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ABsTRACT. We prove the equivalence of three different geometric properties of metric-measure
spaces with controlled geometry. The first property is the Gromov hyperbolicity of the quasihy-
perbolic metric. The second is a slice condition and the third is a combination of the Gehring-
Hayman property and a separation condition.

0. INTRODUCTION.

The purpose of this paper is to show that three (apparently) different geometric prop-
erties of Euclidean domains (and more general metric spaces) are in fact equivalent. These
properties have various far-reaching analytical consequences. The very different nature of

these applications serves as motivation for proving this equivalence.

The first such property is the so-called Gromov hyperbolicity. This expresses the property
of a general metric space to be “negatively curved” in the sense of coarse-geometry. The
importance of Gromov hyperbolicity is widely appreciated. This notion was introduced by
Gromov in the setting of geometric group theory [Grl], [Gr2], [GhHa] but has played an
increasing role in analysis on general metric spaces [BoHeKo|, [BoSc] with applications to
the Martin boundary, invariant metrics in several complex variables [BaBol], [BaBo2] and
extendability of Lipschitz mappings [Ln].
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The second property is related to a decomposition of a metric space in subdomains
with nice geometry called “slices”. The slicing condition was used in Euclidean domains
for Sobolev imbedding results (see [BuKol], [BuKo2], [BuOS], [BuStl]) and for studying

quasiconformal images of various classes of domains [BuSt2].

The third property has its origins in geometric function theory. It is a combination of the
so-called Gehring-Hayman condition and a separation condition. The former property was
proven in [GeHa] for the case of the hyperbolic metric on simply connected plane domains
and more recently in [HeRo| for the case of the quasihyperbolic metric in Euclidean domains
that are quasiconformally equivalent to uniform domains. This property is the expression
of an interplay between the hyperbolic and Euclidean metric. It says that if the domain is
nice enough then the hyperbolic geodesics are quasigeodesics for the Euclidean metric as
well. This has numerous applications related to lengths of radii or boundary behavior of the
conformal and quasiconformal mappings [BoKoRo],[BaBo3] [HeRo]. The Gehring-Hayman
condition for more general metric spaces was recently considered by Bonk-Heinonen-Koskela
in [BoHeKo| where it was indicated that Gromov hyperbolicity implies this condition and
also a separation condition. The starting point of this paper was a question raised in
[BoHeKo| about the converse of this implication. Our results include the positive answer
to this question. The ”slice condition” appears as an intermediate step in proving this
implication. A side-benefit of the equivalence is the fact that the Gehring-Hayman and
separation conditions are potentially much easier to verify for a given domain than the
more complicated Gromov hyperbolicity and slice conditions. In view of [BuKol], [BuKo2],
[BuOS], [BuSt1], [BuSt2] our results show an unexpectedly rich analytic content of Gromov

hyperbolicity in Euclidean domains.

To state our results precisely let us introduce some notation and terminology. Given

a metric space (X,d), a subset S of X, and points z,y € X, we write leng(S) for the
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length (meaning 1-dimensional Hausdorff measure H}) of S, and diay(S) for its diameter.
Assuming additionally that z,y € S, we use I'(z,y;S) to denote the class of all rectifiable

paths 7y : [0,t] = S for which v(0) = z and v(t) = y. We also write I'(z,y) = I'(z, y; X).

Assuming X is rectifiably connected (i.e. each family I'(z,y) is non-empty), and p :
X — (0,00) is a continuous density, then (X,d,) is a metric space where d, is defined by

the equation

dey) = nf / p(2)|dz],
where |dz| denotes the length element for the metric d. In particular, we denote d, by ! in
the special case p = 1; we call [ the inner metric associated with d. Then (X,d) is said to
be a length space (in the sense of Gromov) if | = d; in this case, d is said to be a length
metric or inner metric. A metric space (X,d) is geodesic if every pair of points x,y can be
joined by a geodesic, that is a path whose length equals the distance from z to y. Of course
geodesic spaces are length spaces, but the converse is false (consider Euclidean space with
the origin removed). If (X,d) is locally compact and the identity map (X,d) — (X,I) is
continuous (and so a homeomorphism), it is shown in [BoHeKo, Lemma 2.6] that the length

of a rectifiable path «y in (X, d,) is given by the line integral

ten, () = [ p(2) 2.

Thus every such d, is a length metric.

Let us pause to mention two important special cases of metrics d,. First, if (X, d) is
Euclidean space, and p(z) = 2/(1 + |z|?), then d, is the spherical metric on R"™, and the
Riemann sphere R™ is the metric completion of (R",d,) got by adding the single point co.
Note that R is a compact metric space of diameter m. Secondly, if d is the Euclidean (or
spherical) metric on an open set in R* (or R"), then the associated metric [ is called the

inner Fuclidean (or inner spherical) metric.
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Suppose (X, d) is an incomplete rectifiably connected metric space whose metric comple-
tion is denoted (X, d). We define the boundary distance dx : X — (0,00) by the equation
dx(z) = d(z,0X), where the boundary of X, 0X, is simply X \ X. We then define the
associated quasihyperbolic metric to be d, for p(xz) = 1/dx (z). We sometimes write d(z) in
place of dx(z), and we normally denote the quasihyperbolic metric by k. We denote open

balls in (X, d) by B(z,r) or By(z,r), and closed balls by B(z,r) or By(z,r).

For the rest of this section, we assume that (X, d) is incomplete and rectifiably connected,
and that the associated space (X, k) is geodesic. These conditions are quite mild, and
certainly true when d is the (inner) Euclidean or (inner) spherical metric on a Euclidean
domain. More generally, the geodesic condition follows from the other two if additionally
(X, d) is a locally compact length space, as proved in [BoHeKo, Proposition 2.8]. We denote
by [z,y] any quasihyperbolic geodesic from z to y; under the above conditions on d, these
exist, but are not necessarily unique. It is convenient to use the same notation for paths
and their images, allowing us to write for instance w € [z, y| to mean that w is a point on a

geodesic path from z to y.

The following definitions come together with a parameter C' which is also assumed to be
at least 1; this lower bound is also implicitly assumed whenever these conditions are used

later.

Our first definition is that of Gromov hyperbolicity. It says that large triangles in the
quasihyperbolic metric are thin. More formally we say that (X, d) is C-kG-hyperbolic if the

associated space (X, k) is C-Gromov hyperbolic, meaning that
Vz,y,2€ X Vz,yl, [z,2], [y, 2] Vw€ [z,y]: k(w,[z,2]U]z,y]) <C. (Hyp)

Note that this condition, which says that an arbitrary point on one side of a geodesic triangle
is at most a bounded distance away from some point on the other two sides, amounts to a

type of negative curvature assumption for the space (X, k).
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The notion of Gromov hyperbolicity, which makes sense in general metric spaces, was
conceived in the setting of geometric group theory [Grl], [Gr2], [GhHa]. For our case of
the quasihyperbolic metric this property was extensively studied in [BoHeKo]. It turns out
that the kG-hyperbolicity condition has nice consequences for the geometry of the metric
itself. According to the results of this paper one such consequence, is the following “slice

condition”.

Given z,y € X and an arc v € I'(z, y), we write (z,y;y) € slice(C) if there exist pairwise

disjoint open subsets {S;}™, of X, m > 0, with d; = dias(S;) < oo such that

Vo<i<m, YVAeTl'(x,y): leng(ANS;) >d;/C; (Sliy)
VO<i<m: diag(yns;) <C; (Sliz)
leng (7\ 0 Si) = 0; (Sliz)
1=0
By(z,d(z)/C) C So, Ba(y,d(y)/C) C Sp,. (Sliy)

We say that (X, d) is a C-slice space, or that X satisfies (Sli), if (z,y;7y) € slice(C) for all

z,y € X satisfying k(z,y) > log2, and all quasihyperbolic geodesics v € I'(z, y).

The above slice condition is a variant of a condition introduced by Buckley and Koskela
[BuKo2]; other variants of which were later used in [BuOS], [BuSt1] and [BuSt2]. In these
papers, it was used in particular to obtain a variety of Sobolev- and Trudinger-type imbed-
ding results, mostly in FEuclidean domains. We shall prove in Section 4 that for domains on
the Riemann sphere, kG-hyperbolicity implies the slice condition and all these other variant

slice conditions.

The next property has its origin [GeHa| in the classical complex analysis. However the
definition makes sense in general metric spaces. It says that geodesics in quasihyperbolic

metric are quasi-minimizing the length in the original underlying metric. More formally, we
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say that (X, d) satisfies the C-Gehring-Hayman condition if
Vz,ye X Vz,y]: leng([z, y]) < Cl(z,y). (GH)

It turns out that the Gehring-Hayman condition by itself is not enough to encode all in-
formation contained in Gromov hyperbolicity or slice conditions. In addition we need the

following separation type condition introduced in [BoHeKo].

We say that (X, d) satisfies a C-ball-separation condition if
Ve,ye X Vr,y] YVwe [z,y] VIeT(z,y): AN By(w,Cd(w)) # 0. (BS)

The condition says that all paths from x to y are forced to intersect the ball By(w, Cd(w)).
(We use the term “ball-separation” to distinguish this from a later condition where such
paths are forced to intersect a set that in general might not be a ball, but has certain

additional useful properties.)

We are now ready to state our main theorem for domains in R?. Note that we could re-
place the inner spherical metric by the more familiar inner Euclidean metric if X is bounded;

the constants would then also depend on dia(G).

Theorem 0.1. If X C R" is a domain, and d is the inner spherical metric, then the
following conditions are equivalent.

(1) (X,d) is C1-kG-hyperbolic.

(2) (X,d) is a Cy-slice space.

(3) (X,d) satisfies the C3-Gehring-Hayman and the Cy-ball separation condition.

The various constants C; depend only on each other and on n.

Note that all conditions (1)—(3) are all rather general even in the Euclidean context. In

particular, we claim that they all hold for all bounded simply-connected planar domains and,
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more generally, whenever X is a quasiconformal image of an inner uniform domain. This
fact gives a large class of examples for Theorem 0.1 and was one of the initial motivations for
our investigations. Let us briefly recollect the results that imply this claim: for (1) it follows
by results in [BoHeKo| (specifically Theorem 1.11 and the remarks following it). In the case
of (2), the claim for a slightly different slice condition follows from [BuSt2, Theorem 3.1];
for our slice condition, see Section 4. Finally, the claim for (3) follows from the claim for

(1) together with the fact that (1) implies (3), which is proven in [BoHeKo, Section 7).

Moreover, Theorem 0.1 is merely an easy-to-state special case of what we actually prove
in the remainder of the paper. We establish the individual implications mentioned above
for varying classes of metric spaces, which include both the inner spherical case in each
instance. In fact, we shall see that (1)—(3) are equivalent whenever (X, d) is an incomplete

locally compact length space space satisfying the following two conditions:

(a) (X,d) can be equipped with a Borel measure y which makes it into an upper regular,
locally regular, locally Loewner space;

(b) The associated space (X, k) is roughly starlike.

The first condition is always true in the inner spherical or inner Euclidean cases, with pu
being Lebesgue measure. The second holds for inner spherical domains if the quasihyperbolic
metric is Gromov hyperbolic. In Section 4, we shall discuss more general situations in which
conditions (a) and (b) hold. In particular we prove that rough starlikeness of (X, k) holds

in the presence of Gromov hyperbolicity in most instances.

Our plan of attack is as follows. After some preliminary material in the next section, we
show that (2) implies (3) in Section 2, and also that (3) implies a variant condition, which
we call (3a), consisting of Gehring-Hayman and a more useful type of separation condition

than ball-separation. We discuss rough starlikeness of (X, k) in Section 3, and prove that
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(1) implies (2) in Section 4. In sections 5 and 6 we show that (3a) implies (1). Finally, we

develop some fundamental results related to Loewner spaces in the appendix.

Before ending this section, let us comment briefly on the various implications in The-
orem 0.1. One of the motivations for this research is the paper of Bonk, Heinonen, and
Koskela [BoHeKo|, where it is shown that (1) implies (3), and conjectured that (a formally
stronger, but actually equivalent, variant of) condition (3) implies (1). Our theorem includes
a different proof of the first implication, as well as a proof of this conjecture. Finally, we
remark that (3) is potentially much easier to verify than the seemingly more complicated
conditions (1) and (2).

We would like to thank the referee for carefully reading the paper and for numerous

suggestions that were very helpful when making final revisions. In particular, the referee

spotted a gap in our original proof of Lemma 6.6.

1. NOTATION AND TERMINOLOGY

We gather here a list of some additional notation and terminology that is used throughout

the rest of the paper.

If a metric space (X,d) is incomplete, rectifiably connected, and locally compact, and
if the identity map (X,d) — (X,!I) is continuous (as is certainly true if (X,d) is a length
space), then we say that (X, d) is minimally nice. The significance of minimal niceness is
that it guarantees that (X, k) is complete, proper, geodesic, and homeomorphic to (X, d);
see [BoHeKo, Proposition 2.8]. Recall that a proper metric space is one in which all closed

balls are compact.

Many of the results in this paper require at least that (X, d) is minimally nice, but let us
merely assume for the remainder of this section that (X, d) is an incomplete and rectifiably

connected, and that the associated space (X, k) is geodesic.
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Ify; € I'(z,y; X) and v5 € ['(y, z; X), for some z, y, z € X, then y; +, denotes the joined
path which first traverses 1, and then 5. More generally, Zgzo 7 is a joined path which
traverses the paths v; in their natural order. Similarly, —+ is the reverse parametrization of
v, and y1 — ¥z is 1 + (—72)-

When we say that a point z lies on a path vy, we have in mind that = ~y(s) for some
specific value of s, which is assumed to be the same wherever x is used. This allows us
to use y[z,y] to denote the segment |, 4 of the (possibly non-injective path -y, whenever
x = 7(s) and y = () for some s < t; recall that [z,y] by itself denotes an unspecified
quasihyperbolic geodesic segment. We use other standard interval notation analogously: for
instance, (z,y) = [z,y] \ {z,y}. Within a proof, all instances of [z,y] refer to the same
quasihyperbolic geodesic path. Furthermore, whenever we select points u,v € [z,y], then
[u,v] always denotes the obvious subgeodesics of [z,y] or [y, z] (rather than an arbitrary
geodesic between these points). We write [a, b] C [c,d] if [a, b] is a subgeodesic of [c, d] that
preserves orientation. Given C' > 1, we say that a path v is a (C,C")-rough quasigeodesic
if leng(v[z,y]) < Ck(z,y) + C' whenever z,y lie on . If we assume that C' = 0, we
speak simply of a C-quasigeodesic. For the rest of this paragraph, let us use *-geodesic to
indicate any one of “geodesic”, “quasigeodesic”, and “rough quasigeodesic”. Suppose v is a
x-geodesic, and that « is a reparametrization of v with the property that leng(a[s,t]) =t—s
for any numbers s < t, s,t € I, where I denotes the domain of a. Then 7 is *-geodesic
segment if T is of finite length, v is a *-geodesic ray if I has the form [t,00) for some
t € R, and v is a x-geodesic line if I = R. Note that, although we sometimes use the
qualifier “quasihyperbolic” for emphasis, terms of the form “x-geodesic” refer by default to
the quasihyperbolic metric in the rest of this paper; if more than one such metric is being

used, we use notation such as a (C; k)-geodesic to specify which one we mean.

We denote the maximum and minimum of a pair of numbers s,t by s V¢ and s At
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respectively. Finally we note that we frequently drop constants and other parameters in
many pieces of notation whenever they are unimportant or understood. For instance we

may simply talk about kG-hyperbolic and slice spaces.

2. FROM SLICE TO GEHRING-HAYMAN AND SEPARATION

In this section, we prove that the slice condition (Sli) implies the Gehring-Hayman con-
dition (GH) and ball-separation condition (BS). We also prove that (GH) and (BS) together
imply another more useful separation condition (Sep). We begin with some necessary defi-

nitions.

Given K > 1, we say that a metric space (X, d) lies in the class QCX (K) if it satisfies

the following K -quasiconverity condition:

VeeX, VO<r, Va,b€ By(z,r/2): I(a,b) < Kr. (2.1)

Here as usual, [ denotes the arclength metric associated with d. More generally, we say that

(X, d) lies in the class QC Xjoc(K) if it satisfies the local K -quasiconvezity condition

VrzeX, VO<r<d(x)/K, Va,be By(z,r/2): I(a,b) < Kr. (2.2)

Of course length spaces are trivially 1-quasiconvex, and proper subdomains of R® or R*
with respect to the inner Euclidean or inner spherical metrics, respectively, are trivially
in QCX (1). Similarly proper subdomains of R® or R* with respect to the Euclidean or
spherical metrics, respectively, lie in QCXjoc(1). The last example is a special case of the
easily proven fact that if (X, d) is a minimally nice subspace of a length space (Y,d’), and

X is open in Y, then (X, d) lies in QCXjoc(1).

We now state the first main theorem of this section.
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Theorem 2.3. Suppose that (X,d) € QCXioc(K) is minimally nice and satisfies a C-slice
condition. Then (X,d) satisfies a C'-Gehring-Hayman condition and a C'-ball separation

condition, for some C' = C'(C, K).

When we prove that Gehring-Hayman plus separation implies Gromov-hyperbolicity, it
suits us to use a different type of separation condition than ball-separation. We now define
this other separation condition and later show that it is implied by Gehring-Hayman plus

ball-separation.

Suppose C > 1. We say that (X, d) satisfies a C-separation condition, or simply that
it satisfies condition (Sep), if for all z,y € X with k(z,y) > log2, every quasihyperbolic

geodesic [z, y], and every w € [z, y], there exists an open set S, = Sg Yl © X such that:

w € Sy C By(w, Cd(w)); (Sep1)
VIel(z,y): leng(ANSy,) > d(w)/C; (Sep2)
diag [z, y] N Sy) < log(C +1). (Seps)

We also define S,, = B(x,d(x)/2) in the case k(x,y) < log2. In this case, (Sep;) and (Seps)

are still valid with C' =1, and w € S,,, but of course (Sepz) may fail.

Theorem 2.4. Suppose that a minimally nice metric space (X, d) satisfies a C-ball separa-
tion condition and that (X,d) satisfies a C'-Gehring-Hayman condition. Then (X, d) also

satisfies a Cy-separation condition, for some C; = C1(C,C").

Our first aim is to prove the Gehring-Hayman part of Theorem 2.3. The following lemma

is crucial in the proof and it will also be used later on.

Lemma 2.5. Suppose that (X,d) is an incomplete rectifiably connected space. Let u,v be

points on a quasihyperbolic geodesic [z, w] between distinct points z,w € X, let S be a positive
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length subset of [z, w], and let ¢ = k(z,w). Then

v €By(u, (¢° — 1)d(u)); (2.6)

(1 —e™%)d(u) < leng([z, w]) < (e —1)d(u); (2.7)
e~Cd(u) < d(v) < e°d(u); (2.8)
e~°d(u) < % < e%d(u). (2.9)

Proof. Let X : [0,L] — X be the parametrization of [z, w]| by d-arclength. Then d(A(t)) <

d(z) +t, and so

leng(\) = ¢ > /0 d(zc)lt+t = log(1 + L/d(z)),

thus giving the second inequality in (2.7) in the case u = z. The first inequality in (2.7)
for u = z follows in a similar manner as the second by instead using the estimate d(A(t)) >
d(z) — t. These inequalities for general u follow by similar estimates applied separately to
[u, w] and [u, 2], as the reader can readily verify. The containment (2.6) is an immediate
corollary of the second inequality in (2.7), as is the second inequality in (2.8); the first

inequality then follows by symmetry. Finally, (2.8) implies (2.9). O

Theorem 2.10. Suppose that (X, d) € QC Xioc(K) is minimally nice and satisfies a C-slice

condition. Then (X, d) satisfies a C'-Gehring-Hayman condition for some C' = C'(C, K).

Proof. Let us fix points z # y € X, and a quasihyperbolic geodesic [z,y] and write L =
leng([z,y]). Without loss of generality, we assume that d(y) < d(z). Suppose first that
k(z,y) < log2. Using the elementary estimate ¢! — 1 < 2¢ for all 0 < ¢ < log2, and the
second inequality in (2.7), we see that L < 2k(z,y)d(y). Suppose A € I'(z,y) is a competing
path, with L' = leng(\). If L' > d(y)/2, we get a (4log?2)-Gehring-Hayman inequality for

z,y. If L' < d(y)/2, then A C B4(y,d(y)/2), and so L' > leng(N)d(z)/2 > k(z,y)d(x)/2.
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Putting this together with the upper bound for L, we get a 4-Gehring-Hayman inequality

for z,y. We may therefore suppose that k(z,y) > log 2.

Suppose that d(z,y) < d(z)/4K, and so I(z,y) < d(x)/4. Taking A € I'(z,y) so that
leng(A) < d(x)/4, we see that d(u) > 3d(x)/4 for allu € A, and so leng(A) < 4l(z,y)/3d(x) <

1/3. This contradicts the fact that k(x,y) > log2 > 1/3. Thus d(z,y) > d(z)/4K.

Let {S;,d;}™, be the slices and slice diameters associated with z,y,[z,y]. Writing
L; = leng([z,y] N S;), we get upper bounds for the numbers L; in the case of small and large
slices by separate arguments. We first consider small slices, meaning slices S; for which
d; < d(z;)/3K for some point z; € [z,y] N S;. Fixing one such small slice S;, we let a,b be
the first and last points of intersection of [z,y] with S;, and let A € I'(a,b) be such that
leng(A) < Kd(a,b). Thus leng(\) < d(z;)/3, and so d(w) > d(z;)[1-1/(3K)—1/3] > d(z;)/3

for all points w on A. Thus

3leng(A)  3Kd;
dz) d(z)

leng[a, b] < (2.11)

The rightmost quantity in (2.11) is less than 1, so (2.8) implies that d(w) < ed(z;) for all

w € [a,b] N S;. Thus

L; <leng[a,b] < ed(z;) leng[a, b] < 3eKd;. (2.12)

We next turn to the big slices, i.e., slices S; such that d; > d(z)/3K for all z € [z,y]NS;.

Consequently, from (Sliz) we see that for all 0 < i < m,

L; <3Kd; lenk(’y N Sz) < 3CKd;. (2.13)

As for the case i = 0, the quasihyperbolic length of the segment of [z, y] from z to its last

intersection point with Sy is at most C' according to (Sliz). Using (2.7) from Lemma 2.5,
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we deduce that Ly < (exp(C) — 1)d(x). Similarly L,, < (exp(C) —1)d(y). Combining these

last two estimates with (2.12), (2.13), and (Sliz), we deduce that

L < Cl (d(l‘) + d(y) + Ay dz> s (2.14)

1=1

where C7 = (exp(C) — 1) V (3(e V C)K). On the other hand, (Sli;) implies that
Viel(z,y),0<i<m: leng(ANS;) > d;/C,

while (Slig) and the fact that d(z,y) > d(x)/4K together imply that

leng(AN So) > d(z)/(4K Vv C),

leng(AN Sp) > d(y) /(4K V O).

Thus
m
VAel(z,y): leng(A) > ) “leng(AN S;) > Cy! ( (z) +d(y) + Z dz)
=0
where Cy = 8K V 2C. Combining this inequality with (2.14), we deduce a C’-Gehring-

Hayman condition with C' = C;Cs. O

Theorem 2.10 proves one part of Theorem 2.3. The other part follows from the following

theorem.

Theorem 2.15. Suppose (X,d) is a minimally nice metric space that satisfies a C-slice

condition. Then (X, d) satisfies a C1-ball separation condition, where C1 = 2V (C? exp(C)).

Proof. Fix two distinct points z,y € X, and let v = [z,y] : [0, L] — X be a geodesic for z, y,
and let w = v(¢) be a point on . Without loss of generality, we assume that d(y) < d(z).
If k(z,y) < log2 and u € [z,y], then by (2.6), we have x,y € Bgy(u,2d(u)), as desired. We

may suppose therefore that k(z,y) > log 2.
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We fix a point w = 7(¢), and let {S;, d;}7, be the slices and slice diameters associated

with z,y, [z, y]. Since there are only finitely many slices S;, we can choose an index j and

numbers ¢,, € [0, L] such that lim,,_,o t, =t and w, = y(t,) € Sj.

Let v; =y N S;. By (Sliz) and (2.9), it readily follows that
leng(v;)/d(z) < Cexp(C), Z € ;. (2.16)

Combining this with (Sli1), we deduce that if 0 < j < m, then d; < C? exp(C)d(z). Taking
z = wy, and passing to a limit, we see that d; < Cid(w). Thus S; C B(w,Cid(w)), and the
C1-ball separation condition for the data {z,y, [z,y], w} follows from (Sli;). The endpoint
cases j € {0, m} are even easier since then ; must include either z or y, and so a (C;/C?)-

ball separation condition follows for the data. Il

Proof of Theorem 2.4. To prove the first statement suppose we are given separation data z,
Y, [z,y], and w € [z,y], with k(z,y) > log2. It follows from (2.7) that leng([z, y]) > d(w)/2.
Now if we were to choose Sy, to be Bg(w,2CC'd(w)), then (Sep;) and (Sepy) would readily

follow, but (Seps) would typically fail.

We instead define the separation set S,, by
Sw = Bg(w,4CC"d(w)) \ ((X \ Bx(w,log?2)) N [z,y]).

We claim that S, satisfies the C;-separation condition, where C; = 4CC’. Clearly (Sep;)
holds, and (Seps) is just as obvious once we note that log(Cy + 1) > 2log2. However the
fact that S, satisfies (Seps) is far from obvious, so let us fix an arbitrary path A € I'(z, y),
and suppose for the sake of contradiction that leng(A) < d(w)/Cy, where A = AN S,. We

may as well assume that A : [0, L] — X is parametrized by arclength.

We define w_ to be the point in [z, w] with k(w_,w) = (log2) A k(z,w), and wy to be

the point in [w, y] with k(w,,w) = (log2) A k(w,y), so that the part of [z, y] that lies in Sy,
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is (w—, w4 ) plus perhaps one or both endpoints of this geodesic segment (an endpoint e is

included precisely when k(e, w) < log2, and so e € {z,y}).

Since k(w_,wy) > log2, leng(w_,w4]) > d(w)/2. With this notation, A is the set of

points in A N By(w,4CC'd(w)) that lie in neither [z, w_] nor [w4, y].
Also let t_ € [0, L) be defined by the equation
t_ =sup{t €[0,L] | A(t) € [z,w_]},
let t4 € [t—, L] be defined by
ty =inf{t € [t—, L] [ A(?) € [wy, y]},
so that v_ = A(t_) € [z, w_], vy = A(t4) € [wy,y]. It is clear that
{A\(#) :t € (t_,t1)} N By(w,4CC'd(w)) C A.
Set A := {A(t) : t € (t_,t;). Suppose first that A\ C Bg(w,4CC"'d(w)). In this case

A C A. Gehring-Hayman implies that

lengh =ty —t_ > Ci leng((A(E_), A(t4)]) >

> Ci leng([w_, w4]) > ‘g(é",) > d(w)/Ch.

This leads to a contradiction with leng(A) < d(w)/C1.

(2.17)

In the second case, when A has a point outside of By(w, 4CC"d(w)) we apply (BS) for the
data {v_,v4,w € [v_,vy]}. This implies that X\ must intersect the smaller ball By(w, C'd(w))
and so X has a subarc 8 C Bg(w,4CC"d(w)) such that leng 8 > (4CC" — C)d(w). Since

B C A we obtain again a contradiction to leng(A) < d(w)/C}. O

One might wonder if there is an implication one way or the other between the Gehring-
Hayman and ball-separation conditions, at least in the setting of bounded Fuclidean do-

mains. We do not know whether ball-separation (or separation) implies Gehring-Hayman,
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but we now give an example of a quasiconvex planar domain G for which the (inner)
Euclidean metric satisfies a Gehring-Hayman condition, but not a ball-separation condi-
tion. To construct G, we “weld” the square (—1,1)? to the sequence of squares @Q; =
(aj,aj +1;) x (1,14 1;,), where a; = 277, and l; = 479, j € N, and the welding process
consists of adding all points on the interval whose coordinates are of the form (z,0) for some
a; <z < aj +1;, except for all points of the form (a; +1il;/j), s € N, i < j. Taking z; to be
the center of @), the large number of passages forces any C-ball-separation condition to fail
in the vicinity of the jth weld for any geodesic from the origin to z; whenever j > jo = jo(C).

A case analysis shows that (G, d) satisfies a Gehring-Hayman condition.

Let us finish this section by commenting on a minor difference between the ball-separation
condition we are using and the separation condition defined at the end of Section 7 of

[BoHeKo]. The latter is the formally stronger condition

Vz,ye X Vz,y] Yw € [z,y], u € [z,w),v € (w,y] VA eT(u,v):

AN By(w, Cd(w)) # 0. (SBS)

In fact these conditions are equivalent. To see this, suppose that (X, d) satisfies (BS) and
let x,y, w,u,v, A be as in (SBS). Since the arc [u,v] C [z, y] connecting u,v € X is itself a
geodesic, we can use (BS) with data {u, v, w € [u,v]} to deduce that AN By(w, Cd(w)) # 0,

as required.

3. GROMOV HYPERBOLICITY IMPLIES ROUGH STARLIKENESS

In the next section we prove that, in a general class of metric spaces, kG-hyperbolicity
implies a slice condition. This class of spaces include bounded domains in complete metric
measure spaces that are @-regular and )-Loewner. This includes a large variety of non-

Euclidean spaces such as Carnot groups, sub-Riemannian and Riemannian manifolds which
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all satisfy the Loewner condition. We refer to [HeKo| for a detailed exposition on analysis

in Loewner spaces. We recall the definition and basic properties in the Appendix.

In proving that Gromov hyperbolicity implies a slice condition the property that (X, k)
is roughly starlike also plays a crucial role. This property has not been treated in as much
detail as the Loewner property. Therefore we pause and devote this section to this condition.
We show that rough starlikeness follows essentially from kG-hyperbolicity in a rather general

setting.

It is shown in Lemma 7.8 of [BoHeKo] that if a proper subdomain X of R is kG-
hyperbolic with respect to the inner spherical metric, then (X, k) is roughly starlike with
respect to any basepoint w that maximizes the spherical distance to 0X. In this section,
our main theorem generalizes that result, in the process providing a large class of spaces
in which this implication is valid, although we delay until the end of the next section a

discussion of what spaces are covered by the theorem.

If (X,d) is a minimally nice metric space, then (X, k) is said to be K-roughly starlike,
K > 0, if there exists a basepoint w such that every point in the space is within a distance

K of some geodesic ray emanating from w.

Throughout the rest of this section, we define A(z, r, C,C") to be the annulus B3(z, Cr)\
Bg(z,7/C"), whenever z € X, r > 0, C,C’ > 1, and (X, d) is the metric completion of a
metric space (X,d). As a special case, we write A(z,r,C) = A(z,r,C,C).

Given C' > 1, we say that (X,d) is in the class QL(C) if it is minimally nice and it
satisfies the following three conditions:

(a) If z,2' € X, z € 0X, x,2’ € A(z,7,1,8C), and A(z,r,8C) C X, then there exists a

path A € T'(z, 2'; A(z,7,8C?)) such that leng(X) < 2C'r.

(b) fz € X,2€ 90X,z € A(z,7,2), and A(z,7,4C)NOX # 0, then there exists a point

y € A(z,7,4C) N dX and a path n € T'(z,y; A(z,7,8C?)) such that leng(n) < 6C>r.
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(c) For each x € X, there exists a path v : [0, s] = X with leng(v) < Cd(z), v(0) = z,
and d(v(t)) > d(v(s)) =d(z)/2 for all 0 < t < s.

We chose the notation QL(C) because the three parts of this condition are combinations

of special cases of two well-known conditions that are usually termed quasiconvexity and

LLC-2. Let us also write QL(C)(a), QL(C)(b), QL(C)(c), to refer to the three individual

conditions above.

It is straightforward to verify that (inner) Euclidean and (inner) spherical domains are
in the class QL(1). It is similarly easy to prove from Remark 7.2 that a bounded, upper
Q-regular, Q-Loewner minimally nice metric measure space is in QL(C), where C depends

quantitatively on the assumptions (see the proof of Proposition 4.19 for more details).

We are now ready to state the main theorem of this section.

Theorem 3.1. Let (X,d) € QL(C) be C'-kG-hyperbolic and M = sup,cx d(z) < co. Then
there exists K = K(C,C") such that (X, k) is K -roughly starlike with respect to any basepoint

w for which d(w) > M/2.

The following lemma, which actually only uses minimal niceness and part (c) of the

definition of QL(C) is the main tool in our proof of Theorem 3.1.

Lemma 3.2. Suppose that (X,d) € QL(C). Then for each uy € X, there exists a rough
quasigeodesic ray v : [0, L) — X emanating from ug, and parametrized by d-arclength such
that d(y(L—t)) > t/4C for all0 < t < L, vy(t) d-converges to some point z € 0X ast — L~

and

leng (v[u, v]) < 2C[1 + logy(3C) + |logy(d(u)/d(v))|], for all points u,v lying on . (3.3)

Proof. Suppose uy € X is given. We define v by stringing together a sequence of paths

v € T(uj—1,us; X), i € N, where d(u;) = 27%d(ug), i € N. We define 7; to be the path
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v given by QL(C)(c) for x = up, and let u; = v(s). Inductively, for each i € N, let v
and s be the data given by QL(C)(c) for x = u;—;. We then define v; : [0,1;] = X to
be the d-arclength reparametrization of v, and u; to be v(s); note that I; < 271 Cd(uy).
Writing L; = Z;zllj, 1 €N, and L = Z;’il lj, we define the path v : [0,L) — X by
the equations 7y(t) = ~;(t — L;—1), for all L;_y <t < L;. Then v is parametrized by d-
arclength, L < 4Cd(uop), and clearly ~(t) d-approaches some z € X ast — L~. The

estimate d(y(L —t)) > t/4C is also clear.

Suppose u = 7y(s) and v = y(t), where s < ¢, L;_1 < s < L;, and L;j_; <t < Lj,
for some i < j € N. Since all points in +; are of distance at least 27 *d(ug) from 90X, and
l; < 271Cd(uyp), it follows that leng(y;) < 2C, and so leng(y[u,v]) < 2C(j —i +1). On
the other hand,

. 1
9i—1_—_
3C

and so j — ¢ < |log(d(u)/d(v))| + log,(3C). The estimate (3.3) is now clear.

We now record the following elementary but useful estimate, whose simple proof we leave

to the reader.

k(u,v) > log <1 + %) . (3.4)

This implies the inequality k(u,v) > |log(d(u)/d(v))|, which together with (3.3) proves that

v is a rough quasigeodesic. O

Let us pause to recap some basics of Gromov hyperbolicity in the context of a quasi-
hyperbolic space (X, k) which we assume to be Gromov hyperbolic, proper, and geodesic;
recall that the latter two assumptions follow from minimal niceness of (X, d). For proofs of

the results in the next two paragraphs and much more on hyperbolicity, we refer the reader

to [GhHal, [CoDePal; see also [BoSc] and [BoHeKo].
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We define the Gromov boundary of X, denoted g X, to be the set of all geodesic rays
emanating from some fixed point w € X, modulo the equivalence relation given by taking
any two rays which lie within a bounded Hausdorff distance of each other as equivalent; this
definition is independent of w. Morally, ¢ X cousists of the “points at infinity” of (X, k).
It may or may not be homeomorphic to the boundary 0X defined previously. For example
if X is a Euclidean slit disk (e.g., the unit disk in the complex plane less the positive real
axis), then dgX is not homeomorphic to dX, but rather to the unit circle; each point on

the positive real axis corresponds to two points in 0gX.

Proof of Theorem 3.1. We assume without loss of generality that C' > 2. Suppose z € X.
Let v :[0,L) — X be a rough quasigeodesic ray emanating from z, as in Lemma 3.2, such
that y(t) d-converges to z € 0X. We define the path v; : (0,L] — X by the equation

v1(t) =v(L —t), for all 0 < t < L. Letting r = d(z,x), we certainly have x € A(z,r,2).

Suppose A(z,7,2C) N 0X is non-empty. Let y and 7 be as in part (b) of the QL(C)
definition. As we move along move along 7 from z to ¥, let ' be the first point with
d(z") = r/(32C3), and let 5 be the segment of  from x to z’. Finally, let v3 : [0,L) — X
be a rough quasigeodesic ray from z’ that converges to some point 2’ € 9X and satisfies the

conclusions of Lemma 3.2.

We claim that « is a rough quasigeodesic line. Since 7; and <3 are rough quasigeodesic

rays and

leng(A2)

1 < — 22 L£1920°
eng(vyz2) < F/(3203) = 92C",

it suffices to show the quasigeodesic property for a pair of points u on v; and v on ~3. Since
leng, (y[u,v]) < leng(y1[u, z]) + 192C° + leng (y3[z’, v]), it suffices to bound the first and last

term in this sum by a constant plus k(u,v).
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We first consider K = leng(v1[u, z]). Note that

d(z,v) > d(z,2') — d(z',v) > —= — —= =1/(8C?).

If d(u, z) < r/(16C?), then d(u,v) > r/(16C?) and so by (3.4) we have

(u, v) > log (1 + %) | (3.5)
But by (3.3),
K, <2C (1 +log,(3C) + |log %D <2C (1 + log,(3C) + log %u)) .

Putting together the last two estimates, we get the required bound for K;. On the other hand
if d(u,z) > r/(16C?), then d(u)/d(z) < 4C by Lemma 3.2. Moreover d(z) < d(z,z) = r

and again by Lemma 3.2

leng(y[u, 2]) _ d(u,z2) r
> > > .
M =="40" 2710 = 6o

This implies that d(z)/d(u) < 64C3. So by (3.3), we see that

K <2C(7 + log,(3C) + 3log, C).

We now consider K3 = leng(ys[z/, v]). We first use (3.3) to get the inequality

) <20 (1 + ) : (3.6)

If d(u,2) < r/(16C?), the desired bound follows by combining (3.6) and (3.5). If instead

/
K; <2C (1 + ‘log (') log

d(v)

T
32C3d(v)

d(u,z) > r/(16C?), and so r/(16C?) > d(u) > r/(64C3), then the desired bound follows
by combining (3.6) with the elementary estimate k(u,v) > |log(d(u)/d(v))| and the upper

bound d(v) < (2C + 1)d(z') < r/(8C?).
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But rough quasigeodesics lines are never far from honest geodesic lines in a Gromov
hyperbolic space according to [CoDePa, Theorem 3.3.1]. So z lies within a bounded quasi-
hyperbolic distance of a geodesic line (a,b) joining two points a,b € dgX. Let p,, pp be
geodesic rays from w to a and b, respectively. Now the “thin triangles” property (Hyp) is
valid for arbitrary points z,y, 2z € X U dgX and any associated geodesics, as long as we re-
place the hyperbolicity constant C' by 24C; see [CoDePa, 2.2.2]. Consequently z lies within

a bounded distance of either p, or pp.

Finally, we must consider the case where there is no point y € X which also lies in the
annulus A(z,r,2C). The part of v; that is near z is within a bounded Hausdorff distance
of some final segment of a geodesic ray # emanating from w. Note that § must necessarily
approach z, and that d(w, z) > d(w) > d(z)/2 > r/8C. Let x’ be the first point on 6 such
that d(2’,z) = r/8C, and let A be the path given by QL(C)(a). Since leng(A) < 2Cr, A
stays in the annulus B(z, (C' + 1)r) \ B(z,7/(8C)). It is now easy to deduce that leng()) is

bounded, so we are done. O

We end this section by giving an example of a quasiconvex bounded planar domain G
where the quasihyperbolic metric k associated to the (inner) Euclidean metric is not roughly
starlike (but (G, k) is not Gromov-hyperbolic either). We define G = D \ UJO';Q E;, where
D is the unit disk and E; consists of j equally spaced points on the boundary of the disk
D; = B(zj,rj), where z; = (1 —279,0), and r; = 479, It is not hard to see that there is
some integer jo such that every geodesic ray emanating from the origin remains outside D;
for all 7 > jo. Thus the points z; are quasihyperbolically far from all geodesic rays. It is
also interesting to note that when j is large, no geodesic segment from the origin to z; can

be continued outside of cD;, where ¢ < 1/2 tends to zero as we let j tend to infinity.

We also note that we cannot strengthen the conclusions of the main results in this section

from roughly starlike to starlike (the latter meaning that geodesic rays pass through every
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point, as they do in any Euclidean ball). To see this, we simply modify the previous example
so that every E; consists of exactly 1000 equally spaced points. The resulting domain is

kG-hyperbolic, but the points z; are still not on geodesic rays.

4. GROMOV HYPERBOLICITY IMPLIES SLICE

Our main theorem in this section is as follows. The definitions of (local) regularity,

(local) Loewner, and some related lemmas have been relegated to the appendix, Section 7.

Theorem 4.1. Suppose (X,d, p) is minimally nice, upper Q-regular, locally Q-regular, and
locally Q-Loewner. Suppose also that (X, d) is a length space, and that (X, k) is Gromov

hyperbolic and roughly starlike. Then (X,d) satisfies a slice condition, quantitatively.

This theorem is applicable in particular if (X, d, 1) is a proper subdomain of R, with
the inner spherical metric and Lebesgue measure attached. In this case, upper regularity,
local regularity and the local Loewner property are clearly true and, since inner spherical
domains lie in the class QL(1), Theorem 3.1 implies that (X, k) is roughly starlike whenever it
is Gromov hyperbolic. Thus the above theorem implies that a kG-hyperbolic inner spherical
domain satisfies a slice condition. By Theorem 3.1 and the remarks that precede it, (X, k)
is roughly starlike whenever (X,d,u) is a minimally nice, bounded, upper Q-regular, Q-
Loewner space, and (X, k) is Gromov hyperbolic. We generalize this result to domains in
such spaces in Proposition 4.19. So the rough starlike assumption in Theorem 4.1 is readily

available in most applications.

Let us briefly overview the contents of this section. We first introduce and discuss a
variant slice condition slicet which is stronger than slice. Then we discuss some concepts
that we need to prove the main theorem, including the uniform deformations (X,d.) of a

metric space (X, d) satisfying (Hyp) that were introduced by Bonk, Heinonen, and Koskela
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[BoHeKo]. The benefit of (X, d.) is that it is a uniform space provided that (X, k) is Gromov
hyperbolic. Using this, we prove that (X,d.) satisfies a slice™ condition, and then use a
conformal modulus argument to deduce that (X, d) also satisfies a slice™ condition. Finally,

we explicitly describe a large class of spaces on which kG-hyperbolicity implies slice™.

The main reason for proving the stronger slice™ condition is that it immediately implies
(if we take d to be the inner Euclidean metric) all of the slice-type conditions defined for
a variety of purposes in [BuKo2|, [BuSt1], and [BuSt2]. (The same is not true of our slice
condition.) Thus it follows from the results in this section that a bounded kG-hyperbolic
Euclidean domain satisfies all these slice-type conditions, and that slice™ and slice are equiv-
alent on inner spherical domains, or more generally on all length spaces that are minimally

nice and satisfy conditions (a) and (b) in the discussion after Theorem 0.1.

The slice™ condition involves the conformal modulus modg, defined in Section 7, a
concept that is central to our method of proof. Suppose (X, d, 1) is a minimally nice, upper
Q-regular metric space, and that 0 < ¢ < 1, C > 6. Given z,y € X and vy € I'(z, y), suppose
there exist pairwise disjoint open subsets {S;}™, of X, m > 0, with d; = diaq(S;) < oo,
and points {z;}7*, on v, such that z; € S;, with d;/C < d(z;) < Cd;, and z¢ = z, Ty, = .
We then write (z, y;y) € slice™ (C, ¢) if additionally (Slis) and (Sliz) both hold and, defining
E; = By(z;, cd(x;)), the following two conditions also hold:

(Slif) For 0 < i < m, and every A € ['(z, y), there exists a closed subpath ); of A such that
i € S; and diag(\;) > d;/C.

(SIiI) For 0 < i < m, the ball 6F; is contained in S;.

We say that (X, d, i) satisfies the (C, ¢)-slice™ condition if (z,;v) € slice™ (C, ¢) for every

x,y € X and every connecting geodesic segment «. Clearly the (C, c)-slice™ condition implies

a (C',0)-slice™ condition, where C' = C Vv ¢~ 1.

We shall actually prove the following stronger version of Theorem 4.1.
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Theorem 4.2. Suppose (X,d, p) is minimally nice, upper Q-regular, locally Q-regular, and
locally Q-Loewner. Suppose also that (X, d) is a length space, and that (X, k) is Gromov

hyperbolic and roughly starlike. Then (X, d) satisfies a slice™ condition, quantitatively.

We define one more slice-type condition. Specifically, we define the mod-slice(C, ¢) con-
dition to be identical to the slice’(C,c) condition, except that we replace (Slif) by the

following modulus variant:

(Sli5) For 0 < i < m, and every A € I'(z, y), there exists a closed subpath A; of A such that

A; € S; and modg (i, E;) > C~ L.
The meaning of the condition “(x,y;v) € mod-slice(C, ¢)” is as one would expect.

We suspect that mod-slice may not be implied by Gromov hyperbolicity under the hy-
potheses of Theorem 4.1, but it is nevertheless rather useful in our proof of Theorem 4.2.
It is clear that in a (global) Loewner space, (Slif") implies (Slis) quantitatively, and so
slicet implies mod-slice. The converse implication is true under weaker assumptions, as the

following lemma indicates.

Lemma 4.3. Suppose (X, d, ) is a minimally nice, upper Q-regular, metric measure space,
and that (z,y;~y) € mod-slice(C,c) for some z,y € X, v € I'(z,y). Then there exists C'

dependent only on C, ¢, Q, and C*(u, Q) such that (x,y;v) € slice™ (C’, ¢).

Proof. We need to prove (Slif"). If \; intersects 5E;, it suffices to appeal to (Slif). If, on
the other hand, ); is disjoint from 5FE;, we let £ = E;, F = )\;, and apply Lemma 7.3 to

(Slis). 0

The following lemma formulates the interdependence of the constants C' and c in the

mod-slice(C, ¢) condition as the constant c is allowed to shrink.
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Lemma 4.4. Suppose (X,d,p) is a minimally nice, locally (Q, K, do,)-Loewner, metric
measure space. Let 0 < ¢ < ¢ < 60/5. If (z,y;7y) € mod-slice(C,c) for some z,y € X,

v € I'(x,y), then (z,y;y) € mod-slice(C’, ), where

C' =39[C vy(6)~ L va(3e/d)7.

Proof. Except for (Slis), all the defining conditions for (C’,¢’)-mod-slice follow from those
for (C, c)-mod-slice. For (Sli5), we choose the same data {S;, d;, z;}™, for both choices of
constants. Fixing A € I'(z, y), we also choose the same subpaths \; unless otherwise stated.
Fix 0 < i < m, and write E; = By(z;,cd(z;)), E! = Ba(z;,c/d(z;)). Suppose first that \;
intersects 3E;. In view of (Slif), we may select a segment \; of )\; that connects 3FE; with
0(4E;) and lies inside 5E;. Since diag(A;) > cd(x;), the local Loewner property with E = E

and F = ()\) implies that
¥ (3¢/c’) < modg(E, F; B(ekd(x)) ) < modg(E, F),

as required (note that 4 is nonincreasing by definition).

Suppose instead that A is a path for which A\; N 3E; = (). We first prove this case under

the added assumption ¢’ < ¢/6. Then the data
(E, El, F, x, ’I“) = (Ez \ (5/6)EZ, E’Z{, )\i, Z;, Cd(ﬂ?z))
satisfy the assumptions of Lemma 7.4. This is clear except for the inequality diagz(E) <

3distg(E, E'), which follows from the estimates diag(E) < 2r and distq(E, E') > 2r/3.

Now, diag(F) > r/6. To see this, we simply choose an initial path n from z; to a point z’
with d(2’) < d(x;)/2, and extract a subpath v = n[u, v] that lies in E, with d(u,x;) = 5r/6

and d(v,z;) = r. Then diag(E) > diag(v) > r/6.
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It follows similarly that dia(E’) > ¢/d(x), and it is clear that disty(E, E’) < r. Thus

d(z;) ¢
By < 8% _ ©
Ad(E’ )— Cld(.’L'Z) CI

Using Lemma 7.4 and the estimate modg (A, E;) > C~', we deduce that modg(E', F) >

37 R[yY(3) AC~ L A9(c/c’)]. This gives the desired conclusion for such paths A with a constant
C'=3%[CVH(3)TT V(e/d) 7],

which is stronger than the desired conclusion.

It remains to prove it for this second type of path when ¢/ > ¢/6. Since the modulus in
(Sli5) increases as ¢’ increases, any C' that works for ¢’ = ¢/6 also works for ¢’ > ¢/6. But

for ¢ = ¢/6, and the type of path that we need to consider, we can take
C'=3%[CVy((3)~ Vy(6) ] =3°[CVy(6) 7T
The desired estimate thus follows for larger ¢'. O

Suppose C' > 1. Given points z,y € X, and a path v € I'(z,y), v : [0, L] — X, we say

that v is a C-uniform path for z,y if leng(y) < Cd(z,y) and

Vtelo,L]: dx (v(t)) > C™leng(vo,4) Alena(ylp,z1)]-

If we assume, as we may, that v is parametrized by arclength, the second condition above

takes the simpler form

Vie (0,L): dx (y(t)) > CHt A (L — 1)) (4.5)

We say that X is a C-uniform space if there is a C-uniform path for every pair of points

z,y € X. Tt is also useful to extend the concept to paths v : [0, L] — X parametrized by
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arclength. We say that such a path is a C-uniform path if L < Cd(v(0),v(L)) and (4.5)
holds. Equivalently, modulo a controlled change of constants, v is a uniform path if for some

constant C’, the path segments 7| ;_¢ are C’-uniform for all 0 < e < L/C".

We now show that uniform spaces satisfy a slicet condition; a similar but simpler proof
for a somewhat different slice condition in the Euclidean setting can be found in [BuKo2,

Theorem 3.2].

Theorem 4.6. Suppose (X, d) is a C-uniform space. Then it also satisfies a (C',c')-slice™
condition, for some C',c dependent only on C. Additionally, if z,y € X and v € I'(z,y) is

a geodesic segment, then (x,y;~) € slice™ (C", "), for some C",¢" dependent only on C.

Proof. Let us fix z,y € X. By symmetry, we may assume that d(y) < d(z). Let v = [z, y] be
a geodesic path. By [BoHeKo, Theorem 2.10], v is a C-uniform path for the pair z,y, with
Cy = C1(C) > 1. We assume, as we may, that v : [0,{] — X is parametrized by arclength
and that C; > C. Since we shall only use the fact that v is a Ci-uniform path, the first

conclusion in the theorem thus follows from the second which we now prove.

Let o = 5/4 and let ng be the least integer such that o™ > 3Cj; in particular, ng >
log,3 > 4. For z € {z,y}, define d-balls B = B(z,r?) for each non-negative integer i,

where each r? is a number chosen so that

9 otd(z)
10 25C

atd(z)
25C

<r;<

and

leng(yN9OB(z,r7)) = 0.

Such numbers r} exist; indeed, the finiteness of leng(+y) implies that the length of the part
of 7 lying on the sphere 0B4(z,7) = {w € X | d(w, z) = r}, is zero for almost every r > 0.
Note that

9a7 T 1007
10 — 2 — 9

(2

(4.7)
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We also define the associated annuli

A? =

(2

{Bg i=0,
B\ B? ,, ieN

We may assume that d(x,y) > d(z)/2C, since otherwise the single slice Sy = B(x, %)

N

suffices, where N is any integer such that o > 20. For each 7 > 1, there is a non-

negative integer ¢(4) such that B¥ intersects B;’ precisely when j > g(7). A little calculation

Y

shows that r7,.
g(i

y/18 2 o for i < 2, while r§ ) /rf < 1 for all sufficiently large i. Let
1o > 3 to be the least integer ¢ for which Tg(i)/rf < 5. Note that r4;,_1)—1 < d(z,y),

and so rg( < 25d(r,y)/18 and r{ ; < 5d(z,y)/18. Using (4.7) again, we see that

io—1)

ri < d(x,y)/2. Since we always have r{ + rg(i) > d(z,y), it follows that Tg(io) > d(z,y)/2,

and so rzg’(io)/rfo € (1,5). Clearly also g(ip) > 3. Let m = ig + g(io) and define the slices

A%a OSZSZOa
S, =4 AY ., io+2<i<m

Bg(io)-Hlo \ (Sio U Sio+2)v 1t =19+ 1.
We choose zy = z, £, =y, and pick z; € 7y so that d(z;,z) = (7 +77_,)/2 for 0 < i < iy,

and d(zp—s,y) = (r! +r{_;)/2 for 0 < i < g(ip) — 1.

Condition (Slif) is easy to deduce in all cases. As for (Sliz), we first combine (4.7) with
the definition of ng and the fact that ry(;,) > d(z,y)/2, to deduce that Bg(io) +n, Das radius
larger than Cid(z,y). It therefore fully contains +y, and (Sliz) is now easy to verify.

Let us consider (Sliz) for 1 < i < 4y. Define ¢; and t;L to be the values of ¢ for which
v(t) is the point of first entry into, and last exit from, S;, respectively. Uniformity ensures
that +(¢) cannot lie in By(x,r? ) for any t > C1(d(z) +rF ), sot; < Ci(d(z)+ri ) Sri.
Similarly, t;7 < 7, and so ¢t —t; < r?. But trivially t; > 7% ; and, since ri < d(z,y)/2,
we also have | — 7 > d(z,y)/2 2 r¥. Uniformity therefore ensures that d(vy(t)) 2 r? for all

t € [t; ,t]]. This lower bound together with the upper bound on ¢;” — ;" imply (Sliz).

(3
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Condition (Sli]) follows readily from the construction. The “middle slice” S;, ;1 deserves
separate attention. Here it is important that the succeeding slices are annuli AY, where
i < g(ig) — 2; the gap between this upper index and g(ig) ensures (Slij") in this case. In
each case, it is in fact clear that every path A € I'(x,y) contains a closed subpath A\; whose
diameter is comparable with the diameter of the slice; for instance if 7 # ig + 1,0, m and so
S; is an annulus, A; is any subpath that connects the inner spherical boundary of S; to its

outer spherical boundary. ]

We now pause to recall some recent results of Bonk, Heinonen, and Koskela [BoHeKo]
that we shall need. If (X,d) is a minimally nice metric space, and w € X is a base point,
we define the densities p(x) = exp(—ek(x,w)) and o(x) = pe(z)/d(z), for all € > 0. This

gives rise to the metric space! X, = (X, d.) with

de(x,y) = inf /ez drpz| = inf /oez dz 4.8
(z,9) LI 7p()\k | et ), (2) |dz| (4.8)
where |dgz| = |dz|/dx(z) denotes the quasihyperbolic distance element. According to [Bo-
HeKo], the resulting space is incomplete and so we can associate a boundary distance d.(-)

and a quasihyperbolic metric k. with d., as we did with d.

If 4 is a Borel measure on X, and ) > 1 is fixed, we also attach the Borel measure
dpe(z) = 0c(2)9dp(z) to (X,d.); the parameter () is omitted from this notation, since it
will always be given by a (local or global) Q-Loewner condition. The point of this definition
is that the Q-modulus of a path family is invariant under the identity map 7. : X — X, as is

immediate from the definition. We write X, as a shortcut for either (X, d.) and (X, d, pe)-

We now state Theorem 6.39 of [BoHeKo] as a lemma. In this lemma, the metric measure
space (X, d), p1,) is derived from the metric measure space (X, d, 1) via some density p. We
have already defined the metric d, in the introduction, and dpu, is simply p@ du. Also the

notation d,(z) stands for the d,-distance to the boundary of a point z € X.

1For consistency with Section 0, we would need to write do. instead of de. For ease of notation, however,
we insist that d. is henceforth defined as in (4.8).
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Lemma 4.9. Let (X,d, ) be a locally compact, incomplete, quasiconvez locally @Q-Loewner
space. Assume that p : X — (0,00) is a continuous function such that the following two

conditions hold for some C' > 1:

< f)(_zf‘; <O, wy€ Ba(zd(2)/2), z € X, (4.10)
and
So()d(z) < dy(@) < Cpla)d(z),  we X. (4.11)

Then (X, d,, 1) is a locally Q-Loewner space, quantitatively.

We actually need a stronger “more local” version of this lemma. Specifically, we want
a version with the same conclusion but with only a local version of the quasiconvexity
assumption, and with the ball in (4.10) replaced by a smaller ball B4(z,cd(z)) for some
fixed but arbitrary ¢ > 0. It is a routine matter to modify the proof in [BoHeKo| to prove

this stronger version of the lemma.

Our next lemma is a combination of Propositions 4.5 and 4.37 of [BoHeKo].

Lemma 4.12. Suppose (X, d) is minimally nice, and that (X, k) is both C-Gromov hyper-
bolic and K -roughly starlike, for some C > 1, K > 0. Then X. has diameter at most 2/e
and there are positive numbers C', e dependent only on C, K such that X, is C'-uniform for
all 0 < € < €y. Furthermore, there ezists ¢ = ¢(C, K) € (0,1) such that the quasihyperbolic

metrics k and k. satisfy the quasi-isometric condition

cek(x,y) < ke(x,y) < eek(z,y).

Using Theorem 4.6 and Lemma 4.12, we know that X, satisfies a slicet condition if €
is sufficiently small. We shall transport this condition over to X by means of a modulus

argument. For such an argument to work, we need to show that X, is a Loewner space.
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Lemma 4.13. Suppose that (X,d, p) is minimally nice, locally Q-regular, and locally Q-
Loewner, and that (X, k) is Gromov hyperbolic and roughly starlike. Then X, is Q-Loewner
for all 0 < € < €9, where €y depends quantitatively on the hypotheses, and the Loewner data

depend quantitatively on € and the hypotheses.

Proof. According to Theorem 6.4 of [BoHeKo|, a uniform and local Q-Loewner space is
Q-Loewner, quantitatively. But by Lemma 4.12, X, is uniform when ¢ is sufficiently small.
Thus it suffices to show that X, is locally )-Loewner when ¢ is small enough. The local
Loewner condition will in turn follow by applying the stronger version of Lemma 4.9 (defined
after the statement of that lemma) to the density p = .. We must therefore show that this

density satisfies the hypotheses of that lemma.

A regular Loewner space is quasiconvex, as proven in [HeKo, Theorem 3.13]. This
proof is readily modified to show that a locally regular, locally Loewner space is locally

C-quasiconvex, where C; > 1 is dependent only on the local regularity and Loewner data.

Let us fix an arbitrary point € X, and write B = By(z,d(z)/4C1). We next show that

kgyolz) < dc(lz&;)’ v,z € B (4.14)

Suppose y, z € B. Since d(y, z) < d(x)/2C1, it follows by quasiconvexity that there is a path
A € T'(y, z) such that leng(A) < C1d(y, z). Since A is of length at most d(x)/2, the set A must
be contained in B’ = B(x,d(x)/2). But d(z) > d(x)/2 on B’, so leng(A) < 2leng(\)/d(x),

which implies (4.14).

Assuming that € < ¢p < 1/e is small enough that Lemma 4.12 is valid, and taking y = z
in (4.14), we see that B C Bg(z,1/2) C By, (z,1/2). By (2.8), we see that d(z)/d(x) lies in
the interval (e~1/2,e!/2) when z € B. Using the triangle inequality we see that the density
function p. satisfies the estimate

pe(u)
e(v)

exp(—ek(u,v)) <

< exp(ek(u,v)), u,v € X.

hs
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Since € < 1/e, it follows that p.(2)/pc(z) € [e~1/(2¢) 1/ (29)] for all 2 € B. We deduce that

1
02

~—

6(y

e(2)

Q

< < é? Y,z € B. (4.15)

(&

Q

Since (X, k) is K-roughly starlike, Gromov hyperbolic, and proper, it follows from
Lemma 4.16 of [BoHeKo| that there are constants 0 < ¢y < C3, dependent only on e
and K, such that

C2p6($) S de(x) S 0205(37); VS X7

which can be rewritten as

ca0(2)d(z) < de(z) < Cao(z)d(z), z € X. (4.16)

We have now verified all of the hypotheses of the stronger version of Lemma 4.9, and so

the proof can be completed as indicated above. Il

By Theorem 4.6 and the uniformity of X, for small ¢ > 0, we already know that X,
satisfies a slice™ condition for appropriately chosen € > 0. The proof of Theorem 4.2, which
we now present, consists of showing that the slice™ condition on X, induces a slice condition
on X. In this proof, modg and mod, ¢ denote conformal modulus with respect to d and d.,

respectively.

Note. There are quite a few constants in this proof. It is convenient to denote each of
them as C or c,, possibly with some prime superscripts, where * is some suggestive symbol
(rather than a variable, as is the case elsewhere in this paper). For example, C. and C; are
completely unrelated constants, irrespective of whether or not the related variable e takes

on the value 1.

Proof of Theorem 4.2. We wish to give slice™ data for a fixed but arbitrary pair of points

z,y € X and k-geodesic [z,y]. Applying Lemmas 4.12 and 4.13, we choose ¢y > 0 so
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small that X, is both uniform and @)-Loewner for all 0 < ¢ < ¢;. Lemma, 4.12 also implies
that [z, y] is a (k¢; Cqa)-quasigeodesic; Cqe depends only on the Gromov hyperbolicity and

rough starlikeness constants, C'q and Cfg, respectively.

Fixing € = ¢y, Theorem 4.6 allows us to choose data {S;.,zi.}ir, associated with
the slice™ (C,, c) condition for 2,y € X, and the k.-quasigeodesic [z,y]. By the Loewner
assumption, the mod-slice(C., ¢.) condition also follows for some C! > 6, and ¢ = do/4,
where dj is the third local Loewner parameter. We then define the Cy-slice™ data for z,y € X
and the k-geodesic [z, y] to be {S;, z; }%,, where x; = 4., S; = Si;eNBg(x;, Cad(z;)); Cq > 6
and 0 < ¢g < 1 will be specified later. Consistent with the slicet definition, we also write

Ei;e = Fde (.I‘Z', Cede(.’L‘i)) and Ei = Fd(.’L‘i, cdd(a:i)).

By Lemma 4.12, there exists a constant ¢; > 1 such that diax([z,y] N Si;e) < ¢1. Ap-
pealing to (2.7), we see that there exists a constant C; such that [z,y] is contained in
Uiz, Ba(z;, C1d(z;)), where Cy = exp(c1) —1 > ¢;. Conditions (Slip) and (Slis) are now

clearly true for any choice of constant Cy > C;.

Using (2.7), Lemma 4.12, and (2.9) in that order, we see that there are constants

C2,¢,C2,¢q € (0,1), dependent only on €, C,, Cg, Cs, such that
6Ei;e D) Bk:s (.’EZ’, Cz,e) D) Bk(a:i, Cz) D) Ed(a:i, 6Cdd($z)) D) 6EZ'. (417)

This immediately implies (Sliy) for any choice of constant Cy > ¢, * (as well as (Sli}) for

any cq < cg, but this does not concern us).

It remains only to prove (Slif) for some choice of Cy. In a similar fashion to (4.17),
we can show that there exists a constant ¢z € (0,1), dependent on the same parameters
as cq, such that c3E;.. C E;. Assume therefore that a path A € I'(z,y) is given, and let

Aise be the subpath provided by (Slis). By Lemma 4.4, there exists some ¢’ € (0,1) such
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that mode g (Aise, Fi) > mode (i, c3Fise) > ¢. Using Lemma 7.3, we see that there exists
some C dependent only on allowed parameters such that \;.. must intersect B(x Cad(z;)).

We now finally declare Cq = C1 V ¢; Lv20,.

If A lies fully in Bg(x;, Cqd(z;)), then take A\; = A;.. By Lemma 4.4, we have
mod, g (Ai, E;) > mode’Q()\i,Cd_lEiZG) > ¢, for some ¢ > 0 dependent only the data in
the hypotheses. The identity map from (X,d) to (X,d.) is locally a dilation composed
with a controlled bilipschitz distortion and so it clearly satisfies (7.6). By Lemma 7.5, it
follows that modg (A;, E;) > ¢’ for some ¢”” > 0 dependent only the data in the hypotheses.

Condition (Slif") now follows as in Lemma 4.3.

Alternatively if A;.c does not lie fully in By(x;, Cqd(x;)), then we choose a subpath A; of
Aize which connects points v, w, where d(v,z;) = Cad(z;) and d(w,z;) = 2C2d(z;), and so

(Slif) is clearly true. O

We now give a more explicit description of a class of spaces for which kG-hyperbolicity

implies a slice condition.

Theorem 4.18. Suppose (Y,dy, py) is a complete, Q-regular, Q-Loewner metric measure
space, and that X C Y is a bounded open connected subset of Y. Let d denote the inner
metric (on X ) associated with dx = dy|xxx and let u be the restriction of py to X. If

(X,d) is kG-hyperbolic, then it satisfies a slice™ condition, quantitatively.

As we already indicated at the beginning of the previous section, there are many ex-
amples of metric measure spaces (Y, dy, py) that satisfy the assumptions of this theorem.
Examples include n-regular Riemannian manifolds of non-negative Ricci curvature, Carnot-
Carathéodory spaces such as the Heisenberg group; see [HeKo, Section 6]. Also noteworthy

are the exotic examples with non-integer dimension @) given by Bourdon and Pajot [BoPa]

and by Laakso [Lk].
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It is easily verified that, under the hypotheses of Theorem 4.18, upper regularity, local
regularity, and the local Loewner property are inherited by (X, dx, p1) and hence by (X, d, u).
Additionally, Y (and hence X) is locally compact because it is complete and @-regular. Thus,

in view of Theorem 4.1, the proof of Theorem 4.18 reduces to proving the following result.

Proposition 4.19. Let (X,d, ) be as in Theorem 4.18 and let M = sup,cx d(z). Then
there exists a number K, dependent quantitatively on the hypotheses, such that (X,k) is

K -roughly starlike with respect to any basepoint w for which d(w) > M/2.

Proof. By Theorem 3.1, it suffices to verify a QL(C) condition. Condition QL(C)(a) follows
readily from the second conclusion in Lemma 7.1 applied to the ambient space Y; note that
since v does not intercept 0X, it lies in X. Condition QL(C)(b) is almost as easy: we
make some tentative choice of y € A(z,r,4C) N 0X and again apply the second conclusion
in Lemma 7.1. Since we do not want v to wander outside X, we cut it off when it first
reaches a point on 0X, and redefine y to be that point. For QL(C)(c), we apply the first
conclusion in Lemma 7.1 with y € 0X, d(z,y) < 2d(z), and cut off a near minimal-length
connecting path when it first reaches a point 2’ with d(z') = d(z)/2. For all parts, we can

take C = 2C'y. Thus Proposition 4.19 follows from Theorem 3.1.

5. BAsiCc PROPERTIES OF GHS SPACES

We begin by introducing some extra notation that we shall use in these two sections.
We say that (X,d) is a C-GHS space, C > 1, if it is an incomplete locally compact length
space (and so minimally nice) and it satisfies both a C-Gehring-Hayman and a C-separation

condition. We denote by Az, any path from z to y such that leng(A; ,) is “close to” d(z, y).

Lemma 5.1. Suppose that (X, d) satisfies a C-Gehring-Hayman condition. Then whenever

z,y € X, and w lies on a geodesic [z,y|, we have

d(z,y) > 2d(z,w)/(C +1). (5.2)
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Proof. If the conclusion were false, then
C+1
teng ([, w]) > d(z,w) > “— d(zy)

and

leng([w,y]) > d(w, y) > d(z,w) — d(z,y) > T

d(z,y) -
Combining the two inequalities we have

Ct+1 C-1
2 2

leng([z, y]) = leng([z, w]) + lena([w, y]) > ( ) d(z,y) = Cd(z,y),

contradicting (GH). O

Lemma 5.3. Suppose that X is a C-GHS space and that x,y,z € X. Suppose further that

[a,b] C [x,z], [a’, V] C [2,y]. Then

leng([a, b]) < 2Cd; + C2(C + 1)d2/2,

leng([a’,b']) < C(C +5)d1/2 + C*(C + 1)d2/2,
where d(a,a’) vV d(b,b') = dy and d(a’) = ds.

Note. As mentioned in Section 1, the inclusions [a,b] C [z, z] and [a’, '] C [z, y] are meant
with the ordering convention coming from the parametrization of the geodesics by the real

interval, so that b € [a, z] and b’ € [d/, y].

Proof of Lemma 5.3. We choose a path Ay p € I'(b,b) such that leng(Ayp) < di + ¢,
where € > 0 is fixed but arbitrary. By (Seps), there exists a point a” € S([Iy,’z] N A, where
A=y, b+ M p+[b,2] € T(y,2). By (Sep1), we have d(a’,a"”) < Cdy. If a” € [y, b'] then
by (GH)

leng([a’,b]) < leng([a’, a”]) < C?dy,
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which proves the second inequality in our claim. Using (GH) and (5.2), it follows that

leng([a,b]) < Cd(a,b) < C(d(a,a’) +d(a’,b") + d(b',b))

< Cldy + C(C +1)d2/2 + di],

as required by the first inequality.

If instead a” € Ay p, then

d(a,b) <d(a,a’) +d(a’,a") +d(a",b) < di +Cds + d1 +¢.

and

d(a’, V') < d(d,a") +d(a", V') < Cds + dy + €.

Consequently, leng([a, b]) < 2Cd; + C?dy + Ce and leng([a’, b']) < Cdy + C%dy + Ce. Letting

€ tend to 0, the desired inequality follows.

Finally, if a” € [b, 2], then d(a,a”) < d(a,a’)+d(a’,a") < d1+ Cda, from which it follows
that

leng([a, b]) < leng([a,a”]) < C(d1 + Cds).

Furthermore, using (5.2) again we see that d(a,b) < (C'+ 1)(dy + Cd3)/2. By (GH) this

implies that

d(a',v') < d(a’,a) +d(a,b) +d(b,b') < (C+5)d1/2+ C(C + 1)ds/2

and so 2leng([a’,b']) < C(C + 5)dy + C*(C + 1)da. O

6. GHS IMPLIES GROMOV HYPERBOLICITY

In this section, we aim to prove (Hyp) for GHS spaces. Our main theorem is as follows.
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Theorem 6.1. Every C-GHS space (X,d) is K-kG-hyperbolic, where K = 120C11.

The constant K is given for the convenience of the reader, but it is not optimal even for
our proof (where we need K to be larger than several polynomials in C of degree at most

11, so for simplicity we replaced all lower powers of C by C'! before taking a maximum).

We assume that z,y,z € X, w € [z,y], and write v = [z, 2] + [2,y], 4 = [z, 2] U [z, y].

Our purpose is to prove that w is at a bounded quasihyperbolic distance from A.

Before starting the proof let us fix some notational conventions. We push the ordering of
the real line forward to A viay and, forz € A, S C A, we writeu < S (oru > S) ifu < v (or
u > v, respectively) for all v € S. For ) # S C A, sup S and inf S are defined in the obvious
way; additionally, we define sup@) = = and inf® = y. For any u € A, S, will mean Sq[f’z]
or Sq[f’y], depending on whether u < z or u > z. We give the data (z,y, 2, [z, y], [, 2], [y, 2])

the collective name D.

Before we tackle the full strength version of Theorem 6.1, we shall prove a couple of
weaker versions as lemmas. Our first (rather lengthy) lemma concerns the case when one of

the sides of the geodesic triangle is very short.

Lemma 6.2. Let (X,d) be a C-GHS space, z,y,z € X, w € [z,y] and assume that
leng([z,y]) < d(w)/2C(C + 1)2. Then there exists ug € [z, 2] such that k(w,ug) < 4C*(C +

1)3.

Proof. We write dg = d(w)/2C(C + 1)2, and assume for the sake of contradiction that
leng([z,y]) < do and k(w, [z, 2]) > 4C*(C + 1)3. In particular, k(z,y) > log2, so we can

apply (Seps) for the pair z,y. We start with the following:
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Claim.

Let u € [z, 2], u' € [z, w]. Then
d(u,v’) < C(C+1)do = (Sy N [z,y]) C [v,y] (6.3)
Let u € [z, 2], u' € [w,y]. Then

d(u,u') < C(C+ 1)dy = (SuwNlz,y]) C [z,v] (6.4)

Proof. Suppose by contradiction that d(u,u') < C(C + 1)dy for some u € [z, z] and v’ €

[z, w], but that u’ € (v,y] for some v € Sy, N[z, y]. By (Seps) we can write
k(v ,w) < k(v,w) <log(C+1).

By (2.8), the above inequality implies that d(u') > d(w)/(C + 1). This, together with

d(w)

d(u,u') < C(C + 1)do = AC+T)

and the length space assumption imply that k(u,u’) <log2. This gives
k(u,w) < log(2C + 2) < 4C*(C +1)3
a contradiction to the added assumption. The second implication is proven similarly. U
Now we continue the proof of Lemma 6.2. Let
p =sup{u € [z, 2] | d(u,u’) < C(C + 1)dy for some u’ € [z, w]},

and let p’ € [z, w] be such that d(p,p") < C(C + 1)dy. We choose A, ,, € T'(p’, p) such that
leng(Ap p) < C(C + 2)dp, and we recall the subpath notation 7[u,v] defined in Section 1.
By (6.3), we see that S, N [z,y] C [p/,y], and so by applying (Sepz) to the path [z,p'] +

Ap'.p + Y[, y], we deduce that

lend(’y[p, y]) > C_ld(w) — C(C + 2)d0 > d() .
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This implies that p € [z, 2).

Next let
q =inf{u € [p, 2] | d(u,u') < (C(C + 1) — 1)dy for some v’ € [w,y] U [y, 2]}
Then q € [p, 2], and there exists ¢’ € [w, y]U |y, z] such that we have the inequality d(q, ¢') <

(C(C +1) — 1)do.

Consequently, there exists ¢” € [w,y] such that d(q,q¢") < (C? + C)dy. We choose

Ag.qr € T(g,¢") such that leng(Ag ) < (C? + C)dp.

By (6.3) and (6.4), we see that (S, N [z,y]) C [P, ¢"], and so by applying (Sepz) to the

path

['7’.7pl] + )‘p',p + [p7 Q] + )‘474” + [qlla y];

we deduce that leng(1,,) > C~1d(w) —2C(C+1)dy = d(w)/C(C +1), where I, = {u € S, |

p<u<q}.

Let us fix u € I,,. By the extremality of p and ¢ we have

d(u, [y, 2] U [w,y]) > (C(C + 1) = 1)do,

and
d(u, [z,w]) > C(C + 1)dy .
Since S, surely intersects [z, y] U [y, z], by (Sep) we must have d(u) > Cdp.

Since k(w, [z, 2]) > 4C*(C + 1) and leng([u, w]) < Cd(u, w) < C?d(w), there must be a

point 7 € [w, u] with

d(r) < d(w)/4C*(C +1)% = dy/20(C + 1) .
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There exist points 1’ € [w,] U [z,u] and " € [w,y] U [y, 2] U [z, u] which are also in SF***/,

and so strictly within a distance dop/(C + 1) of each other.

Suppose first that ' € [w,z]. Since d(r',r"”) < dy/(C + 1) the maximality of p implies
that we cannot have r” € [u, z] U [z, y]. We shall now show that 7" € [w,y] leads also to a
contradiction. To do so observe first that d(r') V d(r") < (C + 1)d(r) < dp/2C. Assuming

r" € [w,y] leads to

leng([r',7"]) = leng([r', w]) + leng([w, 7"'])

> 2[d(w) — (d(r") v d(r"))] > 2[d(w) — ;—g] > d(w) > Cd(r',r"),

which contradicts (GH).

Thus we must have ' € [z,u]. If " € [u, 2], then
leng([r',7"]) > d(u) — d(r') > Cdy — do/2C > Cd(r',r"),

which contradicts again (GH).

If " € [z,y], then
d(r',z) <d(r',r") + do < (C+2)do/(C+1) .
On the other hand by the minimality of ¢ we have leng([r’,u]) > Cdy — do/(2C) and
leng([u, z]) > leng([q, 2]) > d(q,2) > [C(C + 1) — 1]d,.
Thus

tena([, ) > [C(C +2) — 1~ 1/(2C)|dy > [C(C +2)/(C + 1)}do
> Cld(r',r") + do]

> Cd(r', 2),
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again contradicting (GH).

do
C+1

In conclusion we must have r” € [y, w]. Since d(r',7") < and 7' < u < ¢, the
minimality of ¢ implies that ' < p. We shall now apply the first estimate from Lemma 5.3

with the choice of data
(a,a’,b, 0 dy,ds) = (v, 7", p',p,d(v",7") vV d(p', p),d(r")) .

Since d(r',r") VvV d(p',p) < C(C + 1)dy and d(r') < dy/(2C), we obtain

C?*(C+1)
2

dy = [2C® 4 (9/4)C? + C/4]dy .

leng([7",p']) = leng([a, b)) < 2Cd; +

C(C+1)
1

do
< 2C*(C +1)dy +
This gives a contradiction, since
leng([r",p']) > leng([r",w]) > d(w) — d(r") > d(w) — do/2C =
= [2C3% +4C? +2C —1/(2C)]do

The proof of the lemma is completed. Il

For 0 < 1 < ¢, we define an (e, n)-shortcut set for our data D to be a collection of points
P = {pm: Py s mo € N, that satisfy the following five properties:

(i) po € [z,w], py € A, Pm, € A, ), € [w,yl;

(ii) pm, P, €7, for all 0 < m < my;

)
)
(iii) pl,_1 < pm <pl, < pmy1 for all 0 < m < my;
(iv) Yomeo A(Pm; ) < €

)

(V d(pmapm) <mn, for all 0 < m < my.

Given such a set P, we write Ap = U2, (ph,_1:Pm), Ap = stevl Ap, and A% =
skevl n ([, po] U [P)ny> ¥]). We use shortcut sets to travel from z to y by connecting bits of
geodesics with shortcut paths from p,, to pl,. If € is small, we can then use (Sepy) to get a

lower bound for len;(A%); in particular A’ is non-empty in that case. In fact, we have the

following technical lemma.
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Lemma 6.5. Suppose that (X,d) is a C-GHS space, z,y,z € X, w € [z,y] and that P
is an (Lo, Lo/2)-shortcut set for the data D, where Ly = 2d(w)/3C. Suppose also that

k(u,w) > 1og(3C + 3) for all u € A. Then A% =0 and leng(Ap) > d(w)/3C > 0.

Proof. By hypothesis, there are paths A, € I'(py,pl,) such that >-7° leng(Ay,) < Lo. We

m=0

define the joined path

Ap = [, 0] + Ao+ D ([Phu1:Pm] + Am) + [Py 4.
m=1

Applying (Seps) to Ap, we see that leng(A’%s) + leng(A%) > C~1d(w) — Lo = Lo/2 > 0.

To show that A% = () assume by contradiction that there is a point p € [z, po] such that

[z,y]

p € Sy 7. Using (Seps), we see that

k(po, w) < k(p,w) < log(C + 1),

which implies in particular that d(po) > d(w)/(C + 1). Because d(po,p;) < d(w)/3C, it
follows from the length space assumption that k(pg, py) < log3. By the triangle inequality,

we get k(pp, w) <log3(C + 1), contradicting the hypothesis.

Similarly, we must have Slevln [Pingsy] = 0. Thus A% = (0, and consequently leng(Ap) >

Lo/2, as desired. O

We now come to our main lemma concerning shortcut sets. We are really interested in
applying this lemma only in the cases my = 1 and my = 2, but stating it for arbitrary
myg allows us to write down a proof simultaneously for both cases. Note that, since we are
aiming to prove Gromov hyperbolicity, the assumption k(u, w) > log(3C + 3) does not make

the lemma any less useful.



46 ZOLTAN M. BALOGH AND STEPHEN M. BUCKLEY

Lemma 6.6. Suppose that (X,d) is a C-GHS space, and z,y,z € X, w € [z,y]. Let
e = d(w)/3C and and n = ¢/C1, where C; = (C3 + 3C? + 6C + 6)/2. Suppose that P is
an (€,n)-shortcut set for the data D, and k(u,w) > log(3C + 3) for all u € A. Then there

exists a point u € Ay such that d(u,w) < Cd(w) and d(u) > n/C.

Proof. By the previous lemma the set A% is not empty. Since A% is a subset of S, for
u € Ap we have d(u,w) < Cd(w). For the purpose of contradiction let us assume that

d(u) < n/C for all u € Alp.

We first wish to modify P to define a new shortcut set ) which avoids as much of the

initial and final parts of v as possible. Let
a" =sup ({pptU{uec Ap | S, Nz, w] #0}) € A% .

We define a_ by the rule: a_ = pg if a’_ = pj,, and otherwise let a_ be any point on [z, w]
for which d(a’_,a_) < n; this last choice is possible because d(u,u’) < Cd(u) < n whenever

u € Ap, u' € S, N[z, w]. Next we set
at = inf ({pme} U{u € Ap [u>a_, Sy N[w,y] #0}) € A .

We also define a/, by the rule o/, = p}, if ay = pn,, and otherwise a/, is any point on [w, y]
for which d(a/,,a4) < n; this last choice is possible for similar reasons to those for a_. Note

that d(a’) < n/C if a’_ # py, and that d(as) < n/C if a4 # pm,- In this case we have

d(a—,a’) < Cd(a_) <n, d(ay,a’) < Cd(ay) <7 .

We now define the new shortcut set @ = {gm, gy, } o by replacing po, Py, Pm,, and py,,
by a_, a’_, a4, and a/_, respectively, and also discarding any pairs py,,p;, which are not

elements of [a’_,a] (i.e. we keep only those pairs (p,, p,) for which o’ < p,,, <pl. <a;).
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Now @ is an (e + 27, n)-shortcut set and, since € + 2n < 2¢, Lemma 6.5 implies that
leng(Ay) > € > 0. Note also that Ay C Ap. By symmetry of z and y, we may assume
that Ag N[z, 2] is non-empty. Applying symmetry may seem dangerous since a_ satisfies a
stronger extremality property than ay, but the only fact following from the extremality of
these points that we use below is that S, cannot intersect [z,y] if o’ < u < a4, and this

can safely be deduced whether or not we swap the roles of x and y.

Letting

Ty ={u€[al,z] [ d(u) < (C+1)n/C, Fu' € [z,y] : d(u,u’) <n,d(w)) < (C+1)n/C},

we claim that Aj N [z,2] C T1. First observe that for u € A \ {a_} we have u > al
which implies that S, N [z, w] = (). Similarly, for u € Aj \ {a4} we have u < a; and so
Sy N [w,y] = 0. We conclude that S, N [z,y] C {a_,a} for all u € Ag. Thus by applying
(Sepo) for the slice Sy, u € AgN|z, 2], to the path [z, y]+[y, z], we get a point v’ € S,N[z, y],

and our claim readily follows. Defining a = inf 77, it follows that a < Ab.

Note also that d(a) < (C + 1)n/C, and there exists a’ € [z,y] with d(a,a’) < n and

d(a") < (C + 1)n/C. We distinguish two cases. Either o’ € Ag, or ¢, < o’ < ¢, for some

/

1 <m < my. In the first case, we define a” = a/, and in the second case we let a” = ¢,.

We form a new shortcut set R from @ by inserting the pair a,a” and discarding any

pairs in @) that are contained in [a, a”]. We claim that d(a,a”) < e— 27.

The claim is easy to see if a’/ = a’ since then

d(a,a”) = d(a,a’) <n < e—2n

by the choice of the magnitude of € and n from the statement.
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If a = ¢

m Wwe consider two cases: g > z and ¢, < z. In the first case the points

z < qm < a' < g, =a" are situated on [z, y]. By applying (GH), we obtain
A(d, 0") < leng([a’, a")) < lena(lgm, d)) < O,
which implies that

d(a,a"”) < d(a,a') +d(a’,a") <n+Cn<e-2n.

Consider the second case g, < z. Since a < Ay, and Ay N [z, 2] is a non-empty subset
of [z, ¢y], we must have a < ¢,,. Thus we may apply the second conclusion of Lemma 5.3

with data

(0,, ala ba bla d17 d2) = (0,, a'l7 qm, Q;n,a n, (C + 1)77/0)

to deduce that

d(a,a"”) = d(a,q.) < d(a,a’) +leng([a’,¢,]) <yl +C(C +5)/24+C(C +1)?/2]
=n[C®+3C%+6C +2]/2<e—2n
Our claim follows. Since @ is an (e+ 27, n) shortcut set, it follows that R is a (2¢, €)-shortcut
set. Thus, using Lemma 6.5, leng(A%) > € > 0.

Since a < A’Q and A% C Aj, we have a < A%. On the other hand,
Ap Nz, z] C ANz, 2] C (d’_,a).

Thus AR N [z,2z] = 0 and so AR C ArN[z,y] C (a”,ay). We choose ' € A, such that

0 <leng(AR N (¥, ay)) <n.

Let A, o be a path from a_ to a’ such that leng(A, o ) < 2. By (Seps), there

must be some point b in Sl[f,”z] that also lies on the path [y,a_] + A, o + [a—,z]. But
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we cannot have b € [y, a_] by the extremality of a’_ and a,, so suppose b € A,_ . . Since
d(a_,b") < d(a_,b)+ d(b,b’) < 3n, we can define a new shortcut set U from @ by inserting
the initial pair a_,b" and discarding all other pairs except those that lie in [b',y] U {a/ }.
Since @ is an (e + 27, n)-shortcut set, it follows that U is an (e 4 57, n)-shortcut set, and so
a (2¢, €)-shortcut set. Thus, as usual, leng(A;;) > € > 0. Since the collection of pairs in U
other than a_, b’ coincide with the collection of pairs u,u’ in R for which u > b, it is clear

that A; = AR N (b, a4). Thus leng(Ay) < n < ¢, giving us a contradiction.

Finally, we consider the case where b € (a’_, z]. By minimality of a, we must have b > a.
Since b’ € Ay C Ay, we have d(b') < n/C, d(b,b") <n, and d(b) < (C+1)n/C. Thus b > a.

Now d(a,a’) vV d(b,b') <n, d(a") < (C+1)n/C, and
leng([a’, b']) > leng([a”, b']) > leng(AR N (a”,b")) > €—n,
which contradicts Lemma 5.3, so we are done. O
We are now ready to tackle Theorem 6.1.
Proof of Theorem 6.1. We set dy = 2C3d(w)/K and let e’ = sup T}, where
Ty ={z}U{ue Al|du) <dy, v €z,w]: d(u,u’) <dy and d(u') < dp}.

If e/ =z, let e = x also. If €’ # z, then d(e’) < dy, and we may choose e € [z, w] and a path
Ae,er € I'(e, €') such that d(e, ') < do, d(e) < do, and leng(Acer) < 2dp. If € > z then, using

the fact that 4C°(C + 1)? < K, it follows that
leng([e, €']) < Cd(e, ') < d(w)/2C(C + 1)?,
and we can apply Lemma 6.2 to the triangle ee’y. We deduce that

k(w, A) < k(w,[e/,y]) <4C*(C +1)® < K,
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and the theorem follows. We may therefore assume that e’ < z.

Next we let f = inf T5, where
Ty ={z}U{uelz,2]|du) <dy, I €[2,y]: d(u,u’) < dy and d(u') < dp}.

If f =z, let f’' = z. Otherwise, d(f) < dp and we find f’ € [z, y] such that d(f, f’) < dp and

d(f") < do.

There are two cases to consider. Suppose first that f < ¢’ (and so in particular, f # z
and ¢ # z). In this case we argue again using Lemma 6.2 to a smaller geodesic triangle
containing w in one of its sides. To do that let us assume first that leng([e’, f]) > C?dp.

Then (GH) implies that

d([¢/, 2], f) > lenq([€, f])/C > Cd.

Since d(f) < do we have S¥"*) C By(f, Cdo) which implies that [¢/,z] N S = 0.
Applying (Sepz) to the path [z, e] + A o + [€/, 2], we deduce that there exists u € ng’z] N

([, €]+ Aeer). Let f/" =wuif u € [z, €], and otherwise let f”/ = e. In the first case, note that
d(fllafl) < d(fllaf) +d(f7fl) S Cd0+d0
In the second case we have

d(f", ') <leng(Me,er) + Cdo + do < (C + 3)dp -

Alternatively assume that leng([e¢/, f]) < C%dp (recall still f < €’). Let f” = e and note

that

d(f", f) <d(f",e)+de, f)+d(f, f) < do[l+ C?* +1].
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By Gehring-Hayman, we conclude in either case that w lies in a triangle f” f’y with the
property that leng([f’, f]) < (C3 + 3C)dy. Since (C? + 3C)dy < d(w)/2C(C + 1)2, the

result then follows by Lemma, 6.2.
We may now turn to the more difficult situation when f > ¢e’.

Next we define g = inf T3, where
Ts={ytU{ue A|d(u) <dy, I € [w,y]: d(u,u’) < dy and d(u') < dp}.

If g =y, let ¢’ = y also. If g # y, then d(g) < dy, and we may choose ¢’ € [w,y] and a path
Ag.qr € T'(g,9") such that d(g,q’) < do, d(¢9’) < do, and leng(Ag o) < 2dy. We also define

h = sup T4, where
Ty={z}U{u€|z,y]|du) <dy, Iu' €[zr,2]: dlu,u’) < dy and d(u') < dp}.

As before, we may assume without loss of generality that h < g, and so f' < h <g.

We now assume for the sake of contradiction that k(w, A) > K. Letting P = {am,a}, |
m = 0,1,2}, where (ag,ag, a1,a},a2,a5) = (e,€', f,f',9,9"), we see that P is an (e,7)-
shortcut set for € = d(w)/3C, n = d(w)/3CCy > dy. Note that we are including the possi-
bility of degenerate shortcut sets such as (e, €', f, f',9,9") = (z,2,2,2,y,y). By Lemma 6.6,
there exists v € A'» = (€¢/, f) U (f', g) such that d(v,w) < Cd(w) and d(v) > d(w)/3C?*C; =

Kd()/GCSCl > 5C3d0/2

Consider first the case v € (¢/, f). Since k(v,w) > K and leng([v,w]) < C?d(w), it
follows that there exists a point p € [v, w] such that d(p) < C2d(w)/K = do/2C. Now S}
must intersect [w, z]U [z, v] at some point p’ and [v, z] U [z, y] U [y, w]| at some point p’; note
that d(p') v d(p") vV d(p',p") < do. If p' € [z, w], we cannot choose the point p” with the

desired properties. In fact, p” € [v, 2] contradicts the maximality of e/, while if p” € [z, y],
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then applying Lemma 6.2 to the triangle p'p”y contradicts the lower bound for k(w, A).

Finally if p” € [w, y], then

leng([p', p"]) = d(w) — d(p') > Cdo > Cd(p',p"),

contradicting (GH).

Consequently, we must have p’ € [x,v]. Now p” ¢ [y, w] since then applying Lemma 6.2
to the triangle p’p’z contradicts the lower bound for k(w, A), and p” ¢ [v, 2] since then
len([p/, p"]) > d(v) —d(p’) > Cd(p',p"). Finally if p” € [z, y], then we get a contradiction to

the minimality of f.

If instead v € (f',g), we find, as before, points p’ € [w,y| U [y,v] and p" € [v,2] U
[z, 2] U [z, w] such that d(p') V d(p") V d(p',p") < do. All possibilities are then ruled out as
before with the exception that there is no extremality of f’ to rule out the possibility that
p' € [y,v], p” € [z, z]. However, the minimality of f ensures that p” > f. We can therefore

apply Lemma 5.3 to the data

(U,, Cl,, ba bl7 d17 d2) = (fla f7 pl7p”7 d07 dO)

(with the roles of z,y, z switched among themselves) to deduce that

leng([f',p']) < (2C + C*(C 4+ 1)/2)dp < 3C3dy ,

which contradicts the fact that

leng([f',p']) > 2d(v) — d(p') — d(f') > 3C3d, .
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7. APPENDIX: BACKGROUND ON LOEWNER SPACES

In this appendix, we define some basic concepts related to the modulus, and develop

some properties of Loewner spaces.

First a metric measure space (X,d, 1) is simply a metric space with a Borel measure
p attached. If additionally (X,d) is rectifiably connected, we define A(T"), the set of I'-
admissable weights for a family I" of paths in X, to be the set of all Borel functions p : X —
[0, 0] such that f7 p|dz| > 1 for each path v € I'. For Q > 1, we then define the Q-modulus

of " as

modp () = inf / Q dyu.
(D) N

When § C X is a domain in X and E, F are two disjoint compacta in S we denote by
['(E, F; S) the family of paths contained in S that begin in E and terminate in F. In this
case we define A(E,F;S) = AI'(E, F;S)) and modg(E, F;S) = modg(I'(E, F;S)); we

omit S in this notation when S = X. We define I'(E, F'; S) = 0o if E and F overlap.

Suppose (X, d, p) is a metric measure space. Given @ > 1, we say that X is Q-reqular if

there exists a constant C > 0 such that
VzeX, 0<r<diag(X): C~ 19 < pu(By(z,r)) < Cr9.

If only the upper bound above holds, we say that X is upper Q-regular. We denote the
smallest such constant C' for which the (upper) Q-regularity condition holds by C(u, @) (or
C* (i, Q), respectively). We define local Q-regularity in a similar fashion except that the

upper and lower bounds for u(By(z,r)) apply only when r < d(z)/2.

Recall that

disty(E, F)
Ay(E,F) = .
alB, F) diag(E) A diag(F)
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Writing PC(S) for the set of pairs of disjoint non-degenerate continua in S C X, a metric

measure space (X, d, ) is said to be Q-Loewner if for all ¢ > 0,
#(t) = inf{modg(E, F) : (E,F) e PC(X), Aq(E,F) <t} >0.

We say that (X,d, p) is locally Q-Loewner, or locally (Q, K, do,)-Loewner, if K > 1, §y €

(0,571, and for all ¢ > 0,

¥ (t) = inf{ modg (E, F; B(kéd(x))) :

(E,F) € PC(B(z,0d(x))), Ag(E,F)<t,z € X,0< I <} >0

A typical example of a locally regular, locally Loewner space is an open set in a regular

Loewner space; see [BoHeKo, Theorem 6.47].

The following lemma, in the case ' = /2, is a restatement of Remark 3.19 in [HeKo];
our more general statement follows simply by chaining together paths generated by this

special case.

Lemma 7.1. Suppose (Y,d, ) is a bounded, Q-regular, Q-Loewner metric measure space.
Then there exists a number Cy > 1, dependent quantitatively on the hypotheses, such that
ifx,y €Y, x # vy, then l(z,y) < Cod(x,y). Moreover if 0 < r' < r,z €Y, and x,y €
By(z,7) \ Ba(z,r"), then there exists a path v € T'(z,y; Ba(z, Cor) \ Ba(z,7'/Co)) such that

leng(y) < Cod(z, y).

Remark 7.2. The two concluded properties of (Y,d) in Lemma 7.1 are inherited by (Y, d).
This can be seen using a chaining argument in the case of both properties. Assume z,y € Y
are distinct. A path of length comparable to d(z,%) is constructed by chaining together

paths between the points

e 413 Tny - -5 L1, Y1y - - - Yns Ynt 1, - - -
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where (z,), (yn) are sequences of points in Y that converge at a geometric rate to z, y,
respectively. The second property is handled in a similar fashion, except that one should
choose a point z; € Y, d(z1,2) < r'/3Cy, and appropriate points z,,y, € Bq(z1,37/2) \

By(z,21'/3), n € N, in order to construct a path in v € T'(x, y; By(z,2Cor) \ By(z, ' /3C))).

The next lemma is of a well-known type, but for completeness we sketch the proof.

Lemma 7.3. Suppose (X,d, i) is a minimally nice, upper Q-regular, metric measure space,

and let Cy = 222710 (1, Q). Then
modg(E, F) < Cy(logy Ag(E, F))~9T
whenever E,F C X are disjoint non-degenerate compacta with Ag(E, F) > 2.

Proof. Without loss of generality, we assume that r = diag(F) < diag(F). Let us fix x € E
and write R = distq(E, F), so that Ay(E,F) = R/r > 2. Let N = |log,(R/r)], and define

a density

) { 1/(2°-IN7r), 2z € By(z,2%r) \ Ba(x,2i71r), 1 <i < N,
plz) =

0, otherwise.

It is a rather routine task to verify that p is an admissible weight and that for this choice of

p we have the inequality
| #dn < Co tog, Aa(E. ).
X
This estimate concludes the proof. ]

The next result is a rather technical modulus comparison lemma used only in the proof
of Lemma 4.4, where E is an annulus, E’ is a ball concentric with E that lies inside F, and

F is far from FE.
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Lemma 7.4. Let (X, d, 1) be a minimally nice, locally (Q, k, 09, ¥)-Loewner, metric measure
space, let E, E', F be three continua in X with 0 < diag(E) < 3disty(E, E"). Suppose further
that E'" lies in a component G of X \ E, and that there exists some point x € X, and a

number r € (0,0d(x)/4] such that GU E C By(x,r), and F C X \ By(,3r). Then

modg (E’, F) > 379[(3) Amodg (E, F) A h(Aq(E, E'))].

Proof. Suppose [y p? < 379[modg(E, F) A (Aq(E, E'))] for some p € A(E',F). Using
the local Loewner condition, we have (Aq4(E, E’)) < modg(E, E’), and so [4(3p)¢ <
modg (E, F) A modg(E, E'). Thus 3p ¢ A(E,F)U A(E,E'"), and consequently there exist

paths A1 € I'(F, E) and Ay € I'(E, E') such that [, pldz| <1/3,i=1,2.

We may assume that Ay C G, and that the domains of both A; and Ay are [0,1]. Given a
path 7 from A;(¢1) to Aa(t2), t1,t2 € [0,1], we define a new path v = Ay[[g4,] + 7 + A2l ,1-
Since p € A(E', F) we have fvp > 1 which implies that fnp |dz| > 1—2/3 =1/3. Because

n € I'(A1, A2) was an arbitrary path we obtain that 3p € A(A1, Ag).

Let A3 be a segment of A\; which begins on dBy(z,3r) and ends in E. Then Ay and A3
are continua in By(zx, dpd(x)), with diag(Ae) > disty(E, E') > diag(F)/3, diag(A3) > 2r >

diag E, and distg(Ag, A3) < diag(F). Thus

dlad(E)
Ag( Ao, N3) < ———~2 =
d( 2 3) = dlad(E)/3 37

and so

modg (Az, Ag) > modg (A2, As; B(z, dokd(z))) > 9(3).

But 3p € A(A1, A2) C A(Xs, A2), and so [y p@ > 3794(3). The desired modulus estimate

follows. O
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The following “metric quasiconformality implies geometric quasiconformality” type result

of Tyson [Ty, Theorem 6.4] is needed in Section 4. It uses the notation

Ly(w,r) = sup{d(f(2), f(y)) : y € B(z,7)},

li(z,r) =inf{d(f(x), f(2)): z€ X\ B(z,7)}.

Lemma 7.5. Let X and Y be locally compact metric measure spaces which are locally Q-
regular for some Q > 1. Let f : X — Y be a homeomorphism and let H < oo andt > 1 be
constants such that

L
Vee X liminfM

< H. )
r—0  lg(z,r) ~ (7.6)

Then there exists K dependent only int, H, Q, and the QQ-reqularity constants of X and'Y
such that

modg T < K modg /T,

for every curve family T in X.
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