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Applications of Linear Co-positive Lyapunov
Functionsfor Switched Linear Positive Systems

Florian Knorn, Oliver Mason, and Robert Shorten

Abstract In this paper we review necessary and sufficient conditionstfe exis-
tence of acommon linear co-positive Lyapunov function feitshed linear positive
systems. Both the state dependent and arbitrary switclaisgscare considered and
a number of applications are presented.

1 Introduction

Positive systems, that is systems in which each state cariae positive values,
play a key role in many and diverse areas such as economickg], biology [1, 9],
communication networks [4, 17], decentralised control] [@8d synchronisation /
consensus problems [10]. Although these as well as switsygtéms have been the
focus of many recent studies in the control engineering aathematics literature
—to name but a few [2, 3, 12, 20] — there are still many open tjpesrelating to
the stability of systems that fall into both categories:tshéd positive systems.

Proving stability for switched systems involves determind Lyapunov function
thatis common to all constituent subsystems, [18]. In tbatext, work discussed in
[14, 15] provides necessary and sufficient conditions feretkistence of a particular
type of Lyapunov function, namely a linear co-positive Lyapv function (LCLF).
It is the aim of this paper to review these results and progidemples of their use.

Our brief paper is structured as follows. In Section 2 we @nés number of
examples from various applications to motivate the probMfa then summarise
conditions for the existence of a common LCLF for switchestsss evolving in
the entire positive orthant, as well as when the positiveatt is partitioned into
cones. Finally, in Section 4 we apply these results to thenpkaes given at the
beginning.
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Notation and mathematical preliminaries

Throughout,R (resp.RR,) denotes the field of real (resp. positive) numbé&ts,
is the n-dimensional Euclidean space aiRd*" the space of x n matrices with
real entries. A closed, pointed convex cddieis a subset ofR" if and only if
ax+ By € € foranyx,y € ¢ and non-negative scalass 3.

Matrices or vectors are said to be positive (resp. non-ingnat all of their en-
tries are positive (resp. non-negative); this is writteAas 0 (resp.A > 0), where0
is the zero-matrix of appropriate dimension. A matixs said to beHurwitz if all
its eigenvalues lie in the open left half of the complex plahenatrix is said to be
MetZer if all its off-diagonal entries are non-negative.

We use> to denote the linear time-invariant (LTI) systers= Ax. Such a system
is calledpositiveif, for a positive initial condition, all its states remaimthe positive
orthant throughout time. A classic result shows that thi ke the case if and
only if A is a Metzler matrix, [3]. Similarly, a switched linear pag# system is a
dynamical system of the fora= Agy)X, for x(0) = xo wheres: R — {1,...,N}
is the so-calledwitching signal and{A1,...,An} are the system matrices of the
constituent systems, which are Metzler matrices. See [5, 18] for more details on
systems of this type. Below we will just write= A(t)x for such a system.

Finally, the functiorV (x) = v x is said to be dinear co-positive Lyapunov func-
tion (LCLF) for the positive LTI systenEa if and only if V(x) > 0 andV(x) < 0
for all x = 0 andx # 0, or, equivalentlyy >~ 0 andv'A < 0.

2 Motivating examples

To motivate our results we shall first present a few situatimnwhich they can be
applied.

1) Classes of switched time-delay systems

Consider the class af-dimensional linear positive systems with time-detay O,
similar to those considered by Haddetchl. in [6], but where both the system and
the delay matrices may be switching over time:

X(t) =A)x(t)+Aqt)x(t—1), x(8)=@(B), —-T1<6<0 (1)

where we assume that the system mavik) € {Aq,... ,AN} is Metzler, the delay
matrixAq(t) € {Adr,...,Adu } is non-negativeEA(t) +Ag(t)] is Metzler and Hur-
witz forallt > 0, and wherep: [—-1,0] — R"is a continuous, vector valued function
specifying the initial condition of the system. How can digbof the system for
arbitrary switching and delays be shown?

2) Switched positive systems with multiplicative noise
Consider the class of switched positive systems with feeklaantisation or where
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the states experience resets. In this type of system, ttesgia the right hand side
are scaled by a (usually time-varying) diagonal matrix:

Xx=AMUDM)X, A(t)€ {As,...,AN}

where we assume thai(t) is Metzler and Hurwitz for alt, and the diagonal ma-
trix D(t) has strictly positive and bounded diagonal entries fot.dlinder which
conditions would such a system be stable?

3) Robustness of switched positive systemswith channel dependent multiplica-
tive noise

An important class of positive systems is the class thaesuiis certain networked
control problems. Here, the system of interest has the form:

x=A)x+ [CHE)+---+Cl(t)]x

where A(t) is Metzler and whereCll(t) = 0 is ann x n matrix that describes
the communication path from the network states to itthestate; namely it is
a matrix of unit rank with only one non-zero row. Usually, thetwork inter-
connection structure varies with time betweerdifferent configurations, so that
A(t) € {Aq,...,An} andClil(t) {C[l'},...,C,[\',]} fori=1,...,n. Again, we assume
that [A(t) + ClH(t) + -+ CI(t)] is also Metzler and Hurwitz for atl. What can
be said regarding asymptotic stability here?

4) Numerical example
Finally, to provide a more concrete example, assume we aea @ switched linear
positive system with the following three Metzler and Hunitatrices

-16 6 6 -10 4 O -9 2 8
A=|1 -18 2|, B=| 8 -10 9|, C=|6 —10 4 (2)
5 3 -20 4 3 -13 8 0 -16

Can we prove that it is stable under arbitrary switching?

3 Common linear co-positive Lyapunov functions

As mentioned in the introduction, work reported in [14] disses conditions for the
existence of a common LCLF for switched linear positive sgst comprised of sets
of LTI systems, where each of the constituent systems isvasgduo be associated
with a convex region of the positive orthant of thé.

Let us briefly present two results. The first, more generallte®ncerns situa-
tions where the state space (the positive orthant) is fmaéitl into smaller regions,
and where only certain subsystems may be active in certgiane (this may be in-
terpreted as state dependent switching). The other regulsés on the special case
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where each of those regions is the entire positive orthaelfjtthat is the system
can switch to any subsystem in any given point in the stateespa

3.1 Switching in partitioned positive orthant

Assume there arBl closed pointed convex con&§ such that the closed positive
orthant can be written @'} = U'j\‘:l%j. Moreover, assume that we are given stable
positive LTI systemsg; for j =1,...,N such that thgth system can only be active
for states withinj. The following theorem then gives a necessary and sufficient
condition for the existence of a common LCLF in this set-up.

Theorem 1. Given N MetZer and Hurwitz matrices Ay,...,Axy € R™" and N
closed, convex pointed cones €1, ..., %n such that R = UN 1€j, precisely one of
the following statementsistrue:

1. There is a vector v € R} such that vTAjx; < O for all non-zero X; € %; and
j=1,...,N.
2. There are vectors x; € ¢j not all zero such that z’j\l:lAij = 0.

Proof. 2 = —1:! Assume 2 holds. Then, for any positive vector 0 we have
VTA1x1 +---+VTAnxn > 0 which implies that 1 cannot hold.

-2=-1. Assume 2 does not hold, i. e. there are no veotpes%j not all zero
such thalz’j\‘:lijj > 0. This means that the following intersection of convex cones
is empty:

{ZE\I:]_AJ'XJ' :Xj € €, not all zer(}ﬂ{x - O} =0.
———
0 05

By scaling appropriately we can see that this is equivatent t

{E)aA x50 Il =1} n {x= 0} =0 3)
———
0 02

where|| - ||, denotes the i-norm. Now, &, and &, are disjoint non-empty closed
convex sets and additionally; is bounded. Thus, we can apply Corollary 4.1.3
from [8] which guarantees the existence of a vegtarRR" such that

maxv'y < inf vly (4)
yeo yeo,

As the zero vector is i, it follows that mfyeﬁ Y y <0. However ay’s is the
cone{x = 0} it also follows that inf., vly>0. Thus, iNfe s,V Ty = 0. Hence,
vy > 0forally > 0 and thuss > 0.

1 That is, we show that if 2 is true, then 1 cannot hold.
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Moreover, from (4), we can conclude that for apy= 1,...,N and anyx; € %
with ||xj[|1 = 1 we havev'Ajxj < 0. As %N {x = 0: x|y =1} is compact, it
follows from continuity that by choosing> 0 sufficiently small, we can guarantee
thatve := v+ €1 > O satisfies/] Ajx; < 0 forallxj € ;N {x=0: |x||s =1} and
all j=1,... N, wherel is the vector of all ones.

Finally, it is easy to see thaff Ajx; < 0 is true even without the norm require-
ment onx;. This completes the proof of the theorem. a

A very practical way of partitioning the state space woulddeartition it us-
ing simplicial cones ¢j. These are cones generated by non-negative, non-singular
generating matriceQ; € R"™":

= {x|x=3"1aq . a>0i=1. n} (5)

wherej=1,...,N and qgi) denotes théth column ofQj. In that case, we may
include the cone generating matrices into the second statieaf Theorem 1 to
reword it slightly to:

[..]

2. Thereare vectorsw; > O not all zero s.t. z’j\l:lBjo > 0, with Bj := A;jQ);.

This new statement 2 can now be easily tested by running ifiggscheck on a
suitably defined linear program, see [14] for more details.

3.2 Switching in entire positive orthant

An important special case of the previous results is wherQthenatrices are the

identity matrix, namely when we seek a common linear cotpasiyapunov func-

tion for a finite set of linear positive systems. For that, sadditional notation is

required: Let the set containing all possible mappiags{1,...,n} — {1,...,N}

be called# n, for positive integers andN. GivenN matricesA j, these mappings

will then be used to construct matricAs (A1,...,Ay) in the following way:
As(Ag,...,AN) = {ag,l()l) af()z) aan()n)} (6)

Whereag') denotes théth column ofAj. In other words, théth columnag) of Ag

is theith column of one of théA\s,...,Ay matrices, depending on the mapping

o € .%nn chosen. We then have the following condition:

Theorem 2. Given N Hurwitz and MetzZler matricesAq, ..., Ay € R™", thefollow-
ing statements are equivalent:

1. Thereisavector v € R suchthatv'Aj < Ofor all j=1,...,N.
2. Ag(A1,...,An) isHurwitzfor all o € S N.

Proof. Given in [14]. a
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Remark. Since the submission of [14] it has come to our attentionttiiatresult
may also be deduced from the more general resul-oratrix sets given in [19].

Theorem 2 states thét positive LTI systems have a common linear co-positive
Lyapunov functioV (x) = v’ x if and only if theA4(A1,...,Ay) matrices are Hur-
witz matrices, for allo € .# n. In that case, the switched system formed by these
subsystems is uniformly asymptotically stable under eabjtswitching.

Finally, note that when thé;Q; in Theorem 1 (or its reworded version) are
Metzler and Hurwitz, then the Hurwitz condition of Theorerégh also be used to
give a solution to the state dependent switching problem.

4 Solution to motivating examples

We shall now use these results to answer the problems po&stiion 2.

1) Classes of switched time-delay systems

We can show stability under arbitrary switching and deldytsvo conditions are
met: (a) there is a matridg such that(Aq(t) —Ag) <0 for all t, i.e. there is a
matrix Aq that is entry-wise greater or equal thag foralli=1,...,M; (b) for all

o € N the matricesAg(AlJrAd, ..., AN +Ad) are Hurwitz. This can be seen by
noting that (b) guarantees (by applylng Theorem 2) the excst of a vectov - 0
such thatv [A(t) +Ag] < 0. Then, consider the following Lyapunov-Krasovskii
functional, [7, 13].

V(W) =vTy(0) +v'Ad [ p(0)de

for somev = 0. ClearlyV (¢) > vT(0) > al|¢(0)||,, with a = mini{vi} > 0 and
Il Il being the maximum modulus norm.

Next, definex; ;= {x(t+0) | 8 € [-1,0] } as the trajectory segment of the states
in the interval[t — 7, t]. Then, if condition (a) is met, the directional derivativie o
the above functional along the solutions of (1) will be

V (%) :vTx(t)+vTAd[ X(t) = x(t — 1)]

=V' [At)xX(t) +Aq t)x(t—r)] +VTAg[X(t) —x(t—1)]

=VT[A(t) +Ad} ) VT [Ad(t) = Ad] x(t — 1)
ﬁ_/ ~—_—————

< —p'x) v 4

< =BlIxMl

where3 = mini{p;i} > 0. It then follows (see for instance [7]) that the switched
system is uniformly asymptotically stable.
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2) Switched positive systems with multiplicative noise

Through Theorem 2 we know that K4 (A1,...,An) is @ Hurwitz matrix for all
0 € 7nnN, then there exists a common LCLF for the system. In that csisee
D(t)x > 0, the system will be stable for ary(t).

3) Robustness of switched pos. systemswith channel dep. multiplicative noise
Again, our principal result can be used to give conditionshsthat this sys-
tem is stable. A sufficient requirement for asymptotic digbhere would be
that Ag(Ba,...,Bq) is a Metzler and Hurwitz matrix for alo € %4, where
q=NMDY andBy,...,Bq are all the matrices of the forA;, +CE} 4 +Ci[z]]
with ig,...,in € {1,...,N}.

Further, by exploiting simple properties of Metzler magscwe will also get the
robust stability of the related system:

x=At)x+ [CHt)DH(t) + -+ i)D" (1) ]

where theDll(t) are non-negative diagonal matrices whose diagonal erdries
strictly positive, but with entries bounded less than onlgis Tatter result is im-
portant as it can be used to model uncertain communicatianre characteristics.

4) Numerical example

With A, B, C given as in (2), it turns out that all (A, B, C) are Hurwitz matrices,
for any o € .3 3; hence a switched linear positive system with these matrick
be uniformly asymptotically stable under arbitrary switah If, however, the (3,1)-
element ofC is changed from 8 to 14 — note that after the cha@ges still a
Metzler and Hurwitz matrix — then the matriX 3 , 3 = [c!¥) b(® ¢®] will have
an eigenvalud ~ 1.7 which violates the Hurwitz condition.

5 Conclusion

In this paper, after presenting a few motivating examplesheave reviewed neces-
sary and sufficient conditions for the existence of a cettigie of Lyapunov func-
tion for switched linear positive systems. We then illugtdhand commented on
the implications of our results. Future work will consideiitehed positive systems
with time delay, and we suspect that the results reviewee Wwékbe of great value
in this future study.
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