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Boman equals John

S. Buckley, P. Koskela and G. Lu*

Abstract. In the abstract setting of homogeneous spaces, we prove the equivalence of two geometric
conditions, namely the defining conditions for John domains and Boman domains.
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1. Introduction

In 1961 John [Jo] introduced the notion of a twisted interior cone condition in connection with
his work on elasticity. This condition was later employed by Reshetnyak [R] in 1976 to study
quasiconformal mappings of small dilatation. In 1979 Martio and Sarvas [MS] renamed the class
of domains satisfying a twisted interior cone condition as the class of John domains; see 2.2
below for a precise definition. They used this condition and certain variants of it to study global
injectivity properties of locally injective mappings.

As examples of John domains let us point out that smooth domains, Lipschitz domains and
certain fractal domains (for example the snowflake domain) are John domains. Moreover, John
domains arise naturally in the iteration of complex polynomials. Carleson, Jones and Yoccoz
[CJY] have recently been able to characterise for polynomial mappings the situations when the
basin of attraction at infinity and the bounded Fatou components are John domains; in particular
they show that the basin at infinity is John if and only if the polynomial satisfies a weak version
of hyperbolicity.

By now the class of John domains has been extensively studied in connection with quasi-
conformal analysis. For example, a quasiconformal mapping of a ball onto a John domain has
interesting properties as pointed out by Pommerenke in 1982 [P], Väisälä in 1989 [V2], and
Heinonen in 1989 [He]. In particular, the Jacobian of a quasiconformal mapping of a ball onto a
domain G is the restriction of an A∞-weight if and only if G is a John domain; for this see the
paper by Heinonen and Koskela [HeK] from 1994. The geometry of simply connected plane John
domains is well understood by the work of Näkki and Väisälä from 1991 [NV]; also see the paper
[M] by Martio from 1988 for a nice characterisation without restrictions on connectivity.

In 1982 Boman [Bom] introduced a chain condition that nowadays is referred to as the Boman
chain condition. We say that a domain is a Boman domain if it satisfies a Boman chain condition;
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see 2.1 below for the precise definition. Boman used his condition for Lp-estimates for elliptic
systems and his condition has since found a number of other applications. In 1985 Iwaniec and
Nolder [IN] proved a Hardy-Littlewood type inequality for quasiregular mappings defined in a
Boman domain. Bojarski [Boj] showed in 1989 that Boman domains admit a Sobolev-Poincaré
inequality with the best possible exponents (same as for a ball). Chua [C] extended Bojarski’s
result in 1993 to a weighted setting, Lu [L] established a sharp Sobolev-Poincaré inequality for
Hörmander vector fields when p > 1, and Franchi, Lu, and Wheeden [FLW] proved the sharp
inequalities for all p ≥ 1 in general. One should also note the paper of Franchi, Gutierrez,
and Wheeden [FGW] from 1994 where they prove Sobolev-Poincaré inequalities for metric balls
associated with Grushin type operators, and the paper by Buckley and Koskela [BK] from 1994
where the authors study Sobolev-Poincaré inequalities for the “unnatural” exponents p < 1 for
Sobolev functions and for solutions to certain elliptic equations; also see [BKL] for the vector
field situation. The important observation in connection with vector fields is that metric balls in
a Carnot-Caratheodory metric are Boman domains which allows one to patch up global estimates
from local ones. The first to notice that metric balls are some kind of chain domain was apparently
Jerison in 1986 [Je] who used arguments similar to those used earlier by R.Kohn in the Euclidean
setting.

The main purpose of this paper is to point out that a domain Ω is a Boman domain if
and only if Ω is a John domain. This is Theorem 3.1 below. We establish this result in the
abstract setting of a homogeneous space so as to cover various situations at once (for example,
the Carnot-Carathéodory metrics associated with vector fields: see [BKL], [NSW]). In the general
homogeneous space it is difficult to determine whether or not a domain is a Boman domain. The
point we want to make is that it is often easier to establish that a domain is a metric John domain,
and, since these classes coincide, one should aim for this. For example, as a simple corollary of
the easier half of our main result we shall show that, in a rather general setting, metric balls
satisfy the Boman chain condition; the setting is more general than that of a similar result in
[FGW] and the proof involves considerably less work.

In the Euclidean setting it appears to be folklore to people working on quasiconformal analysis
that Boman domains are John domains even though we have no references to give. It is also
relatively easy to show that a John domain is a Boman domain even in a homogeneous space.
The converse statement is more complicated in the abstract setting of a homogeneous space (and
false without some sort of geodesic assumption, as we shall see in Section 3).

2. Definitions

Let (S, d, µ) be a homogeneous space in the sense of Coifman-Weiss. Thus d is a pseudometric
and µ is a measure that is doubling with respect to metric balls.

Definition 2.1. A domain (i.e. connected open set) E in S is said to satisfy the Boman chain
condition if there exist positive constants M , λ > 1, C2 > C1 > 1, and a family F of disjoint
metric balls B such that

(i) E =
⋃

B∈F C1B .
(ii)

∑
B∈F χ

C2B
(x) ≤ M χ

E
(x) for all x ∈ S .
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(iii) There is a so-called “central ball” B∗ ∈ F such that for each ball B ∈ F , there is a pos-
itive integer k = k(B) and a chain of balls {Bj}

k
j=0 such that B0 = B, Bk = B∗, and

C1Bj

⋂
C1Bj+1 contains a metric ball Dj whose measure is comparable to those of both Bj

and Bj+1 .
(iv) B ⊂ λBj, for all j = 0, . . . , k(B).

We shall call such a set E a (Boman) chain domain. We shall refer to individual chains as
(λ, C1, C2)-chains if we wish to specify the parameters. Clearly all chain domains are bounded.
M is a “dimensional constant” which is of no great concern to us. If λ is much larger than C1

and C2, it indicates the domain is “bad” (for instance, it may be very elongated or it may have
narrow bottlenecks). The other parameters are not important, as there is a lot of freedom in their
choice. Trivially for instance, λ, C1, and C2 can all be multiplied by the same factor larger than 1
(while holding M constant) if we shrink the balls accordingly.

If S = R
N equipped with the Lebesgue measure and d is the Euclidean metric, this is the

standard Boman chain condition. Notice that in the above definition we require that the inter-
section of the expanded balls contains a ball of large volume instead of a ball of large radius. The
reason for this is that in applications of this definition one wishes to compare averages over balls
in the chains associated with the domain, see [BKL], [FGW], [FLW].

Let us briefly discuss rectifiability of curves in a general metric space (X, d). We define the
arclength of a curve γ : [a, b] → X as in the Euclidean case. More precisely, we first define
its arclength with respect to a partition P = {a = t0 < t1 < · · · < tm = b} of [a, b] to be∑m

i=1 d(γ(ti), γ(ti−1)), and then take the supremum over all partitions of the associated lengths.
A rectifiable curve γ can always be reparametrized to give a curve γ̂ : [0, l] → X such that the
arclength of γ̂|[0,t] is t for all 0 ≤ t ≤ l (we say that γ̂ is parametrized by arclength). To see this it
suffices to show that the arclength of γ̂|[0,t] is a continuous function of t; this is proved as in the
Euclidean case (which can be found in [V1, Chapter 1], for instance).

Definition 2.2. A bounded open proper subset E of a metric space (X, d) with a distinguished
point x∗ ∈ E is called a (metric) John domain if it satisfies the following “twisted cone” condition:
there exists a constant c > 0 such that for all x ∈ E, there is a curve γ = γ : [0, l] → E
parametrized by arclength such that γ(0) = x, γ(l) = x∗, and d(γ(t), Ec) ≥ ct. We call such a
curve a John curve for x.

In the above definition, we shall always assume without loss of generality that c < 1. Note also
that l is bounded above by diam(E)/c, and that John domains are automatically connected. If E
is a John domain, any y ∈ E can act as the distinguished point (but a more “central” point will
give a smaller constant). For examples of John domains in a Euclidean space see the introduction.
In a more general setting, any metric ball satisfying a weak geodesic condition (which is always
valid in the case of a Carnot-Carathéodory metric) is a metric John domain; a precise statement
and its easy proof are given in Corollary 3.5 below.

In Definition 2.2, one could also use the diameter of the curve segment from t = 0 to t = l in
place of the arclength l (dropping our standing assumption that curves are regular). Obviously
such “arclength-John” domains are “diameter-John” domains. In Rn these two definitions were
shown to be equivalent by Martio and Sarvas [MS]. More generally, if we simply assume X has the
very weak geometric property that any two distinct points in it can be joined by a “quasigeodesic”
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curve of length at most a fixed multiple of the distance between them, it is not hard to show
that the two notions are still equivalent. For completeness, let us outline the main idea here.
We replace the diameter curve by a finite sequence of such quasigeodesics sewn together. More
exactly, we rectify the curve one segment at a time starting from x, replacing each curve segment
by a quasigeodesic with the same endpoints, and choosing the segments so small that the distance
from the boundary to any point on the curve segment is approximately constant in a relative
sense. As we move away from x (and hence from Ec), it is clear that we can in this manner rectify
pieces whose diameters grow geometrically.

3. John domains and Boman domains

From now on, we assume that (S, d, µ) is a homogeneous space, but we assume the doubling
condition only for metric balls in S of radius less than δ for some fixed 0 < δ ≤ ∞ (so the results
are applicable to the Carnot-Carathéodory metrics associated with vector fields). We shall also
assume that d is a genuine metric, rather than just a pseudometric. We shall denote by z(B) and
r(B) the centre and radius respectively of any metric ball.

If B = B(x0, r) is an open metric ball in S, we say that B satisfies a weak geodesic condition
if for every x ∈ B there exists a curve γ : [0, l] → B of length less than r for which γ(0) = x and
γ(l) = x0. We shall say that a connected open set E ⊂ S satisfies a strong geodesic condition if
every sub-ball of E satisfies a weak geodesic condition. The geodesic condition used in [FGW]
and [FLW] to prove that metric balls are chain domains is similar to, but logically stronger than,
our strong geodesic condition. If d is a Carnot-Carathéodory metric, i.e. d(x, y) is equal to the
infimum of the lengths of curves joining x and y, it follows immediately that connected open sets
satisfy a strong geodesic condition.

Theorem 3.1. Suppose E is a proper open subset of S. Then

(a) If E is a John domain, it is a Boman chain domain.
(b) If E is a Boman chain domain, has diameter less than δ/2, and satisfies a strong geodesic

condition, then E is a John domain.

Before giving the proof of Theorem 3.1 let us briefly comment on the necessity of the strong
geodesic condition. First of all notice that an open set E satisfying the conditions (i)–(iv) of
Definition 2.1 can fail to be connected. More precisely, let F be a closed subset of a ball B(x, 2r)
in the Euclidean space R

n and equip S = B(x, 2r) \ F with the restrictions of the Lebesgue
measure and the Euclidean metric. Then it follows that (S, d, µ) is a homogeneous space, and
that Ω = B(x, r) \ F satisfies (i)–(iv), provided that F is of measure zero. Hence we may select
F so that Ω is a Boman chain domain but fails to be John.

Thus some local connectivity condition is necessary for (S, d, µ) in (b) above. The condition
we employ appears rather optimal and we would like to remark that the strong geodesic condition
holds in all the situations we know of where the Boman condition has been applied.

For the proof of Theorem 3.1 we need the following Whitney decomposition lemma of Coifman
and Weiss [CW,III.1.3].
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Lemma 3.2. If E is a proper open subset of a homogeneous space (S, d, µ), then there exists a
family F of disjoint metric balls and constants M, 1 < K1 < K2 < K3 such that

(a) E =
⋃

B∈F K1B .
(b)

∑
B∈F χ

K2B
(x) ≤ M χ

E
(x) for all x ∈ S .

(c) K3B intersects Ec for every B ∈ F .

Note that by examining the proof of this lemma in [CW], it is easily verified that the constants
K1, K2/K1, and K3/K2 can be chosen arbitrarily and independently, provided that they exceed
certain lower bounds. For the first and last of these constants, this is essentially trivial, while
increasing K2/K1 corresponds to using smaller balls in the proof of this lemma.

Proof of Theorem 3.1. Suppose E is a John domain. We define auxiliary constants K ′
3 = K3 +K1

and K4 = 8K1K3/K2, where the constants K1, K2, K3 are from Lemma 3.2 above. Since E is
bounded, the comments above allow us to assume that the ratio K2/K1 exceeds 100, and is so
large that r(K4B) < δ for all B ∈ F .

We show that E satisfies conditions (i)–(iv) of Definition 2.1. Using Lemma 3.2, (i) and (ii)
are automatically satisfied — we can choose C2 = K2 and C1 = 4K1 (the “4” factor will be used
later for verifying (iii)). We now use the John condition to verify (iii) and (iv).

Let x∗ be the distinguished point of E, and choose as the centre ball any B∗ ∈ F such that
x∗ ∈ K1B∗. Fixing B ∈ F , we write x0 = z(B), B0 = B, and t0 = 0. We choose a curve
γ : [0, l] → E, parametrized by arclength, for which γ(0) = x0, γ(l) = x∗, and d(γ(t), Ec) > ct.
We shall inductively define tj for j > 0. Once tj is chosen, we choose Bj ∈ F such that xj ≡
γ(tj) ∈ K1Bj (any such Bj will be suffice, except that we insist that Bj = B∗ if t = l). For j > 0,
we define tj = min{l, tj−1 + K1r(Bj−1)}. Now the Whitney decomposition implies that for all i,

(3.3) r(Bi) ≥ d(xi, E
c)/K ′

3 ≥ cti/K ′
3

and so for all j ≥ 0,

(3.4) r(Bj) ≥ cr(B0)/K ′
3

Thus the radius of Bj is bounded below and we eventually reach an integer k = k(B) for which
xk = x∗. Note that (3.4) immediately implies that k ≤ l/(cr(B)/K3); a little more thought
shows that the sharper (3.3) gives geometrically growing lower bounds for the radii and hence k
is bounded by C log(1/r(B)), where C depends only on E and the metric.

It is clear that for all 0 ≤ j < k, 4K1Bj ∩ 4K1Bj+1 includes whichever of Bj, Bj+1 has
the smaller radius. Since K2 > 100K1, neighbouring balls are of comparable radius (in fact,
conditions (b) and (c) of Lemma 3.2 imply that the larger radius is at most 2K3/K2 times the
smaller one). It follows that K4Bj ⊃ Bj+1 and K4Bj+1 ⊃ Bj, and the doubling property ensures
that Bj and Bj+1 are of comparable measure. We have therefore proved (iii).

Finally, we prove (iv). Since d(xj , x0) ≤ d(xj , E
c)/c ≤ K3r(Bj)/c, we get from (3.4) that

d(x, z(Bj)) ≤ d(x, x0) + d(x0, xj) + d(xj, z(Bj))

≤ r(B0) + K3r(Bj)/c + K1r(Bj)

≤ (K ′
3 + K3 + cK1)r(Bj)/c

for all x ∈ B0.
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We next prove (b). Suppose E satisfies the hypotheses of (b). If for all chains {Bj}
k
j=0, we

have r(Bj)/r(B0) ≥ Ctj for some C > 0, t > 1, it is easy to construct the required John curves
by a connect-the-dots process, as we shall see below. Unfortunately, the chain condition is not
strong enough to imply such a geometric growth rate. Nevertheless we shall show that E is a
John domain by first constructing new Boman chains (taken from the same family F) with such
a growth rate.

Consider one such B ∈ F and its associated chain of balls {Bj}
k
j=0, where B0 = B, Bk = B∗.

We shall define new chains F〉(B) for all 1 ≤ i ≤ ∞. First let us show that there exists a
constant M > 0, dependent only on the Lebesgue doubling constant and the parameters of
the chain domain, for which either k ≤ M , or r(Bj) > 2r(B) for some 0 < j ≤ M . Let t =
min{2λ + 4, δ/2r(B)}. By 2.1 (iv), r(Bi) ≥ r(B)/λ for all 0 ≤ i ≤ k. Since r(tB) ≤ δ/2 and
r(tB) ≤ (2λ + 4)r(B), the doubling condition ensures the existence of some constant M0 such
that µ(Bi) ≥ µ(tB)/M0 for all Bi ⊂ tB, and so the number of chain balls in tB is at most
M0. Now, M = M0 + 1 is the number we require. To see this, suppose k > M and so, for some
0 < j ≤ M , Bj is not contained in tB. We cannot have r(tB) = δ/2, since then tB ⊃ E ⊃ Bj,
a contradiction. Therefore Bj is not contained in (2λ + 4)B and so either r(Bj) > 2r(B), in
which case we are done, or Bj does not intersect 2λB. In the latter case, condition (iv) ensures
r(Bj) > 2r(B) anyway, so M has the required properties.

If k ≤ M , we define F〉(B) = F(B) for all 1 ≤ i ≤ ∞. Otherwise, we write B1 = Bj, where

r(Bj) > 2r(B) and 0 < j ≤ M . We get F∞(B) by discarding all balls in F(B) after B1 and
appending F(B∞) (this hybrid sequence of balls is actually a (λ + λ2, C1, C2)-chain, but this
does not concern us right now). Since the new part of the chain is a Boman chain in its own
right, we see that the new balls have radius at least r(Bj)/λ, and so in at most M more steps,
we either reach the centre ball or we encounter a ball B2 for which r(B2) > 2r(B1) > 4r(B).
In the first case, we let F〉(B) = F∞(B) for all 2 ≤ i ≤ ∞, while in the latter case we replace

the balls in F∞(B) after B2 by F(B∈) to create F∈(B). Continuing inductively, we must at some
stage reach the centre ball because the domain is bounded. Let us refer to the (finite number
of) balls Bk, k ≥ 1 as link balls for obvious reasons. The last new chain F∞(B) obviously has
the desired geometric growth rate. Also, we claim that it is a (λ + 2λ2, C1, C2)-chain. To see
this, note that if B′ occurs in F∞(B) after B′′ and they are separated by exactly one link ball,
Bk, then (λ + λ2)B′ ⊃ B′′ since λB′ ⊃ Bk and λBk ⊃ B′′. As one goes back further in the
chain, induction and the supergeometric increase of r(Bk) readily imply that (λ + 2λ2)B′ ⊃ B′′

whenever B′′ occurs before B′ (the “2” factor occurs as
∑∞

i=0 2−i).
Now let γj be a curve joining the centres of B′

j and B′
j+1 whose length is less than C1 times

the sum of the radii (such a curve exists because of (iii) and the assumed geodesic condition)
and let γ be the curve that glues the γi’s together. The geometric growth of r(Bi) implies that
∑j

i=0 r(B′
i) ≤ Cr(B′

j), and so the length of the initial part of γ joining z(B) to z(B ′
j) has length

bounded by a constant times r(B′
j). Since all points in C1B

′
j are at least a distance (C2−C1)r(B

′
j)

from Ec, it follows that γ is a John curve joining z(B) to the z(B∗). For a general point x ∈ B,
the assumed geodesic property allows us to join x to z(B) by means of a curve of length less than
r(B). Sewing this curve onto the John curve for z(B), we get a John curve for x, as required. ut

In the Carnot-Carathéodory setting, the fact that metric balls are chain domains is implicit
in [Je], and explicitly proved in [L]. The same result is given in a more general setting in [FGW],
where a certain geodesic condition is assumed. Here we prove it in still greater generality as a
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simple corollary of Theorem 3.1 (a), assuming only the weak geodesic condition defined before
that theorem.

Corollary 3.2. Any metric ball B = B(x∗, r) ⊂ S, B 6= S, which satisfies a weak geodesic
condition is a John domain, and hence a chain domain.

Proof. Let us fix x ∈ B. There exists a curve γ : [0, b] → B parametrized by arclength, such that
b < r, γ(0) = x, γ(b) = x∗. Since d(γ(t), x∗) = b − t, we have

d(γ(t), Bc) ≥ d(x∗, B
c) − d(x∗, γ(t)) ≥ r − (b − t) > t.

and so B is a John domain. ut
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type operators. Comm. P.D.E. 19 (1994), 523–604.

[FLW] Franchi, B., Lu, G., Wheeden, R., Representation formulas and weighted Poincaré inequalities
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Appl. 33 (1988), 107–112.

[MS] Martio, O., Sarvas, J., Injectivity theorems in plane and space. Ann. Acad. Sci. Fenn. Ser. A I
Math. 4 (1979), 383–401.

[NSW] Nagel, A., Stein, E.M., Wainger, S., Balls and metrics defined by vector fields I: basic properties.
Acta Math. 155 (1985), 103–147.

[NV] Näkki, R., Väisälä, J., John disks. Expo. Math. 9 (1991), 3–43.

[P] Pommerenke, Ch., One-sided smoothness conditions and conformal mapping. J. London Math.
Soc. 26 (1982), 77–88.

[R] Reshetnyak, Yu. G., Stability in Liouville’s theorem on conformal mappings of a space for domains
with nonsmooth boundary. Siberian Math. J. 17 (1976), 281–288.
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