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0. Introduction

A non-zero Borel measure ν is said to be doubling if there is a constant C ≥ 1 such that

C−1 ≤
ν(I)

ν(J)
≤ C, (1)

whenever I, J are adjacent intervals of the same length. We call the smallest C = Cν for which
this condition holds, the doubling constant of ν. A measure is a multiple of Lebesgue measure if
and only if its doubling constant is 1.

It was shown in [BHM] that if U ⊂ [0, 1]n is open and |∂U | = 0, then νn(U) → |U | whenever νn

is a sequence of probability measures on [0, 1]n whose doubling constants tend to 1. In particular,
if U is an open subset of [0, 1] of full measure, then νn(U) → 1. We will show, amongst other
things, that there exists a Gδ set G in [0, 1] of full measure, and a sequence νn of measures whose
doubling constants tend to 1, yet νn(G) = 0 for all n. We can even choose the measures to be
“renormalizations” of a single measure ν which “fit the gaps in G” as a key fits a lock.

We wish to thank the referee for drawing our attention to the paper of Kakutani.

1. Definitions and basic results

There is an easy way, essentially due to Kahane [K], to generate doubling measures. Let Q
consist of all intervals on [0, 1) of the form [m4−k, (m + 1)4−k), where m, k are non-negative
integers, and set Q(j) to be the subset of Q consisting of those intervals of length 4−j .

For any I ∈ Q the four children are labeled I0, I1, I2, I3, moving from left to right. Now consider

HI(x) =











1, x ∈ I1

−1, x ∈ I2

0, otherwise.

The product
∏

I∈Q
(1 + aIHI) converges weak-∗ to a doubling, probability measure µ, provided

that supI∈Q |aI | < 1. We call any such measure µ a Kahane measure and write ‖µ‖K =
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supI∈Q |aI |. Furthermore, the doubling constant Cµ tends to 1 as ‖µ‖K tends to 0; in fact,

if ‖µ‖K ≤ 1 − ε, then there is a constant cε, dependent only on ε, such that Cµ ≤ 1 + cε‖µ‖K

whenever for some ε > 0.

For our purposes it will be sufficient to consider Kahane measures for which all of the coefficients

aI at any given scale are equal and ‖µ‖K ≤ 1 − ε for some ε > 0, which we assume to be fixed

from now on. We denote this class of measures by Mε, or simply M. Then every measure in M

is of the form
∏∞

j=1(1+ajRj) where Rj =
∑

I∈Q(j) HI ; it is convenient to introduce the notation

cj(µ) ≡ aj . We will focus on those measures µ ∈ M for which cj(µ) → 0 as j → ∞, and we label

these M0. For µ ∈ M and n = 0, 1, 2, . . . the measure µn ∈ M henceforth denotes the element

of M with cj(µn) = cj+n(µ), j ∈ N. The measures µn are “renormalized” versions of µ; in fact,

if S ⊂ [0, 1) is a measurable set and fS is the periodic function with period 1 whose restriction to

[0, 1) is the characteristic function of S, then µn(S) =
∫ 1

0
fS(4nt) dµ(t). Given µ ∈ M0, it follows

from the estimate in the last paragraph that the sequence of doubling constants (Cµn
) has limit

1. Thus every µ ∈ M0 is optimally doubling at small scales in the sense that ν = µ satisfies (1)

with C = Cµn
whenever I, J are adjacent intervals with |I| = |J | ≤ 4−n.

The following result is a special case of a result of Kakutani [Kk, Corollary 1].

Theorem A. Let µ, ν ∈ M, with aj = cj(µ), bj = cj(ν), for all j ∈ N. If (aj − bj)
∞
j=1 lies in

l2, the class of square summable sequences, then µ << ν << µ, otherwise µ ⊥ ν.

In fact, when ν is Lebesgue measure and (an) ∈ l2 above, more is true: µ lies in the Mucken-

houpt class A∞, and in particular µ has density lying in Lp([0, 1]) for some p > 1; see [Bu] and

[FKP].1

Kakutani proves this result by careful analysis, but let us pause to prove the singularity part

of this result using the Lyapunov version of the Central Limit Theorem [Bi, Theorem 27.3] which

we now state.

Theorem B. Suppose that {Xn}
∞
n=1 is a sequence of independent random variables, and that

the moments E(Xn) = en, E(Xn − en)2 = σ2
n 6= 0, and E|Xn − en|

3 = τ3
n are finite for each n.

Let

sn =

(

n
∑

i=1

σ2
i

)1/2

, tn =

(

n
∑

i=1

τ3
i

)1/3

.

If limn→∞ tn/sn = 0, then Yn ≡
∑n

i=1(Xi − ei)/sn converges in distribution to the standard

normal distribution.

In this paragraph we employ the notation of Theorem A. The functions Rn are independent as

random variables on [0, 1] with respect to ν, and so the functions fn = log[(1+anRn)/(1+bnRn)]

1These references only say that µ lies in dyadic A∞ but, since µ is a doubling measure, this implies that
µ ∈ A∞.
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are also independent. A little calculation with the power series expansion for log(1 + t) gives

Eν(fn) ≡ en = −
(an − bn)2

4(1 − b2
n)

+ O(|an − bn|
3),

Eν(fn − en)2 ≡ σ2
n =

(an − bn)2

2(1 − b2
n)

+ O(|an − bn|
3),

Eν |fn − en|
3 ≡ τ3

n =
|an − bn|

3

2

1 + b2
n

(1 − b2
n)2

+ O(|an − bn|
4).

Thus if sn, tn are as in Theorem B, limn→∞ |an − bn| = 0, and (an − bn)∞n=1 /∈ l2, then
t3n/
∑n

i=1 |ai − bi|
3 and s2

n/
∑n

i=1(ai − bi)
2 are bounded above and below by positive, finite con-

stants that are independent of n. It is then routine to deduce that limn→∞ tn/sn = 0; one
simply splits the sum at a point beyond which |an − bn| is very small and uses the estimate

‖ · ‖l3 ≤ ‖ · ‖
2/3
l2 ‖ · ‖

1/3
l∞ . Thus Theorem B is applicable in the case Xn = fn. Since

∑n
i=1 ei

is much larger than sn for large n, it follows that Yn tends to −∞ in ν-measure and thus
∏∞

n=1(1 + anRn)/(1 + bnRn) converges in ν-measure to the zero function. Set {PN} to be the
partial products of this infinite product. We have just seen that this sequence of functions con-
verges to zero in ν-measure. However, PN (x) = µ(IN (x))/ν(IN(x)), where IN (x) is the unique
element of Q(N) containing x and so, by the Radon-Nikodym theorem, {PN} converges ν-a.e.
to the Radon-Nikodym derivative of µ with respect to ν. Consequently, the Radon-Nikodym
derivative is zero ν-a.e., and so µ ⊥ ν whenever (aj − bj) /∈ l2

We are mainly interested in Theorem A when ν is Lebesgue measure. In this case if the sequence
(cj(µ)) has limit zero but does not lie in l2, then µ is a singular measure which is optimal doubling
at small scales. The mere existence of such a measure may seem a little surprising and was only
recently established (using different techniques) by Cantón [C] and Smith [S].

There is an obvious bijection, A, between Q and the set of finite sequences whose terms lie in
{0, 1, 2, 3}. We will refer to A(I) as the address of I. The jth term in the address is Aj(I). For
I ∈ Q, we let E(I) consist of the union of the intervals J ∈ Q for which A2j(J) = Aj(I) for all
j. So the odd terms in A(J) are arbitrary and the even terms are specified. If I ∈ Q(j), E(I)
consists of 4j elements of Q(2j). For n = 0, 1, 2, . . . and I ∈ Q, Tn(I) consists of those intervals
J ∈ Q for which An+j(J) = Aj(I) for all j. So the first n terms of J are arbitrary and the
remainder are specified. When I ∈ Q(j), Tn(I) consists of 4n elements of Q(j + n). Note that
if I and J are disjoint, then E(I) and E(J) are disjoint, as are Tn(I) and Tn(J). For any set B
that is a union of disjoint elements I of Q, we define E(B) to be the union of the E(I), and we
define Tn(B) similarly. It is easy to check that |E(B)| = |B| and that |Tn(B)| = |B|.

Let Σj be the collection of subsets of [0, 1) that are unions of elements of Q(j). Any set B ∈ Σm

is said to be j-indifferent if whenever B ⊃ I ∈ Q(m) and J is one of the three elements of Q(m)
for which A(J) and A(I) differ only in the jth place, then J ⊂ B. Equivalently if S(B) is the
set of sequences of length m given by A(I) for each I ∈ Q(m), I ⊂ B, then B is j-indifferent
precisely if S(B) is measurable with respect to the σ-algebra generated by the sets

Sk,l = {(ai)
m
i=1 : ak = l}, 1 ≤ k ≤ m, k 6= j, l ∈ {0, 1, 2, 3}.

The point of this definition is that if B is j-indifferent, then µ(B) does not depend on the cj(µ).
In particular, if B ∈ Σm, then E(B) is j-indifferent for all odd numbers j and all even j > 2m,
and Tn(B) is j-indifferent for all j ≤ n and all j > n + m.
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2. Construction of µ and G

Our main result is as follows.

Theorem 1. There exists a measure µ ∈ M0 on the interval [0, 1) and a Gδ set G contained in

[0, 1) which have the following properties:

(a) µ([0, 1)) = 1, |G| = 1 and µ(G) = 0.
(b) µn(G) = 1 for all odd n ∈ N and µn(G) = 0 for all even n ∈ N.

Taking νn = µ2n, we immediately get

Corollary 2. There exists a Gδ set G in [0, 1] of full measure and a sequence νn of probability

measures on [0, 1] whose doubling constants tend to 1 and for which νn(G) = 0 for all n.

The oscillatory behaviour of µn(G) described in Theorem 1(b) is all the more remarkable since
the measures µn are renormalized versions of a single measure µ whose doubling constants are
tending to one. The idea is to construct G from sets that are indifferent at odd levels n (and
thus treat such µn like Lebesgue measure), but which are concentrated in areas where µn is small
whenever n is even.

Proof of Theorem 1. Let b be any number strictly between 0 and 1. Define νk to be the element
of M whose coefficients are all 2−k. This measure is singular with respect to Lebesgue measure.
It follows that for sufficiently large nk, there exists Ak ∈ Σnk

for which |Ak| ≥ 1 − bk and
νk(Ak) ≤ bk. We can assume that the nk are increasing to ∞.

Divide the natural numbers into consecutive blocks B1, B2, . . . of length 2n1, 2n2, . . . . Set
aj = 2−k whenever j is an even number in block Bk, and 0 otherwise. Define µ ∈ M0 by the
equations cj(µ) = aj .

Now let mk = 2n1 + · · · + 2nk−1 for k > 1 and m1 = 0. Thus mk is the total length of the
blocks B1, . . .Bk−1. Define Hk to be Tmk

(E(Ak)). Then Hk ∈ Σmk+2nk
and is j-indifferent for

all j except even numbers larger than mk and no larger than mk + 2nk, i.e., all even numbers
in Bk. Remove the endpoints of the intervals that make up Hk to get an open set Uk. The
sets Uk and Hk differ only by a countable number of points. Thus any doubling measure gives
them the same measure (doubling measures on the line are non-atomic). Set Gm =

⋃∞

k=m Uk

and G =
⋂∞

m=1 Gm. This set G is a Gδ set.

We have |Hk| = |Ak| ≥ 1− bk for all k, hence |Gm| = 1 for all m, and |G| = 1. If n is odd and
j is even, then cj(µn) = 0. But Hk is j-indifferent for all odd j, so it follows that µn(Hk) = |Hk|.
As a result, µn(G) = 1 whenever n is odd.

The set Hk is j-indifferent for all j except even j in Bk and cj(µ) = 2−k for these exceptional
integers. Thus µ(Hk) = νk(Ak) ≤ bk. Consequently, µ(Gm) ≤ bm(1 − b)−1 for all m, and so
µ(G) = 0.

Suppose n−m is even. Then cj(µn) = cj(µm) for “most” values of j in the sense that for each k
the number of places where the coefficients of size 2−k do not match up is bounded independently
of k, indeed by n−m. It follows readily from Theorem A that µn << µm << µn. In particular,
µn(G) = 0 for all even n. �

Finally, we note two facts about the relationship between µn and µm. First, if n − m is odd,
then one of n, m is odd and the other is even. Thus one of the measures gives full measure to G,
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while the other gives G zero measure. In particular, µn ⊥ µm. Secondly, when n − m is even,
the absolute continuity mentioned in the last paragraph of the proof can be strengthened: there
exists a constant C, dependent only on n − m, such that C−1µm(E) ≤ µn(E) ≤ Cµm(E). It
suffices to prove this last estimate for E ∈ Q, in which case the estimate follows from the fact,
that cj(µn) = cj(µm) for “most” values of j. We leave the details to the reader.

References

[Bi] P. Billingsley, Probability and Measure. Third edition, Wiley Series in Probability and Mathematical
Statistics, J. Wiley & Sons, New York, 1995.

[Bu] S.M. Buckley, Estimates for operator norms on weighted spaces and reverse Jensen inequalities, Trans.
Amer. Math. Soc. 340 (1993), 253–272.

[BHM] S.M. Buckley, B. Hanson, and P. MacManus, Doubling for general sets, to appear in Math. Scand..

[C] A. Cantón, Singular measures and the little Bloch apace, Publ. Mat. 42 (1998), 211-222.

[FKP] R. Fefferman, C. Kenig, and J. Pipher, The theory of weights and the Dirichlet problem for elliptic

equations, Ann. Math. (2) 134 (1991), 65–124.

[Kh] J.-P. Kahane, Trois notes sur le ensembles parfaits linèaires, Enseign. Math. 15 (1969), 185–192.
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