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Feedback Stabilization Over a First Order
Moving Average Gaussian Noise Channel

Richard H. Middleton, Alejandro J. Rojas,
James S. Freudenberg, and Julio H. Braslavsky

Abstract—Recent developments in information theory by Y.-H. Kim have
established the feedback capacity of a first order moving average additive
Gaussian noise channel. Separate developments in control theory have ex-
amined linear time invariant feedback control stabilization under signal to
noise ratio (SNR) constraints, including colored noise channels. This note
considers the particular case of a minimum phase plant with relative de-
gree one and a single unstable pole at � (with �) over a first
order moving average Gaussian channel. SNR constrained stabilization in
this case is possible precisely when the feedback capacity of the channel sat-
isfies ��� . Furthermore, using the results of Kim we show
that there exist linear encoding and decoding schemes that achieve stabi-
lization within the SNR constraint precisely when ��� .

Index Terms—Channel capacity, colored noise, control over communica-
tions, signal to noise ratio (SNR).

I. INTRODUCTION

There has been growing interest in connections between feedback
control theory and communication systems. In the feedback control
area, this has resulted in a number of publications and special issues
on this topic such as [2]. In [3], the authors consider the joint de-
sign of communication and control strategies, and use arguments from
rate distortion theory to show that linear strategies are optimal for first
order systems. LQG style control over a binary channel is considered
in [4]. A related line of research considers signal to noise ratio (SNR)
constrained feedback control systems, see for example [5]–[7]. This
paradigm readily extends to consideration of Gaussian channels with
memory, [8].

In a largely separate line of research, there have also been a number
of studies of feedback issues in communication channels. One partic-
ular issue relates to the ability for feedback to increase the “capacity”
of a communication channel with memory, e.g., [9].

Channel capacity has been precisely characterized in the famous
Shannon result for an additive white Gaussian noise (AWGN) channel
with noise variance �� and transmitted average power constraint ����
[9, p.241]

� �
�

�
����

� � ����
��

� (1)

The particular form of capacity considered in [10], [11] is based on
the � block feedback capacity, ����� of the channel. This is an opera-
tional definition of capacity, for which “reliable” communication using
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� transmissions may be performed. We follow the definition of feed-
back capacity ��� used in [10]

��� � ��	
���

����� � (2)

Results such as (1) for the AWGN case have proven difficult to gen-
eralize to the case of a colored noise channel with feedback1. It is well
known that in the case of an AWGN channel that feedback does not
alter the capacity, while in the case of an additive Colored Gaussian
noise (ACGN) channel, it is possible for feedback to improve channel
capacity.

For the case of an AWGN channel, linear coding schemes were used
as a means of achieving capacity in [12]. This scheme was applied to
ACGN channels in [13] (for the case of an auto-regressive channel) and
recently in a more general setting in [14]. A link between the coding
schemes of [12], [13] and a feedback structure involving an unstable
system have been provided in [14]. These results focus primarily on
autoregressive noise coloring, and use the linear coding structure of
[12] to provide a lower bound on the feedback channel capacity. The
authors of [15] discuss Kalman–Bucy filtering in relation to feedback
communication over Gaussian channels with memory.

The results in [10] allow the capacity with feedback over an ACGN
channel to be computed as the limit of an optimization problem but
general results establishing what this limit is have proven elusive. For
an (MA1) Gaussian channel, [11] gives a precise characterization of
the feedback capacity in terms of the average signal power restriction
for unity noise variance. This result can be trivially generalized to a
result for a given average signal power to noise power ratio.

Here our interest is in stabilization over an ACGN communication
channel, though this is closely related to the converse question of linear
feedback coding design for an ACGN communication channel. We
show that the results on feedback capacity in [11] (and parallel results in
[15]) and the SNR constrained stabilization results of [8] are linked for
the case of an MA1 channel and relative degree one, minimum phase
plant with a single unstable pole at � � �. In this case stabilization
within an SNR constraint is possible precisely when the feedback ca-
pacity of the channel, ��� (as in (2)) satisfies

��� � ����
����� (3)

Moreover, if stabilization is possible, it can be achieved by a linear
scheme. This result parallels a simplified form of the results of [16],
[17], neither of which apply immediately to colored noise channels.
Note that [18] use information theoretic techniques to derive necessary
conditions for stabilizability applicable to a large class of communi-
cation channels. A preliminary version of the present results was pre-
sented in [1].

We commence our technical note with some preliminary mathemat-
ical definitions as well as defining the class of communication channel
models, and feedback systems we consider. In Section II we give a
minor modification of the main result in [11] for the feedback capacity
of an MA1 ACGN channel. We then turn our attention in Section III
to problems of SNR constrained control for linear systems, where the
main results are established.

A. Preliminaries

We shall generally use � � � as the discrete time index, and upper
case letters, such as �� , 	� , to denote elements of sequences ����,

1In this context, feedback means that the transmitted signals are permitted to
depend in a causal fashion on the received information.
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Fig. 1. First order moving average additive colored gaussian noise channel.

Fig. 2. Feedback stabilization over a communication channel.

���� of random variables. We use a superscript � to denote a sub-
sequence of random variables, for example �� �� ���� ��� � � � � ���.
The differential entropy of a random variable, e.g., �� is denoted by
�����. ���� is used for the expected value. Finite dimensional Linear
Time Invariant (LTI) systems will be described by their rational transfer
functions in the complex transform variable �.

By a slight abuse of notation, we shall use expressions such as	����

� to denote the convolution of the pulse response of	��� with {
�}.
We use �� to denote the set of proper rational transfer functions with
associated norm

�	������ �
�

	�

��

��

	�����
�


�� (4)

�� is therefore the space of rational proper transfer functions with no
poles on the unit circle. We also define important subsets �� � ��
and its orthogonal complement ��� � �� as

�� ��� 	 �	��� � 
�
�
��� ��� 
�
 � �� (5)

��� ��� 	 �	��� � 
�
�
��� ��� 
�
 � �� 	��� � ��� (6)

B. The Channel Model

The channel model we consider in this technical note is depicted in
Fig. 1. The channel has input, output and noise denoted by �� ,�� and
�� respectively.

Mathematical relationships for the communication channel in Fig. 2
are described below. First, the received signal �� is given by

�� � �� � ��� (7)

The channel noise, �� in (7), is generated by an MA1 process

�� � �� � ������ (8)

where�� is an IID Gaussian process, with variance ��, and we assume
that 
�
 � �.

The channel transmission is required to satisfy an average power
constraint2

���
���

�

�

�

���

� �
�

� � 
��� (9)

for a predefined constant 
���.

C. The Plant Model

We consider the general arrangement of feedback control over a
communication channel depicted in Fig. 2.

We assume the plant is LTI, finite dimensional and strictly proper
with transfer function 	���

�� � 	��� � 
�� (10)

where
� , �� are, respectively, the input and output of the plant. In this
technical note, we restrict attention to plants that satisfy the following
assumption.

Assumption 1: The plant is finite dimensional LTI and can be fac-
tored as

	��� �
�

�� � ��
	����� (11)

with 
�
 � �, and where both	���� and	��� ��� have all poles strictly
within the unit circle, and are proper.

From Assumption 1 it follows that we can write

���� � ��� �	���� � 
�� (12)

D. The Objective

We restrict attention to encoders and decoders that are a causal func-
tion of the available data, namely the plant input, 
� , is generated by a
causal decoding, 
� � �����, of the received signal and conversely,
the sent signal, �� , is a causal encoding, �� � ��� ��, of the plant
output.

We seek encoders and decoders that stabilize the plant in the fol-
lowing sense. By stability, we mean that for any distribution of ini-
tial conditions with finite second moment, all random variables con-
verge at an exponential rate to stationary distributions, with well de-
fined second moments. As an immediate consequence, [9, Thm 8.6.6]
implies ������ ������� � �.

E. Channel Capacity Required for Stabilization

We first briefly review results on the channel capacity required for
stabilization of a scalar unstable system. There are a number of results
in the literature that cover closely related results. In [16] stabilization
of a vector unstable system over a noise free digital channel is con-
sidered. This was modified in [17] to the case of an AWGN channel.
More recently, generalizations to multiple feedback stabilization prob-
lems over a shared network have been analyzed in [19]. The following
result is a minor variant of a simplification of [19, Lemma 3.3].

Lemma 1: Consider the scalar unstable plant, (11), subject to As-
sumption 1. Then, causal encoders and decoders that stabilize the plant
(in the sense described above) exist only if

��� � ��� 
�
� (13)

Proof: An outline of the proof follows. Further details can be
found in [19, Lemma 3.3]. Note from (12) that we have �� � ���� �

2Note that several other equivalent power constraints can be used, since as
shown in [11], optimal encoding uses equal power at each time.
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������� where ���� denotes the causal operator representing the com-
bined effects of decoding the received signal, and convolution with
�����, on the output �� . Therefore

����� �� ���� � �������

�� ���� � ����������

� � ��� ��� � � ����
� 	 (14)

From (14), the definition of capacity as the supremal limiting mutual
information rate, and the data processing inequality it follows that


�� � ��	 
��
���




�
������

��

� ��	 
��
���




�
������ ������

��

� ��� ���� ��	 
��
���

������� ������

�
	 (15)

The result follows since the last term in (15) is zero due to the assump-
tions of finite initial entropy and stability.

II. MA1 CHANNEL CAPACITY WITH FEEDBACK

We now give a minor variant of the main result of [11] on the feed-
back capacity of an MA1 Gaussian channel.

Lemma 2: Consider the MA1 ACGN channel, (7), (8) under the
power constraint, (9). The feedback capacity, (2), of this channel is
given by:


�� � ���
�
��
 (16)

where �� is the unique solution in the range �

�� to the quartic
equation

����
��

� �� � 


� ���

�

�

	 (17)

Proof: We begin by rescaling the channel random variables so
that the white noise variance is unity. In particular, let ��� � ����,
��� � ����, ��� � ���� and ��� � ����. Clearly these rescaled
random variables satisfy

��� � ��� � � ����� (18)

� ���

� �
 (19)
��� � ��� � ��� (20)

and the power constraint (9) becomes

��	
���




�

�

���

� ���� �
����
��

	 (21)

The result (16), (17) follows immediately from [11, Theorem 1] with
power constraint ������� and �� in [11] replaced by ���

�
.

As noted in [11], following the structure of [12] also explored in
[13], there exists a first-order autoregressive filter relating �� to �� ,
that generates optimal transmissions [11, (40)]

�� � ����� � ����� (22)

where � � �
�������� and

� �� 
�����
�����
� ���

��
	 (23)

We shall return to this fact later in Remark 1.
In what follows, we show a relationship between these results and

results that may be obtained by applying �� optimal control theory to
the problem of LTI minimal SNR stabilization as in [8].

III. LINEAR MINIMAL SNR STABILIZATION

Consider the plant model, ����, as in (11) and the noise model (8).
Assume that we have the trivial identity encoder3 and a linear time in-
variant decoder, 	
��� � 
��� � �� with 
��� a transfer function
such that the closed-loop system is stable. Under the assumption of
closed loop stability, the power in the channel input, �� , may be com-
puted, in the disturbance free case, as 
���


�

� �� where ��� is de-
fined to be the closed loop transfer function from �� to �� . Therefore,
the SNR (that is the ratio of the power of the sent signal �� to the noise
power, ����

� �) in this case is precisely 
���

�

� , and stabilization
within the SNR limit demands that 
���


�

�
� ������

�.
The authors of [8] present the solution to the problem of minimizing


���

�

� over the class of all stabilizing controllers for a general LTI
plant over a general colored noise channel with memory. For the case of
a plant that satisfies Assumption 1, the results of [8] may be specialized
as below in Lemma 3. The result below is proven using spectral theory
and �� theory, though the results could also be derived using Linear
Quadratic Gaussian control theory, or Nevanlinna-Pick interpolation
theory [14].

Lemma 3: Consider an LTI plant subject to Assumption 1 with MA1
ACGN channel (7), (8). Then stabilization is possible by LTI feedback
subject to the power constraint (9) if and only if

����
��

� �� � 


 � �

�

�

	 (24)

Proof: (See also [8]). The steady state variance of the output can
be determined using spectral analysis as

� ��� � 
���

�

�
��
 (25)

where ��� is defined to be the closed loop transfer function from ��

to �� . We now follow similar derivations to those in [20].
Note that stabilizability subject to the power constraint (9) is equiv-

alent to stabilizability subject to the constraint 
���

�

�
� ������

�.
Analysis of the closed loop equations yields that��� in (25) is given

by

������ � ����

�������


� 
�������
	 (26)

We then use the Youla parametrization of all stabilizing controllers.
We first express the plant as a fraction of rational stable proper transfer
functions

���� �
����

����
�

��������

�
� �����
	 (27)

The class of all stabilizing controllers is then given by


��� � �
����� ����������

�� �������������

 (28)

3Note that in the case of linear time invariant encoding and decoding with
channel noise only, the decoder, plant and encoder all commute, and it is no loss
of generality to take the trivial decoder.
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where ���� is a stable proper transfer function, ���� � ����� ���
and � ��� � �. Using (26) the closed loop transfer function can be
expressed as

������ � ����������������������	�������

� � �
�

�
��������� �� �

�

�

�����

�
(29)

where����� � ���������. In view of (29), and since���� � ��, the
problem of minimizing the transmitted power subject to stabilization of
the closed loop is therefore equivalent to

���
���������	�
��

��������
�

�

� ���
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�

�


 (30)

The factor ��� in (30) is all-pass and may be removed. Then apart
from the term involving ��������, which is not stably invertible, the
expression in (30) would be zero. We therefore proceed by extracting
an all pass factor �� �������� � � as follows:

���
�� �� �

����� �������� ����������
�

�

� ���
�� �� �

���� ���

�� � ��
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�

�
� � �����

�

�

(31)

where ��, �� and ��� are as defined in (4)–(6). We define 	��� 
�
� ���� � �� � ���� � ��� and
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� � �

�

 (32)

We then further decompose (31) into components in �� and ��� as

��� ��������
�

�

� ���
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	����
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�����

�
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�

�

�� � �
��
 (33)

Note that the last equality in (33) follows by taking ����� �
�	�������� ��������� � ��. The result follows directly by sub-
stituting (32) in (33).

We now proceed to a result that follows in the case where � and �
have opposite signs. We later consider the case where � and � have the
same sign, in which a particular type of linear time varying encoding
and decoding will be used.

Proposition 1: Consider the plant (10) with MA1 Gaussian channel
(7). Suppose also that � and � have opposite signs. Then stabilization
is possible by LTI feedback subject to the power constraint (9) if and
only if the channel capacity as described in Lemma 2 satisfies

��� � �
�� ���
 (34)

Furthermore, if the constraint (34) is satisfied, then an exponentially
stabilizing LTI controller that achieves the power constraint is given
by the trivial encoding, �� � �� , together with the decoder �� �
����	�� where

���� � ���� � ����� ���

���� � ������ ���

(35)

Proof: From Lemma 3, and the assumption on the signs of � and
� it follows that the plant is stabilizable by LTI feedback subject to the
power constraint if and only if

���
�
� � ���� � �

�� ���

���

�


 (36)

Note that the right hand side of (36) is a monotonically increasing func-
tion of ���, and that replacing ��� in (36) by �� as defined in Lemma 2
gives equality. Therefore, ��� � �� and (34) is equivalent to (36).

To prove the second part of the proposition, we perform spectral
analysis of the closed loop system with the control chosen as in (35).
The closed loop transfer function from the noise source, �� , to the
transmitted signal, �� , is given by

������ �
��������

�� ��������
����

�
���� � �� ���

	

	

 (37)

It follows from (37) that the closed loop is exponentially stable. Fur-
thermore, the asymptotic variance of �� can be computed as

���


�

�

�




���

� ��� � ��������
�
� ��

�
��� � ��� ���

	

�

��
�
���
	

�

�

��

���� � ��
�� ���

���

�

��

and clearly in view of (36) the power constraint is satisfied.
Remark 1: Note that in the case where we have equality in (35), then

clearly �� � ���. Therefore following the discussions after (22) (see
also [11]) and using the fact that in Proposition 1, ������ � ��������
we have � � ���. Also, in this case, from (23) it follows that

� � � ������ ��� � ��
� � �

�

�

��� ���

� � ������
��� � ��� ���

	

�

��

�
���� � �� ���

	

�



Therefore in the case of equality in (34), the controller (35) generates
the same relationship between �� and �� as the filter in (22).

We now turn to the slightly more complicated case where � and �
have the same sign. In this case we utilize linear time varying operations
as indicated in the following proposition.

Proposition 2: Suppose that the MA1 channel (7) has feedback ca-
pacity as defined in Lemma 2 that satisfies ��� � �
�� ���, and sup-
pose also that � and � have the same sign. Then the LTV feedback law

�� ��������

�� � ����� 	 �������

����� � �
��� � ����� ���

���� � ��
���� ��� (38)
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Fig. 3. Original LTV scheme (top) and equivalent interpretation (bottom).

exponentially stabilizes the plant with average transmitted power
������ ��� �

���
� � �

� � ����.

Proof: We first define transformed random variables ��� �
�������, ��� � ������� , ��� � ������� , and ��� � ������� .
Then using these definitions it is straightforward to show that

��� � ��� 	 ���
��� � ��� � � ����� (39)

where ��� is a sequence of IID random variables with variance 	�,
and � ���� � � ��� . This transformation of the LTV scheme is
illustrated in Fig. 3.

In addition, clearly the encoder and decoder in (38) can be expressed
as

��� ���


� � ����� � ���

and the remainder of the proof mirrors the proof of Proposition 1 except
with the sign of � reversed.

IV. CONCLUSION

In this technical note we have considered the problem of stabilization
of a plant while simultaneously satisfying a channel SNR constraint.
In particular, we examine MA1 colored Gaussian channels; and plants
with a single unstable pole at � � 
; �
� � �, that are otherwise
minimum phase and relative degree 1. Using slight variants of existing
results, we prove that stabilization is possible only if ��� � �
�

�
�
�.

If this condition is satisfied we are able to exhibit linear coders and
decoders that achieve stabilization subject to the SNR constraint.

For the LTI case, the results on the minimal channel SNR required to
achieve stability generalize in a straightforward manner to more gen-
eral plant descriptions and channel colorings. However, in these cases
it is unclear whether nonlinear encoding and decoding may permit sta-
bilization with a lower SNR than that achievable by the simpler linear
schemes. Further research is needed to examine higher order plants,
more complex channel codings, and the effect of stochastic plant dis-
turbances on the results presented here.
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