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Downlink Scheduling and Resource Allocation for
OFDM Systems
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Abstract—We consider scheduling and resource allocation for
the downlink of a cellular OFDM system, with various practical
considerations including integer tone allocations, different sub-
channelization schemes, maximum SNR constraint per tone, and
“self-noise” due to channel estimation errors and phase noise.
During each time-slot a subset of users must be scheduled, and
the available tones and transmission power must be allocated
among them. Employing a gradient-based scheduling scheme pre-
sented in earlier papers reduces this to an optimization problem
to be solved in each time-slot. Using a dual formulation, we
give an optimal algorithm for this problem when multiple users
can time-share each tone. We then give several low complexity
heuristics that enforce integer tone allocations. Simulations are
used to compare the performance of different algorithms.

Index Terms—Orthogonal frequency division multiplexing
(OFDM), WiMax, cellular downlink, scheduling, resource allo-
cation, nonlinear optimization, wireless communications.

I. INTRODUCTION

OST recent high-speed wireless data systems dynam-

ically schedule users and allocate physical layer re-
sources among them based on the users’ channel conditions
and quality of service (QoS) requirements. Many of the
scheduling algorithms considered can be viewed as “gradient-
based” algorithms, which select the transmission rate vec-
tor that maximizes the projection onto the (time-varying)
gradient of the system’s total utility [1]-[4]. Several such
algorithms have been studied for time-division multiplexed
(TDM) systems, including the “proportionally fair rule” [4],
[6] which is based on a logarithmic utility function of each
user’s throughput. A larger class of throughput-based utilities
is considered in [2], [5], where efficiency and fairness are
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allowed to be traded-off. The “Max Weight” policy (e.g. [7]-
[9]) can also be viewed as a gradient-based policy, where the
utility is also a function of the user’s queue-size or delay.

In TDM systems, one only needs to schedule one user in
a time-slot and choose the modulation and coding scheme
for that user. However, in many current systems, multiple
users may be multiplexed within a time-slot using Orthog-
onal Frequency Division Multiplexing (OFDM) (e.g. IEEE
802.16/WiMAX [11] and 3GPP LTE [12]). This paper ad-
dresses gradient-based scheduling and resource allocation for
the downlink of such a system where in addition to determin-
ing which users are scheduled, the allocation of physical layer
resources (e.g. transmission power and subcarriers) must also
be specified.

Our approach is motivated by [10], where a gradient-based
scheduling algorithm is used for a system which multiplexes
users in a time-slot via code division multiple access (CDMA).
Compared to CDMA, OFDM offers more degrees of free-
dom to allocate resources across (i.e., tone allocation in the
frequency domain). This enables exploiting both multi-user
diversity and frequency diversity at a finer granularity, but also
significantly increases the complexity of the optimization.

At the beginning of each scheduling interval, the gradient-
based scheduling algorithm maximizes the weighted through-
put sum over the current set of feasible rates. In Section II, we
give a model for this rate region, taking into account the fol-
lowing important practical considerations for OFDM systems:
1) different subchannelization techniques in which resource
allocation is performed at a larger granularity (i.e, groups of
tones or symbols) to reduce the channel measurement and
feedback overhead; 2) constraints that each subchannel/tone
can be allocated to at most one user; 3) constraints on the
maximum rate per tone to model a limitation on the available
modulation and coding schemes; and 4) “self-noise” due to
channel estimation errors (e.g., [13]) or phase noise [23].

In Section III, we consider a dual formulation for the
resulting optimization problem, which enables us to exploit the
problem’s structure and develop both optimal and simple sub-
optimal algorithms with low complexity. Simulation results
are given in Section IV for these algorithms with dynamically
varying weights under different choices of utility functions,
subchannelization schemes, self-noise and per tone rate con-
straints. We conclude in Section V.

A number of related formulations without self-noise and per
tone rate constraints for downlink OFDM resource allocation
have been studied including [14]-[20]. In [15], the goal is
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to minimize the total transmit power given target bit-rates
for each user. Sum-rate maximization is considered in [16],
[18], [19], where [18], [19] also enforce a minimum bit-rate
per user. Weighted sum-rate maximization (for a fixed set
of weights) is studied in [14], [20]. In [14], a suboptimal
algorithm with constant power per tone was shown in sim-
ulations to have little performance loss. Other heuristics that
use a constant power per tone are given in [16]-[18]. We also
consider such a heuristic in Section III-D. In [20], a similar
dual-based algorithm to ours is considered and simulations are
given which show that the duality gap of this problem quickly
goes to zero as the number of tones increases; we will revisit
this in Section III-B. Finally, in [21], the capacity region of a
downlink broadcast channel with frequency-selective fading
using a TDM scheme is given that covers our rate region
without any maximum rate constraints or self-noise.

The previous papers optimize a static objective function
while we are interested in the case where the objective changes
according to a gradient-based algorithm. It is not a priori
clear if a good heuristic for a static problem applied to each
time-step, will be a good heuristic for the dynamic case,
since the optimality result in [1]-[4], [7]-[9] is predicated on
solving the optimization problem exactly in each time-slot.
Our simulation results show that the heuristics continue to
perform well, at least for the scenarios considered in this paper.
In a companion paper [25], we use similar methods to solve
the corresponding uplink problem. A more general solution
framework that encompasses both the uplink and downlink
cases is provided in [29].

II. PROBLEM FORMULATION

We consider downlink transmissions in an OFDM cell from
a base station to a set L = {1,..., K'} of mobile users. In
each time-slot, the scheduling and resource allocation decision
can be viewed as selecting a rate vector r; = (rlyt, o ,rK7t)
from the current feasible rate region R(e;) C Rf , where e;
indicates the time-varying channel state information available
at the scheduler at time t¢. Following the gradient-based
scheduling framework in [1]-[4], an r; € R(e;) is selected
that has the maximum projection onto the gradient of a system
utility function U(W;) := S5 U;(W;,), where U; (W)
is an increasing concave utility function of user ¢’s average
throughput, W; 4, up to time ¢. In other words, the scheduling
and resource allocation decision is the solution to

max VUW)T .7, = max U/(Wi)rie, (1)

ri€R(er) ri€R(et) p
where U/ () is the derivative of U;(-). For example, one class
of utility functions given in [2], [5] is

oy ) e, a<l a#0,
UZ(W’L,t) - { c; log(Wi,t)a @ = O’

where o < 1 is a fairness parameter and ¢; is a QoS weight.
With equal class weights, o = 1 results in the scheduling rule
that maximizes the sum-rate during each slot; o = 0 results
in the proportionally fair rule.

In general, we consider the problem of

max ) ; Wi tTit, (3)

r+€R (et

2

where w;; > 0 is a time-varying weight assigned to the ith
user at time ¢ tied to the QoS requirements of the user [1]-[4],
[7]-[9]. We note that (3) must be re-solved at each scheduling
instance because of changes in both the channel state and
the weights (e.g., the gradients of the utilities). While the
former changes are due to the time-varying nature of wireless
channels, the latter changes are due to new arrivals and past
service decisions.

A. OFDM capacity regions

The solution to (3) depends on the channel state dependent
rate region R (e), where for simplicity we suppress the depen-
dence on time. We consider a model appropriate for downlink
OFDM systems; related models have been considered in [14],
[21]. In this model, R(e) is parameterized by the allocation
of tones to users and the allocation of power across tones. In a
traditional OFDM system, at most one user may be assigned
to any tone. Initially, as in [15], we make the simplifying
assumption that multiple users can share one tone using
some orthogonalization technique (e.g. TDM).! In practice,
if a scheduling interval contained multiple OFDM symbols,
we can implement such sharing by giving a fraction of the
symbols to each user. We discuss the case where only one
user can use a tone in Section III-C.

Let N' = {1,...,N} denote the set of tones. For each
j € N and user i € K, let ¢;; be the received signal-
to-noise ratio (SNR) per unit power. We denote the power
allocated to user ¢ on tone j by p;; and the fraction of that
tone allocated to user ¢ by z;;. The total power allocation
must satisfy Zz ; Dij < P, and the total allocation for each
tone j must satisfy . x;; < 1. For a given allocation,
with perfect channel estimation, user i’s feasible rate on tone
jis r; = x;;Blog(l + %), which corresponds to the
Shannon capacity of a Gaussian noise channel with bandwidth
x;;B and received SNR p;je;;/x;;. This SNR arises from
viewing p;; as the energy per time-slot user ¢ uses on tone j;
the corresponding transmission power becomes p;;/x;; when
only a fraction z;; of the tone is allocated. Without loss of
generality we set B = 1 in the following.

In a realistic OFDM system, imperfect carrier synchro-
nization and channel estimation may result in “self-noise”
(e.g. [23], [13]). We model this in a similar way as [13]. Let
the received signal on the jth tone of user ¢ be given by y;; =
hijsij +n4;, where h;j, s;; and n;; are the (complex) channel
gain, transmitted signal and additive noise, respectively, with
Njj ~ CN(O,O’2). Assume that hij = Eij + hij,(;? where }Nlij
is receiver 4’s estimate of h;; and h;js ~ CN(0, 5%). After
matched-filtering, the received signal will be z;; = ﬁjjy”
resulting in an effective SNR of

i || *pi; Pij€ij

Eff-SNR = — _ .
oZilhisl? + 6FpigllRigl|2 1+ Bigpijéss

“)

'We focus on systems that do not use superposition coding and successive
interference cancellation within a tone, as such techniques are generally
considered too complex for practical systems.
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]’IL 2
5 and e;; = I U;“

where p;; = E(||s;51*), Bi; = ”h 2 Here,

Bijpij€i; is the self-noise term. As in the case without self-
noise (3;; = 0), the effective SNR is still increasing in p;;.
However, it now has a maximum of 1/ Bij. For the sake of
presentation, we assume that 3 = f3;; for all 4 and j. The
analysis is almost identical if users have different 3;;’s.

With self-noise, user ¢’s feasible rate on tone j becomes
ri; = x5 log(l + Pijcij ), where again z;; models time-

+BPLJ€ ij N
sharing of a tone. U7 der these assumptions, we have

R(e) = {7“ LT = wa log (1 * %%226”) ’

Y b <Py wy < 1Y) (x,p) € X}, )

4]

where X := Hj\]:l X;, and for all j € N,

61]

= {(@,p') 2 05wy < 1py < 2V}, (6)

with &/ = (2;;,Vi € K) and p’ = (p;;,Vi € K).
Here, §;; = %, where I';; < 1/ is a maximum SNR
constraint on tone j for user ¢, e.g., to model a constraint
on the maximum rate per tone due to limited availability of
modulation and coding schemes. At the cost of additional
complexity, we could also include minimum rate constraints
to model inelastic traffic, and maximum rate constraints to
incorporate buffer sizes.

We assume that ¢;; is known by the scheduler for all ¢ and j
as is 3 (or §? ). In a frequency division duplex (FDD) system,
this knowledge can be acquired by having the base station
transmit pilot signals, from which the users can estimate their
channel gains and feed them back to the base station. In a
time division duplex (TDD) system, these gains can also be
acquired by having the users transmit uplink pilots; the base
station can then exploit reciprocity to measure the channel
gains. In both cases, this feedback information would need to
be provided within the channel’s coherence time.

B. Subchannelization

With many tones and users, providing pilots and/or feed-
back per tone can require excessive overhead; e.g., in IEEE
802.16e [11], a channel with bandwidth 1.25Mhz to 20Mhz
is divided from 128 to 2048 tones. One way to reduce this
overhead is for feedback and resource allocation to be done
at the granularity of subchannels of disjoint sets of tones,
i.e., constant power is used and coding is done across the
tones in the same subchannel. Our model can be adapted to
this setting by viewing N as the set of subchannels and é;;
as the effective SNR per unit power for user 7 on the jth
subchannel. Specifically, assuming that &k tones are bundled
into subchannel j, ¢€;; is chosen so that the total rate (given by

Tij 2, e, log(1 + %) where NV is the set of tones

2This is slightly different from the Eff-SNR in [13] in which the signal
power is instead given by ||h;||*p;;; the following analysis works for such
a model as well by a simple change of variables. For the problem at hand,
(4) seems more reasonable in that the resource allocation will depend only
on h;; and not on h;;. We also note that (4) is shown in [22] to give an
achievable lower bound on the capacity of this channel.

in the jth subchannel and ¢;; is the SNR per unit power
for tone j;) for user 4 in this subchannel is approximately
ka;jlog(1 + ]ilé;” ). Since log(1 + -£5) is a concave
function of e, using jensen s inequality the rate achieved
over a subchannel is upper bounded by taking €;; to be the
arithmetic average of the channel gains of tones in subchannel
7. The rate can be lower bounded using the strict convexity
of log(l + exp(y)) for y € R (with I > 0) and Jensen’s
inequality. If 8 = 0, taking y = log (£%) and | = 1 we
lower bound the rate by setting ¢;; equal to the geometric
average of the subchannel gains. When 3 > 0 we take

—log (1 + ﬁ) and | = 3, apply Jensen’s inequality
followed by the arithmetic-mean geometric-mean inequality
to lower bound the rate by setting ¢€;; equal to the harmonic
average of the subchannel gains. The gap between the upper
and lower bounds is quite small for reasonable values of pe;
for the SNRs achieved by scheduled users in our simulations,
we do not see much difference.®> From here onwards we
will use the terms tone/carrier/subchannel to mean the basic
allocation unit; the specific distinctions will be clear from the
context.

We consider the following subchannelizations: (i) adjacent
channelization, where adjacent tones are grouped together as
in the optional “band AMC mode” in IEEE 802.16d/e [11];
(i1) interleaved channelization, where tones are (perfectly)
interleaved as in the interleaved channelization in IEEE
802.16d/e [11]; and (iii) random channelization, where tones
are randomly assigned as in systems that employ frequency
hopping as in the Flash OFDM system [24]. Adjacent chan-
nelization enables the resource allocation to better exploit fre-
quency diversity. Interleaved or random channelization reduces
the variance of the effective SNR across subchannels for each
user; when the variance is small, user ¢ can simply feed back a
single e; value. Random channelizations also aid in managing
inter-cell interference.

III. OPTIMAL AND SUBOPTIMAL ALGORITHMS

From (3) and (5), the scheduling and resource allocation
problem can be stated as:

Pij€ij
(mI,rglf)i?X V((L’ p Z w;ii; log (1 + rijJerPz‘]jéij)
1, (7)
pr < P, and me <1,VjeN,

0,J

subject to:

where we still assume that users can time-share subchannels.
Next we show how to solve (7) via a dual formulation.

3For example, in our simulations of the optimal algorithm with 3 = 0.01,
the differences between achieved utilities under arithmetic average and har-
monic average approximations are 0.005%, 0.1%, and 0.4% under adjacent,
interleaved and random subchannelizations, respectively.
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A. Optimal Dual Solution

AP +

Consider the Lagrangian, L(x,p,\,p) =

ZjVIL (x7,p’, \, uij), where

K .
Dijtij
Li(x?,p’ )\, ;) w; x5 log (1—‘—7~ )
! ; ! 5 + Bpij€ij

K K
1 (1 - ZC%) - AZPijy
i=1 i=1

and p = (;Lj);.vzl. The corresponding dual function

L(A, ) := max(p z)ex L(x,p, A\, u) can then be written as
N

L\, AP + a (2, p? N\ ). (9

(A ) = 2 B, Li@',p", A ny). - (9)

By directly evaluating the Hessian of x log( fﬁp) it can
be seen that this is jointly concave in (x,p). It follows that
Problem (7) is convex and satisfies Slater’s condition. Hence,
there is no duality gap and so V* := miny>o, >0 L(A, ) is
the optimal objective value [26].

Next we give a closed-form representation of L(A, ut) in (9).
We then show that minimizing L(\, p) over p only requires
searching for the maximum of user dependent metrics for
each tone j. The only numerical search needed is for the
minimization over A, which is a one-dimensional search.

1) Computing the Dual Function: For a given &/, j1; and
A, the p/ which obtains the maximum in (9) is given by

o { (ﬂ, (“”e” - 1)+> Agi]} (10)

where (z)* = max(x,0), a A b = min(a,b), and

Z?

q(B,2) =

09~ ) (B ).

Figure 1 shows p7; in (10) as a function of é;; for
3 =0,0.01, and 0.1. When 8 = 0, (10) becomes a “water-
filling” solution in which p;(x, A, p) is non-decreasing in
€;j. For a fixed 3 > 0, due to self-noise, less power may
be allocated to “better” subchannels. The constant 3 case is
applicable when the self-noise is due to phase noise as in
[23]. On the other hand, when self-noise arises primarily from
estimation errors, [ may not be constant but could depend
on the channel quality. The exact dependence will depend on
the details of channel estimation. As an example, we also
show a curve for when 3(e) = 10/e, which is motivated
by the analysis in [22, Section IV] for the estimation error
of a Gauss-Markov channel from a pilot with known power.
For that model, when the pilot power is either constant or
inversely proportional to channel quality subject to maximum
and minimum power constraints (modeling power control), 3
will be inversely proportional to e. It can be seen that the curve
has a different shape and amplitude compared to the 3 = 0
case. For simplicity of presentation, we assume constant 3’s
in the remainder of the paper.

pij(@, A p) =

pii(A) =

if 3=0;
if 5> 0.

0.07

0.06 -
= 0051
<
X
S 004
9]
z
o
2 003
5]
£
o
O 002
0.01 1
anldda \ \
10 12 14 16 18 20 22 24 26 28 30
Channel condition €j (dB)
Fig. 1. Optimal power p;;(15) with w; = 1 versus channel condition e;;.

Notice from (10) that the optimal value of p7; is always a
linear function of x;;. Substituting (10) into L;(z?,p’, A, ;)
also results in a linear function of x;;, namely,

Li(z?,p* A py) = Zfﬁw (1135 (N)

~~) , and

= 1) + s
where 1;;(A) 1= w;h (5, wl,\é” ;

a(B,(w=1") A5,
h(B,w,5i;) = log( 1+ﬁ<q<a,<w1>+)m)>

- %(q (6, (w— 1)+) A 5”)

From this it follows that any choice

{1},

if puij (A) >

x5 (A ) € €[0,1], if pig(N) = py; (1D
{0}, i pgg(A) <y,
will maximize L;(x?,p’*, \, ;). Hence, L(\, ) := AP +
Zj 1 Li (A, p5), where
L) = 3 (i) = 1) "+ (12)

i
2) Optimizing the Dual Function over \ and p: Lemma 1

characterizes the optimization of L(A, i) over p.
Lemma 1: For all A > 0,

L) =min L\ p) = AP+Zuj(A) (13)
J
where for every tone j, the minimizing value of u7 is
p5 (A) = max i (A)- (14)

Proof of Lemma 1 is similar to the proof in [10]. For each
tone j, (14) computes the maximum of user metric 1;;.

Since L(\) is the minimum of a convex function over a
convex set, it is a convex function of \; hence, it can be
minimized using an iterated one dimensional search (e.g.,
the Golden Section method [26] for which the computation
complexity is O(log(1/€)), where € is the target relative error
bound). Since there is no duality gap, this minimization gives
the optimal objective value in (7).
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B. Optimal primal variables with time-sharing
Now we find optimal values of the primal variables (x, p).
For every A > 0, with p*(\) as in (14), let

(x*,p") := arg maXXL(fB,p,A,u*(/\)); (15)

(m.p)e
note that these satisfy (10) and (11).

Given that A = \*, it follows from duality theory, that
if the (*, p*) satisfying (15) are primal feasible and satisfy
complimentary slackness, then they are primal optimal primal.
In particular, if for each tone j there exists a unique user ¢ that
achieves the maximum in (14), then since there is no duality
gap, allocating tone j only to that user must be primal optimal.
In general, given A > 0, let A; := {i|uj;(A) = max; p17;(\)}
be the set of users who achieve the maximum on tone j, and
|A;| be the size of A;. From (11) it follows that all * that
solve (15) are those that satisfy the following properties: (i)
fori ¢ Aj, xf; = 0; (i) if [A;] = 1, then z; = 1 for i € A;;
and (iii) if |A;| > 1, then for all i € Aj, z; € [0,1] and
Yic A, x;; = 1. In case (iii), not all tone allocations satisfying
Yic 4, ©;; = 1 may be primal feasible (e.g., > _i; pi; maybe
larger than P). Breaking these ties is necessary to find a primal
optimal solution. A key point is that when ties occur at a given
A, L(\) may not be not differentiable at that \. However, since
L(\) is a convex function, subgradients exist [27].

Proposition 1: For any A > 0, d is a subgradient of L(\)
if and only if there exists (z*,p*) satisfying (15), >, z}; <
1 for all j, p(\) (1—3; ;) = 0 for each j, and P —
Zi,j Pfj =d.

The proof of Proposition 1 can be found in [28] and follows
by observing that that dual function is the maximum of a set
of Lagrangian functions which are linear in A and that the
gradient of each of the Lagrangian functions (with respect to
A) is given by P — Z” pij. At any given A, we need to
restrict attention to the maximizing x*, p* to obtain the set
of subgradients of L()). The rest follows by observing that
the resulting subgradient P — 7, - p;;(A)x7; is linear in z7;,
which takes values in a convex set (product of simplexes).

Thus, in order to find the dual optimal, we need to search
for \* which has a zero subgradient (if A* > 0; and non-
negative if A* = 0). From Proposition 1, this will also be
the check for primal feasibility and complimentary slackness
for the power constraint. Next we provide a solution for this
check. We refer to an allocation as an extreme point if it
satisfies (i)-(iii) and zj; € {0,1} for all i and j; such an
allocation can be represented by a function f : NV — K, so
that f(j) € A; indicates the user who is allocated channel j,
ie, z3;); = 1. Let B ={j : [4;| = 1} and B* = N'\ B.
For each j € B, there are no ties, and so f(j) is unique. For
each tone j € B¢, there are \Aj\ users in the tie, and so the
total number of extreme points is [[,c 5. |4;|. Each extreme
point satisfies Proposition 1 and so provides a subgradient for
L(\). From Proposition 1 it follows that all the subgradients
of L(\) can be obtained as a convex combination of the values
at the extreme points. Given an extreme point f, from (10),
it follows that the corresponding subgradient d(f) is given by

d(f) =P = Brii— > Brini-

JjEB jEB®

(16)

Choosing different extreme points only effects the last term
on the right of (16). It follows that the maximum subgradient
of L(\) corresponds to the extreme points given by

f(j) := arg min Dij, VJ. 17
fG) g, min pij, VJ (17)

The minimum subgradient corresponds to the extreme points

f) = arg max pij, vj. (18)
At \*, the maximum subgradient (using (17)) is always
nonnegative, and the minimum subgradient (using (18)) is
always non-positive. If either is zero, an integer primal optimal
solution is found. In general, we have the following:

Proposition 2: There exists an optimal primal solution
(x*(A\*),p*(\*)), where x*(\*) is given by time-sharing
between the two extreme points in (17) and (18) so that the
convex combination of the corresponding subgradients is equal
to zero, and p*(\*) is given by (10).

Proposition 2 implies that each time-shared tone is shared
in the same proportion.

The above steps give an algorithm for finding the optimal
solution to (7) in two stages. First, find A* that minimizes L(\)
as in Section III-A. This involves evaluating L(\) for a fixed
value of A as an inner loop, and a one-dimensional search over
A as an outer loop. The outer loop has a complexity that is
independent of N and K. The inner loop has a complexity of
O(NK) due to searching for the maximum of K metrics (14)
on each of the /V tones. Thus the total complexity of this stage
is O(NK). Second, given \*, we compute the maximum and
minimum extreme points and find the optimal primal variables
as in Proposition 2 which also has a complexity of O(NK).
Hence, the overall complexity of the optimal algorithm is
O(NK).

In our simulations, the actual complexity of the second stage
is typically much smaller than O(NK) because “typically”
only a few ties occur. * However, the number of extreme
points can be very large under interleaved channelization. This
is because if two users are tied on one subchannel, it is very
likely that they will also be tied on other subchannels since all
subchannels have roughly the same channel gain for the same
user. However, if all the ties are due to the same two users, we
can just allocate all subchannels with a tie to the same user
and this will lead to either the largest or smallest subgradient.
These observations are consistent with [20], which argues that
an OFDM system with § = 0 in which no time-sharing is
allowed will have a certain “duality gap” that is small for
a reasonable number of sub-channels. Problem (7) can be
viewed as the dual of the dual problem in [20, eqn. (9)] and
the duality gap in [20] can be viewed as a measure of the
accuracy of approximating the OFDMA scheduling problem
by the time-sharing version of it from (7). When there is
exactly one extreme point, the duality gap is clearly zero
(since we have an integer solution). The arguments in [20]
for a vanishing duality gap roughly correspond to showing

4For example, extensive simulation results show that for a system of 64
subchannels (grouped from 512 tones) and 40 users in a high mobility
environment, there are on average only two extreme points typically on one
subchannel involving two users, at each scheduling interval (averaged over
3000 scheduling intervals) under either adjacent or random channelizations.
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that the spread in the power consumption of different extreme
points (i.e., the maximum difference in subgradient values) is
typically small for a reasonable number of carriers. When this
spread is small, one expects that fewer ties occur which is
consistent with the above discussion. Discussions above also
argue that the conclusions in [20] extend to the 3 > 0 case.

C. Single user per tone

We now consider the case where no time-sharing is allowed,
ie., x;; € {0,1} for all ¢ and j. Suppose we still find the
optimal \* as in Section III-A. If there are no ties on any of the
tones or if there is an extreme point with > JEN D) = P,
the optimal primal solution given in Section III-B only has
one user per tone, and we are done. If not, Proposition 2 will
no longer give a solution that satisfies the integer constraints.
In this case, a reasonable heuristic is to simply choose one
extreme point allocation. In our simulations, we choose the
extreme point corresponding to the subgradient with the small-
est non-negative value; i.e., the extreme point f, for which
Ej en Pr(5)j 18 closest to P, without exceeding it. Other rules
for choosing an extreme point can also be used. Note that this
requires searching over all extreme points, which has a worst-
case complexity of O(K™N) (if all users were tied on every
tone). However, as discussed above, typically there are only
two users tied on one tone and so this has almost constant
complexity. If instead the largest or smallest subgradient was
used, the worst-case complexity would again be O(NK).

For a given extreme point f, the total transmit power
> jen Pr(j); will be either greater or less than the constraint
P (unless this point is optimal). We then need to re-optimize
the power allocation for the given fixed feasible tone allocation
x (ie., zy; = 1if i = f(j), otherwise z;;=0), i.e., solve

V(z,p) st Zpij <P
]

max

19
p:(p,x)EX (19)

Let Lz()\) be the dual function for this problem. Given
A= argminy>o L (\), the optimal power allocation to (19)
is given by (10) with A = X and the given tone allocation x. A
simple one-dimensional search once again yields the optimal
A. This will have a complexity of O(N) (to get within € of
the optimal) since each tone has at most one user.

When the self-noise term 3 = 0, we can actually find the
optimal A in finite steps based on the following alternative
characterization of 5\, the proof of which is based on a similar
argument as in [10].

Proposition 3: For = 0 a given \ is the unique optimal
solution to the dual problem miny>q Lg () if and only if

> TiWil e,y

A= T - ,  (20)
P = e lseyyy T 20 o5 Lsews)
TiiW;€;54 X5 Wi €45
where W;; = [ jEn v ,xijwieij), and Vi = |0, 545+

Proposition 3 suggests the following algorithm [28] for
finding A. First check if the power constraint is violated when
all users use maximum power on the allocated tones, i.e., if

Z(m) —,:_'Fij > P. If this is false, the problem is solved.

Otherwise, we need to search for A by starting from the largest
A, and calculating the right side of (20). If the result is less

than the chosen value of )\, then we decrease A and recalculate,
until a fixed-point is found. It can be shown that the algorithm
will stop [28] in at most 2N steps at the correct . This
algorithm sorts 2/N values and thus, has a complexity of
O(N log N) which is larger than the O(N) complexity of the
one-dimensional search, but yields the exact optimal solution
in finite time as opposed to an e-optimal solution. However,
regardless of how the power is allocated, we first need to
find the optimal \*. It follows that if the largest or smallest
subgradients are used to break ties, the overall algorithm
will have a complexity of O(NK) or O(NK + NlogN)
depending on how the power is re-optimized.

D. Single sort suboptimal algorithm

Now we introduce two sub-optimal algorithms that do not
require finding the optimal \* iteratively. Instead, a carrier
allocation is determined by a single sort on each tone based
on some easily calculated metric. These heuristic algorithms
are much faster than the previous algorithms, although their
complexity is again O(NK).

1) HEURISTIC 1: Each subchannel j is allocated to the
user with the largest value of /LU»L‘RZ‘]‘, where

1+ <§ij A (%»]

is the rate user ¢ could achieve on subchannel j under power
allocation P/N. Any ties are broken arbitrarily, and power
allocation P/N is used. This metric was motivated in part
by work in [14], [16] where a uniform power allocation (not
necessarily over all tones) was shown to be nearly optimal.

2) HEURISTIC 2: Here subchannels are allocated as in
HEURISTIC 1. However, after this procedure, an optimal
power allocation is performed as in Section III-C (instead
of power allocation P/N). It may turn out that no power is
assigned to some subchannels.

Rij = log

IV. SIMULATION STUDY

We report simulation results based on a realistic OFDM
simulator with assumptions and parameters commonly used
in IEEE 802.16 standards [11]. We focus on the following
algorithms: the OPTIMAL algorithm which finds the optimal
A* and then chooses a tone-allocation with one user per
tone as described in Section ITI-C°, and HEURISTIC 1 and
HEURISTIC 2 from Section III-D.

We simulate a single OFDM cell with M = 40 users
and a total transmission power of P = 6W at the base
station. The channel gains e;;’s are the product of a fixed
location-based term for each user ¢ and a frequency-selective
fast-fading term. The location-based components are picked
using an empirically obtained distribution for many users in
a large system. The fast-fading term is generated using a
block-fading model based upon the Doppler frequency (for

SWe simulated both the algorithms in Section III-B and III-C, and found
that they have identical performance under all parameter choices. This could
be due to the fact that the gap in making the time-sharing assumption is small
owing to there being very few significantly different extreme points at each
scheduling interval as discussed at the end of Section III-B. We thus refer to
the algorithm in Section III-C simply as the OPTIMAL algorithm.
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the block-length in time) and a standard reference mobile
delay-spread model (for variation in frequency). For the fast-
fading terms, each multi-path component is held fixed for
2msec (i.e., a fading block length), which corresponds to a
250Hz Doppler frequency. The delay-spread is set to 1usec.
The users’ channel conditions are averaged over the applicable
subchannelization scheme and fed back to the scheduler.

We consider a system bandwidth of 5MHz consisting of
512 OFDM tones, grouped into 64 subchannels (8 tones per
subchannel). The symbol duration is 100usec with a cyclic
prefix of 10usec, which roughly corresponds to 20 OFDM
symbols per fading block (i.e., 2msec). This is one of the
allowed configurations in the IEEE 802.16 standards [11].
Resource allocation (i.e. solving (1)) is done once per fading
block. All the results are averaged over the last 2000 OFDM
symbols out of 60000 OFDM symbols (i.e., 3000 fading
blocks) by which time we can be reasonably confident that
the system has reached stationarity. All users are infinitely
back-logged and assigned a throughput-based utility as in (2)
with parameter ¢; = 1 and the same fairness parameters («)
across users.

The rate of user ¢ on subchannel j is calculated as

Tij = 028B$” 10g (1 + m> 3
Tij + Ppij€i;

where B is the subchannel bandwidth. Here 0.56 accounts for
the “SNR gap” due to limited modulation and coding choices
and 0.28 accounts for various factors such as hybrid ARQ
transmission scheme and the overhead due to guard tones and
control symbols, etc. While the scheduling is based on the
geometric average for 4 = 0 and harmonic average for 3 > 0,
the decoded rate is based on per tone channel conditions.

The first set of simulation results are for a system with
adjacent channelization, no self-noise (3 = 0), and no per-user
SNR constraints (i.e., I';; = oo for all 4 and 7). Table I shows
the results for all three algorithms under different choices of
the utility parameter c. The column “Utility” gives the average
utility per user for each algorithm. The column “log U” shows
the log utility per user; this gives an alternate indication of
the “fairness” of the resulting allocation (same as utility for
a = 0). The column “Rate” is the average throughput per user
in Kbps, and the final column is the average number of users
scheduled per scheduling interval. For each choice of «, the
three algorithms perform close to each other for each of these
metrics. HEURISTIC 2 performs better than HEURISTIC 1,
since the former re-optimizes the power allocation after tone
allocation, and the latter just uses constant power allocation.
When o = 1 (maximum throughput), all three algorithms have
almost identical performance.

Next we consider the effect of different subchannelization
schemes. Table II shows the performance of the three algo-
rithms for the adjacent, random, and interleaved channelization
schemes from Section II-A. We set o = 0.5, 8 = 0,
and I';; = oo for all ¢ and j. Again, both HEURISTIC
algorithms perform close to the OPTIMAL algorithm. In all
cases, interleaved and random channelizations result in lower
utility than the adjacent channelization. This is likely due
to higher frequency diversity with adjacent channelization.

TABLE I
PERFORMANCE FOR DIFFERENT CHOICES OF o (ADJACENT
CHANNELIZATION, NO-SELF-NOISE, NO SNR CONSTRAINTS).

[ @ | Algorithm [ Utlity [ LogU | Rate | Num. |
0 OPTIMAL 10.74 10.74 60.8 7.73
0 HEURISTIC 1 10.66 10.66 54.6 7.29
0 HEURISTIC 2 10.72 10.72 57.3 7.35
0.5 OPTIMAL 545.2 10.83 105.9 7.32
0.5 | HEURISTIC 1 528.8 10.73 99.3 7.20
0.5 | HEURISTIC 2 542.8 10.81 103.2 7.01
1 OPTIMAL 261677 6.79 261.7 2.58
1 HEURISTIC 1 | 261676 6.79 261.7 2.58
1 HEURISTIC 2 | 261676 6.77 261.7 2.58

TABLE II

PERFORMANCE OF DIFFERENT SUBCHANNELIZATION SCHEMES (@ = 0.5,
NO SELF-NOISE,NO SNR CONSTRAINTS).

[ Channelization [ Algorithm | Utility | Log U [ Rate [ Num.
Adjacent OPTIMAL 545.15 10.83 105.9 7.32
Adjacent HEURISTIC 1 | 528.83 10.73 99.3 7.20
Adjacent HEURISTIC 2 | 542.84 10.81 103.2 7.01

Interleaved OPTIMAL 494.61 10.53 92.4 1.79
Interleaved HEURISTIC 1 | 486.40 10.47 88.4 1.14
Interleaved HEURISTIC 2 | 487.02 10.48 87.8 1.15
Random OPTIMAL 487.53 10.53 89.2 4.89
Random HEURISTIC 1 | 479.07 10.46 84.2 4.39
Random HEURISTIC 2 | 485.63 10.51 86.5 4.34

Indeed, for the channel model used here, in the interleaved
case all subchannels can be shown to be almost identical,
explaining why it typically schedules only one or two users.

Next we consider the case when the self-noise coefficient
8 = 0.0056 in Table III. Here we assume o = 0.5, and no per-
user SNR constraint. The performance gap between the three
algorithms is slightly larger compared to the case without self-
noise in Table II.

Figure 2 shows the throughput CDFs for all three al-
gorithms, with 8 = 0.0056 and 3 = 0. Here adjacent
channelization is used, o = 0.5, and §;; = oo for all ¢ and j.
It is clear that users achieve better throughput when there is
no self-noise (5 = 0). For each 3 the OPTIMAL algorithm
always achieves better rates compared to the HEURISTIC
ones.

Table 1V illustrates the effect of SNR constraints. In par-
ticular, we choose the SNR constraint to be oo, 32.5dB,
and 22.5dB, respectively, and the same across all users and
all tones. We choose adjacent channelization with utility
parameter = 0.5 and no self-noise. Compared to the no
SNR constraints case, a constraint of 32.5dB does not change
the results significantly, while a constraint of 22.5dB substan-
tially decreases the achievable rates (13% for the OPTIMAL
algorithm and 27% for HEURISTIC 1 algorithm).
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TABLE III
PERFORMANCE OF DIFFERENT SUBCHANNELIZATION SCHEMES (« = 0.5,
[ = 0.0056, NO SNR CONSTRAINTS).

TABLE IV
PERFORMANCE OF DIFFERENT SNR CONSTRAINTS (ADJACENT
CHANNELIZATION, o = 0.5, NO SELEF-NOISE).

[ Channelization | Algorithm | Utility | Log U [ Rate | Num. | [ SNR Max [ Algorithm | Utility [ LogU | Rate | Num. |
Adjacent OPTIMAL 512.20 10.82 82.5 7.52 00 OPTIMAL 545.15 10.83 105.9 7.32
Adjacent HEURISTIC 1 489.32 10.70 73.7 7.40 00 HEURISTIC 1 528.83 10.73 99.3 7.20
Adjacent HEURISTIC 2 | 504.00 10.78 7.2 7.22 00 HEURISTIC 2 | 542.84 10.81 103.2 7.01

Interleaved OPTIMAL 467.00 10.51 73.5 1.98 32.5dB OPTIMAL 542.78 10.83 102.97 7.33
Interleaved HEURISTIC 1 | 453.16 10.43 66.8 1.26 32.5dB HEURISTIC 1 | 519.81 10.72 91.87 7.25
Interleaved HEURISTIC 2 | 454.59 10.44 66.9 1.27 32.5dB HEURISTIC 2 | 535.89 10.81 96.35 7.10
Random OPTIMAL 460.53 10.51 71.6 5.60 22.5dB OPTIMAL 522.48 10.82 88.11 7.40
Random HEURISTIC 1 | 446.58 10.42 64.7 4.89 22.5dB HEURISTIC 1 | 483.50 10.66 72.60 7.09
Random HEURISTIC 2 | 453.51 10.48 66.1 4.85 22.5dB HEURISTIC 2 | 505.81 10.77 78.61 6.92

0.95 OPTIMAL (8=0)|
HEURISTIC 2 (3=0)

0.9¢ HEURISTIC 1 (8=0) ]
OPTIMAL (B=0.0056)

0.85} ]

HEURISTIC 2 (3=0.0056)

0.8 ]
HEURISTIC 1 (8=0.0056)

0.75+ i

0-7 L L L L
0 200 400 600 800 1000

Throughput in Kbps

Fig. 2. Empirical CDF of users’ throughputs (adjacent channelization, o =
0.5, no per-user SNR constraints).

V. CONCLUSIONS

We have considered the problem of gradient-based schedul-
ing and resource allocation for a downlink OFDM system,
which essentially reduces to solving a convex optimization
problem in each time-slot. We studied this problem for a
model that accommodates various choices for user utility
functions, different subchannelization techniques, and self-
noise due to imperfect channel estimates or phase noise. Using
duality theory we first gave an optimal algorithm for solving
a relaxed version of this problem in which users can time-
share each subchannel. This involves finding a maximum of
a per user (closed-form) metric for each subchannel and a
one-dimensional search of an optimal dual variable. More
interestingly, this algorithm typically automatically yields an
integer carrier allocation (except on one or two tones). To
enforce such a constraint on all tones, we further proposed
an algorithm that picks an integer carrier allocation and re-
optimizes the power allocation accordingly. The numerical
performance of this algorithm is almost identical to the optimal
solution of the relaxed problem. Finally, we proposed two
even simpler suboptimal algorithms that only perform a single
sort on each of the tones and avoid any iterative calculations.
Simulations show that the suboptimal algorithms achieve close
to optimal performance under a wide range of scenarios, and

the performance gap widens when per user SNR constraints
or channel estimation errors are considered.
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