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Abstract. We investigate geometric conditions related to Hölder imbeddings, and show, among
other things, that the only bounded Euclidean domains of the form U × V that are quasiconformally

equivalent to inner uniform domains are inner uniform domains.

0. Introduction

Two Euclidean domains are K-quasiconformally equivalent if there is a K-quasiconformal
mapping from one onto the other. Determining what domains are quasiconformally equivalent
to a ball or other nice Euclidean domain is an important and open problem when n ≥ 3. Some
partial results are known, notably those of Gehring and Väisälä [GV], [V4]; see also [R]. In [V4],
Väisalä classifies cylinders in R3 that are quasiconformally equivalent to a ball.

Inner uniform domains, as defined by Väisälä [V5], satisfy a uniformity condition with respect
to the inner Euclidean metric. These domains form a class intermediate between uniform and
John domains and, in particular, they include all Lipschitz domains; see Section 1 for definitions.
We prove the following theorem which indicates that this class is well suited to the study of
quasiconformal equivalence.

Theorem 0.1. Suppose that Ω = U × V ⊂ Rn × Rm is a bounded domain, n, m ∈ N. The
following are equivalent:

(i) Ω is quasiconformally equivalent to an inner uniform domain;
(ii) Ω is an inner uniform domain;
(iii) Both U and V are inner uniform domains.

In particular, since balls are inner uniform, a bounded product domain Ω = U × V must be
inner uniform if it is quasiconformally equivalent to a ball (this criterion alone, however, is not
sufficient as we explain in Remark 4.11).

The following two theorems show that among product domains, inner uniformity is closely
connected with the concept of broadness, as introduced by Väisälä [V4]; the inner 0-wSlice+

condition, defined in Section 2, is a technical assumption satisfied in particular by inner uniform
domains and their quasiconformal images.
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Theorem 0.2. If Ω = U × V ⊂ Rn × Rm, n, m ∈ N, is a bounded inner 0-wSlice+ domain, then
Ω is broad if and only if it is inner uniform.

Theorem 0.3. Suppose that Ω = U ×V ⊂ Rn ×Rm is bounded, and quasiconformally equivalent
to a broad inner 0-wSlice+ domain G. Then Ω is inner uniform.

Obviously, one can remove every instance of the word “inner” from the above theorems if Ω
is assumed to be quasiconvex (i.e., the Euclidean and inner Euclidean metrics are comparable).
However it is easy to construct non-quasiconvex counterexamples to the non-inner versions of
these theorems. In the case of Theorem 0.2, though, the counterexamples are for one implication
only since inner uniform domains are always broad [BHK, Example 6.5(b)].

The rest of the paper is organized as follows. After some preliminaries, we introduce the slice
conditions in Section 2. In Section 3, we show that a large class of domains satisfy the various
weak slice conditions. In Section 4, we classify bounded product domains satisfying weak slice
conditions and prove the above theorems. We examine some further results in Section 5 and,
finally, we discuss some open problems in Section 6.

The first author would like to thank Pekka Koskela and Jussi Väisälä for helpful discussions.

1. Preliminaries

1.1. Notation.

We adopt two common conventions. First, we drop parameters if we do not wish to specify
their values; for instance, we define C-uniform domains, but often talk about uniform domains.
Second, we write C = C(x, y, . . . ) to mean that a constant C depends only on the parameters
x, y, . . . .

If S ⊂ Rn is measurable, then |S| is the Lebesgue measure of S, and uS is the average value
of a function u on S. We write A <∼ B if A ≤ CB for some constant C dependent only on allowed
parameters; we write A ≈ B if A <∼ B <∼ A. We write A ∧ B and A ∨ B for the minimum and
maximum, respectively, of the quantities A and B. Unless otherwise stated, Ω and G are proper
subdomains of Rn.

Let x, y ∈ U ( Rn. We denote by δU (x) the distance from x to ∂U , and by ΓU (x, y) the class
of rectifiable paths λ : [0, t] → U for which λ(0) = x, λ(t) = y. If α ∈ R, γ is a rectifiable path in
U , and ds is arclength measure, we define

lenα,U (γ) =

∫

γ

δα−1
U (z) ds(z),

dα,U (x, y) = inf
γ∈ΓU (x,y)

lenα,U (γ),

Of course, dα,U (x, y) = ∞ if x, y lie in different path components of U . We are mainly interested
in dα,U when α ∈ [0, 1] and U is a domain; dα,U is then a metric. Note that dα,U -geodesics may
fail to exist if α > 0 [BS, Proposition 1.2], but they do exist when U is a domain and α = 0 [GO].

We write len in place of len1,U , the Euclidean length of a path. Note that len0,U and d0,U

are the well-known quasihyperbolic length and distance, and d1,U is the inner Euclidean metric.
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For brevity, we abuse notation by writing, for instance, lenα,U (γ ∩S) for the dα,U -length of those
parts of a path γ lying in a subset S of U . We write [x, y] for the line segment joining a pair of
points in Rn, and [x → y] for the path parametrized by arclength that goes from x to y along
[x, y].

Given x ∈ U , E, F ⊂ U , and a metric ρ on U , we write dρ(E, F ) for the ρ-distance between E
and F , diaρ(E) for the ρ-diameter of E, and Bρ(x, r) = {y ∈ U : dρ(x, y) < r}. If ρ = d1,U , we
instead write dU (E, F ), diaU (E), and BU (x, r) for these concepts, while if ρ is the Euclidean metric
(and so U = Rn), we write d(E, F ), dia(E), and B(x, r). We write dU = d1,U ; in particular, dRn is
the Euclidean metric. Note that distance to the boundary of U is the same with respect to dRn and
dU , and that BU (x, r) = B(x, r) if r ≤ δU (x). We define the inradius of U , r(U) = supx∈U δU (x).

1.2. Uniform domains and mean cigar domains.

Let C ≥ 1 and let d be the Euclidean metric. A domain G is a C-uniform domain if for every
x, y ∈ G, there is a C-uniform path, i.e., a path γ ∈ ΓG(x, y) of length l and parametrized by
arclength for which l ≤ Cd(x, y), and t ∧ (l − t) ≤ CδG(γ(t)). An inner C-uniform domain is
defined similarly except that d = dG. Uniform domains include all bounded Lipschitz domains,
as well as some domains with fractal boundary, such as the interior of a von Koch snowflake. All
uniform domains are inner uniform, and a slit disk is a standard example of an inner uniform
domain that is not uniform. For more on inner uniform domains, see [V5].

Suppose that 0 ≤ α ≤ 1 ≤ C and let d : G×G → [0,∞). We say that G is an (α, C; d)-mCigar
domain if for every pair x, y ∈ G, there is a (α, C; d)-mCigar path, i.e., a path γ ∈ ΓG(x, y) such
that

lenα,G(γ) ≤ Cd(x, y)α 0 < α ≤ 1,

len0,G(γ) ≤ C log[1 + d(x, y)/(δG(x) ∧ δG(y))], α = 0.

In particular, if d is the Euclidean metric, we simply say that G is an (α, C)-mCigar domain, while
if d = dG, we say that G is an inner (α, C)-mCigar domain. α-mCigar conditions for 0 < α < 1
imply the existence of a path λ that satisfies a type of cigar condition on average; see [BK2,
Lemma 2.2] and Lemma 4.6 below. In practice we shall not use this terminology for α = 1: we
prefer to use the more common term C-quasiconvex domain rather than (1, C)-mCigar domain.

Uniform domains are α-mCigar domains for all α. Gehring and Osgood [GO] showed that
the classes of 0-mCigar domains and uniform domains coincide, and Väisälä [V4; 2.33] showed
that the classes of inner 0-mCigar and inner uniform domains coincide. The class of (inner)
α′-mCigar domains includes the class of (inner) α-mCigar domains if and only if α ≤ α′. The
Euclidean version is dealt with in [L] and [BK2]; inclusion follows similarly in the inner case and
the counterexamples in [L] also handle the inner version. Thus mCigar domains include domains
with rough (even fractal) boundary. Note that the class of inner uniform and inner mCigar
domains contain their Euclidean analogues (strictly, since a planar slit disk is in all of the inner
classes but none of the Euclidean classes).

We refer the reader to [BK2], [GM], and [L] for more information about α-mCigar domains;
these domains are called “weak cigar domains” in [BK2] and “Lipα extension domains” in [GM]
and [L] when α > 0. The last name derives from the fact that for α > 0, G is α-mCigar if and
only if all functions defined on G which are locally Lipschitz of order α are globally Lipschitz of
order α; see [GM].
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2. Slice domains

The conditions defined in Section 1 rather strongly restrict the geometry. For instance, among
planar domains, inner uniform domains cannot have external cusps, while uniform and mCigar
domains can have neither internal nor external cusps. By contrast, the slice conditions that
we define in this section are all quite weak, at least in two dimensions: they are satisfied by
any domain quasiconformally equivalent to a uniform domain and hence by all simply-connected
planar domains.

We first discuss weak slice conditions, as first defined in [BS]. The adjective “weak” refers to
the fact that for all α, an α-wSlice condition is implied by the analogous “strong” slice condition
which we define later; see [BS, Lemma 2.8].

Suppose 0 ≤ α < 1 ≤ C and let d be a metric on G satisfying dRn ≤ d ≤ dG. Then G is
an (α, C; d)-wSlice domain if every pair x, y ∈ G satisfies the following (α, C; d)-wSlice condition:
there exist a path γ ∈ ΓG(x, y), pairwise disjoint open subsets {Si}m

i=1 of G, m ≥ 0, and numbers
di ∈ [diad(Si),∞) such that for all 1 ≤ i ≤ m:

len(λ ∩ Si) ≥ di/C, for all λ ∈ ΓG(x, y); (WS-1)

lenα,G(γ) ≤ C(δα
G(x) + δα

G(y) +

m∑

i=1

dα
i ); (WS-2)

(B(x, δG(x)/C) ∪ B(y, δG(y)/C)) ∩ Si = ∅. (WS-3)

If d is the Euclidean metric, we say that G is an (α, C)-wSlice domain, while if d = dG, we say
that G is an inner (α, C)-wSlice domain; these are the two metrics that mainly interest us. Note
that the metric d enters the definition only in limiting the size of the numbers {di}, and that for
α = 0, (WS-2) simply says that len0,G(γ) ≤ C(2 + m).

Roughly speaking, a wSlice condition for a pair of points x, y limits the amount of floating
boundary and slab-shaped regions in the domain that lie “between” x and y; by a “slab-shaped”
region, we mean a piece of the domain which is much larger in two coordinate directions than a
third such as (0, 1) × (0, 1) × (0, ε) for some small ε > 0. The “tolerance level” of an α-wSlice
domain for floating boundary components and slab-shaped regions is lower for smaller α. In
particular it follows from Theorem 4.1 that the product of an externally cusped domain and an
interval is never an α-wSlice domain for any α ∈ [0, 1). The reader should feel more comfortable
with the geometry of this condition after working through the examples in Section 6, and reading
the statements of results in Section 4.

As discussed in [BS, 2.1], we can essentially take di = diad(Si) in the definition, but allowing
inequality is sometimes convenient. A significant difference between the α = 0 and α > 0 cases
is that, whereas (WS-3) is an essential part of the definition for α = 0 (lest every domain be
a (0; d)-wSlice domain), it can be dropped when α > 0 (as shown in Theorem 5.1). Modulo a
change in the value of C by a factor at most 4, it is shown in [BS, 2.1] that we may add the
following condition to the definition of an (α, C; d)-wSlice condition for x, y (and all 1 ≤ i ≤ m):

lenα,G(γ ∩ Si) ≤ Cdα
i . (WS-4)
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Given a path λ intersecting a slice Si, let λi denote the component of λ ∩ Si with maximal
d-diameter. We define an (α, C; d)-wSlice+ domain to be an (α, C; d)-wSlice domain in which the
slice data satisfy the following extra pair of conditions for all 1 ≤ i ≤ m:

diad(λ
i) ≥ di/C, for all λ ∈ ΓG(x, y); (WS-1+)

∃ zi ∈ Si : Bi ≡ B(zi, di/C) ⊂ Si. (WS-5)

(α, C)-wSlice+ and inner (α, C)-wSlice+ domains are defined in the obvious way. (For (WS-5),
di comes from the inner metric but the ball is Euclidean.) We need the extra conditions (WS-1+)
and (WS-5) for some of our proofs but intuitively one should think of wSlice+ domains as being
very similar to wSlice domains. In fact, we believe it likely that the classes of (α; d)-wSlice and
(α; d)-wSlice+ domains coincide; see the discussion before Open Problem A in Section 6.

We recall Lemma 2.3 of [BS].

Lemma 2.1. If the data γ, {Si, di}m
i=1 satisfy (WS-1) and (WS-3) for the pair x, y ∈ G, and

di > 0, then dia(Si) ≥ 2δG(z)/(C +1), for all z ∈ Si and 1 ≤ i ≤ m. Furthermore, if di ≥ dia(Si)
and |x − y| ≥ (δG(x) + δG(y))/2, then there exists a constant C ′ = C ′(C, α) such that

δα
G(x) + δα

G(y) +

m∑

k=1

dα
i ≤ C ′ lenα,G(λ), λ ∈ ΓG(x, y). (2.2)

We next define “strong” slice conditions. Suppose C ≥ 1 and let d be a metric on G satisfying
dRn ≤ d ≤ dG. Then G is a (C; d)-Slice domain if every pair x, y ∈ G satisfies the following

(C; d)-Slice condition: there exist a path γ ∈ ΓG(x, y) and pairwise disjoint open subsets {Si}j
i=0

of G, with di ≡ diad(Si) < ∞, such that:

(i) x ∈ S0, y ∈ Sj , and x and y are in different components of G \ Si, for all 0 < i < j.
(ii) len(λ ∩ Si) ≥ di/C, for all 0 < i < j and λ ∈ ΓG(x, y).

(iii) For all t ∈ [0, 1], we have B
(
γ(t), C−1δG(γ(t))

)
⊂ ⋃j

i=0 Si. Also, for all 0 ≤ i ≤ j, there

exists xi ∈ γi, such that x0 = x, xj = y, and B
(
xi, C

−1δG(xi)
)
⊂ Si.

(iv) For all 0 ≤ i ≤ j and z ∈ γi ≡ γ([0, 1])∩ Si, we have di ≤ CδG(z).

If d is the Euclidean metric, we say that G is a C-Slice domain, while if d = dG, we say that G
is an inner C-Slice domain. The (Euclidean) Slice condition was defined in [BK2, Definition 3.1]
(for a fixed y but uniformly in x).

The d-Slice condition for a pair of points implies an (α; d)-wSlice condition1 for the same pair
of points, quantitatively; see [BS, Lemma 2.8]. However, if α > 0, then there are α-wSlice
domains which are not Slice domains; see [BS, Proposition 4.5]. The d-Slice condition is quite
similar to the (0, d)-wSlice but even less tolerant of “slab-shaped” regions, as discussed after Open
Problem C in Section 6. Although a 0-wSlice condition does not necessarily quantitatively imply
an Slice condition, we suspect that the classes of Slice and 0-wSlice domains coincide.

1We suspect but cannot prove that a d-Slice condition implies an (α, d)-wSlice+ condition; it certainly implies
(WS-5) because of (iii) and the fact that the slices are left unchanged in the proof that a Slice condition implies

an α-wSlice condition.
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3. Inner uniform and inner slice domains

In this section, we show that inner uniform domains and their quasiconformal images satisfy
certain inner slice conditions.

Theorem 3.1. Let α ∈ [0, 1) and let f be a K-quasiconformal mapping from an inner C-uniform
domain G ⊂ Rn onto Ω. Then Ω is an inner C ′-Slice domain and an inner (α, C ′)-wSlice+ domain
for some C ′ = C ′(C, n, K, α).

Suppose that E, F are disjoint subsets of a domain G ⊂ Rn. The conformal modulus,
mod(E, F ; G), of the pair E, F relative to G is defined to be the infimum of

∫
G

ρn, as ρ : G → [0,∞]
ranges over the class of Borel functions for which every line integral over a path γ : [0, 1] → G
joining E and F is at least 1. We refer the reader to [V2] for the fundamentals of conformal
modulus and quasiconformal mappings.

We say that a domain G ⊂ Rn is φ-broad2 if

φ(t) ≡ inf{mod(E, F ; G) : ∆G(E, F ) ≤ t} > 0, t > 0,

where E, F designate non-degenerate disjoint continua in G and

∆G(E, F ) ≡ dG(E, F )

diaG(E) ∧ diaG(F )

denotes the relative inner distance between E and F .

Before proving Theorem 3.1, we need some lemmas. The first is a special case of results of
Bonk, Heinonen and Koskela (see Example 6.5(b) in [BHK]); in the terminology of that paper, G
is broad if it is Loewner with respect to dG.

Lemma 3.2. An inner C-uniform domain G ⊂ Rn is φ-broad, with φ dependent only on C and
n.

Lemma 3.3. Suppose G ⊂ Rn is a domain and E, F ⊂ G are disjoint compact subsets in G and
∆G(E, F ) ≥ 2. Then there exists a constant C = C(n) such that

mod(E, F ; G) ≤ C(log ∆G(E, F ))−n+1.

Proof. Without loss of generality, we assume that diaG(E) ≤ diaG(F ). Let us fix a point x ∈ E
and write r = diaG(E), R = dG(E, F ), so that ∆G(E, F ) = R/r ≥ 2. Let N = blog2 R/rc, let
Ai = BG(x, 2ir) \ BG(x, 2i−1r) for each 1 ≤ i ≤ n and define the function ρ : G → [0,∞) by the
equation

ρ(x) =

{
1/(2i−1Nr), x ∈ Ai, 1 ≤ i ≤ N

0, otherwise.

Clearly ρ is an allowable modulus test function and, since |Ai| is dominated by the measure of
a Euclidean ball of radius 2ir, it follows that mod(E, F ; G) <∼ N−n+1. The lemma now follows
readily. �

Our next lemma implies that an inner α-mCigar domain is an inner α-wSlice+ domain and,
if α = 0, it is also an inner Slice domain.

2This concept was introduced by Väisälä [V4]. Our definition looks a little different but is equivalent to

Väisälä’s in the Euclidean setting according to [HK, Theorem 3.6].
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Lemma 3.4. Suppose that 0 ≤ α < 1 and that G ( Rn. If there is an inner (α, C1)-mCigar
path for the points x, y ∈ G, then the pair x, y satisfies an inner (α, C2)-wSlice+ condition for
some C2 = C2(C1, α, n). If α = 0, x, y also satisfies an inner C3-Slice condition for some
C3 = C3(C1, n).

Proof. Without loss of generality, δG(y) ≤ δG(x). We write Bw = B(w, δG(w)/2) for w ∈ G.
Suppose that z ∈ Bx. If α > 0, then

dα,G(x, z) ≤ lenα,G([x → z]) <

∫ δG(x)

δG(x)/2

tα−1 dt =

(
δG(x)

2

)α(
2α − 1

α

)
< δα

G(x).

By a separate calculation, we see that dα,G(x, z) < δα
G(x) even for α = 0. Thus if Bx and By

overlap, then dα,G(x, y) < δα
G(x)+δα

G(y), so x, y satisfy an inner (α, 1)-wSlice+ condition with zero
slices. We may therefore suppose that Bx and By are disjoint and so dG(x, y) ≥ (δG(x)+δG(y))/2.

Define annuli Si ≡ BG(y, 2i−2δG(y)) \ BG(y, 2i−3δG(y)) for every i ∈ N. Let m ≥ 2 be the
smallest integer for which Si+1 intersects B(x, δG(x)/2), and let di = 2i−1δG(y). Consider the
slice data γ, {Si, di}m

i=1, where γ is any inner (α, C1)-mCigar path for x, y. First (WS-3) is
automatically true, and (WS-1+) is true because the dG-diameter of each annulus is comparable
to its thickness.

Suppose α > 0. Since γ is an inner (α, C1)-mCigar path, we have

lenα,G(γ) ≤ C1dG(x, y)α < C1(dm + δG(x))α,

which implies (WS-2). If instead α = 0, note that m ≥ log2(8dG(x, y)/δG(y)). Since dG(x, y) >
δG(y)/2, the inner 0-mCigar property of γ then implies (WS-2).

We have now proved that all conditions other than (WS-5) hold with some preliminary constant
value C = C4. To prove (WS-5) we shall discard some of the slices, leaving enough of them
that (WS-2) remains true with C = 2C4. For 1 ≤ i ≤ m, let fi : G → R be defined by
fi(z) = dG(y, z)/2i−3δG(y). Thus Si = f−1

i ((1, 2)), and we also define the thinner annuli S ′
i =

f−1
i ([4/3, 5/3]) ⊂ Si and their “inner and outer boundaries”, Ii = f−1

i (4/3), Oi = f−1
i (5/3).

Since Ii and Oi are separated by an inner Euclidean distance di/12, and γ must pass from one to
the other on its way through S ′

i, we see that

lenα,G(γ ∩ S′
i) ≥ Mα−1

i di/12, (3.5)

where Mi is the maximum value of δG on S′
i. Let z = zi ∈ S′

i be any point for which δG(z) = Mi;
this will be the point zi in (WS-5) for appropriate i.

We partition the set of integers i ∈ [1, m] into two sets: the set of good indices G for which
di/Mi ≤ K, and the set of bad indices B for which di/Mi > K, where the cut-off value K equals
(2α ·24C1)

1/(1−α). Since (WS-5) readily follows for any value of i for which di/Mi <∼ 1, it suffices to
find a value K, dependent on allowable parameters, such that (WS-2) remains true with C = 2C4

if we sum up only over good indices on the right-hand side.
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Consider first the case α > 0. We may as well assume that δα
G(x) ≤∑m

i=1 dα
i since otherwise

x, y satisfy an inner (α, 2C4)-wSlice+ condition (with m = 0). By simple geometry, we see that
dG(x, y) ≤ dm + δG(x)/2 ≤ 2dm, and so

2α · 24C1

∑

i∈B

dα
i = K1−α

∑

i∈B

dα
i <

∑

i∈B

Mα−1
i di

≤ 12 lenα,G(γ)

≤ 12C1dG(x, y)α

≤ 12C1

(
2

m∑

i=1

di

)α

≤ 2α · 12C1

m∑

i=1

dα
i ,

where the second inequality follows from (3.5), and the third from the α-mCigar condition. It
follows that

∑
i∈B dα

i ≤ ∑
i∈G dα

i , and so (WS-2) holds C = 2C4 for the set of good indices G
alone.

As for the case α = 0, we have dG(x, y) ≤ 2dm ≤ 2mδG(y), and so since m ≥ 2,

(12C1)
−1

m∑

i=1

M−1
i di ≤ C−1

1 len0,G(γ) ≤ log

(
1 +

dG(x, y)

δG(y)

)
≤ log(1 + 2m) ≤ m.

It follows that (WS-2) holds with C = 2C4 for the set of good indices alone.

We omit the proof of the last statement of the lemma, as it merely involves making straight-
forward adjustments to the proof for the Euclidean case, which is Lemma 3.3(a) of [BK2]. �

Theorem 3.6. Suppose f is a K-quasiconformal mapping from a φ-broad inner (0, C)-wSlice+

(or inner C-Slice) domain G ⊂ Rn onto Ω. Then Ω is an inner (0, C ′)-wSlice+ domain (or inner
C ′-Slice, respectively) domain for some C ′ = C ′(C, φ, n, K).

If f , G, and Ω are as in Theorem 3.1, then Lemma 3.2 tells us that G is broad and the α = 0
case of Lemma 3.4 tells us that Ω is an inner 0-wSlice+ domain. Thus Theorem 3.1 follows from
Theorem 3.6, at least when α = 0. The α > 0 case requires little extra effort. First, according
to [BS, Lemma 2.8], an inner Slice domain is an inner α-wSlice domain, quantitatively, for all
α ∈ [0, 1), so the Slice part already implies most of the α-wSlice+ part of Theorem 3.1. It remains
to verify (WS-5) and (WS-1+). The former immediately follows from the Slice condition, while
the latter is implicit in the proof of the Slice part of Theorem 3.6.

Recall that 0-wSlice+ domains are 0-wSlice domains that satisfy two extra conditions, (WS-1+)
and (WS-5). (WS-1+) will play an important role in the proof of Theorem 3.6 but, by contrast,
the proof would work as well if (WS-5) were not part of the definition of an inner 0-wSlice+

domain; it will, however, play an important role in Section 4 when proving the theorems stated
in the introduction.

In proving Theorem 3.6, we will make use of a few basic properties of quasiconformal mappings
which we describe here. Suppose that f is a K-quasiconformal mapping from G onto Ω, where G,
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Ω are domains in Rn. Then f−1 is K ′-quasiconformal, where K ′ = K ′(K, n). If B = B(x, r) ⊂ G
with r = Cδ(B, ∂G) for some 1 > C > 0, then for any y ∈ fB, we have c′δΩ(y) ≤ diaΩ fB ≤
C ′δΩ(y) and B(f(x), c′δΩ(f(x))) ⊂ fB, where c′ and C ′ depend only on C, K, n; furthermore we
can choose c′, C ′ tending to 0 as C → 0. Briefly, quasiconformal mappings send Whitney balls to
Whitney type objects. K-quasiconformal mappings quasipreserve conformal modulus (i.e., they
preserve it up to a multiplicative constant dependent on K and n) and they also quasipreserve large
quasihyperbolic distance, in the sense that 1+d0,G(x, y) and 1+d0,Ω(f(x), f(y)) are comparable.
For details of these and other properties of quasiconformal mappings, we refer the reader to
Theorem 18.1 and other parts of [V2], [V3, 2.4], and [GO, Theorem 3].

Proof of Theorem 3.6. Given x′, y′ ∈ Ω, let γ, {Si, di}m
i=1 be (0, C)-wSlice+ data for the pair x, y,

where x ≡ f−1(x′) and y ≡ f−1(x′). Since we are working with an α-wSlice+ condition with
α = 0, we may a fortiori take di = diaG(Si). Here and throughout the proof, our notation for
objects associated with G and corresponding objects associated with Ω differs only by the use of
superscript primes in the latter case.

Multiplying the size of C by 4 if necessary, we may also assume that (WS-4) holds. If m = 0,
then x′, y′ satisfy a 0-wSlice+ condition with m′ = 0 (since f quasipreserves large quasihyperbolic
distance). We may therefore assume that m > 0. Let γi = γ([0, 1]) ∩ Si, let γi be a component
of γi of inner diameter at least di/C, as guaranteed by (WS-1+), and let δi = δG(zi) for some
fixed but arbitrary point zi ∈ γi. By elementary estimation, we see that the quasihyperbolic
length of any component K of γi must be at least log(δG(z′)/δG(z′′)) for any pair of points
z′, z′′ ∈ K. Thus (WS-4) implies that δG(z) ≈ δi, z ∈ γi. By (WS-1+) and (WS-4), it follows that
di/δi <∼ len0,G(γi) ≤ C, while the first statement in Lemma 2.1 says that di/δi >∼ 1. Consequently,
δG(z) ≈ di, z ∈ γi.

Fix xi ∈ γi and let x′
i = f(xi), for each 1 ≤ i ≤ m. For a constant C ′

0 > 3 to be chosen later,
let B′

i = BΩ(x′
i, C

′
0δΩ(x′

i)) and S′
i = f(Si) ∩ B′

i. Writing m′ = m, d′
i = diaΩ(S′

i), and choosing γ′

to be a quasihyperbolic geodesic in Ω, we claim that γ ′, {S′
i, d

′
i}m′

i=1 are (0, C ′)-wSlice+ data for
x′, y′, as long as C ′ > C ′

0 are both suitably large.

Since f maps Whitney balls to Whitney type objects, the slice data for x′, y′ inherit the
conditions (WS-3) and (WS-5) from G (in general not with the same constant, of course). Since
f quasipreserves large quasihyperbolic distance, the slice data for x′, y′ inherit condition (WS-2)
from G. It remains to prove (WS-1+).

We claim that x′ and y′ lie in separate components of Ω\S ′
i, provided that C ′

0 is large enough.
Suppose that they lie in the same component, and so there exists a path λ′ ∈ ΓΩ(x′, y′) which

does not intersect S′
i. Let λ = f−1 ◦ λ′, let λi be as in (WS-1+), and define F ≡ λi, F ′ = fF ,

E = B(xi, cδG(xi)), and E′ = fE, where c = c(K, n) is the largest constant in (0, 1/2] for which

E′ ⊂ B(x′
i, δΩ(x′

i)/2). Then diaG(F ) ≈ di, dG(E, F ) <∼ di, and by the quasiconformality of f ,
diaG(E) ≈ di. Thus ∆G(E, F ) <∼ 1, and so mod(E, F ; G) ≥ ε = ε(φ, C, n, K) > 0.

Now dΩ(E′, F ′) ≥ (C ′
0 − 1/2)δΩ(x′

i) and diaΩ(E′) ≤ δΩ(x′
i), and so ∆Ω(E′, F ′) ≥ C ′

0 − 1/2.
Thus by Lemma 3.3 and the quasiconformality of f ,

mod(E, F ; G) ≈ mod(E′, F ′; Ω) <∼ [log(C ′
0 − 1/2)]−n+1.

Since mod(E, F ; G) ≥ ε, we get an upper bound for C ′
0 in terms of φ, C, n, and K; we may

assume that this upper bound is at least 3. For any C ′
0 larger than this bound, the claim follows.
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We fix C ′
0 to be a little more than twice as large as this bound, so that f(Si) ∩ (1/2)B′

i

separates x′ from y′. Let λ′ ∈ ΓΩ(x′, y′), λ ≡ f−1 ◦λ′, let λi be as in (WS-1+), and define F = λi,
F ′ = fF . We wish to show that diaΩ(F ′) >∼ d′

i. We may assume that F ′ ⊂ S′
i since otherwise F ′

contains points in both Ω \ B′
i and (1/2)B′

i, and so diaΩ(F ′) ≥ C ′
0δΩ(x′

i)/2 ≥ d′
i/4.

Now for each z ∈ γi, we have di ≈ δG(z) <∼ diaG(γi), so we can choose a connected compact
subset E0 of γi for which δG(z) <∼ diaG(E0) ≤ δG(z)/2 for all z ∈ E0. Letting E′

0 = fE0, it
follows that d′

i ≈ δΩ(z′) ≈ diaΩ(E′
0) for each z′ ∈ E′

0. We choose continua E ′
1, E

′
2 ⊂ E′

0 such that
diaΩ(E′

1), diaΩ(E′
2) ≥ diaΩ(E′

0)/4 and dΩ(E′
1, E

′
2) ≥ diaΩ(E′

0)/4. If dΩ(F ′, E′
j) ≤ diaΩ(E′

0)/10

for j = 1, 2, then diaΩ(F ′) >∼ diaΩ(E′
0) ≈ d′

i as required. Suppose therefore that dΩ(F ′, E′
j) >

dia(E′
0)/10 for some j ∈ {1, 2}. We write E ′ = E′

j , E = f−1E′. Note that diaG(F ) ≈ di,
dG(E, F ) <∼ di, and by quasiconformality of f , diaG(E) ≈ di. Thus by Lemma 3.2 we obtain

mod(E′, F ′; Ω) ≈ mod(E, F ; G) >∼ 1.

But diaΩ(E′) ≈ d′
i, dΩ(E′, F ′) >∼ d′

i, and so by Lemma 3.3, diaΩ(F ′) >∼ di.

The proof for the Slice version is similar, so we omit it. �

4. Product domains

One of the main lessons of this section is that (inner) slice conditions are rather restrictive
when imposed upon product domains. This stands in contrast to Section 3, where we saw that the
various slice conditions are very weak, at least in the plane. We note that simply-connected planar
counterexamples are easily constructed to each of the product domain results in this section if we
remove the product domain hypothesis.

Our main theorem in this section is as follows.

Theorem 4.1. Suppose that 0 ≤ α < 1 and that Ω = U × V ⊂ Rn × RN is a bounded domain,
n, N ∈ N. The following are equivalent:

(i) Ω is an inner (α, C1)-wSlice+ domain;
(ii) Both U and V are inner (α, C2)-mCigar domains;
(iii) Ω is an inner (α, C3)-mCigar domain.

The constants Ci depend only on each other and on α, diaΩ(Ω)/r(Ω), n, and N .

A result of Lappalainen [L, 6.7] says that, for every 0 < α < β < 1, there exists a planar
domain D∗ which is an (inner) β-mCigar domain but not an (inner) α-mCigar domain; D∗

happens to be bounded, quasiconvex, and simply-connected. Lappalainen’s result extends to the
case 0 = α < β < 1 since a 0-mCigar domain is a uniform domain and so any β-mCigar domain
which is not a (β/2)-mCigar domain is certain not a 0-mCigar domain. Taking U = D∗ and
letting V be the unit ball in Rn−2, we thus get the following corollary of Theorem 4.1.

Corollary 4.2. For any 0 ≤ α < β < 1 and 3 ≤ n ∈ N, there exists an (inner) β-wSlice+ domain
Ω ( Rn which is not an (inner) α-wSlice+ domain but is homeomorphic to a ball.

Note that α-wSlice domains may be inner unbounded even if they are bounded (e.g., many
simply-connected planar domains with a spiralling cusp). If however Ω is assumed to be inner
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bounded in Theorem 4.1, then the reader can verify from the proof that the inner α-wSlice+

condition in this theorem can be weakened to an inner α-wSlice condition. Lappalainen’s examples
are certainly inner bounded, so the same examples show that for any 0 ≤ α < β < 1 and
3 ≤ n ∈ N, there exists an (inner) β-wSlice domain Ω ⊂ Rn which is not an (inner) α-wSlice
domain but is homeomorphic to a ball.

To prove Theorem 4.1, we shall need some lemmas.

Lemma 4.3. Let Ω be an inner (α, C)-mCigar domain, 0 ≤ α < 1. For every x, y ∈ Ω, there
exists an inner (α, C)-mCigar path γ such that all initial and final segments of γ are inner (α, 2C)-
mCigar paths (for the segment endpoints).

Proof. Fixing x, y ∈ Ω, we may assume that |x − y| ≥ δΩ(x) ∨ δΩ(y), since otherwise [x → y] has
minimal dα,Ω-length among all paths connecting x and y, and so all segments of this line segment
are (α, C)-mCigar paths. Let Bx ≡ B(x, δΩ(x)/2) and By ≡ B(y, δΩ(y)/2).

By symmetry, it suffices to prove the result only for initial segments. Consider first the case
α > 0. Let ε = εx ∧ εy, where εz = ((3/2)α − 1)δα

Ω(z)/2α for z ∈ {x, y}. The desired path γ
will be an inner (α, C)-mCigar path for x, y with some extra properties. First, we assume that
lenα,Ω(γ) < dα,Ω(x, y) + ε. Since the dα,Ω-mimimal length paths from x to any x1 ∈ ∂Bx, and
from y to any y1 ∈ ∂By, are line segments, we may also assume that the only subarc of γ lying
in either Bx or By is a single line segment. Finally by reparametrization, we may assume that
γ|[0,1/4] and γ|[3/4,1] are the line segments in question, from x to x′ ∈ ∂Bx and from y′ ∈ ∂By to
y, respectively, and that both of these line segments are traversed by γ at a constant Euclidean
speed.

By direct calculation, it is easy to check that γ|[0,t] is an inner (α, fα(t))-mCigar path for
t ≤ 1/4, with fα(t) = [1 − (1 − 2t)α]/α(2t)α; this largest constant is attained by picking x′ so
that δΩ(x′) = δΩ(x)/2. Since fα is increasing on [0, 1/4], we have fα(t) ≤ fα(1/4) = (2α − 1)/α,
t ∈ [0, 1/4]. By calculus, we see that fα(1/4) < f1(1/4) = 1, α ∈ (0, 1). Thus these initial
segments are (inner) (α, 1)-mCigar paths.

To go from x to γ(t), t > 1/4, one must first exit Bx, and so dα,Ω(x, γ(t)) ≥ minu∈∂Bx
dα,Ω(x, u) ≥

2εx. Suppose for the purposes of contradiction that γ|[0,t] is not an inner (α, 2C)-mCigar path for
the pair x, γ(t). The dα,Ω-length of an inner (α, C)-mCigar path for x, γ(t) is less than half that
of γ|[0,t], and so shorter by an amount in excess of εx. Thus splicing the (reparametrized) shorter
path into γ in place of γ|[0,t], we get a new path, contradicting the near-minimal dα,Ω-length of
γ.

Taking ε = log
√

3/2, the proof when α = 0 is similar, so we omit it. Alternatively, it
follows from the fact that quasihyperbolic geodesics in an inner (0, C1)-mCigar domain are inner
C2-uniform paths for some C2 = C2(C1); see [V4, 2.29]. �

Lemma 4.4. If 0 ≤ α < 1 and Ω = U ×V ⊂ Rn×RN is a bounded inner (α, C)-wSlice+ domain,
then Ω is also inner bounded, and diaΩ(Ω) ≤ C ′ dia(Ω), where C ′ = C ′(α, C, dia(Ω)/r(Ω), n+N).

Proof. Without loss of generality, we may assume that C ≥ 4 and that dia(Ω) = 1 (the latter
because of the scale invariance of the hypotheses and conclusion). By symmetry it suffices to prove
that diaU (U) <∼ 1. We choose v0 ∈ V such that δ0 ≡ δV (v0) = r(V ). Note that r(Ω) ≤ δ0 ≤ 1/2
and that dU (u1, u2) = dΩ((u1, v0), (u2, v0)).
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Suppose that there exist points u, w ∈ U such that dU (u, v) > 1. Writing x = (u, v0),
y = (w, v0), we assume that inner (α, C)-wSlice+ data for x, y are γ, {Si, di}m

i=1, with the indexing
chosen so that {di}m

i=1 is non-decreasing. It is also convenient to define d0 = 0 and dm+1 = ∞.
Let m0 ∈ [0, m] be the unique integer for which dm0

< δ0/2 ≤ dm0+1.

Using only (WS-1), we claim that d1 ≥ 2(δΩ(x) ∧ δΩ(y))/C, and that there exist constants
C1, t > 0, dependent only on C, such that di ≥ C12

(i−j)tdj whenever j < i ≤ m0. We first
construct two paths λ+ and λ− from x to y, each consisting of three segments. The first segment
of λ+ is [x → x′], where x′ = (u, v0 + v′) ∈ ∂B(x, δ0/2). The second segment, from x′ to
y′ = (w, v0 + v′), has constant V -component, and the final segment is (a reparametrization of)
[y′ → y]. The path λ− is defined in a similar fashion except that we replace v′ by −v′ throughout.

Let i ≤ m0. By (WS-1), both λ+ and λ− intersect Si on a set of length at least di/C; we
denote the sets of intersection by S+

i and S−
i , and write S′

i = S+
i ∪ S−

i . Since di < δ0/2 < 1/4, it
follows that S′

i (in fact, all of Si) is contained in either B(x, δ0/2) or B(y, δ0/2). The argument
is the same in both cases, so we assume that S ′

i ⊂ B(x, δ0/2). Since S+
i and S−

i lie outside
B(x, δΩ(x)/C), and on opposite sides of (u, v0), we have di ≥ 2δΩ(x)/C, giving the first half of
our claim. For the same reason, we actually have S ′

i ⊂ B(x, di). In particular, if di ∈ (a/2, a]
for some positive number a ≤ δ0/2, then Si intersects both λ+ and λ− on sets of length at least
a/2C lying in B(x, a) ∪ B(y, a). Slices are disjoint, and the total intersection of either λ+ or λ−

with B(x, a) ∪ B(y, a) has length 2a, so there can be at most 4C such slices Si. The second half
of our claim now follows.

Suppose that α > 0. To prove inner boundedness of U , we find a bound for len(γ). Since
dia(Ω) = 1, we have len(γ) ≤ lenα,Ω(γ). Thus it suffices to bound

∑m
i=1 dα

i . The geometric growth
of {di}m0

i=1 ensures that
m0∑

i=1

dα
i

<∼ dα
m0

≤ (δ0/2)α.

By (WS-5), we have (di/C)n+N ≤ |Si| ≤ |Ω| ≤ 1, and so di ≤ C for all i. If i ≥ m0 then di ≥ δ0/2
and so |Si| ≥ (δ0/2)n+N . Since the slices are disjoint, we deduce that m−m0 ≤ (2/δ0)

n+N . Thus

m∑

i=m0+1

dα
i ≤ (m − m0)d

α
m ≤ 2n+Nδ−n−N

0 Cα.

It follows that
∑m

i=1 dα
i

<∼ 1, as desired.

Suppose instead that α = 0. It is not hard to show that

d0,Ω(x, y) >∼ log

(
1 +

dΩ(x, y)

δΩ(x) ∧ δΩ(y)

)
(4.5)

For the Euclidean version of this inequality, see [GP, Lemma 2.1], whose proof also handles this

inner version; see also [V4, 2.5]. As in the case α > 0, we have m − m0 ≤ 2n+N/δn+N
0 . The

size and growth properties of {di}m0
i=1 obtained above imply that m0 <∼ 1 + log[1/(δΩ(x)∧ δΩ(y))].

Thus

d0,Ω(x, y) <∼ 2 + m <∼ 1 + log

(
1

δΩ(x) ∧ δΩ(y)

)
<∼ log

(
1 +

1

δΩ(x) ∧ δΩ(y)

)
.
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Comparing this last inequality with (4.5), we deduce that dΩ(x, y) <∼ 1. �

The Euclidean version of the next lemma is part of the β = α case of [BK2, Lemma 2.2]3. We
omit a proof, as it is entirely analogous to the Euclidean case.

Lemma 4.6. Let 0 < α < 1 and let γ : [0, l] → Ω be an inner (α, C)-mCigar path, parametrized
by arclength, for the points x, y in a domain Ω ( Rn. Let us denote by r : [0, l] → (0,∞)
the non-decreasing rearrangement of t 7→ δΩ(γ(t)). Then there exists exists a constant C0 =
C0(C, α) such that len(γ) ≤ C0dΩ(x, y) and r(t) ≥ C−1

0 (tdΩ(x, y)−α)1/(1−α). In particular,

r(cl) ≥ C−1
0 c1/(1−α)dΩ(x, y) for all c > 0.

Proof of Theorem 4.1.
(i) ⇒ (ii): Assuming that Ω is an inner (α, C1)-wSlice+ domain, it suffices by symmetry to prove

that U is an inner α-mCigar domain. Fix a point v0 ∈ V such that δ0 ≡ δV (v0) = r(V ). Let γ,
{Si, di}m

i=1 be inner (α, C1)-wSlice+ data for a pair of points x = (u, v0), y = (w, v0) ∈ Ω. We may
assume that dΩ(x, y) > (δΩ(x) ∨ δΩ(y))/2, since otherwise a line segment satisfies an α-mCigar
condition. We index the slices so that {di}m

i=1 is non-decreasing; it is also convenient to define
d0 = 0 and dm+1 = ∞. Let m0 ∈ [0, m] be the unique integer for which dm0

< s ≤ dm0+1, where
s = (δ0 ∧ dΩ(x, y))/2.

As in Lemma 4.4, we see that d1 ≥ 2(δΩ(x)∧δΩ(y))/C1 and that there exist constants C ′, t > 0,
dependent only on C, such that di ≥ C ′2(i−j)tdj whenever j < i ≤ m0. Fixing a path λ ∈ ΓΩ(x, y)
such that len(λ) ≤ 2dΩ(x, y), (WS-1) implies that

m∑

i=1

di ≤ 2CdΩ(x, y). (4.7)

Thus m − m0 ≤ 2CdΩ(x, y)/s ≤ 2C diaU (U)/δ0. Thus by Lemma 4.4, m − m0 <∼ 1.

Consider the case α = 0. By the size and growth properties of {di}m0
i=1, we see that

m0 <∼ 1 + log

(
dΩ(x, y)

δΩ(y) ∧ δΩ(x)

)
<∼ log

(
1 +

dΩ(x, y)

δΩ(y) ∧ δΩ(x)

)

Since also m − m0 <∼ 1, (WS-2) now implies an inner 0-mCigar condition for x, y. When we
project from Ω to U , Euclidean length cannot increase, and distance to the boundary cannot
decrease. Therefore we deduce an inner (0, C2)-mCigar condition for u, w, with C2 = C2(T ),
where T denotes the data (α, C1, diaΩ(Ω)/r(Ω), n + N).

Consider next the case α > 0. Suppose, for the purposes of contradiction that U is not an
inner α-mCigar domain. For each k ∈ N, there exist points uk and wk for which dα,U (uk, wk) ≥
kdU (uk, wk)α; also let xk = (uk, v0) and y = (wk, v0). Regardless of the values of k, α, we must
have 2dΩ(xk, yk) ≥ δΩ(xk) ∨ δΩ(yk) since otherwise by consideration of the segment [xk → yk],
the points uk and wk would violate the previous inequality. But

dα,Ω(xk, yk) ≥ dα,U (uk, wk) ≥ kdU (uk, wk)α = kdΩ(xk, yk)α, (4.8)

3The version there is stated for α-mCigar domains Ω but the proof merely uses the fact that that there exists

an α-mCigar path for a particular pair of points. Also Ω is assumed to be bounded, but this is not used.
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and so dα,Ω(xk, yk) ≥ k2−α(δΩ(xk) ∨ δΩ(yk)). Let γ, {Si, di}m
i=1, be inner (α, C1)-wSlice+ data

for the pair xk, yk, with {di}m
i=1 non-decreasing; for ease of notation, the dependence on k is

implicit. Taking k > 3 · 2αC1, it follows from (WS-2) that lenα,Ω(γ) ≤ 3C1

∑m
i=1 dα

i . Combining
this inequality with (4.7) and (4.8), we get

∑m
i=1 dα

i

(
∑m

i=1 di)
α ≥ lenα,Ω(γ)

3C1 (
∑m

i=1 di)
α ≥ lenα,Ω(γ)

3C1+α
1 · 2α · dΩ(xk, yk)α

≥ k

3C1+α
1 · 2α

. (4.9)

But the growth rate of the {di}m0
i=1 and the bound on m − m0 imply that both

∑m0

i=1 dα
i and∑m

i=m0+1 dα
i are no more than a constant multiple of (

∑m
i=1 di)

α
. Taking k to be larger than

some constant C2 = C2(T ), we get the desired contradiction to (4.9).

(ii) ⇒ (iii): Assume first that α > 0. By the triangle inequality, it suffices to verify the inner
α-mCigar condition for pairs of points x, y ∈ Ω with one common coordinate; by symmetry, we
may assume that x = (u, v), y = (w, v). Let us fix a point v0 ∈ V such that δ0 ≡ δV (v0) = r(V ).
Let µ : [0, 1] → V and γ : [0, 1] → U be inner (α, C2)-mCigar paths from v to v0 and from u
to w respectively, where µ has the additional properties guaranteed by Lemma 4.3 (applied to
V ). Letting L = len(γ), γ1 = γ|[0,1/2], γ2 = γ|[1/2,1], z = γ(1/2), we may assume that γ is
parametrized so that len(γ1) = len(γ2) = L/2.

Suppose also that L ≤ 2 len(µ). We wish to define an inner α-mCigar path Λ ∈ ΓΩ(x, y). We
choose Λ(t) = (γ(t), λ(t)), where λ is a path in V which starts and finishes at v but, in between
times, moves along µ and back. More precisely, for 0 ≤ t ≤ 1/2, λ coincides with a reparametrized
initial segment of µ, with the parametrization chosen so that len(γ|[0,t]) = len(λ|[0,t]). For 1/2 ≤
t ≤ 1, λ traces its way back along the curve of µ in such a way that len(γ|[t,1]) = len(λ|[t,1]).

Since δΩ((a, b)) = δU (a) ∧ δV (b), a ∈ U, b ∈ V , we obtain

lenα,Ω(Λ) <

∫

Λ

δU (γ(t))α−1 ds(t) +

∫

Λ

δV (λ(t))α−1 ds(t)

=
√

2(lenα,U (γ) + lenα,V (λ)).

Now lenα,U (γ) ≤ C2dU (u, w)α = C2dΩ(x, y)α. By Lemma 4.6 we may assume that L <∼ dU (u, w) =
dΩ(x, y), and so by Lemma 4.3 applied to the segments γ1 and γ2,

lenα,V (λ)/4C2 ≤ dV (v, λ(1/2))α ≤ (L/2)α <∼ dΩ(x, y)α.

The inner α-mCigar condition for Λ now follows.

The construction for L > 2 len(µ) is similar: λ(t) moves along µ([0, 1]) from v at the same
speed as before, except now it reaches v0 at some t = t0 < 1/2. Similarly, there is some number
t1 > 1/2 such that len([t1, 1]) = len(µ). The path λ is now continued so that λ(t) = v0 for that
t0 ≤ t ≤ t1, and finally for t1 ≤ t ≤ 1, λ(t) moves back along µ to v at the same speed as before.
The estimates are the same as before except for

∫

Λ|[t0,t1]

δV (λ(t))α−1 ds(t) ≤ LδV (v0)
α−1 <∼ Lα.
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We must still consider the α = 0 case. Since the 0-mCigar condition is quantitatively equivalent
to uniformity [V4, 2.33], it suffices to verify that if U and V are uniform, then Ω is uniform. Let
v0 ∈ V be as in the α > 0 case, but now we seek to find a uniform path between a pair of points
(u1, v1) and (u2, v2). Let γ : [0, l1] → U and µ : [0, l2] → V be uniform paths parametrized by
arclength for the pairs of points u1, u2 and v1, v2 in their respective domains; without loss of
generality l1 ≥ l2. Let ν : [0, l3] → V be a uniform path in V , parametrized by arclength, for the
pair µ(l2/2), v0. We now define a new path λ : [0, l1] → V linking v1 and v2. If l1 ≤ l2 + 2l3, then

λ(t) =






µ(t), 0 ≤ t ≤ l2/2,

ν(t − l2/2), l2/2 ≤ t ≤ l1/2,

ν(l1 − l2/2 − t), l1/2 ≤ t ≤ l1 − l2/2,

µ(t − l1 + l2), l1 − l2/2 ≤ t ≤ l1.

while if l1 ≥ l2 + 2l3, then the definition is similar except that λ “rests” at v0 for an interval of
length l1− l2−2l3 before turning back. We leave it to the reader to verify that the path Λ = (γ, λ)
is a uniform path in Ω for the pair (u1, v1) and (u2, v2), with quantitative dependence only on
allowed parameters, namely diaΩ(Ω)/r(Ω), n, N , and the uniformity constants for U, V .

(iii) ⇒ (i): This follows from Lemma 3.4. �

Proof of Theorems 0.1, 0.2, and 0.3. We first prove Theorem 0.1. Trivially (ii) implies (i). Since
an inner 0-mCigar domain is just an inner uniform domain, the equivalence of (ii) and (iii) follows
from Theorem 4.1. If Ω is K-quasiconformally equivalent to an inner C-uniform domain then
Theorem 3.1 ensures that it is an inner (0, C1)-wSlice+ domain, with C1 = C1(C, n + N, K), and
so Theorem 4.1 tells us that (i) implies (ii).

Theorem 0.3 follows similarly by combining Theorem 3.6 and Theorem 4.1. As for Theo-
rem 0.2, one direction is given by Lemma 3.2, while the other follows from Theorem 0.3 with
G = Ω. �

Remark 4.10 The implication (i) ⇒ (ii) of Theorem 0.1 also follows from recent work of Bonk,
Heinonen, and Koskela; see [BHK, Remark 7.34]. Their methods (based around Gromov hyper-
bolicity) are however quite different and do not apply to the α > 0 case of Theorem 4.1.

Remark 4.11 Theorem 0.1 does not tell us what product domains are quasiconformally equivalent
to a ball. In fact, Väisälä [V4] showed that if G is a simply-connected proper subdomain of the
plane, then G×R is quasiconformally equivalent to a ball if and only if there is a BLD (bounded
length distortion) mapping from G to a disk or a half-plane. It is not hard to modify his proof to
show that for a bounded domain G, G× (0, 1) is quasiconformally equivalent to a ball if and only
if there is a BLD (bounded length distortion) mapping from G to a disk. It follows that there
are inner uniform domains of product type that are not quasiconformally equivalent to a ball.
For instance, the planar domain U bounded by a von Koch snowflake is a uniform domain but,
because its boundary is not locally rectifiable, no such BLD mapping can exist and consequently
Ω = U × R is uniform but not quasiconformally equivalent to a ball.

Remark 4.12 The 0-wSlice+ hypothesis cannot be removed from Theorems 0.2 and 0.3. For
example, let Bk denote the unit ball in Rk, let n > 1, and consider the product domain Ω = B\N ,
where B = Bn × Bm and N = A × Bm, A =

⋃∞
j=1 Aj , and Aj consists of (j!)n−1 points on the
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sphere Sj = {|z| = 1 − 2−j} ⊂ Rn, spaced so that the distance from any x ∈ Sj to Aj is at
most C/j!, for some C = C(n). Clearly B is broad, and we claim that Ω is also broad. To see
this, let E, F be non-degenerate disjoint continua in Ω. Since B \ Ω has Hausdorff dimension
at most m < n + m − 1, it is an null set for extremal distance [V1] and so mod (E, F ; B) =
mod (E, F, Ω). The restriction of dB to Ω × Ω coincides with dΩ, and so ∆B(E, F ) = ∆Ω(E, F ).
The claim now follows readily. However Bn \ A, and hence Ω, is not inner uniform since a path
from the origin to a point x of norm nearly 1 must pass through very narrow bottlenecks as it
approaches x.

5. Further results

We first use some of the ideas developed in the last section to prove, as promised in Section 2,
that (WS-3) can be removed from the definition of (inner) α-wSlice conditions when α > 0 without
changing the class of domains; we shall need this result in the final section.

Theorem 5.1. Suppose that 0 < α < 1, x, y ∈ G ⊂ Rn, and that γ ∈ ΓG(x, y), {Si, di}m
i=1

satisfy (WS-1) and (WS-2), with di ≥ diad(Si) for some metric satisfying dRn ≤ d ≤ dG. Then
x, y satisfy an (α, C ′; d)-wSlice condition for some C ′ = C ′(C, α), with slice data γ ′, {Ti, ei}M

i=1

satisfying

C ′

(
δα
G(x) + δα

G(y) +

M∑

i=1

eα
i

)
≥ C

(
δα
G(x) + δα

G(y) +

m∑

i=1

dα
i

)

Proof. Without loss of generality δG(x) ≥ δG(y). We may assume that |x − y| > δG(x), since
otherwise the conclusion is true with M = 0 and γ ′ = [x → y]. Writing Bz = B(z, δG(z)/16C)

and B̃z = B(z, δG(z)/2), for z ∈ {x, y}, we note that B̃x and B̃y are disjoint. The first step is to

define new slices S′
i = Si \ Bx ∪ By, and leave the numbers di unchanged. Certainly, these new

slices satisfy (WS-3), but (WS-1) may now fail. We discard any slice S ′
i for which (WS-1) still

fails even after we replace C by 2C. Renumbering the remaining pairs (S ′
i, di), we get new slice

data γ′ ≡ γ, {Ti, ei}M
i=1.

By construction, the new data satisfy (WS-3), and (WS-1) with constant 2C. It remains to
prove (WS-2) (with C replaced by some C ′). If S′

i is a discarded slice then there must exist some
path λ ∈ ΓG(x, y) whose intersection with S ′

i has length less than di/2C. Now (WS-1) for Si tells

us that len(λ ∩ Si ∩ Bx ∪ By) > di/2C. If we alter λ so that for z = x, y the only segment of

γ lying in Bz is a single line segment (of length δG(z)/16C), but otherwise leave λ unchanged,
this inequality must remain true. Thus (δG(x) + δG(y))/16C ≥ di/2C, and so di ≤ δG(x)/4. If

Si ∩ Bx is non-empty, then Si must lie fully in B̃x. On the other hand, if Si ∩ Bx is empty, then

Si ∩ By is non-empty and di ≤ δG(y)/4. In either case, we deduce that Si lies fully in either B̃x

or B̃y.

Let us enumerate the discarded slices and the corresponding numbers as {S ′
ji

, d′
i}k

i=1, with

d′
i ≡ dji

. We choose the enumeration so that (d′
i)

k
i=1 is non-decreasing. As in the proof of

Lemma 4.4, we obtain the growth estimate

d′
i ≥ C12

(i−j)td′
j , for 1 ≤ j < i ≤ k.
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In fact to get this estimate, the two paths used should be as follows. The first one, λ+, starts off
as any line segment of length δΩ(x)/2 emanating from x, and ends as any line segment of length
δΩ(y)/2 ending at y, the middle part of the path being any path joining the outer endpoints

of these two segments in Ω which stays outside B̃x ∪ B̃y. The second path λ− has the same
construction except that the initial and final line segments are in directions opposite to those of
the λ+.

The growth estimate and (WS-1) now give

k∑

i=1

(d′
i)

α <∼ (d′
k)α

∞∑

j=1

2−tj <∼ (d′
k)α <∼ δα

Ω(x) + δα
Ω(y).

Thus

δα
G(x) + δα

G(y) +
M∑

i=1

eα
i

>∼ δα
G(x) + δα

G(y) +
m∑

i=1

dα
i

and so if we replace C by an appropriate C ′, then the remaining slices satisfy all three conditions
(WS-1), (WS-2), and (WS-3). �

Next we wish to state a John-Separation version of Theorem 4.1, but let us begin with two
definitions that we need.

Let us fix a constant C ≥ 1 and a point x0 in the domain G.. A C-John path for x (with
respect to x0) is a path γ ∈ ΓG(x, x0), γ : [0, l] → G, which is parametrized by arclength such
that δ(γ(t)) ≥ t/C for all t ∈ [0, l]. We say that G is a C-John domain (with respect to x0) if
there exists a C-John path (with respect to x0) for all x ∈ G.

Let C, x0 be as above and let Bz = B(z, CδG(z)), z ∈ G. As defined in [BK1], a C-Separation
path for x (with respect to x0) is a path γ : [0, 1] → G, γ ∈ ΓG(x, x0), such that for each t ∈ [0, 1],
any path from a point in γ([0, t]) \ Bγ(t) to x0 must intersect ∂Bγ(t). We say that G is a C-
Separation domain (with respect to x0) if there exists a C-Separation path (with respect to x0)
for all x ∈ G. A C-John domain is a C-Separation domain (since γ([0, t]) \ Bγ(t) is empty) but
there are many more Separation domains, including all quasiconformal images of uniform domains
[BK1].

Theorem 5.2. Suppose that Ω = U × V ⊂ Rn × RN is a bounded domain, x0 = (u0, v0) ∈ Ω,
and n, N ∈ N. The following are equivalent:

(i) Ω is a C1-Separation domain with respect to x0;
(ii) Both U and V are C2-John domains with respect to u0 and v0 respectively;
(iii) Ω is a C3-John domain with respect to x0.

The constants Ci depend only on each other and on n, N , and diaΩ(Ω)/dΩ(x0).

Proof. We omit the easy verifications of the implications (ii) ⇒ (iii) ⇒ (i). Supposing that Ω
satisfies (i), we shall prove (ii). We may assume that C1 > 2 and, by symmetry, it suffices to
show that U is a John domain with respect to u0. We claim that the first coordinate projection
γ1 of any C1-separation path γ for the point x = (u, v0) must be a C2-John path for u, with
C2 = C2(C1, dia(Ω)/δΩ(x0)). To see this, we write r(t) = C1δΩ(γ(t)), Bt = B(γ(t), r(t)). If
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γ([0, t]) ⊂ Bt, then γ1 satisfies the 2C1-John condition for x at γ1(t), so we shall assume that
γ([0, t]) 6⊂ Bt. We may also assume that r(t) < δV (v0)/6 since otherwise the claim follows with
C2 = 6C1 dia(V )/δV (x0) ≤ 6C1 dia(Ω)/δΩ(x0).

If |γ(t)−x0| ≤ δΩ(x0)/2, then r(t) ≥ C1δΩ(x0)/2. On the other hand, if |γ(t)−x0| > δΩ(x0)/2
and x0 ∈ Bt, then r(t) ≥ δΩ(x0)/2. Both of these contradict the bound on r(t), so we conclude
that x0 /∈ Bt.

Suppose that x /∈ Bt. We construct two paths λ+, λ− ∈ ΓΩ(x, x0) by first moving in a straight
line from (u, v0) to points x+ = (u, v0+w), x− = (u, v0−w), respectively, where w ∈ RN is chosen
so that 2r(t) < |w| < δV (v0). The second segment of each paths has constant second coordinate
and rectifiable first coordinate finishing at a point with first coordinate u0, and the last segment
of each is a straight line segment back to (u0, v0).

Now ∂Bt must intersect both λ+ and λ−. But ∂Bt cannot intersect the middle segment of
either path since its distance from the other path exceeds 2r(t). Neither can it intersect the first
segments, or the last segments, of both paths, since it would then follow that either x ∈ Bt or
x0 ∈ Bt. Finally suppose that ∂Bt intersects the first segment of one path at (u, v1), say, and the
last segment of the other at (u0, v2), say. Thus

2r(t) > |v1 − v2| > 2(|v1 − v0| ∧ |v2 − v0|),

and so 2Bt contains either x or x0. The claim follows as before.

We are left to consider the case where x ∈ Bt. By assumption, there is a point x̂ ∈ γ([0, t])\Bt,
which by continuity we may assume to lie in the annulus 2Bt \ Bt. We now define a pair of
paths λ+, λ− ∈ ΓΩ(x̂, x0) by first moving in a straight line from x̂ to points x+ = x̂ + (0, w),
x− = x̂ + (0,−w), respectively, where w ∈ RN is chosen so that 4r(t) < |w| < δV (v0) − 2r(t).
As before, the second segment of each path has constant second coordinate and rectifiable first
coordinate finishing at a point with first coordinate u0, and the last segment of both paths is a
straight line segment back to x0. This claim now follows as in the previous case. �

We now discuss the case of unbounded domains Ω ( Rn. As we shall see below, most of the
implications in Theorem 4.1 fail if we simply drop the boundedness assumption, but we do have
the following theorem.

Theorem 5.3. Suppose that 0 ≤ α < 1 and that Ω = U × V where U ( Rn, V ( RN ,
r(U) = r(V ) = ∞, and n, N ∈ N. The following are equivalent:

(i) Ω is is an inner (α, C1)-wSlice+ domain;
(ii) Both U and V are inner (α, C2)-mCigar domains;
(iii) Ω is an inner (α, C3)-mCigar domain.

The constants Ci depend only on each other and on α, n, and N .

Sketch of proof. Let Ω satisfy the hypotheses and that it is an inner (α, C)-wSlice+ domain. By
symmetry, it suffices to prove an inner α-mCigar condition for U . We fix points u, w ∈ U , and
choose a path γ ∈ ΓU (u, w) such that Lα ≡ lenα,U (γ) ≤ 2dα,U (u, w). Let L1 = len(γ) and let
M denote the largest value of δU (z) on the image of γ. Now choose v0 so that δ0 ≡ δV (v0) >
M ∨ 2CL1. Let x = (u, v0), y = (w, v0), and define the path Λ by Λ(t) = (γ(t), v0). It follows
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that lenα,Ω(Λ) = Lα and that dα,Ω(x, y) = dα,U (u, w). We deduce that the pair x, y possesses
(α, 2C)-wSlice+ data of the form Λ, {Si, di}m

i=1, with the indexing chosen so that {di}m
i=1 is non-

decreasing. By (WS-1), we see that dm ≤ δ0/2. Arguing as in Lemma 4.4, it then follows that
the numbers di satisfy a geometric growth condition and the inner α-mCigar condition for U now
follows as before.

As for the implication (ii) ⇒ (iii), assume u, v, w are as in the corresponding part of the proof
of Theorem 4.1, and let γ be an (α, C2)-mCigar path from u to w of length L, say. Choosing v0

so that |v − v0| exceeds L/2, the proof then follows as before. The implication (iii) ⇒ (i) follows
from Lemma 3.4. �

The assumption r(U) = r(V ) = ∞ can be weakened in the above theorem, although it cannot
be dropped since we shall give counterexamples in the case where only one domain is unbounded
(it might suffice for both domains to be unbounded but we cannot prove this). The assumption
r(U) = r(V ) = ∞ can be dropped altogether from the implication (iii) ⇒ (i), and for (ii) ⇒ (iii)
above, it suffices that U and V are both unbounded (but this is hardly more general, since it
is easy to see that an inner α-mCigar domain must have infinite inradius if it has infinite inner
diameter). Finally for (i) ⇒ (ii), the following substitute assumption suffices (we leave to the
reader the straightforward task of adapting the proof).

The following condition is satisfied by both W = U and W = V for some constant c ∈ (0, 1):
for every A > 0, there exists a point w0 ∈ W and paths λ+, λ− parametrized by arclength and of
total length A, such that λ+(0) = λ−(0) = w0, and for every t ∈ (0, A], the distances from λ+(t)
to the image of λ−, and from λ−(t) to the image of λ+ are both at least ct.

Of course any domain W satisfying such a condition but having finite inradius is certainly not
an inner α-mCigar domain. For a typical example of such a domain, we first let µ+, µ− be the
Archimidean spirals given in polar coordinates by µ+(θ) = (θ, θ), µ−(θ) = (θ, θ + π), both for all
t ≥ 0, and let W be the planar domain consisting of all points in the unit disk together with all
points within a distance 1/10 of the union of the images of µ+ and µ−. Then for each A > 0, we
can take w0 = 0 and λ+, λ− to be suitably reparametrized initial segments of µ+, µ−.

For an arbitrary pair of domains U ( Rn, V ( RN , the implications (iii) ⇒ (i) and (iii)
⇒ (ii) hold (the former because of Lemma 3.4, while the latter is easy), but we now give three
counterexamples which show that the other four possible implications fail. In all examples, Ω ≡
U × V , and U is the open interval (0, 1), which is of course an inner α-mCigar domain for every
α ∈ [0, 1).

First, we see that V = (0,∞) is uniform, and so an inner α-mCigar domain for every α ∈ [0, 1).
Moreover Ω is simply connected, and so an inner α-wSlice+ domain by Theorem 3.1 and the
Riemann mapping theorem. However Ω is not an inner α-mCigar domain for any such α. This
neither (i) nor (ii) imply (iii).

Next taking V = (0, 1) × (0,∞), we see that V is not an inner α-mCigar domain. However
Ω is an inner α-wSlice+ domain for every α. In fact if x, y ∈ Ω and |x − y| < 6, then zero slices
suffice. Suppose instead that |x − y| ≥ 6, with x3 < y3, where x3, y3 are the third coordinates of
x, y respectively. Then y3 ≥ x3 + 4 and we take as slices all cylinders (0, 1) × (0, 1) × (i, i + 1),
i ∈ N, for which x3 + 1 ≤ i ≤ y3 − 2; we leave the verifications to the reader. Thus (i) does not
imply (ii).
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Finally, V = (0,∞)×(0,∞) is uniform and so an inner α-mCigar domain for every α. However
Ω is not an inner α-wSlice domain. In fact for any constant C, the points (u, v1) and (u, v2) fail
to satisfy an (α, C)-wSlice condition if u = 1/2, v1 = (t, t), v2 = (t, 2t), and t ≥ t0 for some
sufficiently large number t0 = t0(C). We leave the verification of this to the reader, with the hint
that the techniques of Lemma 4.4 can again be adapted to this purpose. Thus (ii) does not imply
(i).

6. Open problems

In this final section, we discuss the basic relationships between the various slice4 conditions.
We use the term zero-point implications for implications between slice conditions for a fixed pair of
points. Note that all slice conditions hold for a fixed pair of points if we choose a sufficiently large
constant, so zero-point implications are only of interest if we insist that the implied slice constant
depends quantitatively only on the assumed slice constant and other reasonable parameters such
as the dimension. We also discuss one-point implications involving one-point slice conditions,
where the slice condition is assumed to be true uniformly for one fixed point x = x0 and all y
in the domain; we call the classes of domains satisfying such conditions one-sided slice domains.
Finally, we discuss two-point implications involving two-point slice conditions, where the slice
condition is assumed to be true uniformly for all pairs x, y in the domain; as in previous sections,
we use the term slice domains to refer to the associated domains.

We shall first note some quantitative zero-point implications; these immediately imply the
corresponding one- and two-point implications. Most other quantitative zero-point implications
will be seen to be false and the corresponding one-point implications are also false. Actually, these
facts are essentially equivalent since a counterexample to a one-point implication immediately
gives a counterexample to a quantitative zero-point implication, while the opposite direction
involves the usual trick of gluing successively worse appendages either to each other or to a
central subdomain. By contrast, we have few answers as to whether or not the corresponding
two-point implications are true.

As a convenient reference, we include the following diagram of some of the basic quantitative
zero-point implications among the various slice conditions that have been used in this paper.

Inner Slice =⇒ Inner α-wSlice ⇐= Inner α-wSlice+

ww�
ww�

ww�

Slice =⇒ α-wSlice ⇐= α-wSlice+

As mentioned at the end of Section 2, the two left-to-right implications were established in [BS].
The remaining implications are immediate consequences of the definitions. The authors conjecture
that the second and third columns of this diagram coincide; see Open Problem A below and the
accompanying discussion. Eliminating the third column, the counterexamples in this section
together with those in [BS, Section 5] show that the four remaining one-point implications cannot
be reversed (and so the zero-point implications cannot be reversed with quantitative dependence).

4Below, the term slice is used to refer generically to Slice, α-wSlice, α-wSlice+, and all other slice conditions.
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In fact, we even have a one-sided Slice domain which is not a one-sided inner α-wSlice (after Open
Problem D) and a one-sided inner α-wSlice domain that is not a one-sided Slice domain ([BS]
for α > 0; the example after Open Problem B for α = 0). We also know that the one-sided
α-wSlice(+) conditions are incomparable for different values of the slice parameter α (see the
example after Open Problem B for one direction and Corollary 4.2 for the other).

At this point, the authors know much less in terms of being able to reverse the two-point
versions of the four implications discussed above. We do know that the two left to right impli-
cations cannot be reversed when α > 0 (a counterexample appears in [BS]) but we conjecture
that these arrows can be reversed in case α = 0. The same examples in [BS] prove the diagonal
non-implications

α-wSlice /=⇒ Inner Slice, α > 0;

Inner α-wSlice /=⇒ Slice, α > 0.

But when α = 0, we again conjecture that these implications are valid. Below we give some more
details on these open questions and related examples.

For any constants C, C ′, it is not hard to concoct a set of slices for a pair of points x, y
that satisfies the (α, C)-wSlicecondition, but not the (α, C ′)-wSlice+condition. For instance, let
us begin with annular slices {Si}m

i=1, as given by Lemma 3.4, for a pair x, y in a ball. Cut
each annulus Si into 2N equally thin subannuli for some N ∈ N, and redistribute each of these
subannuli in alternating order into two new slices S ′

i and S′′
i . The set of new slices {S ′

i, S
′′
i }m

i=1

still satisfy the α-wSlice condition (although we must double the size of C to ensure (WS-1)) but
no longer satisfy the extra wSlice+ conditions with any given constant if N is very large. However
in this and all other examples we have constructed, there always exists a “better” set of slices
which demonstates that the pair x, y satisfies an α-wSlice+condition. We suspect that in fact
that the logically weaker α-wSlice condition implies the α-wSlice+ condition quantitatively, but
this seems hard to prove.

Open Problem A. If the pair x, y ∈ G ⊂ Rn satisfies an (α, C)-wSlice condition, show that it
also satisfies an (α, C ′)-wSlice+ condition for some C ′ = C ′(C, α, n).

Let 0 ≤ α, β < 1. For the class of α-mCigar domains to contain the class of β-mCigar domains
it is necessary and sufficient that α ≥ β; see [L] and [BK2]. One might suspect that an analogous
result might be true for wSlice+ (or wSlice) domains. Indeed, Corollary 4.2 gives us necessity.
We suspect that sufficiency is also valid, but proving this appears to be difficult.

Open Problem B. Suppose 0 ≤ β < α < 1. Show that a (β, C)-wSlice+ domain is an (α, C ′)-
wSlice+ domain for some C ′ = C ′(C, α, β, n).

The analogous result for mCigar domains is rather easy. In fact, an β-mCigar condition for a
fixed pair u, v ∈ G implies an (α, C ′)-mCigar condition for u, v, with C ′ = C ′(C, α, β, n), as can
be seen from the proof of [BK2, Proposition 2.4]. By contrast, the wSlice+ variant for a fixed
pair of points cannot be true. Indeed, given 0 < β < α < 1, we now describe a bounded domain
G ⊂ R3 which is a one-sided β-wSlice+ domain (with respect to x0 ∈ G), but it is not a one-sided
α-wSlice+ domain (with respect to x0). It is not hard to modify this example to handle also the
case β = 0.
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Our counterexample G ⊂ R3 is got by gluing together a sequence of open rectangular boxes
Fn, Ln (n ≥ 0) of dimensions Rn × Rn × rn and Sn × sn × sn, respectively, where Rn = 2−n,

rn = 2−n(1−α)−1

, Sn = 2−2n, sn = 2−n((1−α)−1+(1−β)−1); note that for large n, rn is much smaller
than Rn and sn is much smaller than Sn so that Fn is a flat box and Ln is a long box. For each
n, we choose a line segment of length Rn (and Sn) linking the centers of opposite faces of Fn (and
Ln, respectively) and call this the main axis of this box. G is then defined by gluing these boxes
together according to the order F0, L0, F1, L1, . . . , Fn, Ln, . . . , so that all the main axes line up to
form a single main axis (of symmetry) for G. Let fk,t and lk,t denote the dt,G-length of the main
axis of Fk and Lk respectively, for k ≥ 0.

We claim that lk,β ≈ fk,β ≈ 2k(α−β)/(1−α), whereas fk,α ≈ 1 and lk,α ≈ 2−k(α−β)/(1−β). Let
us first consider ln,β , for large n. It is easy to see that if define a truncated box by chopping off a
cube (of sidelength sn) from both ends of Ln, then the dβ,G-length of the part of the main axis
lying in the truncated box is comparable to sβ−1

n Sn ≈ ln,β . The length of the parts of the axis
that were chopped off is at most comparable to

∫ rn

0

tβ−1 dt ≈ rβ
n,

which is much smaller. The estimate for ln,α is similar. For fn,α and fn,β , the estimates are
derived in a similar fashion once we chop off a box of size rn × Rn × rn from both ends of Fn

in such a way that these little boxes cover the ends of the main axis of Fn. This establishes our
claim.

The choice of x0 is not important; we may as well take it to be the center of F0. There is
no difficulty in choosing slices for x0, x when x ∈ Fn ∪ Ln for some small n, since dt,G(x, x0) is
bounded in such cases (t = α or t = β), so zero slices will suffice. Let us look at the case where
x = xn is the center of Fn for large n; it is easy to adjust the arguments to handle other points.
Notice that the dβ,G geodesic γn from x0 to xn is simply [x0 → xn]. For the β-wSlice+ condition,
we slice up the boxes Lk, 0 ≤ k < n, perpendicular to their main axes into cubes of sidelength
sn, discarding any remnant at one end of Li which is too small to make another cube. Gathering
together all these slices, it is easy to see that (WS-1+), (WS-3), and (WS-5) hold. Almost all the
dβ,G-length of γn ∩Lk, 0 ≤ k < n, lies in some slice. Since also lk,β ≈ fk,β, (WS-2) follows easily.

Suppose for the purposes of contradiction that an α-wSlice+ condition also holds for the pair
x0, xn, uniformly in n. We show that this is untenable for large n. This is rather tricky but the
idea is simple: flat boxes, unlike long boxes, cannot be “nicely sliced”, which causes a problem
since most of the dα,G-distance between x0 and xn consists of flat boxes.

We denote by F ′
k and L′

k the parts of a box Fk or Lk, respectively, that lie within a distance
sk/2 of a face of that box that is glued to another box, and by T−

k and T+
k the transitional

part of Lk ∪ Fk ∩ G or Lk ∪ Fk+1 ∩ G that lies within a distance sk of a glued face of one of its
component boxes. We first modify the slices so that there only two types of slices: nice slices
which are contained in a single F ′

k or L′
k, and transitional slices that are contained in either T−

k

or T+
k for some k. This can be done (with a controlled change in the slice constant) by replacing

each original slice S with S ∩ Fk, S ∩ Lk, S ∩ T−
k , or S ∩ T+

k , for some k; we leave the details to
the reader.
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Let us fix a box B from among the boxes intersecting [x0, xn]. Take x to be the point in
the box to the immediate left of B which lies on [x0, xn] and whose Euclidean distance from B
equals r(B) (note that r(B) is rk or sk for some 0 ≤ k ≤ n, depending on whether B is a flat
or a long box), and take y to be the corresponding point in the box to the immediate right of
B. There are two endpoint cases where these definitions do not make sense: if B = F0, instead
let x = x0 and if B = Fn, instead let y = xn. The dα,G-length of the line segment joining x
and y is easily seen to be comparable to the dα,G-length of the main axis of B, which we call
lα(B) for short. By construction, the nice slices in B also satisfy (WS-1) and (WS-3) for the
pair x, y, so Lemma 2.1 implies that the contribution to the sum in (WS-2) of the numbers di

that correspond to these slices is at most some constant multiple of lα(B). Similarly, for large n,
the transitional slices between two adjacent boxes B1, B2 cannot contribute more than a small
multiple of lα(B1) + lα(B + 2).

Since fk,α ≈ 1 is much larger than lk,α for large k, the last estimates imply that the contribu-
tions of the nice slices contained in Fk must be bounded below, at least for some fixed fraction
of the numbers 0 ≤ k ≤ n. However (WS-1) implies that nice slices in Fk must have diameter
comparable with Rk. It follows that their number is bounded and that their total contribution
can be at most comparable with Rα

k . Since Rα
k is much smaller than 1, we get a contradiction.

Note that above we have only used the wSlice conditions, not (WS-1+) or (WS-5), so as to
emphasise that the peculiarity of this example is not because of the latter extra conditions. The
proof that an α-wSlice+ condition does not uniformly hold for pairs x0, xn is a little easier if we
use (WS-5). Also note that G is not a β-wSlice+ domain, as can be shown by considering the
β-wSlice+ condition for points near either end of Fn for large n.

Open Problem C. Show that a (0, C)-wSlice domain is a C ′-Slice domain for some C ′ =
C ′(C, n).

According to Corollary 4.2, the classes of α-wSlice+ domains are distinct for all α > 0, and
according to [BS, Proposition 4.5] there are domains that are α-wSlice+ domains for all α > 0,
but not Slice domains. However, even if the first two open problems can be made into theorems,
Open Problem C remains unresolved. Furthermore, taking 0 = β < α = 1/2, the counterexample
G to the one-point variant of Open Problem B is also a counterexample to the one-point variant
of this problem since, as mentioned in Section 2, any Slice condition implies an α-wSlice condition
quantitatively.

Open Problem D. Suppose 0 ≤ α < 1. Show that an (α, C)-wSlice domain (or C-Slice domain)
is an inner (α, C ′)-wSlice domain (or inner C ′-Slice domain, respectively) for some C ′ = C ′(C, n).

Note that if this can be shown then the class of (α; d)-wSlice domains is the same for every
metric d lying between the Euclidean and inner Euclidean metrics.

Yet again, there are counterexamples for the one-point variant of this problem. Consider for
example the planar domain G = (0, 1)2 ∪ (

⋃∞
k=1 Rk), where

Rk =
(
(2−k − 2−sk, 2−k + 2−sk) × [1, 1 + 2−k)

)
\
(
{2−k} × [1, 1 + 2−k−1]

)

for some s > 2; note that G consists of the unit square with disjoint narrow slitted rectangles
attached. Taking u0 = (1/2, 1/2) and v to be arbitrary, we claim that the pair u0, v satisfies any
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of the Euclidean slice conditions with a constant independent of v = (v1, v2), but that it does not
uniformly satisfy any inner Slice condition, nor any inner α-wSlice condition if s > 1/(1 − α).

In the positive direction, we sketch only the α-wSlice+ condition for α > 0; the case α = 0 and
the Slice condition are left as exercises. The cases where v ∈ (0, 1)2, or v ∈ Rk with v2−1 <∼ 2−sk,
are easily handled since dα,G(u0, v) is then bounded so u0, v satisfy an α-wSlice+ condition with
zero slices. Suppose instead that v ∈ Rk and v2 > 1 + 4 · 2−sk. For each i ∈ N define

Si ≡ Rk ∩ (R × (1 + 2−sk+1(i − 1), 1 + 2−sk+1i)), i ∈ N.

Letting γ ∈ ΓG(u0, v) be such that lenα,G(γ) < 2dα,G(u0, v), and letting m be the integer such
that v ∈ Sm+2, it is straightforward to verify a uniform α-wSlice+ condition for u0, v with slice
data γ, {Si, dia(Si)}m

i=1.

For the negative results, it suffices to show that for every α ∈ [0, 1), s > 1/(1 − α), and
C > 1, there always exists v ∈ G such that the pair u0 = (1/2, 1/2), v fails to satisfy the inner
(α, C)-wSlice condition. We consider only the case α > 0; the case α = 0 is left as an exercise.
We write vk = (2−k +2−sk−1, 1+2−k−1), k ∈ N. We claim that if the data γ, {Si, di}m

i=1 satisfies
(WS-1) and (WS-3) for the pair u0, vk ∈ G, and di ≥ dG(Si), then Σ ≡ ∑m

i=1 dα
i

<∼ 1. Since

dα,G(u0, vk) ≈ 2k(s(1−α)−1) grows arbitrarily large as k → ∞, it follows from this claim that pairs
u0, vk cannot uniformly satisfy any inner α-wSlice condition.

We may as well assume that the slices Si are contained in (0, 1)2∪Rk, since if we remove those
parts of Si lying in Rj, j 6= k, it follows that (WS-1) must still be true with the same constant
C. Let Σ1 be the subsum of Σ corresponding to those slices contained entirely in

Ak ≡ G ∩ [R × (0, 1 + 2−sk+1)].

The subset of slices contained in Ak, together with the corresponding numbers di, forms a set of
data satisfying (WS-1) and (WS-3) for the pair of points u0, v

′
k, with v′

k = (2−k + 2−sk−1, 1 +
2−sk+2). Since dα,G(u0, v

′
k) <∼ 1, it follows from Lemma 2.1 that Σ1 <∼ 1.

Next let Σ2 be the subsum corresponding to those slices contained entirely in Rk. Since we
can move from u0 to vk by going up either side of the slit in Rk, an argument similar to that used
in the proof of Theorem 5.1 shows that the numbers di satisfy a geometric growth condition. It
readily follows that Σ2 <∼ 1.

Finally, we consider slices Si that intersect both (0, 1)2 and Rk \ Ak. If by replacing Si by
Si ∩Ak (but leaving di unchanged) we get a would-be slice that satisfies (WS-1) with C replaced
by 2C, then we can include the term dα

i in Σ1. Assume instead that Si∩Ak fails to satisfy (WS-1)
even with C replaced by 2C. Let w0 = (x0, 1) be the point of first entry into Rk of a path λ0 for
which this version of (WS-1) fails. Since len(λ0 ∩ Si) ≥ di/C and len(λ0 ∩ Si ∩ Ak) < di/2C, it
follows that

len(λ0 ∩ Si ∩ (0, 1)2) <
di

2C
− 2−sk+1.

Suppose that there exists λ1 ∈ ΓG(u0, vk) such that len(λ1 ∩ Si ∩Rk) < di/2C. We define a path
λ ∈ ΓG(u0, vk) as follows: λ coincides with λ0 as far as the point w0, then it traverses a path
in G ∩ [ (0, 1) × (0, 1] ] of length at most 2−sk+1 from w0 to the last point of entry of λ into Rk,
and finally it traverses the final segment of λ1. Such a path λ would satisfy len(λ ∩ Si) < di/C
in contradiction to (WS-1). Thus if we replace Si by Si ∩ Rk, and C by 2C, then (WS-1) is still
satisfied, and so we may include the term dα

i in Σ2. There are no remaining terms, so our claim
is proved and we are done.
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[V3] J. Väisälä, Quasimöbius maps, J. Analyse Math. 44 (1984/85), 218–234.
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