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0. Introduction

Slice-type conditions and their relatives have been used in a number of papers
of the author and various collaborators to investigate a variety of problems in anal-
ysis including Sobolev-type imbedding theorems ([BuKo], [BuOS], [BuSt1], [Bu]),
quasiconformal equivalence of domains ([BuSt2], [Bu]), and Gromov hyperbolicity
([BaBu]). Despite their usefulness, these conditions are still somewhat mysterious,
but some recent research has helped to shed more light on them ([BaBu], [BuSt3],
[BuDiSt]).

There are quite a few varieties of slice conditions, partially reflecting the fact
that different applications require different conditions. In this paper, we define
some of these variants, discuss how they differ from each other, and summarize their
applications. Along the way, we encounter quite a few examples, counterexamples,
and open questions. We discuss (strong) slice conditions and Gromov hyperbolicity
in Section 2, weak slice conditions and their applications in Section 3, and some
examples and useful lemmas in Section 4.

1. Preliminaries

The spherical metric σ on Rn is the Riemannian metric with density ρ(z) =
2/(1 + |z|2). The Riemann sphere Rn is the metric completion of (Rn, σ) obtained
by adding the single point ∞. We also denote the extension of σ to Rn by σ; note
that Rn is a compact metric space of diameter π.

Throughout this paper, Ω is either a proper subdomain of Rn or of Rn, n > 1;
in most cases it is the former, so that is the default. Also, δ(x) is the Euclidean
distance from x to ∂Ω, and Γ(x, y) is the class of rectifiable paths λ : [0, t] → Ω for
which λ(0) = x and λ(t) = y. As well as the Euclidean metric, we use two other
metrics on Ω: the inner Euclidean distance and quasihyperbolic distance, defined
respectively by

l(x, y) = inf
γ∈Γ(x,y)

∫

γ

ds, k(x, y) = inf
γ∈Γ(x,y)

∫

γ

ds(z)

δ(z)
, x, y ∈ Ω.

where ds is length (one-dimensional Hausdorff) measure with respect to the Eu-
clidean metric. We write lΩ(x, y) and kΩ(x, y) if the domain Ω needs to be specified.
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We can analogously define spherical counterparts lσ(x, y) and kσ(x, y). The Eu-
clidean length and diameter of S ⊂ Ω are denoted len(S) and dia(S), respectively.
The corresponding quantities for the quasihyperbolic metric are denoted lenk;Ω(S)
and diak;Ω(S), or simply lenk(S) and diak(S). We write B(x, r) and Bl(x, r) for,
respectively, the open Euclidean ball and open inner Euclidean ball, of radius r
about x. For any of these quantities, a σ superscript indicates that we are using
the spherical version. We do not distinguish notationally between paths and their
images.

We denote by [x, y] any kσ geodesic between x, y ∈ Ω; the parametrization is
unimportant. If γ is a path that passes through points x and y, then γ[x, y] denotes
any segment of γ that has x, y as endpoints (there is an element of choice involved
if γ passes through x or y more than once).

For any two numbers a, b, a∨ b and a∧ b denote their maximum and minimum,
respectively. Let C ≥ 1 and let d be the Euclidean metric. A domain Ω is a
C-uniform domain if, for every x, y ∈ Ω, there is a path γ ∈ Γ(x, y) of length L
and parametrized by arclength for which L ≤ Cd(x, y), and t ∧ (l − t) ≤ Cδ(γ(t)),
0 ≤ t ≤ L. If we instead take d to be the inner Euclidean metric, we get an inner
C-uniform domain. Uniform domains include all bounded Lipschitz domains, as
well as some domains with fractal boundary, such as the interior of a von Koch
snowflake. All uniform domains are inner uniform, and a slit disk is a standard
example of an inner uniform domain that is not uniform. For more on (inner)
uniform domains, see for instance [GeOs], [Ge], [Va1], and [Va2].

Let C ≥ 1 and let x0 ∈ Ω be fixed. We say that Ω is a C-Hölder domain
(with respect to x0) if, for all x ∈ Ω, k(x, x0) ≤ C log (C/δ(x)). All bounded
inner uniform domains are Hölder, but the converse is false. Gehring and Martio
introduced Hölder domains and showed that they are bounded [GeMa, 3.9]; for
more on Hölder domains, see [SmSt1] and [Ko].

2. Slice conditions and Gromov hyperbolicity

We begin by recalling the slice condition in [BaBu]. Given x, y ∈ Ω and a path
γ ∈ Γ(x, y), we write (x, y; γ) ∈ slice(C) if there exist pairwise disjoint open subsets
{Si}

m
i=0 of Ω, m ≥ 0, with di ≡ dia(Si) < ∞ such that

∀ 0 < i < m, ∀ λ ∈ Γ(x, y) : len(λ ∩ Si) ≥ di/C; (Sli1)

∀ 0 ≤ i ≤ m : diak(γ ∩ Si) ≤ C; (Sli2)

len

(

γ \
m
⋃

i=0

Si

)

= 0; (Sli3)

B(x, δ(x)/C) ⊂S0, B(y, δ(y)/C) ⊂ Sm. (Sli4)

We say that Ω is a (two-sided) slice domain if there exists a constant C such that
(x, y; γ) ∈ slice(C) for all x, y ∈ Ω satisfying k(x, y) ≥ log 2, and all quasihyperbolic
geodesics γ ∈ Γ(x, y). We say that Ω is a (two-sided) inner slice domain if it satisfies
the variant of the above condition with di being the inner diameter of Si.
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Mainly in this paper, we stick to the Euclidean case, but we sometimes need
to switch to the spherical versions of our metrics. We then talk about (inner)
spherical slice domains. Note that inner slice implies slice; this is true whether we
are using the Euclidean or spherical versions. The converse is false, as we discuss in
Secction 4. It follows from the results in [BaBu, Section 4] that an inner spherical
slice domain satisfies all the other spherical slice-type conditions in the literature.

The adjective two-sided is used in the above definitions for emphasis whenever we
want to contrast these with one-sided conditions. We say that a condition defined
in terms of properties of pairs of points x, y is two-sided if it holds uniformly over all
x, y ∈ Ω, or one-sided if it only holds uniformly over all x ∈ Ω but with y = x0 fixed.
It is not hard to construct one-sided (inner) slice domains that are not two-sided
(inner) slice domains.

To state one of the main results in [BaBu], we need to define three other condi-
tions linking the inner spherical and quasihyperbolic metrics on a spherical domain
Ω ( Rn. First, we say that Ω is Gromov hyperbolic with respect to the quasihy-
perbolic metric (or, more briefly, kG-hyperbolic) if there exists a constant C such
that

∀ x, y, z ∈ Ω ∀ [x, y], [x, z], [y, z] ∀ w ∈ [x, y] : kσ(w, [x, z] ∪ [z, y]) ≤ C.
(Hyp)

The notion of Gromov hyperbolicity, which makes sense in general metric spaces,
was conceived in the setting of geometric group theory [Gr1], [Gr2], [GhHa]. For
the quasihyperbolic metric this property was extensively studied in [BoHeKo].

Next, Ω ( Rn is a Gehring-Hayman domain if there exists a constant C such
that

∀ x, y ∈ Ω ∀ [x, y] : lenσ([x, y]) ≤ Clσ(x, y), (GH)

Finally, Ω ( Rn is a ball-separation domain if there exists a constant C such that

∀ x, y ∈ Ω ∀ [x, y] ∀ w ∈ [x, y] ∀ λ ∈ Γ(x, y) : λ ∩ Bσ(w, Cδ(w)) 6= ∅. (BS)

The following theorem is a special case of one of the main results of [BaBu]; see
Theorem 0.1 and the subsequent discussion in that paper.

Theorem 2.1. The following conditions are quantitatively equivalent for Ω ( Rn:

(1) Ω is kG-hyperbolic;
(2) Ω is an inner spherical slice domain;
(3) Ω is both a Gehring-Hayman and a ball separation domain.

Theorem 2.1 makes it easier to check if the kG-hyperbolic and inner slice condi-
tions hold, since (3) is more easily verified than the other two conditions. Of course
if Ω is a bounded domain, we can use the Euclidean metric in place of the spherical
metric.

Theorem 2.1 also has implications for quasiconformal invariance since Gromov
hyperbolicity is well-known to be quasiconformally invariant. Its equivalence to the
other two conditions provides the only known proof of the quasiconformal invariance
of those other conditions. By contrast, it is not hard to construct examples to show
that neither the Gehring-Hayman condition by itself nor the one-sided (inner) slice
condition are quasiconformally invariant.
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3. Weak slice conditions and their applications

3.1. Weak slice conditions.

We begin by defining the weak slice condition introduced by the author and
O’Shea [BuOS]. This condition is an endpoint of a one-parameter family of weak
slice conditions later considered in [BuSt1] and [BuSt2], but here we discuss only
the original condition.

Suppose C ≥ 1. A finite collection F of pairwise disjoint open subsets of Ω is a
set of (inner) C-wslices for x, y ∈ Ω if

∀ S ∈ F ∀ λ ∈ Γ(x, y) : len(λ ∩ S) ≥ dS/C, (WS-1)

∀ S ∈ F : S ∩ B(x, δ(x)/C) = S ∩ B(y, δ(y)/C) = ∅ (WS-2)

where dS < ∞ is the (inner) Euclidean diameter of S. Next, we define WS(x, y; C)
by

WS(x, y; C) = 1 + sup{card(F) : F is a set of C-wslices for x, y}

and WSin(x, y; C) is defined analogously, using sets of inner C-wslices. Note that
1 ≤ WSin(x, y; C) ≤ WS(x, y; C), since the empty set is trivially a set of (inner)
C-wslices. We use subscript notation such as F = {Si}

m
i=0 only in cases where we

know that F is nonempty.
According to [BuSt3, Corollary 2.9], WS(x, y; C) ≤ C(1 + k(x, y)). To define

a wslice condition, we reverse this last inequality, i.e. the pair x, y satisfies the
C-wslice condition if

k(x, y) ≤ C WS(x, y; C), (WS-3)

We refer to (x, y,F) as a C-wslice dataset if F is a set of C-wslices for x, y, and
k(x, y) ≤ C(1 + card(F)). We say that Ω is a (two-sided) C-wslice domain if all
pairs of points in Ω satisfy a C-wslice condition. Inner, one-sided, and spherical
variants are defined in the obvious manner. Clearly all of these weak slice-type
conditions are implied by their strong slice-type counterparts.

Although not explicitly assumed, the collection of weak slices given by a C-
wslice condition for a pair of points x, y, k(x, y) > 2C, cover at least some fixed
fraction of the quasihyperbolic length of any quasihyperbolic geodesic [x, y]; this
follows from Lemma 4.4. This relaxation of (Sli3) is the most important of the
differences between any strong-type slice condition and the corresponding weak-
type slice condition.

Consider the following condition on sets of (inner) wslices:

∀ S ∈ F ∃ zS ∈ S : B(zS , dS/C) ⊂ S. (WS-5)

Although this condition may fail for a given set of (inner) wslices, it can nevertheless
be assumed without loss of generality according to [BuSt3, Theorem 2.14], as long
as we are willing to tolerate changing the set of wslices and making a controlled
change in the value of the slice parameter C. Condition (WS-5) is sometimes useful
for getting upper bounds on the number of slices in certain parts of Ω based on the
number of balls of a given size that can be packed there.

The following theorem provides us with a large collection of slice domains that
includes all simply-connected planar domains.
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Theorem 3.2 [BuSt2, Theorem 3.1]. A quasiconformal image of an inner uniform
domain is an inner slice domain, quantitatively.

3.3. Applications to Sobolev imbeddings.

A Trudinger domain is a domain Ω ⊂ Rn of finite volume for which

‖u − uΩ‖φ(L)(Ω) ≤ C

(
∫

Ω

|∇u|n dx

)1/n

, for all u ∈ C1(Ω),

where φ(t) = exp(tn/(n−1)) − 1, and ‖ · ‖φ(L)(Ω) is the corresponding Orlicz norm
on Ω defined by

‖f‖φ(L)(Ω) = inf

{

s > 0

∣

∣

∣

∣

∫

Ω

φ(|f(x)|/s) dx ≤ 1

}

.

Smith and Stegenga [SmSt2] proved that all Hölder domains are Trudinger do-
mains. This is fairly sharp since Koskela and the author [BuKo] subsequently
proved that any Trudinger domain satisfying a variant of our slice condition is a
Hölder domain. Thus Theorem 3.2 tells us that Hölder is equivalent to Trudinger
for simply-connected planar domains and all other quasiconformal images of inner
uniform domains. A technical assumption such as slice is needed for this equiv-
alence in order to outlaw trivial counterexamples constructed via removability or
extendability results for Sobolev spaces.

Hölder domains are not necessarily one-sided slice domains in the sense of [BuKo]
(or in the sense defined in the previous section, for that matter). However, weak
slice conditions give us a nice equivalence.

Theorem 3.4. A domain Ω ( Rn is a Hölder domain if and only if it is both a
one-sided wslice domain and a Trudinger domain.

This equivalence for bounded domains is a special case of [BuOS, Corollary 5.4].
But Hölder domains and Trudinger domains are both necessarily bounded (for
the latter, see [Bu, Proposition 2.4]), so an explicit boundedness hypothesis is not
needed.

Unlike the two-sided slice condition, one-sided (weak or strong) slice conditions
are not quasiconformally invariant. Indeed, a quasiconformal image of a Hölder
domain may fail to be a one-sided weak slice domain; see [Bu, Theorem 3.6]. How-
ever the so-called k-cap condition, defined in [Bu], is a quasiconformal invariant.
This condition is related to, but strictly weaker than, the weak slice condition. It is
however strong enough that the combination of k-cap plus Trudinger is equivalent
to Hölder. It thus leads to the following theorem.

Theorem 3.5 [Bu, Theorem 2.1]. If f : Ω → f(Ω) is a quasiconformal mapping
and Ω is a Hölder domain, then f(Ω) is a Hölder domain if and only if it is a
Trudinger domain.

3.6. Applications to quasiconformal equivalence.

The following result is an improvement of the α = 0 case of [BuSt2, Theorem 4.1];
see also [BoHeKo, Proposition 7.12].
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Theorem 3.7. The following are equivalent for a bounded domain Ω = U × V :

(1) Ω is a Gromov hyperbolic domain;
(2) Ω is an inner slice domain;
(3) Ω is a wslice domain;
(4) both U and V are inner uniform domains;
(5) Ω is an inner uniform domain.

Note that Theorem 3.7 also tells us that the two-sided slice and inner wslice
conditions are equivalent to inner uniformity in the case of bounded product-type
domains, since those conditions are intermediate between two-sided wslice and inner
slice conditions. Thus Gromov hyperbolicity and the various slice-type conditions
are well-understood for bounded product domains. We postpone the proof of The-
orem 3.7 until the next section, where we also consider the relations between the
various slice conditions on general domains (see the implication diagram on page
11).

The following theorem is an easy corollary of Theorems 3.2 and 3.7.

Theorem 3.8. A bounded domain Ω = U × V is quasiconformally equivalent to
an inner uniform domain if and only if it is an inner uniform domain.

4. Other results

4.1. Proving that a weak slice condition fails.

To prove that a domain does not satisfy an (inner) weak slice-type condition,
we need good upper bounds for WS(x, y; C) or WSin(x, y; C). Here we state two
lemmas (4.2 and 4.4) that have proved useful in this regard, the first exploiting
the Euclidean metric and the second the quasihyperbolic metric. Both lemmas are
more abstract and general than the versions one might first come up with, but this
extra generality has proved useful in applications. Our first lemma is essentially
[BuSt3, Lemma 2.17] with α = 0 and Euclidean measure.

Lemma 4.2. Suppose that Ω ( Rn is a domain, A ⊂ Ω is a rectifiable set, and F
is a collection of disjoint non-empty bounded subsets of Ω satisfying the following
conditions:

(1) for each S ∈ F , len(S ∩ A) ≥ cS > 0;
(2) there exists ε > 0 and a function g : A → [ε,∞) such that cS ≥ g(z)

whenever S ∈ F and z ∈ S ∩ A;
(3) there exists C0 > 0 such that len(g−1(0, t]) ≤ C0t for all t > 0.

Then the cardinality of F is at most 2C0 log2(4 len(A)/ε).

Proof. We partition F into subsets Fj defined by the equation

Fj = {S ∈ F | cS ∈ (2j−1, 2j]}, j ∈ Z.

The set g−1((0, 2j]) has length at most C02
j ∧ len(A), and it contains S ∩A for all

S ∈ Fj . But if S ∈ Fj , then len(S ∩ A) > 2j−1. It follows that the cardinality of
each Fj is at most 2C0, and that Fj is empty if 2j > 2 len(A). Since Fj is also
empty for 2j < ε, the lemma follows easily. �
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We now turn to the proof of Theorem 3.7. We use ideas from this last lemma
and its proof, although we do not appeal directly to it. The α = 0 case of [BuSt2,
Theorem 4.1] says that for a bound product-type domain Ω = U × V , the inner
uniformity of Ω is equivalent to that of U and V , and to Ω satisfying a so-called
inner 0-wslice+ condition, a condition formally stronger than the two-sided inner
wslice condition. It is not hard to prove that an inner uniform domain is an inner
slice domain (this is a special case of [BaBu, Theorem 4.6]), so to prove Theorem 3.7
we need only prove that if Ω = U × V ⊂ Rm × Rl is a bounded one-sided wslice
domain, then U and V are inner uniform. By symmetry, we consider only U .

We pick a point v0 ∈ V which maximizes distance to the boundary in V , and
write δ0 = δV (v0). Suppose u, u′ ∈ U and let z0 = (u, v0), z′0 = (u′, v0). Let
γ : [0, 1] → Ω be a quasihyperbolic segment from z0 to z′0 in Ω. Clearly, the V -
coordinate of γ is constant, its U -coordinate γU is a quasihyperbolic segment from
u to u′ in U , and kU (u, u′) ≤ kΩ(z0, z

′

0). Suppose F is a collection of C-wslices for
the pair z0, z

′

0 ∈ Ω, with dS = dia(S), S ∈ F . We assume without loss of generality
that δΩ(z0) ≤ δΩ(z′0) and that each S ∈ F satisfies (WS-5); this may require a
controlled increase in the value of C. Since δΩ(z0) = δU (u) ∧ δ0, it follows that
δΩ(z0) = δU (u) ∧ δU (u′) ∧ δ0.

We claim that each S ∈ F is contained in the ball B(z, (2C + 2)l(u, u′)) for
z = z0, z

′

0. Take a path λU ∈ ΓU (u, u′) of length less than 2l(u, u′). Defining λ
to be the path with first coordinate given by λU and constant second coordinate
v0, we have a path λ of length less than 2l(u, u′). If S ∈ F were not contained in
B(z, (2C + 2)l(u, u′)) for one or both of the points z = z0, z

′

0, then the fact that S
intersects λ would imply that dS ≥ 2Cl(u, u′), and so S could not satisfy (WS-1).
This finishes the proof of our claim.

We next pick a point v1 ∈ V such that δ0/2 < |v1−v0| < δ0, and let z1 = (u, v1),
z′1 = (u′, v1). Define a path ν : [0, 3] → Ω as follows:

ν(t) =











(1 − t)z0 + tz1, 0 ≤ t ≤ 1,

(γU (t − 1), v1), 1 ≤ t ≤ 2,

(3 − t)z′1 + (t − 2)z′0, 2 ≤ t ≤ 3.

For each j ∈ N, let Aj be the annular regions given by

Aj =

{

z ∈ Ω

∣

∣

∣

∣

2j−1 ≤
C(|z − z0| ∧ |z − z′0|)

δ(z0)
< 2j

}

.

We partition F into subsets Fj consisting of all those S ∈ F which intersect Aj ∩γ
but are disjoint from Ai ∩ γ for all i > j. Since the distance from Aj ∩ γ to
ν is at least (δ0/2) ∧ |z − z0| ∧ |z − z′0| and every S ∈ F must also intersect ν,
we have 2dS ≥ δ0 ∧ (2jC−1δ(z0)) for all S ∈ Fj. Thus each S ∈ Fj contains a
ball B(zS , dS/C) of radius comparable with 2j−1δ(z0) and is contained in the set
B(z0, 2

jδ(z0)/C) ∪ B(z′0, 2
jδ(z0)/C). By disjointness of the slices, this gives an

upper bound N on the cardinality of Fj, where N depends only on m + l, C, and
δ0; in particular N is independent of j. Also Fj is empty whenever 2j−1δ(z0)/C >
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(2C+2)l(u, u′). Thus the cardinality of F is at most N log2(4(C2+C)l(u, u′)/δ(z0))
and so

kU (u, u′) ≤ C

(

1 + N log2

(

4(C2 + C)l(u, u′)

δ(z0)

))

≤ C

(

1 + N log2

(

4δ−1
0 (C2 + C)l(u, u′)

δU (u) ∧ δU (u′)

))

.

According to [Va2; Theorem 2.33], this condition implies inner uniformity, thus
finishing the proof of Theorem 3.7.

The α > 0 case of [BuSt2, Theorem 4.1] involves slice conditions that we have not
discussed in this paper. However, let us note that that result can be improved, using
an α > 0 variant of Lemma 4.2, to the statement that for bounded product domains,
the α-wslice, inner α-wslice+, and inner α-mCigar conditions are all equivalent.

The proof of the following result is just a one-sided analogue of the proof of
Theorem 3.7.

Theorem 4.3. The following are equivalent for a bounded domain Ω = U × V :

(1) Ω is a one-sided inner slice domain;
(2) Ω is a one-sided wslice domain;
(3) Ω is a Hölder domain.

We now come to the second lemma, which is a special case of [BuSt3, Corol-
lary 2.9].

Lemma 4.4. Suppose C ≥ 2, x, y ∈ Ω, and A ⊂ Ω. Suppose that F is a finite set of
bounded pairwise disjoint subsets of Ω satisfying (WS-2), and for which len(A∩S) ≥
C−1 dia(S) for all S ∈ F . Furthermore, we assume that each S ∈ F intersects every
λ ∈ Γ(x, y). Then there exists c = c(C) > 0 such that lenk(A ∩ S) ≥ c for each
S ∈ F . Consequently, the cardinality of F is at most lenk(A)/c.

This lemma provides a rather simple method of producing domains that do not
satisfy α-wslice conditions. Suppose G ( Rn is a domain and that Ω = G \ E is
a subdomain of G such that E ∩ K is a finite set for all compact subsets K of G.
Suppose now that (x, y,F) is a C-wslice dataset with respect to the domain Ω, and
that δ(z) ≈ δG(z) for z = x and z = y. Switching the domain to be G does not
affect (WS-2), and it is a routine exercise to show that each S ∈ F also satisfies
(WS-1) for x, y with respect to the domain G (hint: make little bypasses around
each point of E that a path λ passes through). Consequently, Lemma 4.4 tells us
that

WS(x, y; C) ≤ C(1 + kG(x, y)),

where WS(x, y; C) is defined relative to the domain Ω. We can therefore produce
a domain that fails to satisfy a wslice condition by removing a countable family E
of points which force paths between the points x, y go through bottlenecks tight
enough that kΩ(x, y) is much larger than kG(x, y).
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Example 4.5. Let tj ∈ (0, 1/2) with tj+1 ≤ tj/2 for each j ∈ N. Let G be the
planar triangle {(x, y) : 0 < x < 1, |y| < x} and let E =

⋃

∞

j=1 Ej, where Ej consists

of the nj points which divide the line segment {(tj, y) : |y| < tj} into nj + 1 equal
subsegments, where nj ∈ N. Then Ω ≡ G \ E is an (inner) wslice domain if and
only if the sequence (nj) is bounded.

The case of a bounded sequence is clear, since Ω is then an inner uniform domain
and so satisfies all slice-type conditions, so to justify the last statement we need
to prove that a wslice condition fails if (nj) is unbounded. This fact is proven
using the technique given before this example: writing zj = (3 · 2−j−2, 0), j ∈ N,
both kG(zj , zj−1) and δG(zj)/δ(zj) are uniformly bounded over all j ∈ N, while
kΩ(zj , zj−1) is very large whenever nj is very large.

An alternative approach can be used to prove the essentially weaker result that a
strong (inner) slice condition fails if (nj) is unbounded. Consider the ball separation
condition for the geodesic γ = [zj , zj−1], where zj is as in the previous paragraph.
Picking the intermediate point w = wj ∈ γ so that the first coordinate of w is 2−j ,
we see that a large constant C is required in (BS) if nj is large. Thus Ω is not a
ball separation domain, and so not an (inner) slice domain, if (nj) is unbounded.

If we are interested in the question of when Ω is a one-sided wslice domain, we
can appeal to Theorem 3.4. Since the set E is removable for Sobolev spaces (this
follows from the ACL-characterization of Sobolev spaces [Mz, Section 1.1.3]), Ω is
a Trudinger domain. Thus Ω is a one-sided wslice domain if and only if it is a
Hölder domain. It is then a routine exercise to give a characterization in terms of
the sequence (nj) alone. In fact Ω is a one-sided wslice domain if and only if the

sequence
(

j−1
∑j

i=1 log nj

)

is bounded.

Example 4.6. Another typical example of a domain that does not satisfy a slice
condition is Ω = G × (−1, 1), where G is a cusped domain such as

{(u1, u
′) ∈ R × Rm : 0 < u1 < 2, |u′| < us

1}

for some fixed s > 1. Letting γ(t) = (t, 0, 0) for all 0 ≤ t ≤ 1, it is easy to see
that the restriction of γ to [a, 1], 0 < a < 1, is the unique k-geodesic segment from
(a, 0, 0) to (1, 0, 0), However, this geodesic segment does not uniformly satisfy a
separation condition as a tends to zero. Alternatively, Ω is an bounded product
domain but is clearly not a Hölder domain, so Theorem 4.3 implies that it is not
even a one-sided wslice domain.

4.7. Proving that a weak slice condition holds.

Let us briefly discuss how to prove a weak slice condition using explicitly con-
structed weak slices. There are two such ways that occur repeatedly. Typically
a bare-hands example involves considering several cases and in each case we use
some variant of one or other of these two constructions. The first method, appli-
cable to all domains, is to use concentric annuli with geometrically increasing radii
Ai = Bl(x, 2iδ(x)) \ Bl(x, 2i−1δ(x)) for 1 ≤ i ≤ m0, where

m0 =

⌊

log2

(

l(x, y)

δ(x) ∧ δ(y)

)⌋

− 1,
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assuming m0 > 0. By swapping x and y if necessary, this allows us to derive the
general estimate

WSin(x, y; C) ≥ 1 ∨ log2

(

l(x, y)

2(δ(x) ∧ δ(y))

)

(4.8)

whenever C ≥ 4. With this estimate, it is straightforward to prove that inner
uniform domains are inner wslice domains, and that Hölder domains are one-sided
wslice domains.

The second method is applicable when a domain has a long corridor. Consider,
for instance, the simple case of a rectangular box R ⊂ R3 with normals in the
coordinate directions, which is of sidelength 1 in the second and third coordinates,
and sidelength N in the first, where N ∈ N. We chop R into N disjoint open
cubes Qi of sidelength 1 (plus n − 1 connecting squares which we discard). If
x = (x1, x2, x3) and y = (y1, y2, y3) both lie in R, with x1 ≤ y1, we choose as our
slices all those cubes Qi whose points have first coordinates larger than x1 + 1 and
less than y1−1. These corridor slices suffice to verify a wslice condition for the pair
x, y unless either δ(x) or δ(y) is less than 2x1−y1 . In this case, a wslice condition
follows by instead using concentric annular slices.

Example 4.9. Consider the three-dimensional “rooms and corridors” domain Ω =
⋃

∞

j=0(Rj ∪ Kk). Each room Rj is a rather flat box of dimensions 2−j × 2−j × 4−j

connected along opposite (non-square) ends to the (square) ends of Kj−1 and Kj ,
where the corridor Kj is a box of dimensions 2−j × 4−j × 4−j . Then we claim that
Ω is a one-sided weak slice domain but not a one-sided (strong) slice domain.

Let us justify the above claim. Picking x0 to be the center of R0, a path γ from
x0 to a point in Rm for large m must pass through Rj and Kj for each 1 ≤ j < m.
These intermediate rooms Rj are problematic for large j, since γ must pass through
some point xj ∈ Rj whose distance from the nearest corridor is at least 2−j−1. If
Si is a slice containing xj , it follows from (Sli1) that di, and hence len(γ ∩ Si), is
bounded from below by c2−j , and so diak(γ ∩ Si) is bounded from below by c2j ;
here c depends only on the slice constant C. This is inconsistent with (Sli2) when
j is large.

However, the rooms do not cause a problem for the wslice condition since we
simply ignore them! We instead chop all intermediate corridors into corridor slices.
In this way, we see that WSin(x0, y; C) ≥ 2m−1 whenever y is a point in Rm ∪Km.
This estimate is good enough to give a wslice condition unless k(x, y) is much larger
than 2m, in which case we must have δ(x) < exp(−2m). In that case, concentric
annular slices show that a wslice condition is satisfied.

Finally, let us discuss what is known and not known about how various slice-
type conditions compare with each other. We have the following set of elementary
implications among the various slice conditions; see [BuSt2, Section 5]. These
implications hold whether we are discussing one-sided or two-sided conditions (as
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long as we do not mix one-sided and two-sided conditions).

Inner slice =⇒ Inner wslice

w

w

�

w

w

�

slice =⇒ wslice

Examples are given in [BuSt2] to show that neither a one-sided slice condition
nor a one-sided inner wslice condition implies the other one. Thus, in the case of
one-sided conditions, all implications that do not logically follow from the above
diagram are false.

The story for two-point conditions is less complete. One can construct a wslice
domain that is neither a slice domain nor an inner wslice domain; see [BuDiSt] for
details. Also one can construct a slice domain that is not an inner wslice domain;
see Example 4.11 below. However, the question of whether or not an inner wslice
domain is an inner slice domain is still open.

Ω

S0 S10

Sa
1 Sb

1

Sa
2 Sb

2

Sa
3 Sb

3

Sa
4 Sb

4

Sa
5 Sb

5

Sa
6 Sb

6

Sa
7 Sb

7

Sa
8 Sb

8

Sa
9 Sb

9

D1

D1

x y

z v

w

4.10. The domain Ω (left) and an annotated D1 (right)

Example 4.11. The domain Ω above consists of a square of unit length to which
we attach along one side a sequence of decorations Dj , j ∈ N. The decoration Dj

consists of a rectangle Rj of height 2−j and width 4−j from which we remove four
line segments. It is convenient to coordinatize Rj with Euclidean coordinates that
are shifted and rescaled by a factor 4j+1, so that the corners of Rj have coordinates
(±2, 0) and (±2, 2j+2). The first removed line segment is from (0, 2j+2) to (0, 2),



12 STEPHEN M. BUCKLEY

while the other three form a U-shape from (−1, 2j+2 − 1) down to (−1, 1), then
right to (1, 1), and finally up to (1, 2j+2 − 1). We claim that this domain is a slice
domain but not an inner wslice domain.

The above domain Ω was earlier discussed in [BuSt3, Example 3.3], where it is
shown to be a wslice domain that fails to be an inner wslice domain. Using that
result, we need only prove that Ω is a slice domain to justify our claim. The proof
that Ω is a slice domain is not unlike the proof that it is a wslice domain, but there
are extra complications. Let us therefore begin by recapping why it is a wslice
domain.

For each j ∈ N, we slice Dj along horizontal dotted lines corresponding to
integer values i of the second coordinate, 3 ≤ i ≤ 2j − 1. This is illustrated in the
annotated close-up of D1 in Figure 4.10; for now ignore the dashed line at the base
of D1 and the textual annotation. As always, proving a wslice condition involves
a case analysis involving either corridor slices or concentric annular slices. Let us
write m(z) = j if z ∈ Dj . Concentric annuli always work for pairs x, y unless one
or both points lie in a decoration (since the unit square is a uniform domain). If
m(x) = j, we take as wslices all rectangular parts of Dj that are bounded above and
below by dotted lines, which are an inner distance at least 2−2j−1 from both x and
y, and which all paths from x to y must pass through. If m(y) = i 6= j, we also take
as wslices all rectangular parts of Di that are bounded above and below by dotted
lines, which are an inner distance at least 2−2j−1 from y (and automatically from
x), and which all paths from x to y must pass through (which in this case simply
means that they lie below y). As the reader may check, there exists a universal
constant C such that one or the other of these two sets of wslices gives a C-wslice
condition for x, y whenever the concentric annular slice estimate (4.8) does not give
a wslice condition for x, y. For instance for the pair x, y in Figure 4.10, there are
four such wslices in D1.

However, this method of constructing wslices does not allow one to prove a
(strong) slice condition. The problem is that the quasihyperbolic diameters of
such wslices are not uniformly bounded. To get a set of slices, we need to make
two changes: we add a few extra slices to ensure that all of the quasihyperbolic
geodesic is covered, and we typically divide each of the above wslices into two slices.
A complication in this second change is that the manner of division is sensitive to
the relative positions of our pair of points. As for the wslice proof, a proof involves
a detailed case analysis which employs concentric annular slices, corridor slices or
both in all cases. We leave this analysis to the reader, indicating the ideas by
considering a few representative cases only.

Consider first the pair x, y in the Figure 4.10. Disjoint from our four previous
wslices, we choose slices S0, S10, and S5, the last of which consists of two pieces
labelled Sa

5 and Sb
5. We also split each of the wslices into two slices, giving us Si,

1 ≤ i ≤ 9, i 6= 5; like S5, each of these slices has two pieces distinguished in the
diagram by an a or b superscript. For the pair z, y, a subset of these slices suffices
(namely those with indices 5 ≤ i ≤ 10). For the pair v, y, where v is very close
to the boundary, we would need to include some concentric annular slices near v
which would then be excised from S5.
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So far, minor variations of one method of dividing wslices into slices has sufficed.
But for a pair such as z, w in Figure 4.10, this is not a good method of defining
slices, since the analogous construction for points in similar position in Dj for large
j fails to uniformly satisfy (Sli2). The problem is that [z1, w1] passes through both
parts of S6 and these parts, being separated by two long corridors, are not close
in the quasihyperbolic metric. We therefore reorganize our slices choosing Sa

5 and
Sb

5 as the first and last slices, respectively, and choosing nine intermediate slices:
Sa

4 ∪Sa
6 , Sb

4 ∪Sb
6, Sa

3 ∪Sa
7 , Sb

3 ∪Sb
7, Sa

2 ∪Sa
8 , Sb

2 ∪Sb
8, Sa

1 ∪Sa
9 , Sb

1 ∪Sb
9, and S0 ∪S10.

One can prove a slice condition for all pairs of points in Ω by using concentric
annular slices and/or corridor slices, the latter being produced by one or other of
the two methods given above.
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