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On the fusion problem for degenerate elliptic equations II

Stephen M. Buckley, Pekka Koskela

Abstract. Let F be a relatively closed subset of a Euclidean domain 
. We investigate
when solutions u to certain elliptic equations on 
 nF are restrictions of solutions on all
of 
. Speci�cally, we show that if @F is not too large, and u has a suitable decay rate
near F , then u can be so extended.
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In this paper, we study removability of a set F for solutions to certain degene-
rate elliptic partial di�erential equations which are de�ned on 
 nF and decay in
the vicinity of F . Here and throughout this paper, 
 is an open set in Rn , n � 2,
F is a relatively closed proper subset of 
, and 1 < p � n.

The results in this paper are closely related to those in [4]. Roughly speaking,
both papers show that if the dimension of @F is less than a critical index de-
pendent on the rate of decay, then F is removable. The innovation in this paper
is that we measure dimension by means of Hausdor� measure rather than lower
Minkowski density. Since it is easy to give examples of sets whose Hausdor� di-
mension is strictly less than their lower Minkowski dimension, this improves the
results in the earlier paper.

We shall be concerned with partial di�erential equations of the form

(1) divA(x;ru) = 0

where A : Rn � R
n ! R

n is a mapping that satis�es the following assumptions
for some constants 0 < � � � <1:

(a) the mapping x 7! A(x; �) is measurable for all � 2 R
n , and the mapping

� 7! A(x; �) is continuous for a.e. x 2 Rn ;
(b) A(x; �) � � � �j�jp;
(c) jA(x; �)j � �j�jp�1;
(d) (A(x; �1)�A(x; �2)) � (�1 � �2) � 0 whenever �1 6= �2;
(e) A(x; ��) = j�jp�2�A(x; �) for � 2 R; � 6= 0.
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In particular, taking p = 2, and A(x; �) = A(x)� for some bounded measurable
matrix-valued function A satisfying a uniform ellipticity condition, we see that
the above class contains the class of self-adjoint linear elliptic equations with mea-
surable coe�cients. Another example (for any p > 1) is the p-Laplace equation

�pu = div(jrujp�2ru) = 0:

Throughout this paper, A, A1, and A2 refer to functions satisfying conditions
(a){(e) above.

By a solution of (1) in 
, we shall mean a function u in the local Sobolev class

W 1;p
loc (
) such that

(2)

Z


A(x;ru) � r� dx = 0

for all test functions � 2 C10 (
). An excellent source for the potential theory of
such solutions (which arise naturally in the theory of quasiregular mappings) is
the monograph of Heinonen, Kilpel�ainen, and Martio [2].

By an A-harmonic function, we mean a continuous solution of (1) (in the linear
case A(x; �) = A(x)�, where A is bounded, measurable, and uniformly elliptic,
we say that u is A-harmonic). We now record some basic properties possessed by
A-harmonic functions u | proofs can be found in Chapters 3 and 6 of [2]. We
note �rst that any solution of (1) can be regarded as an A-harmonic function,
since it di�ers from a continuous function only on a set of measure zero. Next, we

note that (2) is actually true for all test functions � in the Sobolev spaceW
1;p
0 (
).

Finally, u is H�older continuous with some exponent 0 < � � 1 depending only on
n, p, and �=�.

For any non-decreasing gauge function h : [0;1)! [0;1) satisfying h(0) = 0,

we can de�ne a Hausdor� measure Hh (in fact, we only need h to be de�ned near
0); see, for example, [1]. This re�nes the more well-known notion of Hausdor�

measure Hs, where s is a positive number, since Hs = Hh if h(t) � ts.
The main result of this paper, Theorem 6, says roughly that if a solution u in


 nF has some rate of decay near F , and @F is a null set for a related Hausdor�-
type measure, then u is a solution in all of 
. For simplicity, we �rst state and
prove our main result in the case where the gauge function has the form h(t) = ts.
From here on, �A(x) denotes the distance from the point x to the closed set A.

Theorem 1. Suppose that u is A-harmonic (with parameter p > 1) in 
 n F .

Suppose also that Hn�p+(p�1)�(@F ) = 0 and ju(x)j � C��F (x) for some 0 < � �
p=(p� 1) and all 0 < �F (x) < minf1; �@
(x)g=2. If we extend u to be zero on F ,

then u is A-harmonic in 
.

In the linear case, Theorem 1 immediately yields the following corollary, which
we believe is new.
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Corollary 2. Suppose that u is A-harmonic on 
 n F , i.e. it is a continuous so-

lution in 
 nF of the linear equation div(A(x)ru(x)) = 0, where A is a bounded

measurable matrix-valued function satisfying a uniform ellipticity condition. Sup-

pose also that Hn�2+�(@F ) = 0 and ju(x)j � C��F (x) for some 0 < � � 2 and

all 0 < �F (x) < minf1; �@
(x)g=2. If we extend u to be zero on F , then u is

A-harmonic in 
.

Related theorems have been considered elsewhere. For example, Kr�al [6]
showed that for the Laplace equation (i.e. A(x; �) = �), a C1(
) function which is
harmonic on fx 2 
 : u(x) 6= 0g is harmonic on all of 
; Kilpel�ainen [3] proves a
similar result for the p-Laplace equation in the plane. In our result, the decay of u
near F takes the place of the smoothness assumption (note that A-harmonic func-
tions are not necessarily C1, or even locally Lipschitz). Results even more closely
related to Theorem 1 are to be found in [5] and [4]. In particular, Theorem 1.7 in
the latter paper is a weaker version of Theorem 1 in which the Hausdor� measure
condition on the size of @F is replaced by a condition on the lower Minkowski
density of F . Example 5.1 in [4] shows that Theorem 1 is essentially sharp and
that Corollary 2 is sharp for 1 � � < 2.

In the linear case, Corollary 2 also allows us to say something about the fusion
problem, which asks when two solutions can be spliced together to give a single
solution. More precisely, the fusion problem is as follows:

Suppose that u1 is A1-harmonic in 
 and that u2 is A2-harmonic in 
 n F .
De�ne

u =

�
u1 in F

u2 in 
 n F

and

A(x; �) =

�
A1(x; �); if x 2 F

A2(x; �); otherwise.

Is u A-harmonic in 
?
We now state a result which addresses the fusion problem in the special case

where A1 = A2 and the equation is linear; this corollary follows immediately by
applying Corollary 2 to u � u2 � u1.

Corollary 3. Suppose that u1 is A-harmonic in 
 and u2 is A-harmonic in


 n F , i.e. u1; u2 are continuous solutions in the indicated open sets of the

linear equation div(A(x)ru) = 0, where A is a bounded measurable matrix-

valued function satisfying a uniform ellipticity condition. Suppose also that

Hn�2+�(@F ) = 0 and ju1(x) � u2(x)j � C��F (x) for some 0 < � � 2 and all

0 < �F (x) < minf1; �@
(x)g=2. Then the function

u =

�
u1 in F

u2 in 
 n F

is A-harmonic in 
.

Note that for the equations under consideration in the above corollary, there is
no unique continuation property. In fact, Miller [7] showed that certain equations
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of the form div(Aru) = 0 have non-trivial smooth weak solutions that vanish on
an open set.

Before proving Theorem 1, we �rst state a couple of useful lemmas, the �rst of
which is Lemma 2.2 of [4].

Lemma 4. Suppose that F is a relatively closed subset of 
 � R
n and that

v 2 W 1;p
loc (
) is continuous. Let h be A-harmonic in 
 n F such that

lim
x!y

h(x) = v(y)

for every y 2 @F \
. Then the function

w =

�
h in 
 n F

v in F

belongs to C(
) \W 1;p
loc (
).

Lemma 5. Suppose that F is a relatively closed subset of 
. If u 2W
1;p
loc (
) is

continuous in 
, A-harmonic on 
 n F , and zero on F , then

Z
B(x;r)

jrujp � Cr�p
Z
B(x;2r)

ju� u(x)jp

whenever the ball B(x; 3r) � 
. Here, C depends only on n, p, and �=�.

This last lemma is a type of Caccioppoli Lemma. It is proved in the usual
fashion, but there is one obstacle to be overcome: we need to choose u as the

test function in (2), and so we would like to know that u lies in W 1;p
0 (
 n F ) and

not just in W
1;p
loc (
). By multiplying by a suitable bump function, we �rst kill

o� u outside a suitably large ball, for instance B(x; 11r=4), without changing it

on B(x; 5r=2). Thus we may assume that u 2 W
1;p
0 (
); of course, u is now only

A-harmonic on B(x; 5r=2) n F , but this is good enough for the proof. Because
u is continuous on 
, and zero on F , it is not hard to see that we actually have

u 2W
1;p
0 (
 nF ) (hint: write u as the limit of the compactly supported functions

u� = maxf0; u� �g, � > 0). With this one obstacle removed, the rest of the proof
is standard, so we omit the details.

Proof of Theorem 1: Let � > 0 be given and let � 2 C10 (
) be a test
function with support K. We cover @F by balls fBig, where Bi = B(xi; ri) andP

i r
n�p+(p�1)�
i < �. We may additionally assume that 8ri < minf1; dist(K; @
)g.

Letting G =
S
2Bi, we note that jGj < C� since n� p+ (p � 1)� � n. We next

choose  i 2 C
1
0 such that  i � 1 on Bi,  i � 0 on (2Bi)

c, and r i . r�1i . Let
 = minf1;

P1
i=1  ig. Since �(1�  ) is Lipschitz and is compactly supported in
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 nF , we have �(1� ) 2 W 1;p
0 (
 nF ), and so

R

A(x;ru) � r(�(1� )) dx = 0.

NextZ


A(x;ru) � r(� ) dx =

Z


A(x;ru) �  r� dx+

Z


A(x;ru) � �r dx

= I + II:

Now  is supported on G, and both r� and  are bounded. Therefore

jI j . jGj1=p
�Z

G\K
jA(x;ru)jp=(p�1) dx

�(p�1)=p

. jGj1=p
�Z

G\K
jrujp

�(p�1)=p
:

Lemma 4 implies that u 2W
1;p
loc (
), and so jI j . �1=p.

As for II , we �rst note that

jII j .
X0

i

Z
2Bi

jrujp�1jr ij;

where
P0

i indicates that we sum over only those values of i for which �K(xi) � 2ri
(other terms give no contribution). Since also 8ri < dist(K; @
), it follows that
6Bi � 
, and so we may use Lemma 5. We now use the bound on r i, H�older's
inequality, Lemma 5, and the decay estimate for u (in that order), to get

jII j .
X0

i
r�1+ni

Z
2Bi

jrujp�1

.
X0

i
r�1+ni

�Z
2Bi

jrujp
�(p�1)=p

.
X0

i
r
n�p
i

�Z
4Bi

ju� u(xi)j
p
�(p�1)=p

.
X0

i
r
n�p+(p�1)�
i < �;

as required. �

We now consider more general decay rates for u near F . We omit the proof of
this more general result, as it requires only straightforward modi�cations to the
proof of Theorem 1. Corollary 3 can be generalized in an analogous fashion.

Theorem 6. Let h : [0; 1) ! [0;1) be a non-decreasing function satisfying

h(0) = 0, the doubling condition h(t) � Ch(t=2), and the growth condition tn �

Ch(t) (both for some constant C and all 0 < t < 1). Let g(t) � [tp�nh(t)]1=(p�1),
and suppose that limt!0+ g(t) = 0. Suppose also that u is A-harmonic (with
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parameter p > 1) in 
 n F , that Hh(@F ) = 0, and that ju(x)j � g(�F (x)) for

all 0 < �F (x) < minf1; �@
(x)g=2. If we extend u to be zero on F , then u is

A-harmonic in 
.

Finally note that, if ju(x)j=��F (x) tends to zero as �F (x) tends to zero, then the

assumption Hn�p+(p�1)�(@F ) = 0 in Theorem 1 can be replaced by the weaker
assumption that this quantity is merely �nite, as is clear from the proof; similar
comments applies to the other results above.
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