(x,y;d)

∫
γ

g(|z|) dl(z), x, y ∈ X.
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We normally write σ in place of S(d, o, g), and we take g to be a sphericalizing
function, a concept we now define.

2.1. Sphericalizing functions. A continuous function g : [0,∞) → (0,∞) is a
C-sphericalizing function, C > 2, if it has the following properties:

(S1) g(r) ≤ Cg(s) whenever r, s > 0, r ≤ 2s + 1, and s ≤ 2r + 1.

(S2)
∫ ∞

r
g(t) dt ≤ Crg(r), r ≥ 1.

We will see that this pair of properties is quantitatively equivalent to the combi-
nation of (S1) and the following condition, where 0 < ε ≤ 1 ≤ C ′ are some other
constants:

(S3)
g(s)
g(r)

≤ C ′
(r

s

)1+ε

, for all 1 ≤ r ≤ s.

Notice that (S1) merely says that all values of g on any one of the intervals Ij are
mutually comparable, where I0 = [0, 1] and Ij = [2j−1, 2j ], j ∈ N.

Typical sphericalizing functions include the “standard sphericalizing function”
g(t) = 2/(1 + t2) and, more generally, g(t) = c logq(2 + t)/(1 + tp), where p > 1,
q ∈ R, and c > 0. Note that (S1) and (S3) imply that g is quasidecreasing in the
sense that

(S4) g(s) ≤ C ′′g(r), 0 ≤ r ≤ s,
where C ′′ = CC ′. Moreover h(r) := supr≥s g(s) defines a monotonically decreas-
ing C1-sphericalizing function comparable to g, where C1 = C2C ′. Thus we may
assume without loss of generality that a sphericalizing function is decreasing when-
ever switching to a comparable sphericalizing function and making a quantitatively
controlled change in C is harmless.

We now state and prove two simple lemmas.

Lemma 2.2. A continuous function g : [0,∞) → (0,∞) is a sphericalizing function
if and only if it satisfies (S1) and (S3), with quantitative control of parameters.

Proof. By integration, (S3) immediately implies (S2), with C = C ′/ε. Conversely
suppose (S1) and (S2) hold. Since g(t) ≥ g(r)/C for r ≤ t ≤ 2r, we get the useful
estimate

(2.3)
rg(r)

C
≤

∫ ∞

r

g(t) dt ≤ Crg(r), r ≥ 1.

Writing u(r) := r1/C
∫ ∞

r
g(t) dt, we see that for all r > 1,

u′(r) =
r−1+1/C

C

(∫ ∞

r

g(t) dt − Crg(r)
)
≤ 0.

Thus u is a decreasing function and∫ ∞

s

g(t) dt ≤
(r

s

)1/C
∫ ∞

r

g(t) dt, 1 ≤ r ≤ s.

This inequality plus (2.3) gives (S3) with C ′ = C2 and ε = 1/C. �

Lemma 2.4. Suppose g is a C-sphericalizing function, C > 2. Then for every
K > 0 there exists α = α(C, K) ∈ (0, 1) such that∫ r

αr

g(t) dt ≥ Krg(r), r ≥ 1/α.
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Proof. Replacing g(t) by the lower bound g(r)(r/t)1+ε/C ′ provided by Lemma 2.2,
and integrating, we get ∫ r

αr

g(t) dt ≥ rg(r) ·
(

α−ε − 1
εC ′

)
.

Taking α > 0 small enough, the parenthesized expression can be made arbitrarily
large. �

We record the following change of variables lemma, which is essentially a special
case of [V, Theorem 5.7].

Lemma 2.5. Let I ⊂ [0,∞) be an interval. If α : [a, b] → I satisfies the 1-Lipschitz
condition |α(s)−α(t)| ≤ |s− t|, s, t ∈ [a, b], and ρ : I → (0,∞) is a Borel function,
then ∫ b

a

ρ(α(t)) dt ≥
∣∣∣∣∣
∫ α(b)

α(a)

ρ(s) ds

∣∣∣∣∣ .
We now come to the first of the three results in this section that require d to be

a length metric, and not just a local length metric.

Proposition 2.6. If (X, d, o) is an unbounded pointed length space, and σ =
S(d, o, g) for some C-sphericalizing function g, then diaσ(X) ≤ 4Cg(1).

Proof. Let γε ∈ Γd(o, y) be a path of d-length L ≤ |y|+ ε for some ε ∈ (0, 1], and so

lenσ(γ) =
∫ L

0

g(|γε(t)|) dt.

By the triangle inequality, t − ε ≤ |γ(t)| ≤ t. Letting ε tend to zero, and using the
uniform continuity of g on [0, |y|+ 1], we deduce that lenσ(γε) tends to

∫ |y|
0

g(t) dt.
We claim that the last integral is bounded by 2Cg(1). To see this, estimate

∫ 1

0
g(t) dt

and
∫ ∞
1

g(t) dt using (S1) and (S2), respectively. �

Remark 2.7. The above lemma would fail if we merely required d to be a local
length metric. For instance, if d is the Euclidean metric on a domain Ω ⊂ Rn, then,
using the standard sphericalizing function, σ is the usual inner spherical metric,
and this can be unbounded if Ω tightly spirals in the vicinity of some point z ∈ ∂Ω.
If we instead sphericalized Ω with respect to the inner Euclidean metric, we would
always get a bounded space, although this space is typically not a subdomain of
the Riemann sphere.

Remark 2.8. If γ is a path in X containing points x, y with |x| ≤ |y|, then

(2.9) lenσ(γ) ≥
∫ |y|

|x|
g(t) dt.

This follows from Lemma 2.5 with ρ = g and α(t) = |ν(t)|, where ν is the
reparametrization of γ by arclength. Since we already know from the proof of
Proposition 2.6 that σ(o, y) ≤

∫ |y|
0

g(t) dt, it follows that σ(o, y) =
∫ |y|
0

g(t) dt, as-
suming d is a length metric.
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2.10. Escape properties.

Definition 2.11. Suppose (X, d, o) is a pointed locally complete local length space,
0 < c ≤ 1, and ρ ≥ 0. We say that γ is a c-escape path for x ∈ X if γ : [0, T ) → X
is parametrized by d-arclength, γ(0) = x, |γ(t)| ≥ c(t + |x|) for all 0 ≤ t < T , and
either T = ∞, or T < ∞ with γ(T−; d) = y ∈ ∂Xl; recall that γ(T−; d) indicates
the d-limit limt→T− γ(t). We call γ a strong c-escape path if T = ∞. We say that
(X, d, o) has the (strong) (c, ρ)-escape property if every x ∈ X satisfying |x| ≥ ρ has
a (strong) c-escape path.

Trivially, the strong (c, ρ)-escape property implies the (c, ρ)-escape property. By
the triangle inequality, a c-escape path for x must satisfy |γ(t)|/(t + |x|) ∈ [c, 1].
This implies the following fact.

Fact 2.12. If g is a C0-sphericalization function, and γ : [0, T ) → X is a c-
escape path for a point x ∈ X, then there exists C = C(C0, c) ≥ 1 such that
g(|γ(t)|)/g(t + |x|) ∈ [1/C, C], 0 ≤ t < T .

Modulo a change in the values of c and ρ, (strong) escape properties are inde-
pendent of the basepoint o. Moreover the next lemma shows that if any point in a
length space has a strong escape path, so does o.

Lemma 2.13. Let (X, d, o) be an unbounded pointed local length space, and suppose
that some point x0 ∈ X has a strong c-escape path for some 0 < c ≤ 1. Then o also
has a strong c′-escape path for all 0 < c′ < c.

Proof. We first claim that for all 0 < δ < 1/4 there is a path ν = νδ from o to
x0, parametrized by d-arclength and satisfying |ν(t)| ≥ (1 − 4δ)t. We construct
ν inductively. First pick a path λ1 from x0 to o of length less than (1 + δ)|x0|.
Let ν1 be the initial segment of λ1 as far as x1 = λ1(t1), the first point on λ1

whose distance from o is |x0|/2. Inductively, given xj , we find a path λj+1 from
xj to o of length less than (1 + δ)|xj | and let νj+1 be the initial segment of λj+1

as far as xj+1 = λj+1(tj+1), the first point on λj+1 whose distance from o is
|xj |/2. Concatenating the paths νj , j ∈ N, and parametrizing the resulting path
ν : [0, L] → X by d-arclength in the direction from o to x0 (with ν(0) = o), it is
clear that the resulting path ν justifies our claim.

Given 0 < c′ < c, suppose we want a strong c′-escape path γ for o. First let ν be
as above, with 4δ = (1− c′/c). Now let γ be the concatenation of ν and the strong
c-escape path λ for x0, parametrized by d-arclength. The desired lower bound for
|γ(t)| follows from the weaker inequality 1 − 4δ ≥ c′ when t ≤ L := lend(ν), while
for t ≥ L, we have

|γ(t)| = |λ(t − L)| ≥ c(t − L + |x0|) ≥ c(t − L + (1 − 4δ)L) ≥ c(1 − 4δ)t = c′t.

�

Example 2.14. Suppose that Ω ⊂ Rn is a Euclidean domain containing the origin.
Let o be the origin and attach the inner Euclidean metric d. Then Ω has the (1, 0)-
escape property, since if x ∈ Ω, x 
= 0, we can take the path γ : [0, T ) → Ω,
γ(t) = x + t · x, with T being the least value of t > 0 for which x + t · x ∈ ∂Ωd

(or T = ∞ if there is no such number t). If x = 0, take any ray beginning at the
origin, and let γ be the initial part which ends (if at all) when this ray first reaches
∂Ωd. It is, however, easy to give an example of such a domain where o (and hence
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every point) fails to have any strong escape paths, for instance the complement of
an Archimidean spiral S 
� o.

Example 2.15. There are also domains in which there are strong escape paths
from all points but which fail to have a strong escape property because the es-
cape parameter c depends on the point. Consider, for instance, the domain whose
complement consists of the two curves given by t �→ (t, 1 + t2 sin t), t ≥ 0, and
t �→ (t, 3 + t2 sin t), t ≥ 0. There is a strong escape path from every point x ∈ Ω,
but the strong escape parameter c depends on x. For instance, if we write

Ω′ = {(x1, x2) : x1 ≥ 0, |x2 − 2 − x2
1 sin x1| < 1} ⊂ Ω,

then for points in (x1, x2) ∈ Ω′, the parameter c must be chosen to be very small
if x1 is very large. Thus Ω fails to have any strong escape property. By contrast,
there is a strong 1-escape path from all points (x1, x2) with x1 < 0.

Example 2.16. Consider X ⊂ R2, where X consists of the horizontal half-line
(x1, 0), x1 ≥ 0, together with the attached vertical line segments (an, x2), 0 ≤
x2 ≤ bn, n ∈ N, where (an) is a strictly increasing sequence of positive numbers
tending to infinity, and (bn) is a nonnegative sequence of numbers. Let o = (0, 0)
and equip X with its natural Euclidean length metric d. Then it is readily verified
that (X, d, o) has the (c, ρ)-escape property for a particular 0 < c ≤ 1 if and only
if bn ≤ (1 − c)an/2c whenever an + bn ≥ ρ. In particular, (X, d, o) has some
escape property if and only if (bn/an)∞n=1 is bounded. The same condition also
characterizes when (X, d, o) has a strong escape property.

Example 2.17. Suppose (X, d, o) is as in the previous example, with bn > 0 for
all n ∈ N. Given T ⊂ N, we define XT to be the subset of X consisting of all points
except (an, bn), n ∈ T , and let us also denote by d the subspace metric inherited
by XT . Then (XT , d, o) is always a length space, and it has an escape property if
and only if the set {bn/an : n ∈ N \ T} is bounded. In the extreme case T = N,
(XN, d, o) always satisfies the (1, 0)-escape property. Notice however that strong
escape properties for spaces of the form (XT , d, o) are more restrictive than escape
properties whenever T is nonempty; although, there always exists a strong escape
path for o and all other points (x1, 0) ∈ XT , nevertheless (XT , d, o) fails to satisfy
a strong escape property unless the full sequence (bn/an)∞n=1 is bounded.

Example 2.18. Let X consist of a bouquet of half-open line segments In, where
In has length n. Here, we identify the included endpoints of all the intervals and
call this point o. There is a natural length metric d on X which restricts to the
length metric on each interval In. Then (X, d, o) satisfies a (1, 0)-escape property,
but there is no strong escape path from any point of X.

2.19. The spherical boundary. Suppose σ = S(d, o, g), where g is a spherical-
izing function. Given x ∈ X, y ∈ ∂Xl, and γ ∈ Γd(x, y), it is clear that γ is also
of finite σ-length. Thus we can, and will, view ∂Xl as a subset of ∂Xσ. We define
the spherical boundary of X to be ∂∞X := ∂Xσ \ ∂Xl. It is clear that if x ∈ X,
y ∈ ∂∞X, and γ ∈ Γσ(x, y), then γ must exit from all balls Bd(o, r). Thus ∂∞X is
a type of “boundary at infinity” for the space (X, d) which generalizes the role of
the point at infinity on the Riemann sphere.
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Proposition 2.20. Suppose (X, d, o) is an unbounded pointed local length space
and σ = S(d, o, g) for some C-sphericalizing function g. If some point x ∈ X has
a strong escape path, then ∂∞X is nonempty. In any case, ∂∞X is always a closed
subset of Xσ.

Proof. Let γ : [0,∞) → X be a strong escape path, so that γ is parametrized by
d-arclength, γ(0) = x, and |γ(t)| ≥ c(t + |x|). Using Fact 2.12, (S1) and (S2), we
get

lenσ(γ) =
∫ ∞

0

g(|γ(t)|) dt ≈
∫ ∞

0

g(t + |x|) dt

=
∫ ∞

|x|
g(s) ds <∼ (1 + |x|)g(|x|).

(2.21)

Since γ has finite σ-length, γ(t) has a σ-limit w ∈ Xσ as t → ∞. Now w cannot
be in X l, since then γ would have to d-converge to w. Thus w ∈ ∂∞X, and ∂∞X
is nonempty.

Since paths converging to ∂∞X must leave all balls Bd(o, r), it follows from (2.9)
that

(2.22) distσ(y, ∂∞X) ≥
∫ ∞

|y|
g(t) dt, y ∈ X l.

So a sequence in ∂∞X cannot converge to a point in X l, and ∂∞X is σ-closed. �

Example 2.23. In the absence of the strong escape path assumption, ∂∞X might
be empty. This is indeed the case if X =

⋃∞
j=1 Sj , where Sj ⊂ R2 is the circle

centered at (j, 0) of radius j; as usual, d is the inner Euclidean metric and o is the
origin. Then ∂Xl and ∂∞X are both easily seen to be empty. For the latter fact,
suppose we have a sequence (xn) in X satisfying 1 ≤ |xn| → ∞. It is clear that if
we define jn by the equation xn ∈ jn, then jn → ∞ as n → ∞. In particular for
each n ∈ N, we can find m > n such that jm 
= jn, and so by (S1) and (2.9) we get
the estimate σ(xn, xm) ≥ 2g(1)/C > 0. Thus (xn) is not Cauchy in (X, σ).

A similar example is the space X in Example 2.18; there ∂∞X is empty, but
∂Xl is nonempty.

2.24. Comparability of quasihyperbolic metrics. Let us first introduce some
notation and estimates that will be used throughout the remainder of this section.
Suppose g is a C-sphericalizing function. Given x ∈ X, let Bx = Bd(x, rx), where
rx := 1 ∨ (|x|/2). Let Aj = Bd(o, 2j) \ Bd(o, 2j−1), j ∈ N, A0 = Bd(o, 1), and
let A−1 be the empty set. We also define fatter annuli Ai,j =

⋃j
m=i Am for all

−1 ≤ i ≤ j ≤ ∞. We denote the d-closure of any of these sets by means of a bar:
Bx, Aj , etc. Note that Bx ⊂ Aj−1,j+1 for all x ∈ Aj .

It follows from (S1) that g(|y|)/g(|x|) ∈ [1/C, C] for all y ∈ Bx, and that
g(|y|)/g(|z|) ∈ [1/C, C] for all y, z ∈ Aj . Thus if γ is a path in X, then

C−1 ≤ lenσ(γ)
lend(γ)g(|x|) ≤ C, γ ⊂ Bx,(2.25)

Ci−j−1 ≤ lenσ(γ)
lend(γ)g(|x|) ≤ Cj+1−i, γ ⊂ Ai,j , x ∈ Ai,j , 0 ≤ i ≤ j.(2.26)
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If γ is a path that passes through x of length at least rx, then it has a piece of
length at least rx inside Bx, and so (2.25) implies that

(2.27) lenσ(γ) ≥ C−1rxg(|x|).

In particular, this estimate holds for any path through x that is not contained in
Bx, and for any path through x ∈ Ai that is not contained in Ai−1,i+1.

We now state and prove the main result of this section which concerns the
relationship between quasihyperbolic metrics associated with d and σ. We do not
want to restrict (X, d) to be incomplete, so we use kd,C for some C < ∞ as the
quasihyperbolic metric associated with d. By contrast, only incomplete spaces
(X, σ) are of interest, so we use kσ as the quasihyperbolic metric associated with
σ. Note that

kd,C(x, y) = inf
γ∈Γ(x,y;d)

∫
γ

dl(z)
δd,C(z)

,

kσ(x, y) = inf
γ∈Γ(x,y;σ)

∫
γ

dσ(z)
δσ(z)

= inf
γ∈Γ(x,y;σ)

∫
γ

g(|z|) dl(z)
δσ(z)

,

where dl and dσ are the length elements with respect to d and σ, respectively. Note
also that if (X, d) is locally incomplete, then so is (X, σ).

Theorem 2.28. Let (X, d, o) be a locally complete unbounded pointed local length
space, let σ := S(d, o, g) for some Cg-sphericalizing function g, and let 1 ≤ Cd < ∞.

(a) If ∂Xσ is nonempty, then kσ ≤ C ′kd,Cd
, where C ′ = C ′(Cg, Cd).

(b) If (X, d, o) has some (c, ρ)-escape property, then ∂Xσ is nonempty and kσ ≥
c′kd,Cd

for some c′ = c′(c, ρ, Cg) > 0.
(c) Conversely, if kσ ≥ c′kd,Cd

for some c′ > 0, then (X, d, o) has a (c, ρ)-escape
property, for some c, ρ dependent only on c′, Cg, and Cd.

Proof. Since kd,Cd
is a conformal deformation of d with density function 1/δd,Cd

(x),
and kσ is a conformal deformation of d with density function g(|x|)/δσ(x), inequal-
ities between kd,Cd

and kσ are equivalent to the corresponding reverse inequalities
between δσ(x) and g(|x|)δd,Cd

(x).
To prove (a), we need to prove that δσ(x) >∼ g(|x|)δd,Cd

(x). Thus we need to find
C ′ = C ′(Cg, Cd) such that for all y ∈ ∂Xσ, γ ∈ Γσ(x, y),

(2.29) lenσ(γ) ≥ g(|x|)δd,Cd
(x)/C ′.

Let j ≥ 0 be such that x ∈ Aj , and let γ− be the half-open curve γ \ {y}. If
γ− ⊂ Aj−1,j+1, then necessarily y ∈ ∂Xl and so (2.26) implies that lenσ(γ) ≥
g(|x|) lend(γ)/C3

g ≥ g(|x|)δd,Cd
(x)/C3

g . On the other hand, if γ− 
⊂ Aj−1,j+1, then
by (2.27), lenσ(γ ∩ Aj−1,j+1) >∼ g(|x|)2j . But δd,Cd

(x) ≤ Cd + |x| <∼ 2j , so again
lenσ(γ) >∼ g(|x|)δd,Cd

(x).
We now turn to the proof of (b). Suppose that (X, d, o) has the (c, ρ)-escape

property; we assume without loss of generality that ρ ≥ 2. We must prove that
δσ(x) <∼ g(|x|)δd,Cd

(x). If δd,Cd
(x) < rx, then δd,Cd

(x) = δd(x), so the local length
property ensures that we can choose y ∈ ∂Xl and γ ∈ Γd(x, y) with L := lend(γ) <
rx ∧ (2δd(x)). Now (2.25) tells us that

δσ(x) ≤ lenσ(γ) ≤ Cgg(|x|)L ≤ 2Cgg(|x|)δd,Cd
(x).

We may therefore assume that δd,Cd
(x) ≥ rx ≥ 1.
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Suppose |x| ≥ ρ. Let γ : [0, T ) → X be parametrized by d-arclength such that
γ(0) = x, |γ(t)| ≥ c(t+ |x|), and either T = ∞, or T < ∞ with γ(T−; d) = y ∈ ∂Xl.
Now |x| ≥ ρ ≥ 2 and rx = |x|/2 ≤ δd,Cd

(x), so if T < ∞, then y ∈ ∂Xl ⊂ ∂Xσ, so
∂Xσ is nonempty. Furthermore, using Fact 2.12 and (S2), we get

δσ(x) ≤
∫ T

0

g(|γ(t)|) dt ≈
∫ T

0

g(t + |x|) dt ≤ Cgg(|x|)|x| ≤ 2Cgg(|x|)δd,Cd
(x),

as desired. If instead T = ∞, it follows similarly that lenσ(γ) <∼ g(|x|)|x|, and so
γ(t) is σ-convergent to some point w ∈ Xσ. But w cannot be in X ∪ ∂Xl, since γ
would then have to d-converge to w. Thus w ∈ ∂∞X, so ∂Xσ is again nonempty
and δσ(x) ≤ lenσ(γ) <∼ g(|x|)δd,Cd

(x).
Suppose instead that |x| < ρ. Since X is an unbounded local length space,

there exists x0 ∈ X with |x0| = ρ. By the previous case with Cd = 1, we see that
δσ(x0) <∼ g(ρ)(1 + ρ) <∼ g(|x|). If |x| + d(x, x0) ≤ δd(x), then, as in the proof of
Proposition 2.6, we see that σ(x, x0) ≤ 4Cg(1) <∼ g(|x|), and so

δσ(x) ≤ σ(x, x0) + δσ(x0) <∼ g(|x|) <∼ g(|x|)δd,Cd
(x).

Otherwise, we take a path γ ∈Γ(x, y; d), y∈∂Xl, satisfying lend(γ)< |x|+d(x, x0)
< 3ρ and so

δσ(x) ≤ σ(x, y) <∼ g(|x|) <∼ g(|x|)δd,Cd
(x).

This finishes the proof of (b).
Finally we prove (c). Assume that δσ(z) ≤ g(|z|)δd,Cd

(z)/c′, z ∈ X. We also
assume without loss of generality that 0 < c′ < 1. Let K = 2(Cd + 1)/c′ and
ρ = α−1 > 1, where α = α(Cg, K) is as in Lemma 2.4. We prove that (X, d, o) has a
(c, ρ)-escape property for some 0 < c < 1 by constructing an escape path γ for an ar-
bitrary point x, |x| ≥ ρ. Let λ0 : [0, T0) → X be a path parametrized by σ-arclength
such that λ0(0) = x, λ0(T0−; σ) = w0 ∈ ∂Xσ, and T0 < 2g(|x|)δd,Cd

(x)/c′. Let
ν0 : [0, S0) → X be the reparametrization of λ0 by d-arclength. Note that S0 may
be finite or infinite.

We first show that λ0 stays outside the ball Bd(o, |x|/ρ). If this were not the
case, then according to Lemma 2.4, we would have

T0 = lenσ(λ0) >

∫ |x|

|x|/ρ

g(t) dt > K|x|g(|x|).

Since δd,Cd
(x) ≤ (Cd + 1)|x|, this would contradict the fact that

T0 < 2g(|x|)δd,Cd
(x)/c′ ≤ K|x|g(|x|).

Let s1 be the least number s for which |ν0(s)| = 2|x|, or let s1 = S0 if |ν0(s)| <
2|x| for all 0 ≤ s < S0. We define x1 = ν0(s1) and γ1 = ν0|[0,s1]. Since the values
g(t), t ∈ [|x|/ρ, 2|x|], are all mutually comparable, the bound T0 < K|x|g(|x|)
implies that s1 <∼ |x|. If s1 = S0, we have reached a stopping point and γ1 is the
desired escape path; notice that |γ1(t)| ≥ |x|/ρ for t ∈ [0, s1]. Otherwise we iterate
the argument as follows.

We choose a path λ1 : [0, T1) → X, parametrized by σ-arclength, such that
λ1(0) = x1, λ1(T1−; σ) = w1 ∈ ∂Xσ, and T1 < 2g(|x1|)δd,Cd

(x1)/c′. Let ν1 :
[0, S1) → X be the reparametrization of λ1 by d-arclength. Replacing the input
data (x, w0, λ0, ν0) in the above argument by (x1, w1, λ1, ν1), we get as output
(s2, x2, γ2) where s2 <∼ |x1|, x2 = ν1(s1), and γ2 = ν1|[0,s2]. Furthermore, either
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s2 = S1, in which case we have reached a stopping point, or s2 < S1 and |x2| = 2|x1|,
in which case we continue to iterate the process.

We continue this iterative procedure until we reach a stopping point, or forever
if this never occurs. All the paths γj obtained by this process can be joined to form
a single path γ parametrized by d-arclength. Since each γj has d-arclength sj <∼ 2j ,
and each point y ∈ γj has the property that |y| ≈ 2j |x|, it readily follows that γ is
an escape path for x. �

Note that if (X, d) is incomplete, then δd,C = δd and kd,C = kd for all C ≥
d(o, ∂Xd). Thus Theorem 2.28 says that, in the presence of an escape property, the
usual quasihyperbolic metrics kd and kσ are comparable with a constant dependent
only on the escape parameters, Cg, and d(o, ∂X).

Since Euclidean domains are locally complete and satisfy a (1, 0)-escape property,
we can, as a special case, apply this last statement with (X, d) being the Euclidean
domain Ω � Rn, g(t) = 2/(1 + t2), and o = x0 ∈ Ω. The resulting sphericalized
metric σ is a bilipschitz distortion of the usual inner spherical metric σ′, with a
bilipschitz constant dependent only on |x0|; note that σ = σ′ only if x0 = 0; note
that the case n = 1 is a little different, but the result is still valid in this case. Thus
we have proven Theorem 0.1.

2.30. Reverse escape properties. In §3.4, we will discuss the concept of (strong)
reverse escape properties in more detail but for now we wish to show only that
the sphericalization process always produces data with such a property. Given
σ := S(d, o, g) as usual, and 0 < c ≤ 1, we say that (X, σ, o) has the reverse c-
escape property if, for every x ∈ X, there exists y ∈ {o}∪∂Xl and γ ∈ Γσ(x, y) such
that δ∞(γ(t)) ≥ c(t+ δ∞(x)), 0 ≤ t ≤ T = lenσ(γ), where δ∞(z) := distσ(z, ∂∞X).
If we can always take y = o in this condition, we say that (X, σ, o) has the strong
reverse c-escape property. Note that the inequality δ∞(γ(t)) ≥ (t + δ∞(x))/4 holds
for all γ ∈ Γσ(x, y) when 0 ≤ t ≤ δ∞(x)/2. To prove a (strong) reverse escape
property, we need only show that δ∞(γ(t)) >∼ t when t ≥ δ∞(x)/2.

Theorem 2.31. Let (X, d, o) be a pointed local length space, and let σ = S(d, o, g),
for some Cg-sphericalizing function g. Then

(a) (X, σ, o) has a reverse c-escape property, and
(b) if d is a length metric, then (X, σ, o) has a strong reverse c-escape property.

Moreover, c > 0 can be taken to depend only on Cg.

Proof. Let us prove (b). We need to find a strong reverse escape path γ for a
general point x ∈ X. If |x| ≤ 1, we can take γ ∈ Γ(x, o; d) to be any path of
d-length at most 2: such a path must remain in the ball Bd(o, 2), and so using (S1)
we get T := lenσ(γ) <∼ g(1). Similarly, if z, z′ ∈ Bd(0, 2), then |δ∞(z) − δ∞(z′)| ≤
σ(z, z′) <∼ g(1). But by (2.22), (S1), and (S2), we have δ∞(z) >∼

∫ ∞
2

g(t) dt >∼ g(1)
whenever z ∈ Bd(0, 2). Thus for 0 ≤ t ≤ T , we have δ∞(γ(t)) ≈ δ∞(x) >∼ g(1) >∼ t,
thus giving the desired strong reverse escape property.

We may therefore assume that |x| > 1. For z ∈ X, define j(z) to be the
nonnegative integer satisfying z ∈ Aj(z). Let γ ∈ Γσ(o, x) have d-length L and σ-
length M , where L ≤ |x|+1. We cut γ into segments γi = γ|[si−1,si), where s0 = 0,
sj(x) = M and, for 0 < i < j(x), γ(si) is the last point on γ contained in Ai. By
construction, γi ⊂ Ai−1,i+1 and lend(γi) ≤ 2i + 1 <∼ 2i. Thus lenσ(γi) <∼ 2ig(2i).
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But by (S3), the series
∑∞

i=j(w) 2ig(2i) is dominated by a convergent geometric
series, and so M − t <∼ 2j(w)g(2j(w)) whenever w = γ(t).

If we prove the estimate δ∞(w) >∼ 2j(w)g(2j(w)), it therefore follows that the
reverse parametrization −γ ∈ Γσ(x, o) is a strong reverse escape path. But this
last estimate follows rather easily. Indeed if λ is a path from w to ∂∞X, then
(2.22), (S1), and (S2) tell us that

lenσ(λ) ≥
∫ 2|w|+1

|w|
g(t) dt >∼ (|w| + 1)g(|w|).

Part (a) follows like (b) if δd(x) ≥ |x|. Otherwise we argue in a similar fashion,
but using a path γ ∈ Γσ(y, x) of length at most δd(x) + 1, where y ∈ ∂Xl. �

We cannot conclude in Theorem 2.31(a) that (X, σ, o) has a strong reverse c-
escape property, as the following example indicates.

Example 2.32. Consider the domain X ⊂ R2 given by the curve complement

{(s, t) | s, t ∈ R, s ≥ 1, t 
= s2 sin2 s} ⊂ R2.

Taking d to be the Euclidean metric, o = (0, 0), and g(t) = 2/(1 + t2), the metric
σ = S(d, o, g) is the inner spherical metric. The space (X, σ, o) fails to have any
strong reverse c-escape property, as we see by taking x = (jπ, 1) ∈ X for sufficiently
large j = jc ∈ N.

3. Flattening

In this section we proceed in a direction opposite to that of the last section:
We “flatten” a bounded incomplete local length space (X, τ ) to get an unbounded
length space (X, l). We use the term “flattening” because this process generalizes
that of obtaining Euclidean space from the Riemann sphere. The main result,
Theorem 3.11, compares the corresponding quasihyperbolic metrics kτ and kl,C . For
a basic example of this process, let (X, τ ) be a domain on the Riemann sphere Rn

with ∞ ∈ ∂Ωτ . Then l is the inner Euclidean metric on Ω (if we make the standard
choice of flattening function f and spherical boundary {∞}). Alternatively, we
can obtain the Euclidean metric on Ω by flattening Rn \ {∞} and restricting the
resulting metric l to Ω.

Intuitively we think of flattening as being a concept roughly dual to the spheri-
calization, and this guides our reuse of much of the notation of Section 2. However
we warn the reader that the concepts defined here, and their inter-relationships, are
not necessarily the same as those in Section 2. We discuss some of the immediate
parallels between the two approaches as we go along, but the deeper questions about
when these two constructions are genuinely dual are postponed until Section 4.

Throughout this section, we assume that the data (X, τ, ∂∞X) are d0-spherical
data for some 0 < d0 < ∞, which we define to mean that the data have the following
pair of properties:

(1) (X, τ ) is an incomplete local length space of diameter at most d0.
(2) ∂∞X is a nonempty closed subset of Xτ .

We write δ∞(x) = τ (x, ∂∞X), for all x ∈ Xτ .
We denote by σ the inner metric associated with τ . We will use σ only in two

contexts: the length element dσ associated with τ , and the σ-boundary ∂Xσ. We
write δ∞(x) = τ (I(x), ∂∞X) for all x ∈ ∂Xσ where I : ∂Xσ → ∂Xτ is the natural



SPHERICALIZATION AND FLATTENING 89

injection as in §1.2. We denote by ∂nsX the part of the σ-boundary that does not
correspond to ∂∞X, i.e. ∂nsX = ∂Xσ \ I−1(∂∞X); note that if τ is a length metric,
then ∂nsX = ∂Xτ \ ∂∞X.

By the results of Section 2, we know that if we sphericalize a length space in
which o has a strong escape path, we get spherical data (X, τ, ∂∞X), with τ := σ
being a length metric. However, we will see in the next section that there are such
spherical data that do not arise in this way, even modulo a bilipschitz distortion.

Fixing a function f : (0, d0] → (0,∞), we define a new metric L(τ, ∂∞X, f) on
X by the equation

L(τ, ∂∞X, f)(x, y) = inf
γ∈Γ(x,y;τ)

∫
γ

f(δ∞(z)) dσ(z), x, y ∈ X.

We normally write l in place of L(τ, ∂∞X, f), and we take f to be any flattening
function, a concept we now define.

3.1. Flattening functions. A continuous function f : (0, d0] → (0,∞) is a
(C, d0)-flattening function, C > 2, d0 > 0, if it has the following properties:

(F1) f(r) ≤ Cf(s) whenever r, s ∈ (0, d0], 1/2 ≤ r/s ≤ 2;
(F2)

∫ d0

r
f(t) dt ≤ Crf(r), whenever 0 < r ≤ d0.

Typical flattening functions include f(t) = logq(2 + 1/t)t−p, for p > 1, q ∈ R.
The usual flattening of the Riemann sphere into the Euclidean metric uses f(t) =
csc2(t/2)/2, 0 < t ≤ d0 := π; note that f is comparable with t �→ t−2.

It follows from (F2) that if f is a flattening function, then f(r) ≥ c/r for all
0 < r < d0/2, where c = C−1

∫ d0

d0/2
f(t) dt. Consequently,

∫ d0

0
f(t) dt = ∞; the

divergence of this integral pushes ∂∞X “infinitely far” from every point in X with
respect to the metric l = L(τ, ∂∞X, f). Consequently, we see that we can naturally
identify ∂Xl with ∂nsX. In particular, if τ is a length metric, we can identify ∂Xτ

with the disjoint union of ∂∞X and ∂Xl; this of course mirrors the relationship
between the corresponding types of boundary in Section 2.

We now state two lemmas. The first gives a useful alternative description of
flattening functions, and it readily implies the second lemma. We omit both proofs,
as they are very similar to those of Lemmas 2.2 and 2.4.

Lemma 3.2. A Borel function f : (0, d0] → (0,∞) is a flattening function if and
only if it satisfies (F1) and a condition of the following type for some constants
C ′ ≥ 1, ε > 0:

(F3)
f(r)
f(s)

≤ C ′
(s

r

)1+ε

, for all 0 < s ≤ r ≤ d0.

Furthermore, this equivalence holds with quantitative control of parameters.

Lemma 3.3. Given C > 2 and d0, K > 0, there exists α = α(C, K) such that,
whenever f is a C-flattening function and 0 < r ≤ d0,∫ r

αr

f(t) dt ≥ Krf(r).

We will see that the quasihyperbolic metrics associated with (X, τ ) and (X, l)
are bilipschitz equivalent if and only (X, τ, o) satisfies a reverse escape property
similar to the one at the end of Section 2.
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3.4. Reverse escape properties revisited. Suppose (X, τ, ∂∞X) are spherical
data. Given 0 < c ≤ 1, we say that (X, τ, o) has the reverse c-escape property
if, for every x ∈ X, there exists y ∈ {o} ∪ ∂nsX and γ ∈ Γτ (x, y) such that
δ∞(γ(t)) ≥ c(t + δ∞(x)), for all 0 ≤ t < T = lenτ (γ). If we can always take y = o
in this condition, we say that (X, τ, o) has the strong reverse c-escape property.
Since not all spherical data arise via sphericalization, this generalizes the previous
definition of a strong reverse escape property.

Example 3.5. Suppose that Ω is an unbounded domain in Rn that includes the
origin o, let τ be the spherical metric (or the inner spherical metric if Ω is of bounded
inner spherical diameter), and let ∂∞Ω = {∞}. Given x ∈ Ω, the Euclidean line
segment from x to o provides us with a path γ1, parametrized by spherical arclength,
which satisfies the estimate δ∞(γ1(t)) ≥ t + δ∞(x). We pick γ to be an initial
segment of γ1 that ends the first time that γ1 hits ∂Ω ∪ {o}. Thus (Ω, τ, o) always
has a reverse 1-escape property. However, (Ω, τ, o) may fail to have a strong reverse
escape property; one example of this type, with bounded inner spherical diameter,
is the domain in Example 2.32.

Example 3.6. Consider X ⊂ R2, where X consists of the horizontal line segment
(x1, 0), 0 < x1 ≤ 1, together with vertical line segments of the form (an, x2),
0 ≤ x2 ≤ bn, n ∈ N, where a1 < 1, (an) is a strictly decreasing sequence of positive
numbers tending to zero, and (bn) is a bounded sequence of positive numbers.
We equip X with the inner Euclidean metric, which we denote by τ . Then ∂Xτ

contains only the single point (0, 0) and we define ∂∞X = ∂Xτ . We also write
o = (1, 0) ∈ X. It is clear that (X, τ, o) has a (strong) reverse escape property if
and only if (bn/an) is bounded. In particular, if we choose an = 1/(n + 1)! and
bn = 1/n!, then (X, τ, o) fails to have a reverse escape property despite the fact
that it is in other ways a rather nice metric space, being for instance a compact
Ahlfors regular tree.

Example 3.7. Let the data (X, τ, ∂∞X) be as in the previous example. Given
T ⊂ N, define AT := {(an, bn) | n ∈ T} ⊂ X, XT = X \ AT , ∂nsXT = ∂nsX ∪ AT ,
and denote by τ the subspace metric inherited by XT . Then (XT , τ, ∂T X) are
spherical data, and (XT , τ, o) has a reverse escape property if and only if bn/an is
uniformly bounded for n ∈ N \T . In the extreme case T = N, (XN, τ, o) always has
a reverse 1-escape property. A strong reverse escape property is more restrictive:
It always requires the full sequence (bn/an) to be bounded.

We pause to introduce some notation and estimates that will be used throughout
the remainder of this section. Suppose f is a (C, d0)-flattening function. Given
x ∈ X, let B′

x = Bτ (x, r′x), where r′x := δ∞(x)/2. Let

Lj = {x ∈ X | 2−jd0 < δ∞(x) ≤ 2−j+1d0}, j ∈ N,

and let L−1 be the empty set. We also define fatter layers Li,j =
⋃j

m=i Lm for all
−1 ≤ i ≤ j ≤ ∞. We denote the τ -closure of any of these sets by means of a bar:
B′

x, Lj , etc. Note that B′
x ⊂ Lj−1,j+1 for all x ∈ Lj .
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It follows from (F1) that f(δ∞(y))/f(δ∞(x)) ∈ [1/C, C] for all y ∈ B′
x, and that

f(δ∞(y))/f(δ∞(z)) ∈ [1/C, C] for all y, z ∈ Lj . Thus if γ is a path in X, then

C−1 ≤ lenl(γ)
lenτ (γ)f(δ∞(x))

≤ C, γ ⊂ B′
x,(3.8)

Ci−j−1 ≤ lenl(γ)
lenτ (γ)f(δ∞(x))

≤ Cj+1−i, γ ⊂ Li,j , x ∈ Li,j , 0 ≤ i ≤ j.(3.9)

If γ is a path that passes through x of τ -length at least r′x, then it has a piece of
τ -length at least r′x inside B′

x, and so (3.8) implies that

(3.10) lenl(γ) ≥ δ∞(x)f(δ∞(x))/2C.

In particular, this estimate holds for any path through x that is not contained in
B′

x, and for any path through x ∈ Li that is not contained in Li−1,i+1.
We now state and prove the main result of this section which concerns the

relationship between quasihyperbolic metrics associated with τ and l. We do not
want to restrict (X, l) to be incomplete, so we use kl,C for some C < ∞ as the
quasihyperbolic metric associated with l. By contrast, only incomplete spaces (X, τ )
are of interest, so we use kτ as the quasihyperbolic metric associated with τ . Note
that

kτ (x, y) = inf
γ∈Γ(x,y;τ)

∫
γ

dσ(z)
δτ (z)

,

kl,C(x, y) = inf
γ∈Γ(x,y;l)

∫
γ

dl(z)
δl,C(z)

= inf
γ∈Γ(x,y;l)

∫
γ

f(δ∞(z)) dσ(z)
δl,C(z)

,

where dl and dσ are the length elements with respect to l and τ , respectively. As
before, δl,C(z) is defined relative to some fixed basepoint o ∈ X, and we write
|x| = l(x, o).

Theorem 3.11. Let (X, τ, ∂∞X) be d0-spherical data, where (X, τ ) is locally com-
plete, let l := L(τ, ∂∞X, f) for some (Cf , d0)-flattening function f , let 0 < Cl < ∞,
and define h(t) := tf(t)/Cl.

(a) kl,Cl
≤ C ′kτ , where C ′ depends only on Cf and h(δ∞(o)).

(b) If (X, τ, o) has a reverse c-escape property, then kl,Cl
≥ c′kτ for some c′ > 0

dependent only on c, Cf , and h(d0).
(c) Conversely if kl,Cl

≥ c′kτ for some c′ > 0, then (X, τ, o) has a reverse
c-escape property for some c = c(c′, Cf ).

Proof. Since kτ is the conformal deformation of τ with density function 1/δτ (x),
and kl,Cl

is the conformal deformation of τ with density function f(δ∞(x))/δl,Cl
(x),

inequalities between kl,Cl
and kτ are equivalent with the corresponding reverse in-

equalities between δl,Cl
(x) and f(δ∞(x))δτ (x). Note also that if we replace f by

sf and Cl by sCl for any number s > 0, then both the hypotheses and conclusions
remain unchanged. This allows us to assume without loss of generality a normaliza-
tion t0f(t0) = 1, where t0 ∈ (0, d0] is any value that suits our purposes; dependence
on h(t0) is then equivalent to dependence on Cl.
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Part (a) is equivalent to the inequality f(δ∞(x))δτ (x) <∼ δl,Cl
(x). We assume

without loss of generality that δ∞(o)f(δ∞(o)) = 1. We first wish to prove that
f(δ∞(x))δτ (x) <∼ Cl + |x|. If δ∞(x) ≤ δ∞(o)/2, then using (F1) we see that

f(δ∞(x))δτ (x) ≤ f(δ∞(x))δ∞(x) ≤ Cf

∫ 2δ∞(x)

δ∞(x)

f(t) dt ≤ Cf |x|.

Note that the last inequality follows by similar reasoning to that in Remark 2.8.
If instead δ∞(x) > δ∞(o)/2, then (F1), (F3), and our normalization ensure that
f(δ∞(x))δτ (x) <∼ 1 <∼ Cl.

It remains to prove that f(δ∞(x))δτ (x) <∼ δl(x); in particular, we may assume
that Xl is incomplete. By (3.8), a path γ ∈ Γτ (x, y), y ∈ ∂nsX = ∂Xl, has
l-length comparable to lenτ (γ)f(δ∞(x)) if γ ⊂ B′

x ∪ {y}; this gives the desired
inequality if such a path γ has l-length less than 2δl(x). Alternatively if no such
path exists, then we may apply (3.10) to every path γ from x to ∂Xl to get that
lenl(γ) >∼ f(δ∞(x)) lenτ (γ). Taking a minimum over all such connecting paths γ,
we deduce (a).

The conclusion of (b) is equivalent to the inequality δl,Cl
(x) <∼ f(δ∞(x))δτ (x).

We assume without loss of generality that d0f(d0) = 1. The reverse escape property
provides us with a path γ ∈ Γτ (x, y) such that y ∈ {o} ∪ ∂nsX and δ∞(γ(t)) ≥
c0(t + δ∞(x)), 0 ≤ t < T = lenτ (γ) ≤ d0. By this last inequality, a change of
variables, (F3), and (F2), we see that

lenl(γ) =
∫ T

0

f(δ∞(γ(t))) dt <∼
∫ T

0

f(c0(t + δ∞(x))) dt

≤
∫ d0

c0δ∞(x)

f(s) ds

<∼ f(δ∞(x))δ∞(x).

(3.12)

Assuming that δτ (x) ≥ δ∞(x)/2, it follows that |x| ∧ δl(x) <∼ f(δ∞(x))δτ (x). The
desired inequality now follows since also

Cl <∼ 1 = d0f(d0) <∼ tf(t), 0 < t ≤ d0.

Suppose instead that δτ (x) < δ∞(x)/2 and so we can find γ ∈ Γτ (x, y), y ∈ ∂nsX,
such that lenτ (γ) < (2δτ (x)) ∧ (δ∞(x)/2). Then γ ⊂ B′

x ∪ {y} and by (3.8), we
have δl(x) ≤ lenl(γ) <∼ f(δ∞(x))δτ (x). This concludes the proof of (b).

For (c), we need to show that the inequality δl,Cl
(x) ≤ f(δ∞(x))δτ (x)/c′,

x ∈ X, implies a reverse escape property. Let x ∈ X be fixed but arbitrary.
There exists a point w0 ∈ {o} ∪ ∂nsX, and a path λ0 : [0, T0) → X, parametrized
by l-arclength, such that λ0(0) = x, λ0(T0−; l) = w0, and T0 ≤ 2f(δ∞(x))δτ (x)/c′.
Let ν0 : [0, S0) → X be the reparametrization of λ0 by τ -arclength.

Using Lemma 3.3 and the fact that δ∞(·) ≥ δτ (·), we see that δ∞(λ0(t)) >∼ δ∞(x).
Next, using the bound T0 ≤ 2f(δ∞(x))δτ (x)/c′ and the comparability of all values
of f(s) for s ≈ δ∞(x), we see that there must exist a positive number s1 <∼ δ∞(x)
such that either s1 = S0, or s1 < S0 and δ∞(z1) > 2δ∞(x), where z1 = ν(s1). In
the first case, we have reached a stopping point, while in the second case we iterate.
As in the proof of Theorem 2.28, we get the desired path by joining together the
segments γj obtained by this process; of course this time the process must stop
after finitely many steps because δ∞(·) is bounded. �
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3.13. Flattened spaces have a strong escape property. We saw in Theo-
rem 2.31 that if we sphericalize a length metric l, we get a metric τ satisfying a
strong reverse escape property. We now prove the dual of this result: If we flatten
a length metric τ , we get a metric l satisfying a strong escape property.

Theorem 3.14. Let (X, τ, ∂∞X) be d0-spherical data, where τ is a local length
metric, and let l := L(τ, ∂∞X, f) for some (C, d0)-flattening function f . Given
o ∈ X, there exist 0 < c < 1, and 0 < ρ < ∞ such that:

(a) (X, l, o) has a (c, ρ)-escape property, and
(b) if τ is a length metric, then (X, l, o) has a strong (c, ρ)-escape property.

Moreover, we can take c to depend only on C, and ρ to depend only on C and
δ∞(o)f(δ∞(o)).

Proof. We first prove (b). Let us fix o ∈ X. Given x ∈ X, with |x| sufficiently
large, we will construct a strong escape path γ by concatenating a sequence of path
segments. First, write x0 = x, S = δ∞(x), and choose a path λ0 : [0, S0) → X,
parametrized by τ -arclength, with λ0(0) = x0, λ0(S0−; τ ) = y0 ∈ ∂∞X, and
S0 < 2S. Let x1 = λ0(t1), where t1 ∈ (0, S0) is such that δ∞(x1) = S/2 and
δ∞(λ0(t)) > S/2 for all 0 < t < t1. Let γ1 = λ0|[0,t1]. Inductively, given xj ∈ X

with δ∞(xj) = 2−jS, we let λj : [0, Sj) → X be parametrized by τ -arclength with
λj(0) = xj , λj(Sj−; τ ) = yj ∈ ∂∞X, and Sj < 2δ∞(xj). As for j = 0, we find
xj+1 = λj(tj+1) such that δ∞(xj+1) = δ∞(xj)/2 but δ∞(λj(t)) > δ∞(xj)/2 for all
0 < t < tj+1, and we let γj+1 = λj |[0,tj+1]. Note that lenτ (γj) < 22−jS. Joining
together the paths γj , j ∈ N, and parametrizing the resulting curve by l-arclength,
we get a path γ : [0,∞) → X with γ(0) = x and of infinite l-length (since it
connects x to ∂∞X). It is convenient to denote by γj the initial segment of γ
obtained by gluing together γi, i ≤ j.

By construction, δ∞(z)/21−jS ∈ [1/2, 2] for z ∈ γj , and so f(δ∞(z))/f(21−jS) ∈
[1/C, C]. Since the τ -length of γj is at most 22−jS, we get that

lenl(γj) ≤ C22−jSf(21−jS) ≤ 4C2

∫ 21−jS

2−jS

f(s) ds,

where the second inequality follows from (F1). If z = γ(t) ∈ γj , it follows from the
last inequality and (F2) that

(3.15) t ≤ lenl(γj) ≤ 4C2

∫ S

2−jS

f(s) ds ≤ C322−jSf(2−jS).

Our goal is to obtain a lower estimate for |z| = γ(t) in terms of t. Suppose
first that z ∈ γj , where 23−jS ≤ δ∞(o); in particular δ∞(z) < δ∞(o). Given
ν ∈ Γτ (z, o), we have

lenl(ν) =
∫ lenτ (ν)

0

f(δ∞(ν(t))) dt.

Applying Lemma 2.5 with α = δ∞ ◦ ν to this last equation and taking an infimum
over all such ν, we get

(3.16) |z| ≥
∫ δ∞(o)

δ∞(z)

f(t) dt.
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Since z ∈ γj and δ∞(o) ≥ 23−jS, it follows from (F1) and (F2) that

(3.17) |z| ≥
∫ δ∞(o)

22−jS

f(t) dt ≥
∫ 23−jS

22−jS

f(t) dt ≥ C−322−jSf(2−jS).

Putting together (3.17) and (3.15), we see that |γ(t)| ≥ t/C6. This last inequality
readily implies that |γ(t)| ≥ c(t+ |x|), where c = 1/3C6; simply consider separately
the possibilities t ≥ |x|/2 and t < |x|/2, and use the triangle inequality in the latter
case. Thus we have proved the defining inequality for a strong escape path on the
final segment of γ consisting of γj for all j ∈ N such that 2−jS ≤ δ∞(o)/8. In
particular, the full path γ is a strong escape path for x if δ∞(x) < δ∞(o)/4.

Suppose instead that z ∈ γj , where 23−jS > δ∞(o). According to (3.15),
lenl(γj) ≤ C32−j+2Sf(2−jS). Since 2−jS >∼ δ∞(o), it follows from this last in-
equality, (F1), and (F3) that lenl(γj) ≤ C ′ for some C ′ <∼ 1. It follows that if
|x| ≥ ρ := 2C ′, then |z| ≥ (t + |x|)/3.

The proof of (a) is similar, but let us comment briefly on the necessary alterations
in the construction of the escape path γ. First, S = δτ (x) and λ0 : [0, S0) → X
is parametrized by τ -arclength and satisfies λ0(0) = x0, λ0(S0−; τ ) = y0 ∈ ∂τX,
and S0 < 2S. Then x1 = λ0(t1), where t1 is the least value of t in (0, S0) for
which δ∞(λ0(t)) = S/2, or t1 = S0 if no such number exists. In the latter case
the construction ends. If the construction has not yet ended, we are inductively
given xj ∈ X with δτ (xj) = 2−jS. We let λj : [0, Sj) → X be parametrized by
τ -arclength with λj(0) = xj , λj(Sj−; τ ) = yj ∈ ∂τX, and Sj < 2δ∞(xj). As for
j = 0, we let xj+1 = λj(tj+1), where tj+1 is the least value of t ∈ (0, Sj) such that
δ∞(λj(t)) = δ∞(xj)/2, or tj+1 = Sj if no such number exists. In the latter case,
the construction ends. �

We cannot conclude in Theorem 3.14(a) that (X, l, o) has a strong c-escape
property. For instance, if X ⊂ R2 is given by the curve complement

{(s, t) | s, t ∈ R, s ≥ 1, t 
= s2 sin2 s} ⊂ R2,

with the spherical metric attached, ∂∞X = {∞}, and we use the standard flat-
tening function f , then l = L(τ, ∂∞X, f) is the inner Euclidean metric on X, and
(X, l, o) fails to have any strong c-escape property, as we can see by taking x =
((2j + 1)π/2, j2) for sufficiently large j = jc ∈ N.

4. Are sphericalization and flattening inverse processes?

In this section, we want to discuss whether or not we get a bilipschitz equivalent
metric back when we sphericalize a flattened metric, or flatten a sphericalized met-
ric. Since both sphericalized and flattened metrics are length metrics, we always
assume we are dealing with length metrics. Thus we shall use sphericalization and
flattening to go back and forth between a pair of length metrics l and σ.

Let us introduce some notation and terminology to aid us in our discussion.
Throughout this section, we write A = U ∪B, where U is the class of all unbounded
pointed length spaces (X, l, o) for which o has a strong escape property, and B is
the class of all bounded incomplete pointed length spaces (X, σ, o) with associated
spherical data. Fixing a sphericalization function g and a flattening function f , we
have seen that sphericalization associates an element of B with each element of U ,
and that flattening associates an element of U with each element of B. In each case
let us call the associated space the sf-dual of the original space. More formally, we
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should talk of original and dual data since flattening requires spherical data to be
specified, but we prefer to refer to the spherical data and the functions f, g only
when needed. We also call a space a bsf-dual if it is bilipschitz equivalent to the
sf-dual of some space.

We say that a space in A is sf-reflexive if it is bilipschitz equivalent to its double
sf-dual. For instance Euclidean space and the Riemann sphere (with north pole
omitted) are sf-reflexive with respect to the standard sphericalization and flattening
functions. It is clear that sf-reflexivity requires that the functions f, g satisfy some
sort of duality relation; the desired condition, which we call quasiduality will be
defined in §4.2. A necessary condition for a space to be sf-reflexive is that it is a
bsf-dual. We now state the main theorem in this last section which says that being
a bsf-dual is also a sufficient condition for a space to be sf-reflexive.

Theorem 4.1. Suppose X is a space in the class A and sf-duality is defined via
quasidual flattening and sphericalizing functions f, g. Then the following are equiv-
alent:

(a) X is sf-reflexive.
(b) X is a bsf-dual.
(c) (X, l, o) has a strong escape property (if (X, l, o) is in U) or (X, σ, o) has a

strong reverse escape property (if (X, σ, o) is in B).

This result says, in particular, that the sf-dual of every space in A is sf-reflexive.
However not all spaces in A are sf-reflexive. Consider for example the spaces
(XT , l, o) in Example 2.17 and the spaces (XT , σ, o) in Example 3.7. According to
Theorem 4.1, these spaces are sf-reflexive if and only if the full sequence (bn/an)∞n=1

is bounded. For counterexamples in Rn, see Examples 2.14 and 2.32.

4.2. Quasiduality. For a space to be sf-reflexive, with respect to a particular
choice of sphericalization and flattening functions g and f , requires something of
the geometry of the space as indicated in Theorem 4.1, but it also requires that g
and f are in some sense well matched. For instance, we will see that the “standard”
sphericalization and flattening functions g(t) = 2/(1 + t2), 0 ≤ t < ∞, and f(t) =
csc2(t/2)/2, 0 < t ≤ d0 := π, are quasidual. Since f(t) is comparable with t−2, this
is essentially a special case of the fact that for p, q > 1, d0 > 0, gp(t) := 1/(1 + tp)
is comparable with fq(t) := t−q, 0 < t ≤ d0, if and only if q = p/(p− 1). Before we
formally define the notion of quasiduality, let us consider Euclidean space and the
Riemann sphere as motivational examples.

Let X = Rn, n > 1, with the Euclidean metric l attached, and let o be the usual
origin. If σ = S(l, o, g) for some sphericalization function g, then the resulting
space (X, σ) is topologically a sphere minus a single point w at infinity (the only
element of the spherical boundary). Moreover rays from o are geodesic both for l
and σ, and δ∞(x) = σ(x, w) =

∫ ∞
|x| g(s) ds. If we now define l′ = L(σ, {w}, f) for

some flattening function f whose d0 parameter is at least as large as
∫ ∞
0

g(s) ds,
then

dl′(x) = f(δ∞(x)) dσ(x) = f

(∫ ∞

|x|
g(s) ds

)
· g(|x|) dl(x).
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Thus l′ is bilipschitz equivalent to l if and only if there is some constant C ≥ 1 such
that

(4.3)
1
C

≤ f

(∫ ∞

t

g(s) ds

)
· g(t) ≤ C, 0 ≤ t < ∞.

In the opposite direction, let us begin with X = Rn \ {∞}, n > 1, the Riemann
sphere with the north pole removed, and let d0 = π. Flattening and then spher-
icalizing using some flattening and sphericalization functions f : [0, d0] → (0,∞)
and g, respectively, we get a new metric σ′ which is comparable to σ if and only if
there is some constant C ≥ 1 such that

(4.4)
1
C

≤ g

(∫ d0

t

f(s) ds

)
· f(t) ≤ C, 0 < t ≤ d0.

We leave the straightforward verification of the above statements to the reader.
We could use (4.3) and (4.4) as our definition of quasiduality, but we would like

to replace them by quantitatively equivalent conditions that are simpler to verify
and to use. Note that (2.3) tells us that

∫ ∞
t

g(s) ds is comparable with tg(t) when
t ≥ 1, so using also (F1), we see that (4.3) can be recast (at least for t ≥ 1) as

(4.5) f(tg(t)) tg(t) ≈ t, 1 ≤ t < ∞,

as long as f(tg(t)) is always defined. Similarly (4.4) can be recast as

(4.6) g(tf(t)) tf(t) ≈ t, 0 < t ≤ d0/2.

Our official definition of quasiduality, which we now give, is similar to this last pair
of conditions, but modified to ensure that all function values are defined.

Definition 4.7. Suppose that C ≥ 1, d0 > 0, and that f : (0, d0] → (0,∞) and
g : [0,∞) → (0,∞) are continuous. Let F, G be defined by the equations

F (t) =

{
tf(t), 0 < t < d0,

d2
0f(d0)/t, d0 ≤ t,

(4.8)

G(t) =

{
g(1)/t, 0 < t < 1,

tg(t), 1 ≤ t.
(4.9)

We say that f is a left C-quasidual of g, or that g is a right C-quasidual of f if
F (G(t)) ∈ [t/C, Ct] for all 0 < t < ∞. We say that f is a right C-quasidual of g,
or that g is a left C-quasidual of f , if G(F (t)) ∈ [t/C, Ct] for all 0 < t < ∞. We
say that f and g are C-quasidual if f is a left and a right C-quasidual of g.

It is easy to see that quasiduality remains true (with a quantitatively controlled
change in the parameter C) if the sphericalization and flattening functions g and f
are replaced by comparable functions, and d0 is replaced by a comparable positive
number, for instance if the standard choices g(t) = 2/(1 + t2), 0 ≤ t < ∞, and
f(t) = csc2(t/2)/2, 0 < t ≤ π, are replaced by g̃(t) = 1 ∧ t−2, 0 ≤ t < ∞, and
f̃(t) = t−2, 0 < t ≤ 1. Verifying quasiduality for f̃ and g̃ is trivial. More generally,
if p, q > 1, d0 > 0, then g(t) = 1/(1 + tp) is comparable with t−p for 1 ≤ t < ∞,
and so it is clear that g is quasidual to f(t) = t−q, 0 < t ≤ d0, if and only if
q = p/(p − 1).

The statement of Theorem 4.1 leads naturally to the following question: Do all
sphericalizing and flattening functions have quasidual flattening and sphericalizing
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functions, respectively? We will see that the answer is affirmative. In fact, as we
will see later, it is rather easy to prove that sphericalizing and flattening functions
have one-sided quasiduals but this then leads to the following pair of questions.
Are one-sided quasiduals of sphericalizing and flattening functions automatically
two-sided quasiduals? Are quasiduals of sphericalizing and flattening functions
automatically flattening and sphericalizing functions, respectively? We next state
four lemmas which essentially give affirmative answers to these two questions.

Lemma 4.10. Suppose that f : (0, d0] → (0,∞) is a Cf -flattening function, and
that g : [0,∞) → (0,∞) is a left or right Cg-quasidual of f . Then g is a C-quasidual
of f for some C = C(Cf , Cg).

Lemma 4.11. Suppose that g is a Cg-sphericalizing function and that f : (0, d0] →
(0,∞) is a left or right Cf -quasidual of g. Then f is a C-quasidual of g, for some
C = C(Cf , Cg).

Lemma 4.12. Suppose that f : (0, d0] → (0,∞) is a Cf -quasidual of a Cg-
sphericalizing function g. Then f is a (C, d0)-flattening function for some C =
C(Cf , Cg).

Lemma 4.13. Suppose that g is a Cg-quasidual of a (Cf , d0)-flattening function
f , and that g(r)/g(s) ∈ [1/Cg, Cg] for all 0 ≤ r, s ≤ 1. Then g is a C-sphericalizing
function for some C = C(Cf , Cg).

Note that comparability of the values of g on [0, 1] needs to be assumed in this
last lemma since quasiduality tells us nothing about these values. The proof of
Lemma 4.11 is very similar to that of Lemma 4.10, and the proof of Lemma 4.13 is
very similar to that of Lemma 4.12, so we omit both of them.

Before proving Lemmas 4.10 and 4.12, it is useful to rewrite the basic assumptions
(F1), (F3), (S1), and (S3) as decay estimates for the functions F and G in (4.8)
and (4.9). Suppose f is a (Cf , d0)-flattening function and g is a Cg-sphericalizing
function. Then there are positive constants Kf , Kg, C

′
f , C ′

g, εf , εg such that

1
Cf

(s

r

)Kf

≤ F (r)
F (s)

≤ C ′
f

(s

r

)εf

, 0 < s ≤ r < ∞,(4.14)

1
Cg

(s

r

)Kg

≤ G(r)
G(s)

≤ C ′
g

(s

r

)εg

, 0 < s ≤ r < ∞.(4.15)

Indeed, we can pick Kf = log2 Cf , Kg = log2 Cg, let C ′
f and εf be the constants

C ′ and ε in (F3), and let C ′
g and εg be the constants C ′ and ε in (G3). We leave it

to the reader to verify these estimates.

Proof of Lemma 4.10. Let F, G be defined by (4.8) and (4.9). Suppose that g is
a right quasidual of f , and so F (G(t)) ≈ t, t > 0. Taking t = F (s), we get that
F (G(F (s))) ≈ F (s) for all s > 0. Using (4.14) we see that if F (r) ≈ F (r′), then
r ≈ r′, and so we deduce that G(F (s)) ≈ s for all s > 0, as required.

Suppose instead that g is a left quasidual of f , and so G(F (t)) ≈ t, t > 0. Again
by (4.14), we see that if t ≈ t′, then F (t) ≈ F (t′), and so F (G(F (t))) ≈ F (t).
But it is clear from the definition of F and (F3) that F has range (0,∞), and so
F (G(s)) ≈ s for all s > 0. �
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Proof of Lemma 4.12. Throughout this proof, we assume that 0 < s ≤ s′ ≤ d0,
t, t′ > 0, G(t) = s, and G(t′) = s′. Since G has range (0,∞), such numbers t, t′ > 0
exist regardless of the values of r, r′. Quasiduality implies the useful estimate

(4.16)
t′F (s)
tF (s′)

=
t′F (G(t))
tF (G(t′))

≈ 1.

To prove (F1), it suffices to show that if s, s′ satisfy the additional constraint
s′ ≤ 2s, then f(s) ≈ f(s′), or equivalently F (s) ≈ F (s′). Using (4.15), it follows
that t ≈ t′ whenever s′/s ∈ [1, 2]. Thus using (4.16), we see that F (s) ≈ F (s′), as
required.

It remains to prove (F3), or equivalently F (s)/F (s′) >∼ (s′/s)δ for some δ > 0.
This already follows from (F1) if s ≈ s′, so we may assume that s′/s is so large
that the second inequality in (4.15) implies that t′ ≤ t. But now by the first part
of (4.15), we get t/t′ >∼ (s′/s)1/Kg and, combining this inequality with (4.16), we
deduce that F (s)/F (s′) >∼ (s′/s)1/Kg . �

By data dilation (by a factor a > 0), we will mean replacing f by t �→ af(at), g
by t �→ g(t)/a, and d0 by d0/a. Data dilation by a factor a leads to the associated
functions F and G being replaced by t �→ F (at) and t �→ a−1G(t), respectively. It
follows that C-quasiduality is invariant under data dilations. Note also that the
assumptions that g is a C-sphericalizing function and that f is a (C, d0)-flattening
function for some d0 > 0 are invariant under data dilations. Data dilation is used
later to assume without loss of generality that d0 = 1, or to normalize some value
of f or g.

With the aid of the above lemmas, it is now a straightforward task to prove
the following result which answers the remaining one of the three questions posed
above.

Proposition 4.17. Suppose d0 > 0. Given a C1-sphericalizing function g, there
exists a (C2, d0)-flattening function f which is C3-quasidual to g. If instead we are
given a (C1, d0)-flattening function f , there exists a C2-sphericalizing function g
which is C3-quasidual to f . For both statements C2 and C3 depend only on C1.

Proof. By data dilation, we may assume that g(1) = 1. Suppose that g is a C1-
sphericalizing function and that G is defined by (4.9). Since G is continuous with
range (0,∞) there exists, for any given t > 0, a least nonnegative number s =: H(t)
for which G(s) = t/d0. Note that H(t) = d0/t for all t ≥ d0, and H(t) > 1 for all
t < d0. Now H is strictly decreasing but it might be discontinuous on (0, d0]. To fix
this, let F (t) = H(t) for all t ≥ d0 and also for t = 2−jd0, j ∈ N, and then define
F (t) by linear interpolation for all other t ∈ (0, d0). If we define f(t) = F (t)/t
for 0 < t ≤ d0, then f and F are related as in (4.8). It follows from (4.15) that
the values of H, and hence those of f , are mutually comparable on each of the
subintervals Ij = [2−jd0, 2−j+1d0], j ∈ N. Using (S1), it now follows that f is a
right quasidual of g. Using Lemmas 4.11 and 4.12, we deduce that f is both a
quasidual of g and a flattening function.

We omit the analogous proof of the second part of this result. �

4.18. Proof of Theorem 4.1. We first prove that a space (X, l, o) in U is sf-
reflexive with respect to a quasidual pair f, g if and only if (X, l, o) has a strong
escape property.
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Theorem 4.19. Let (X, l, o) be an incomplete pointed length space, and let σ :=
S(l, o, g), where g is a C-sphericalizing function with a C-quasidual f : (0, d0] →
(0,∞), d0 = diaσ(X), and ∂∞X is nonempty. Also let ∂∞X = ∂Xσ \ ∂Xl, and
l′ = L(σ, ∂∞X, f). Then:

(a) l′ ≤ C ′l, where C ′ = C ′(C).
(b) If (X, l, o) has the strong (c0, ρ0)-escape property, then l′ ≥ cl, for some

c = c(C, c0, r0) > 0.
(c) If l′ ≥ cl for some c > 0, then (X, l, o) has the strong (c0, ρ0)-escape prop-

erty, for some c0, ρ0 dependent only on c and C.

Proof. Let F, G be as defined in (4.8) and (4.9). Propositions 2.6 and 2.20 ensure
that d0 ≤ 4Cg(1) and that (X, σ, ∂∞X) are d0-spherical data. Thus it makes sense
to talk of l′. Note that Lemma 4.12 implies that f is a C ′′-flattening function
for some C ′′ <∼ 1. Since l′ is the conformal deformation of σ with density function
f(δ∞(x)), and σ is the conformal deformation of l with density function g(|x|), the
conclusions in (a) and (b) are equivalent to the statements that f(δ∞(x))g(|x|) <∼ 1
and f(δ∞(x))g(|x|) >∼ 1, respectively. Since the hypotheses and conclusions are
invariant under data dilation, we may assume that g(1) = 1. By Proposition 2.6
and (2.9), we see that d0 ≈ 1, and by quasiduality, f(d0) ≈ 1.

By (2.22) and (S2), δ∞(x) >∼ G(|x|) for |x| ≥ 1 and δ∞(x) >∼ g(1) = 1 for |x| < 1.
Using quasiduality, we see that f(δ∞(x))g(|x|) <∼ F (G(|x|))/|x| ≈ 1 for |x| ≥ 1, and
that f(δ∞(x))g(|x|) <∼ F (G(1)) ≈ 1 for |x| < 1. Thus we have proven (a).

Similarly, the conclusion of (b) follows once we prove that δ∞(x) <∼ 1 for |x| ≤ ρ0

and δ∞(x) <∼ G(|x|) for |x| ≥ ρ0. The first estimate is trivial since δ∞(x) ≤ d0 ≈
1 ≈ ρ0. If instead |x| ≥ ρ0, then we choose a strong c0-escape path for x, and (2.21)
tells us that lenσ(γ) <∼ G(|x|). Since γ has finite σ-length but infinite l-length, it
connects x to ∂∞X, and so δ∞(x) ≤ lenσ(γ) <∼ G(|x|).

Finally we prove (c). Suppose l′ >∼ l and so f(δ∞(x))g(|x|) >∼ 1. By quasiduality
of f and g, f(G(|x|))g(|x|) ≈ 1, |x| ≥ 1, and (F3) ensures that there exists 1 ≤
ρ0 <∼ 1 such that δ∞(x) <∼ G(|x|) for all |x| ≥ ρ0. Thus if |x| ≥ ρ0, we can find a path
λ0 : [0, T0) → X, parametrized by σ-arclength, such that λ0(0) = x, λ0(T0−; σ) =
w0 ∈ ∂∞X, and T0 <∼ g(|x|)|x|. Arguing as in Theorem 2.28, we get a strong escape
path. We leave the details to the reader; note that the stopping condition never
occurs since all paths λi are of infinite l-length. �

We next tackle the reverse direction: flattening followed by sphericalization.

Theorem 4.20. Suppose that (X, σ, ∂∞X) are d0-spherical data and that l :=
L(σ, ∂∞X, f), where f is a (C, d0)-flattening function with a C-quasidual g. Fix
o ∈ X and define σ′ := S(l, o, g). Then:

(a) σ′ ≤ C ′σ, for some C ′ dependent only on C, d0f(d0), and δ∞(o)/d0.
(b) If (X, σ, o) satisfies a strong reverse c0-escape property, then σ′ ≥ cσ, for

some c = c(C, c0, d0f(d0)).
(c) If σ′ ≥ cσ, c > 0, then (X, σ, o) satisfies a strong reverse c0-escape property,

for some c0 = c0(C, c, d0f(d0)).

Proof. According to Lemma 4.13, g is a C ′′-sphericalizing function for some C ′′ =
C ′′(C). We write |x| = l(x, o) as usual, and also write tBy = Bσ(y, tδ∞(y)/4), for
all y ∈ X, t > 0. The combination of data dilation by a factor a and dilation of σ-
distances by a factor a−1 leaves both the assumptions and the conclusions invariant,



100 ZOLTÁN M. BALOGH AND STEPHEN M. BUCKLEY

so we may assume that d0 = 1. Thus F (1) = f(1) and, because of the dependence
of all conclusions on d0f(d0), we may assume that F (1) ≈ 1 throughout.

By quasiduality, it follows that

(4.21) g(F (δ∞(x)))f(δ∞(x)) ≈ 1.

In fact this is immediate when F (δ∞(x)) ≥ 1, and it holds in general because
F (δ∞(x)) >∼ F (1) ≈ 1. But, as in the proof of the previous theorem, the conclu-
sions in (a) and (b) are equivalent to the statements that g(|x|)f(δ∞(x)) <∼ 1 and
g(|x|)f(δ∞(x)) >∼ 1, respectively. In view of (4.21), (S1), and (S3), the conclusions
in (a) and (b) are thus equivalent to the statements that F (δ∞(x)) <∼ |x| ∨ 1 and
F (δ∞(x)) >∼ |x| ∨ 1, respectively.

Since f is flattening, the values f(δ∞(z)), z ∈ 2Bx, are all mutually comparable.
Therefore the l-arclength of a path in any such ball is comparable to f(δ∞(x)) times
its σ-arclength. Thus if we define rx to be the largest radius with the property
that Bx ⊃ Bl(x, rx), and Rx to be the smallest radius with the property that
2Bx ⊂ Bl(x, Rx), then rx ≈ Rx ≈ F (δ∞(x)).

Let us now prove (a). If x ∈ X, |x| ≥ Ro, then x /∈ 2Bo. Thus δ∞(x) ≤
σ(x, o) + δ∞(o) ≤ 3σ(x, o), and so o /∈ Bx. Thus |x| ≥ rx ≈ F (δ∞(x)). It remains
to show that F (δ∞(x)) <∼ |x| ∨ 1 when |x| < Ro. Since Ro <∼ F (δ∞(o)) ≈ 1, this
follows from the case |x| = Ro (which we already know) and (F1), once we show that
δ∞(x) is approximately constant on Bl(o, Ro). Certainly δ∞(x) ≤ d0 = 1 ≈ δ∞(o).
If δ∞(x) < t for some t much smaller than δ∞(x), then we can apply Lemmas 2.5
and 3.3 to deduce that

|x| ≥
∫ δ∞(o)

t

f(s) ds ≥ Kδ∞(0)f(δ∞(o)) ≈ K,

where K → ∞ as t/δ∞(o) → 0. But |x| ≤ Ro, so the resulting upper bound on K
translates into a lower bound on t, as required.

We now turn to (b). Let γ be the path from x to o provided by the strong reverse
escape property. Since S := lenσ(γ) ≤ δ∞(o)/c0 − δ∞(x) ≤ 1/c0 − δ∞(x), we see
by a change of variables, (F1), (F3), and (F2) that

lenl(γ) =
∫ S

0

f(δ∞(γ(t))) dt <∼
∫ S

0

f(c0(t + δ∞(x))) dt

=
∫ 1

c0δ∞(x)

f(s) ds

<∼ F (δ∞(x)).

(4.22)

Thus |x| <∼ F (δ∞(x)) and (b) follows.
Finally, we prove (c). The hypothesis σ′ >∼ σ is, as we have seen, equivalent to

the statement that F (δ∞(x)) >∼ |x| ∨ 1. Thus we can find a path λ0 : [0, T0] → X,
parametrized by l-arclength, such that λ0(0) = x, λ0(T0) = o, and T0 <∼ F (δ∞(x)).
Arguing as in Theorem 3.11, we get a strong reverse escape property for (X, σ, o);
the details are left to the reader. �

It is now straightforward to complete the proof of Theorem 4.1. The fact that
(a) implies (b) is trivial, and (b) implies (c) according to Theorems 2.31 and 3.14.
Finally, (c) implies (a) according to Theorems 4.19 and 4.20.
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