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Quadratic Stability and Singular
SISO Switching Systems

Robert Shorten, Martin Corless, Kai Wulff, Steffi Klinge, and
Richard Middleton

Abstract—In this note, we consider the problem of determining necessary
and sufficient conditions for the existence of a common quadratic Lyapunov
function for a pair of stable linear time-invariant systems whose system
matrices are of the form A, A — gh”, and where one of the matrices
is singular. A necessary and sufficient condition for the existence of such a
function is given in terms of the spectrum of the product A( A —gh™). The
technical note also contains a spectral characterization of strictly positive
real transfer functions which are strictly proper. Examples are presented
to illustrate our results.

Index Terms—LT1I systems.

[. INTRODUCTION

Consider a switching system described by

§= [A—o'(f,,r)ghT],r (1)

where the state z(t) and g, h are real vectors, A is a real square matrix,
and the scalar switching function o satisfies

0<o(t,z) <1. ?2)

Suppose A is a Hurwitz matrix, that is, all its eigenvalues have nega-
tive real parts; then the system corresponding to o (t,x) = 0, that is,
& = Az, is globally asymptotically stable about the origin of the state
space. Suppose also that all the eigenvalues of A — gh’ have nega-
tive real parts except for a single eigenvalue at zero. Then the system
corresponding to o(t,z) = 1, thatis, # = (4 — gh” )z, is stable
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(but not asymptotically stable) about the origin and all its solutions are
bounded. Consider now the switching system (1) with any switching
function ¢ which satisfies the constraint (2). One can show that this
system is stable about the origin and all solutions are bounded if there
is a real symmetric positive definite matrix P satisfying the following
two Lyapunov matrix inequalities:

ATP+PA<O
(A—gh")"P+P(A—gh") <. (3)

This can be justified as follows. As a candidate Lyapunov function for
system (1)—(2) consider the quadratic function V' (z) = 2" Pz. Then,
along any solution x(-) of the system we have

V=2:TPAy — 20 (t, :L'):L'TPghT:v.

Inequalities (3) imply that V' < 0 when o(t, x) equals 0 or 1. Noting
that V/ depends in a linear affine fashion on o (¢, ), it now follows that
V < Oforany o (¢, x) in the interval [0, 1]. Since V' is a positive definite
function, standard Lyapunov theory guarantees the claimed stability/
boundedness properties.

Stability problems involving systems described by (1)—(2) arise in a
variety of applications; for example, in applications where integrators
are switched in and out of feedback loops to achieve certain perfor-
mance objectives [1]-[4].

We refer to a matrix P = P?" > 0 satisfying (3) as a common Lya-
punov matrix for A and A— gh” ; the corresponding Lyapunov function
V(x) = «” P is referred to as a common quadratic Lyapunov func-
tion. Assuming that (A, g) is controllable and (A, i) is observable, we
show that the following simple condition is both a necessary and suffi-
cient condition for the existence of a common Lyapunov matrix P.

The matrix product A(A — gh') has no negative real eigenvalues
and exactly one zero eigenvalue.

Comment 1: We have assumed that A — gh” has an eigenvalue at
zero. One can relax this to the requirement that A — gh”’ is marginally
stable but not Hurwitz. To see this, one can show that, in order for
the Lyapunov inequalities (3) to be satisfied, A — gh” can have only
one eigenvalue at zero and no other eigenvalues on the imaginary axis;
see the Appendix (First note). One can also show that if 4 — ghT is
marginally stable, A is Hurwitz and the conditions on the eigenvalues
of A(A — gh™) hold, then A — gh” can have only one eigenvalue at
zero and no other eigenvalues on the imaginary axis; see the Appendix
(Second Note).

In the previous literature, the results most closely related to this
technical note are contained in [5], [6]. Both of these papers consider
quadratic stability of switched systems where both constituent matrices
Aq, Ay are Hurwitz stable. In the first paper, conditions are given for
the existence of a CQLF for a pair of second order LTI systems in terms
of the spectrum of 4, 4> and 4, A5 !, and in the second paper, condi-
tions are given for a pair of matrices of arbitrary order, but whose rank
difference is one.

Before proceeding it is useful to note that the CQLF existence
problem for pairs of LTI systems, one of which is marginally stable,
is substantially more difficult than the equivalent problem when both
LTI systems are Hurwitz stable. To see that results do not immediately
follow from one problem to another, consider again the problem
treated in the second of the aforementioned papers [6]. Here the
authors consider two Hurwitz matrices A, A> in companion form
and show that there exists a real matrix P = PY > 0 satisfying
PA; + AT P < 0fori = 1,2 if and only if the matrix product A; A»
has no negative real eigenvalues. One may be tempted to conclude that
one can readily obtain the results of the present paper using the result

0018-9286/$26.00 © 2009 IEEE
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in [6] by using the following reasoning. For € > 0 sufficiently small,
let Ay (¢) be a perturbation of A — ghT such that A, (e) is Hurwitz
and the product AA-(€) has no negative real eigenvalues. Then, for
each e > O sufficiently small [6] tells us that there is a matrix P(¢)
satisfying P(e) A+ AT P(e) < 0 and P(e) As(e) + As(e)T P(e) < 0.
Now consider limits as € goes to zero. The following counterexample
illustrates why this proof technique will not work.
1) Example: Consider

I T N (O
A_{_l _1] A gh _{0 _1}

—€

Here,g = [0 1]T,h = [-1 0]7T and one can readily verify that
(A, g) is controllable and (A, h) is observable. Clearly A and A2 (€)
are Hurwitz for all ¢ > 0 and 42(0) = A — gh” . The characteristic
polynomial of the matrix AA(¢) is given by d(s) = s* + es + €. For
0 < € < 4, this polynomial has complex roots. Hence, for this range of
€, A1 Az (€) has no real negative eigenvalues and it follows from [6] that
there is a matrix P(¢) = P(e)T > 0 satisfying P(e)A + AT P(e) <
0 and P(e)As(e) + Az(e)T P(e) < 0. However the matrix product
A(A — ghT) = AA5(0) has a repeated eigenvalue at zero. Hence,
using the result of this technical note, there does not exist a matrix
P = PT > 0 satisfying (3).

In the next section, we present some results on positive real transfer
functions which are useful in the development of the main result. In
particular, Theorem 2.1 provides a simple spectral characterization of
strictly positive real transfer functions. We believe this is a useful re-
sult on its own and not just for the purposes of obtaining the main
result. Section III develops the main result of this technical note. To
achieve this we also need the Kalman-Yacubovich-Popov lemma for
proper SISO systems that is found in most textbooks; see the book by
Boyd [7] or Khalil [8]. Throughout, known results are quoted without
proof whereas new results are given with full proofs.

II. SPECTRAL CHARACTERIZATIONS OF
STRICT POSITIVE REALNESS

Before obtaining our main result, we obtain some preliminary results
on strictly positive real (SPR) transfer functions. In everything that fol-
lows, A is a real n X n matrix and b, ¢ are real n-vectors.

Recall that a scalar transfer function H is strictly positive real (SPR)
if there exists a scalar « > 0 such that H is analytic in a region of the
complex plane which includes those s for which Re(s) > —« and

Hjw—-a)+ Hju—a)*" >0 V weli. %)

We say H is regular if H(jw)+ H(jw)" is not identically zero for all
w € IR. For convenience, we will include regularity as a requirement
for SPR.

The following standard result provides a more convenient character-
ization of SPR. It eliminates «.

Lemma 2.1: [8]: Suppose A is Hurwitz. Then the transfer function
H(s) = ¢"(sI — A)~'bis SPRif and only if

H(w)+ H(jw)* >0 YweR ©)
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lim W [H () + H(jw)'] >0, ©)
In checking SPR of a system it is sometimes more convenient to check
SPR of a system which is equivalent (from an SPR viewpoint) to the
original system. The following lemma provides such an equivalent
system and is useful for generating some of the results of this technical
note. This system is simply obtained by replacing A with A",

Lemma 2.2: The transfer function H(s) = ¢* (sI — A)""b is SPR
if and only if H7(s) = ¢T (sI — A71)" b is SPR.

Proof: Suppose H is SPR. The identity (sI—A™")"' =57 'T—

s 2(s7'I — A)~* implies that

Hi(s)=5""c"b—s2H(s"") @)

hence we get the equation shown at the bottom of the page. Considering
limits as w — 0

Hi(0)+ H/(0) = lim &’[HGO)+ H(j5)*] > 0.

O — o
Finally, we note that

tim W H (o) + (o) = HO)+ H(0)" > 0.

The core of our main result is based on a spectral condition for strict
positive realness of strictly proper transfer functions; this is related to
corresponding results in [9] for transfer functions which are proper but
not strictly proper. This result makes use of the following lemma.

Lemma 2.3: [10]—[12]: Let H(s) = d + ¢* (sT — A)™b where A
is invertible. Then, H(s ) = d+ & (sI — A) *hwith A = 471,
b=—-A""be" =c" A andd=d —c"A7'D.

1) Comment 2: Note that when H is SPR we must have d > 0. This
follows from the fact that d = H(0) and H(0) + H(0)* > 0 since H
is SPR.

Now we give the aforementioned spectral characterization of strict
positive realness.

Theorem 2.1: Suppose A is Hurwitz. Then, the following statements
are equivalent.

(a) The transfer function H(s) = T (sI — A)~*b is SPR.
® ¢"A7™'p < 0 and the matrix product A™'(A™'
A" A7 /¢ A7 b) has no negative real eigenvalues
and exactly one zero eigenvalue.
(¢) ¢"Ab < 0 and the matrix product A(A — Abc” A/c” Ab) has
no negative real eigenvalues and exactly one zero eigenvalue.
Proof: In what follows it is convenient to work with H (s~ ') asin
Lemma 2.3. In particular, the conditions for SPR of H may be restated
in terms of the transfer function H (s~ *). Specifically, conditions (5)
and (6) for SPR of H are equivalent to

H(—jo )+ H(=jw )" >0 ®)
H(—ju D4+ H(—ju )" >0forw#0 (9
lim iz [H(—jw ™ ")+ H(—ju )] >0. (10)

w0 W

Condition (8) is equivalent to ¢ A7 < 0. Now consider conditions
(9) and (10). Since A is invertible, Lemma 2.3 tells us that

H(—jo Y=d+é (jul - A)7'b (11)

Hi(jw)+ Hi(jw)" = w™’[H(—ju™" )+ H(—jw™")"] >0

vV w#0.
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with A, b, 7, d defined in Lemma 2.3. Using the results in [13], we have
ET(ju)I — A5+ [ET(ij - A)“BT
= —2¢" (W T+ A%) 7' Ab
Sinced = —c"A7'b > 0, we can write
H(—jw )+ H(=ju )"
_ 1 R e
=2d det [1 — 2 (W + A2 lAb]
d
=2d det [I - l(ﬁ[ + AH™! AE&T]
=2d det

[«
x det {

w’I + A%)” ]
2T+ A% - —Abc }

Thus
o . 1w 2ddet[w’T + M)
H(—jw )+ H(—ju™ ") = = =2 12
(—jw™ )+ H(=ju™) det [w7T + 7] (12)
where
(<~ 1-_r
M:=A (A — =bC >
d
- (4 A7 AT
: i cl'A-1p )
Since A is Hurwitz, all the real eigenvalues of 4> = A™? are pos-

itive which implies that det[w?I + A?] # 0 for all w. Noting that
det[w?T + A%] > 0 for w sufficiently large, it follows from continuity
arguments that det[w?I + A?] > 0 for all w. Recalling that d > 0, it
follows from identity (12) that conditions (9) and (10) on H (—jw™")
are respectively equivalent to

detfW’IT+M]>0 V weR, w#0

lim i? det[w?I + M] > 0.
w—0w

Since det[w? ] 4+ M] > 0 for large w, the above conditions are equiv-
alent to

det\I — M]#0 ¥V A€,
M] #0.

A<0 (13)

/\H_n)lo % det[AT — (14)
Condition (13) is equivalent to the requirement that M/ has no negative
real eigenvalues. Since Mb = 0 and b # 0, the matrix M must have
at least one zero eigenvalue; hence det[A] — M] = Ag(\) and all
the other eigenvalues of M are given by the roots of the polynomial g.
Thus condition (14) is equivalent to ¢(0) # 0, that is, zero is not a root
of ¢. Thus (14) is equivalent to the requirement that A/ has only one
eigenvalue at zero.

The equivalence between the first and third statement of the lemma
follows from the SPR equivalence of ¢’ (s — A=)~ and ¢” (sT —
A)7b as stated in Lemma 2.2.

2) Comment 3: The literature contains spectral conditions for
checking SPR of a strictly proper transfer function [10]; however,
these conditions involve the eigenvalues of a 2n X 2n Hamiltonian
matrix. The conditions here involve a matrix of dimension n X n.

III. MAIN RESULT

In everything that follows, A is a real n X n matrix and ¢ and h are
real n-vectors. These results make use of the following observations.
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A matrix P = P* > 0 is a strict Lyapunov matrix for A, that is
ATP+PA<O
if and only if P is a strict Lyapunov matrix for A™", that is
AT"P+PAT <.

To see, this post- and pre-multiply the first inequality by A~" and its
transpose.

In a similar fashion one can also show that P is a (nonstrict) Lya-
punov matrix for A4, that is

ATP+PA<O

if and only if P is a (nonstrict) Lyapunov matrix for A", that is,

PAl+ATP<.

The proof of the main result requires the following KYP lemma.
Lemma 3.1: [7]: Suppose (A, b) is controllable and (A, ¢) is ob-
servable. Then, the following statements are equivalent.
(i) The matrix A is Hurwitz and the transfer function H (s)
¢t'(sI — A)"'bis SPR.
(ii) There exists a matrix P = PT > 0 that satisfies the constrained
Lyapunov inequality

ATP+PA<O
Pb=c.

15)
(16)

1) Comment 4: A discussion of strictly positive real transfer func-
tions can be found in the book [14] by Narendra & Taylor on frequency
domain stability criteria. The assumption that (A, ¢) is observable en-
sures that P is positive definite [15].

Theorem 3.1 (Main Theorem): Suppose that A is Hurwitz and all the
eigenvalues of A — ghT have negative real part, except one, which is
zero. Suppose also that (A, g) is controllable and (A, &) is observable.
Then, there exists a matrix > = P* > 0 such that (15) and (16) hold
if and only if the matrix product A(A — ghT) has no real negative
eigenvalues and exactly one zero eigenvalue.

Proof: The proof consists of two parts. First we use an equiva-
lence to show that the conditions on A(A — ghT) are sufficient for
the existence of a Lyapunov matrix P with the required properties. We
then show that these conditions are also necessary.

Sufficiency: Let b be a right eigenvector of A — ghT corre-
sponding to the Zero eigenvalue then b 0and Ab = ghTb = h"by.
Letc = A~ " h;then ¢” Ab = h'D. Smce A is Hurwitz, we must have
BTh # 0, otherwise Ab = 0. Hence T Ab # 0 and, without loss of
generality, we assume that b is chosen so that ¢” Ab = —1. In this case

g=—Ab and pT =T A,
Controllability of (A, b) and observability of (A, ¢) follow from con-
trollability of (A, g) and observability of (A, k), respectively. Noting
that

B AbcT A
L Ab

Asi=A—ghT = A

it follows from Theorem 2.1 that the conditions on A A imply that the
transfer function ¢’ (sI — A)~"b is SPR. Consequently, it follows from
Lemma 3.1 that there exists a matrix P = PT > 0 such that (15) and
(16) hold. Pre- and post- multiplying inequality (15) by A~ and A~!
shows that this inequality is equivalent to

AP+ PAT <0 17
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Inequality (17) and (16) imply that

{A‘TP +PA™Y Pb— c:|

. . <
R 0 <0 (18)

that is
A7 1P 0o P 0o]r4a?t o
{—CT o] {o 1]4“{0 1H—cT 0]30‘
Since ¢’ Ab = =1 # 0

_ —1 ) AbcT A Ab
A 1 b — A= LT Ab T TAb
o A 1

T Ab T Ab
A= ght —g
- —ht -1

Post- and pre-multiplying inequality (18) by the above inverse and its
transpose results in

A‘lb_TPO_'_PO A‘lb_l<0
-0 0 1 0 1(|-c" o0 =
that is,

[(A —gh"Y'P+P(A—gh') —Pg—h

, <0.
TP pt , }_0 (19)

It immediately follows that for the above inequality to hold, we must
have

(A—gh"YTP4+ P(A-gnT) <. (20)

Necessity: We first show that if there exists a matrix P = P7 > 0
satisfying conditions (15)—(16), then AA> cannot have a negative real
eigenvalue. Note that the conditions on P are equivalent to

AP+ PA <0
ATP+ PA, <0.

@n
(22)

Hence, for any v > 0
(Ay+vA HTP 4+ P(Ay + 44 1) < 0.

Since P = PT > 0, this Lyapunov inequality implies that A, +
vA™! must be Hurwitz and hence, nonsingular. Thus, AAs + I is
nonsingular for all v > 0. This means that A A5 cannot have a negative
real eigenvalue.

We now show that AA> cannot have a zero eigenvalue whose mul-
tiplicity is greater than one. To this end, introduce the matrix

A(R) = Ay + kgh" .
Then A = A (1) and inequalities (15)—(16) hold if and only if

A(R)' P+ PA(k) <0
AP+ PA, <0

(23)
(24)

hold for all & sufficiently close to one. As we have seen above, this
implies that A(k)As cannot have negative real eigenvalues for all %
sufficiently close to one. We shall show that A A, having an eigen-
value at the origin whose multiplicity is greater than one contradicts
this statement.

By assumption, A> has a single eigenvalue at zero; a corresponding
eigenvector is the vector b. Clearly, b is also an eigenvector corre-
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sponding to a zero eigenvalue of Ai(k )As. Now choose any nonsingular
matrix 7" whose first column is b. Then,

T~ A(k)AsT = [0 * } 25)

0 S+ krs”

and the eigenvalues of fi(lr,)Az consist of zero and the eigenvalues of
S + krs” . Note that the matrix .S must be invertible since

—1 42 _ —1} ) _ 10
T AT =T A(O)AZT_L) S]

and A2 has only a single eigenvalue at zero. Now suppose that AA; =
A(1)A> has an eigenvalue at the origin whose multiplicity is greater

than one. Then S+7s” must have a eigenvalue at zero; hence, det | S+

7'5'1'] = 0. Since S is invertible

det [S+ brs"] = det[S]det [T+ 15" rs"]
= det[S] (1 + ks S™'r)

and we must have 1+ s S~ !+ = 0 which implies that s* § 1 = —1.
Hence

det [5 + krsT] = det[S](1 — k).

Suppose det[S] > 0. Then
det [S + krsT] <0

for k > 1. Since det [S + krsT] is the product of all the eigenvalues

of S + krs” and complex eigenvalues occur in complex conjugate
pairs, S + krs’ must have at least one real negative eigenvalue when
k > 1. This yields the contradiction that fl(k)Az has a negative real
eigenvalue when k& > 1. The conclusion is the same for det[S] < 0.

2) Comment 5: Let G(s) = h"(sI — A)~™'g + 1. Then one can
readily show that satisfaction of the Lyapunov inequalities (3) is also
equivalent to the following frequency domain conditions.

G(jw) + G(jw)" >0 forw #0

. 1 . -
Jim — [Gljw) + Gljw) ] >0, 26)
One can view this as a KYP result for the systems under consideration.

To demonstrate this result, recall Lemma 2.3 and the definitions of b
and ¢ in the proof of Theorem 3.1 to obtain that

G(s™") = (ZT(SI —A™H .

The proof of Theorem 3.1 and Lemma 2.2 tell us that satisfaction of the
Lyapunov inequalities (3) is equivalent to the transfer function ¢” (s —
A~")"'bbeing SPR. Using the fact that ¢” Ab = —1, the desired result
now follows from Lemma 2.1.

IV. EXAMPLES

In this section we present two examples to illustrate the main features
of our result.

1) Example 1 (No Common Quadratic Lyapunov Function):
Consider

0 1 0 0 1 0

1-11 = 0 0 1 5 ‘42 = 0 0 1

-1 -2 -3 0 -1 -2
with A» = A — ghT and ¢* = [0 0 1] and KT =
[-1 —1 —1]. Note that Ay is Hurwitz; whereas Ao is sin-

gular with all its eigenvalues in the open left half of the complex
plane, except one at the origin. Note also that (A4, ¢g) and (A, h) are
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controllable and observable, respectively. The eigenvalues of the
matrix product A; As are (0,0, 3). Hence, from the results of our main
theorem, there cannotexista P = P7 > Osuchthat AT P+PA; <0
and A3 P + PA, < 0.

2) Example 2 (Quadratic Stability): Consider

0 1 0 0 1 0

A= 0 0 1 B Ay = |0 0 1

-9 —-19 -29 0 -1 =2
with 4, = A, — ghT and ¢ = [0 0 1] and BT =
[-9 —.9 -.9]. Note that A, is Hurwitz; whereas A, is sin-

gular with all its eigenvalues in the open left half of the complex
plane, except one at the origin. Note also that (A, ¢) and (A, k) are
controllable and observable, respectively. The eigenvalues of the
matrix product 4; Az are (0,0.0349, 2.8651). Hence, from the main
theorem, there exist a P = PT > 0 such that A{P + PA; < 0and
ATP+ P4, <.

V. CONCLUSION

In this note, we have derived necessary and sufficient conditions for
the existence of a common quadratic Lyapunov function for a pair of
stable linear time-invariant systems whose system matrices are of the
form A, A — ghT, and where one of the matrices is singular. As a
preliminary result, we obtained a spectral characterization of strictly
positive real transfer functions which are strictly proper. Future work
will involve extending our results to nonquadratic Lyapunov functions
such as those which arise in the application of Popov’s criterion.

APPENDIX

First Note: Here we show that satisfaction of the Lyapunov in-
equalities (3) imply that the matrix A — gh” can have at most one zero
eigenvalue and cannot have a nonzero imaginary eigenvalue. Consider
first nonzero imaginary eigenvalues. Suppose on the contrary that, jw
is a nonzero imaginary eigenvalue of A — gh’ with eigenvector v and
let Qo = (A—gh™)TP 4+ P(A — gh"). Then

v Qoo =[(A — gh" )] Pu 4 o' P[(A — gh' )]
=[jwv] Pv 4+ v’ P[jwo]
=0.

Since A — gh” is real, —jw is an eigenvalue of A — gh” with eigen-
vector ¥; hence ©'Q2% = 0. The second inequality in (3) tells us that
Q2 < 0; hence, the set of vectors for = which ' Q22 = 0 is the same
as the null space of (J2. Since the linearly independent vectors v and
v are in this null space, this space has dimension greater than one. Let
Q1 =A"P+ PA.Then Q1 = Q2+ Pgh” + hg" P and when = is
in the null space of 27, it should be clear that &' Q2 = 2'Qa . Since
the dimension of the null space of 2T is n — 1 and the dimension of the
null space of ()2 is greater than one, these two spaces have a nonzero
common element x. For this z, we have

2 Qru =2 Qo = 0.

and we obtain the contradiction that the first inequality in (3) does not
hold. Hence A — gh” cannot have nonzero imaginary eigenvalues.
Now suppose that A — ghT has multiple eigenvalues at zero. It fol-
lows from the second inequality in (3) that the system & = (A—gh” )z
is stable; hence the algebraic multiplicity and geometric multiplicity of
the zero eigenvalue are the same. This implies that there are at least two
linearly independent eigenvectors for the zero eigenvalue. Proceeding
now as in the case of the nonzero imaginary eigenvalues, one can obtain
a contradiction. Hence, A — ghT cannot have a repeated eigenvalue at
ZEero.
Second Note: Here we show that if A — gh” is marginally stable,
A is Hurwitz and the conditions on A(A — g7 ) hold then, the matrix
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A —gh' can only have one zero eigenvalue and cannot have a nonzero
imaginary eigenvalue. Consider first nonzero imaginary eigenvalues.
Suppose on the contrary that, jw is a nonzero imaginary eigenvalue
of A — gh” with eigenvector v. Then —jw is a nonzero imaginary
eigenvalue of A — ghT with eigenvector @. From this, it follows that
the linear independent vectors v and 7 are eigenvectors of (4 — gh™)?
with eigenvalue —w?. This implies that the eigenspace of (A — gh')?
associated with —w? is greater than one. Since the dimension of the
null space of 27 is n — 1 and the dimension of the above eigenspace
is greater than one, these two spaces have a nonzero common element
x. For this x, we have

A(A - gh YAz = A(A - ghT)Qm = —w?Ax.

Since A is Hurwitx, Az is nonzero and the above yields the contradic-
tion that A(A — gh”) has a negative real eigenvalue. Hence A — gh”
cannot have nonzero imaginary eigenvalues.

Now suppose that A — ghT has multiple eigenvalues at zero. Since
the system & = (A — gh”)x is marginally stable; the algebraic
multiplicity and geometric multiplicity of the zero eigenvalue must be
the same. This implies that there are at least two linearly independent
eigenvectors for the zero eigenvalue of A — gh”. These are also
eigenvectors for the zero eigenvalue of A(A — gh”). This contradicts
the fact that A(A — ¢ghT) has a single eigenvalue at zero. Hence,
A — gh™ cannot have a repeated eigenvalue at zero.
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