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Abstract Receptor mediated endocytosis (RME) plays a major role in the dispo-

sition of therapeutic protein drugs in the body. It is suspected to be a major source of

nonlinear pharmacokinetic behavior observed in clinical pharmacokinetic data. So

far, mostly empirical or semi-mechanistic approaches have been used to represent

RME. A thorough understanding of the impact of the properties of the drug and of the

receptor system on the resulting nonlinear disposition is still missing, as is how to

best represent RME in pharmacokinetic models. In this article, we present a detailed

mechanistic model of RME that explicitly takes into account receptor binding and

trafficking inside the cell and that is used to derive reduced models of RME which

retain a mechanistic interpretation. We find that RME can be described by an

extended Michaelis–Menten model that accounts for both the distribution and the

elimination aspect of RME. If the amount of drug in the receptor system is negligible
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a standard Michaelis–Menten model is capable of describing the elimination by

RME. Notably, a receptor system can efficiently eliminate drug from the extracel-

lular space even if the total number of receptors is small. We find that drug elimi-

nation by RME can result in substantial nonlinear pharmacokinetics. The extent of

nonlinearity is higher for drug/receptor systems with higher receptor availability at

the membrane, or faster internalization and degradation of extracellular drug. Our

approach is exemplified for the epidermal growth factor receptor system.

Keywords Recepter mediated endocytosis � Nonlinear pharmacokinetics �
Michaelis–Menten � Therapeutic proteins � Biopharmaceuticals � Epidermal growth

factor receptor � Nonlinear dispostition � Receptor trafficking � Antibodies

Introduction

In recent years, therapeutic proteins have been a major focus of research and

development activities in the pharmaceutical industry [1]. Currently, approximately

100 therapeutic proteins have been approved for human use, most of them being

biotechnology-derived drug products and many more are under development.

Important classes of therapeutic proteins are monoclonal antibodies, growth factors,

and cytokines. Generally, therapeutic proteins provide highly attractive but sometimes

exceptional behavior in the body [2]: their significant therapeutic potential results

from their ability to bind—with high affinity—to specific targets such as receptors or

cell surface proteins. For many protein drugs receptor mediated endocytosis (RME) is

an important route of cellular uptake and disposition [3]. RME is the process of binding

of an endogenous or exogenous ligand to a receptor and subsequent internalization of

the resulting complex forming an endosome. Within the cell, the complex may be

recycled to the cell surface or intracellularly be cleaved [4, 5]. Receptor-mediated

uptake plays a major role in the elimination of protein drugs from the body [3] and is

suspected to be a major source for the nonlinear pharmacokinetic (PK) behavior that is

observed in clinical data for numerous protein drugs [6].

When aiming at analyzing preclinical/clinical pharmacokinetic data of protein drug

trials, typically empirical 1-, 2- or 3-compartmental models including linear and/or

nonlinear disposition processes have been developed. Michaelis–Menten terms have

often been used to analyze experimental data in order to account for the observed

nonlinearity [7–11]. These models have been selected based on, e.g., established

statistical criteria (such as maximum likelihood), the precision of estimates of model

parameters, and in few cases on model evaluation techniques [12–15]. However,

being empirical in nature, these models do not provide a mechanistic understanding of

how the different processes of receptor trafficking contribute to the overall

pharmacokinetic profile, which is expected to guide, e.g., lead optimization or the

design of more efficient dosing regimens. Equally important, there is no theoretical

background as to when use the different existing empirical models for nonlinearity.

Less often, models have been developed that also include mechanistic terms to

account for nonlinear phenomena, most prominently in terms of target-mediated

drug disposition (TMDD) models [16–18]. TMDD explicitly accounts for binding to
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a target and potential degradation of the resulting complex. Although originally

developed to describe effects of extensive drug target binding in tissues, TMDD has

more recently gained interest as a model for saturable elimination mechanisms for

specific peptide and protein drugs, including RME [6, 18, 19]. TMDD is a general

approach for situations where the interaction of a drug with its target is considered

to be relevant and might affect the concentration-time profiles. However, it does not

explicitly take into account the particular features of receptor trafficking inside cells,

such as recycling and sorting, i.e., the process by which receptors and ligands are

either targeted for intracellular degradation or recycled to the surface for successive

rounds of trafficking [20].

There is a considerable amount of literature about detailed mechanistic

descriptions of receptor trafficking systems in the systems biology literature (see,

e.g., [5, 21] and references therein). Based on these receptor trafficking systems, our

approach is to build a general detailed mechanistic model of RME that takes into

account the most relevant kinetic processes of drug binding and receptor trafficking

inside the cell. Detailed models derived from the underlying biochemical reaction

network have the advantage of a mechanistic interpretation of the kinetic processes

and estimated parameters. In [22], a cell-level model of the cytokine granulocyte

colony-stimulating factor (G-CSF) and its receptor was incorporated into a

pharmacokinetic/pharmacodynamic model to allow for analyzing the life span

and potency of the ligand in vivo. However, often these advantages come along with

the disadvantage of containing more parameters which, e.g., in population PK

analysis of clinal trials may result in poorer performance in the model selection

process, since models containing more parameters are usually penalized by the

corresponding model selection criteria.

The objective of this article is to develop a framework for RME that is

specifically tailored to the needs in PK analysis of clinical trials by bridging the

points of view in pharmacokinetics and systems biology. The aims are (i) to develop

a detailed model that takes into account the most relevant processes in relation to

receptor trafficking; (ii) to derive reduced models of RME which retain a

mechanistic interpretation and are defined in terms of a few parameters only, (iii) to

offer guidance as to when use them, and (iv) to analyze the impact of the different

processes on the extent of nonlinearity. While our approach applies to many

receptor systems in general, we will use the epidermal growth factor receptor

(EGFR) signalling pathway to illustrate the approach. The EGFR system has been

intensively studied over the past 20 years and is one of the most important pathways

for cell growth and proliferation as well as angiogenesis and metastasis [23]. The

EGFR system comprises a tyrosine kinase receptor, which is activated by a variety

of ligands such as the epidermal growth factor (EGF) or the transforming growth

factor-a (TGF-a) [24–26]. Mathematical modelling of the EGFR system has proven

to be useful for both, measurement of rate constants [27] as well as to elucidate the

effects of receptor trafficking as an input to downstream signalling cascades [21,

28]. From a therapeutic point of view, the EGFR system has shown to be a

promising target in cancer therapy [29, 30]. Several agents, including therapeutic

proteins such as monoclonal antibodies (mAbs), have been developed to specifically

target the EGFR with some already approved for drug treatment [31–33].
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Theoretical

Throughout the article, the term ’ligand’ refers to both a physiological ligand as well

as an exogenous drug ligand.

Detailed model of RME (Model A)

We propose the following detailed model of RME of a ligand as schematically

represented in Fig. 1: the ligand Lex is present in the extracellular space. The ligand

reversibly binds to free receptor Rm at the cell membrane with association rate

constant kon to form the ligand–receptor complex RLm that dissociates with rate

constant koff. The complex is internalized with the rate constant kinterRL forming an

endosome. The internalized ligand–receptor complex RLi is either recycled to the

membrane with the rate constant krecyRL, degraded with the rate constant kdegRL to

RLdeg, or dissociates with the rate constant kbreak. The dissociation results in the

subsequent degradation of the ligand Ldeg and the availability of the free receptor Ri

inside the cell. Free intracellular receptor Ri is recycled to the membrane with the

rate constant krecyR and free membrane receptor Rm is internalized with the rate

constant kinterR. Inside the cell, the receptor Ri is produced with the rate ksynth and

degraded with the rate constant kdegR.

Based on the law of mass action, the rates of change for the various molecular

species are given by the following system of ordinary differential equations (ODEs):

V
Lex

Rm +
kon

koff

kinterRL

krecyRL

kbreak

krecyR kinterR

RLm

RLi

Ldeg

Ri

kdegR
ksynth

kdegRL

RLdeg

Fig. 1 Schematic representation of the detailed model of receptor mediated endocytosis. See text for
description
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dLex=dt ¼ koff � RLm � kon=ðVcNAÞ � Rm � Lex ð1Þ
dRm=dt ¼ koff � RLm � kon=ðVcNAÞ � Rm � Lex þ krecyR � Ri � kinterR � Rm ð2Þ

dRLm=dt ¼ kon=ðVcNAÞ � Rm � Lex � koff � RLm � kinterRL � RLm þ krecyRL � RLi ð3Þ
dRLi=dt ¼ kinterRL � RLm � kbreak � RLi � krecyRL � RLi � kdegRL � RLi ð4Þ
dRi=dt ¼ kinterR � Rm � krecyR � Ri þ kbreak � RLi � kdegR � Ri þ ksynth ð5Þ

where NA is Avogadro’s number and Vc is the volume of extracellular space per cell.

In the above equations, all variables are expressed in number of molecules. All

parameters are first-order rate constants in units [1/time] except for ksynth, which is a

zero-order rate constant in units [molecules/time], and kon which is a second-order

rate constant in units [1/(concentration 9 time)]. The factor 1/(VcNA) ensures

conversion of units from molar concentration to number of molecules. With respect

to the receptor, the above equations comprise the following three overall processes

(cf. Fig. 1): (1) synthesis and degradation; (2) distribution of the different receptor

species within and between the cytoplasm and the cell membrane; and (3) ligand–

receptor interaction. With respect to the ligand, its disposition processes consist of

the three overall processes: (i) binding to the receptor; (ii) internalization of the

ligand–receptor complex; and (iii) intracellular degradation.

Reduced models of RME

One objective of this study is to derive and analyze reduced models of RME that

capture the impact of receptor dynamics on the distribution and elimination of a

ligand and that still allow for a mechanistic interpretation. While during short time

intervals the transient redistribution processes between the different receptor species

Rm, RLm, RLi and Ri may be of interest, these are usually assumed to be negligible on

time scales of interest in pharmacokinetics. Therefore, our approach to reduce the

detailed RME model will be based on the assumption that the receptor species Rm,

RLm, RLi and Ri are in quasi-steady state. In order to finally derive reduced models of

RME, it is necessary to make an additional assumption on the time-scale of receptor

synthesis and degradation. We distinguish the following two scenarios: (1) the time

scale of receptor synthesis and degradation is slow in comparison to the time scale of

ligand disposition. In this case, we formally set ksynth = kdegR = kdegRL = 0. As a

consequence, the total number of receptors in the system remains constant. Or, (2)

the time scale of receptor synthesis and degradation is fast, i.e., comparable to the

redistribution processes of the different receptor species. Both scenarios will be used

in the following to establish a link between the reduced and the detailed model.

Reduced model of saturable distribution into the receptor system and linear
degradation (Model B)

The idea in deriving a reduced model of RME is to use the quasi-steady state

assumption for the receptor system (RS). This transforms the differential equations

(2)–(5) into algebraic equations for Rm, RLm, RLi, Ri. For a given number of
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extracellular ligand molecules Lex, these algebraic equations can be solved explicitly.

This allows us to compute the total number of ligand molecules in the receptor

system LRS = RLm ? RLi as a function of the extracellular number of ligands Lex.

Based on LRS, the quasi-steady state number of intracellular ligand–receptor

complexes RLi can be computed, which determines the extent of elimination.

Model B (see Fig. 2) describes the evolution of the total number of ligands

Ltot = Lex ? LRS in form of the following ODE:

dLtot=dt ¼ �kdegLRS with ð6Þ

LRS ¼
BmaxLex

KM þ Lex

ð7Þ

Lex ¼
1

2
Ltot � Bmax � KM þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ltot � Bmax � KMð Þ2þ4KMLtot

q

� �

: ð8Þ

The equations comprise three parameters: the maximal ligand binding capacity Bmax

of the receptor system (in units molecules), the number of extracellular ligand

molecules corresponding to a half-maximal binding capacity KM (in units

molecules), and the degradation rate kdeg (in units 1/time). In this reduced model

the combination of saturable distribution and linear degradation results in the overall

saturable elimination of the ligand.

For the two scenarios of slow or fast receptor synthesis and degradation, the

functional relation between the parameters Bmax, KM and kdeg and the parameters of

the detailed model of RME can be established. In the case of slow receptor synthesis

and degradation, it is

Bmax ¼ R0 �
kbreak þ krecyRL þ kinterRL

kbreak þ kinterRL þ krecyRL þ kinterRL � kbreak=krecyR

ð9Þ

KM ¼ KD �
VcNA � kbreak 1þ kinterRL

koff
þ krecyRL

kbreak

� �

kbreak þ kinterRL þ krecyRL þ kinterRL � kbreak=krecyR

ð10Þ

kdeg ¼
kbreak � kinterRL

kinterRL þ kbreak þ krecyRL

; ð11Þ

where R0 is the total number of receptors and KD = koff/kon denotes the dissociation

constant of the ligand–receptor complex. In the case of fast receptor synthesis and

degradation, the relation between the parameters is

Bmax ¼
ksynth

kdegR

� krecyR � ðkrecyRL þ klyso þ kinterRLÞ
kinterRL � ðklyso þ krecyR � kdegRL=kdegRÞ

ð12Þ

KM ¼ KD �
VcNA � kinterR � ðkrecyRL þ klyso þ kinterRL � klyso=koffÞ

kinterRL � ðklyso þ krecyR � kdegRL=kdegRÞ
ð13Þ

kdeg ¼
klyso � kinterRL

kinterRL þ klyso þ krecyRL

; ð14Þ

with klyso = kbreak ? kdegRL.
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Reduced model of saturable degradation (Model C)

The proposed Model C (see Fig. 2) is a further reduction of Model B. It is based on

the additional assumption that the amount of ligand distributed into the receptor

system is negligible in comparison to the total amount of ligand molecules, i.e.,

Ltot = Lex ? LRS & Lex. More formally, Model C can be derived from Model B

under the assumption

Bmax

KM þ Lex

� 1; ð15Þ

which implies LRS � 1 and thus Ltot & Lex from Eq. 7. Substituting Lex by Ltot

in Eq. 7 and LRS into Eq. 6 yields the ODE for the total number of ligand

molecules:

dLtot=dt ¼ � VmaxLtot

KM þ Ltot

: ð16Þ

The model comprises two parameters: the maximal elimination rate of ligand

molecules Vmax (in units molecules/time) and the number of ligand molecules KM, at

which the elimination rate is half-maximal. Exploiting the relation

Vmax ¼ kdeg � Bmax; ð17Þ

we obtain the functional relations between Vmax and the parameters of the detailed

model of RME (Model A). In the case of slow receptor synthesis and degradation,

the functional relationship is given by

Vmax ¼ R0 �
kbreak � kinterRL

kbreak þ kinterRL þ krecyRL þ kinterRL � kbreak=krecyR

ð18Þ

and KM is defined as in Eq. 10. In the case of fast receptor synthesis and degradation,

it is

Lex

Rm +
kon

koff

kinterRL

krecyRL

kbreak

krecyR kinterR

RLm

RLi

Ldeg

Ri

kdegR
ksynth

kdegRL

RLdeg

Rm

Ltot

Ldeg
Ldeg

Lex

kdeg

Bmax
KM

Vmax

KM

LRS

Fig. 2 Models of receptor mediated endocytosis of different resolution: Detailed model (Model A),
reduced model of saturable distribution into the receptor system with linear degradation (Model B), and
reduced model of saturable degradation (Model C). See text for details
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Vmax ¼
ksynth

kdegR

� klyso � krecyR

klyso þ krecyR � kdegRL=kdegR

ð19Þ

and KM is defined as in Eq. 13.

Integration of RME into compartmental PK models

In order to facilitate the transfer of reduced models of RME into compartmental

PK models underlying PK data analysis and for use in the example of

therapeutic protein receptor interaction, we explicitly state the system of ODEs

for a two-compartment PK model. The model comprises a central compartment

(volume V1 (in units volume) and ligand concentration C1 (in units mass/

volume)) from which linear elimination CLlin (in units volume/time) takes place

and a peripheral compartment (volume V2 and total ligand concentration C2),

where saturable elimination via receptor mediated endocytosis CLRS takes place

(see Fig. 3). In the peripheral compartment, we further distinguish between the

concentration CRS within the receptor system and the extracellular concentration

Cex. The inter-compartmental transfer flows are denoted by q12 and q21 (in units

volume/time).

As in this article we are interested in how to represent RME in PK models, the

below mentioned system of ODEs based on the reduced Models B and C represent

the proposed structural PK model that can be used for parameter estimation in PK

data analysis of nonclinical and clinical trials. The parameter values are determined

by performing a fit of the model to the specific in vivo data. Alternatively, the model

might be used to scale-up in vitro derived RME parameter values to the in vivo

situation (see also Discussion).

If Model B is used to describe the elimination by RME, the system of ODEs is

+
kon

koff RLm

C2

Vmax

KM

C1 Cllin

R +

Cex

CLRS

Bmax, KM

CRS

q12q21

C1 Cllin

q12q21

V1

V2

V1

V2

Fig. 3 Two two-compartment models with linear clearance from the central compartment and RME
based on Model B (left) and Model C (right) in the peripheral compartment
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V1 � dC1=dt ¼ q21 � Cex � q12 � C1 � CLlin � C1 þ dosing ð20Þ
V2 � dC2=dt ¼ q12 � C1 � q21 � Cex � CLRS � CRS; with ð21Þ

CRS ¼
Bmax � Cex

KM þ Cex

ð22Þ

Cex ¼
1

2
C2 � Bmax � KM þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C2 � Bmax � KMð Þ2þ4KMC2

q

� �

; ð23Þ

where dosing denotes a mass inflow (in units mass/time) of, e.g., an i.v. infusion

over a given time. The parameter Bmax denotes the total maximal ligand binding

capacity in mass per volume or mol per volume, KM denotes the concentration at

which the binding capacity is half-maximal, CLlin and CLRS denote the total

elimination capacities (in units volume/time) in the central and peripheral

compartment, respectively. In terms of parameter estimation, the PK model

contains eight parameters: V1, V2, q12, q21, CLlin, CLRS, Bmax and KM, plus

additional variables relating to dosing.

If Model C is used to describe the elimination by RME, the system of ODEs is

V1 � dC1=dt ¼ q21 � C2 � q12 � C1 � CLlin � C1 þ dosing ð24Þ

V2 � dC2=dt ¼ q12 � C1 � q21 � C2 �
Vmax � C2

KM þ C2

; ð25Þ

where Vmax denotes the total maximal elimination (in units mass/time), and all

remaining parameters are defined as above. In terms of parameter estimation, the PK

model contains seven parameters: V1, V2, q12, q21, CLlin, Vmax and KM, in addition to

the parameters relating to dosing.

Nonlinear PK caused by RME

In this section, we investigate the extent of nonlinearity in the context of the

Michaelis–Menten model defined in Eqs. 24 and 25. We aim to examine the effect

of drug and cell properties on the nonlinearity of the pharmacokinetics, e.g.,

different drug affinities to the receptor (different kon and koff values) or different

rates of internalization and recycling of the drug in different cells.

In the chosen setting of the two-compartment PK model (cf. Eqs. 24 and 25, the

total clearance CLtot is given by

CLtot ¼ CLlin þ CLRS ¼ CLlin þ
Vmax

KM þ C
; ð26Þ

where C denotes the relevant ligand concentration in the RME compartment (e.g.,

C2 in Eq. 25). While the linear clearance is constant, the clearance attributed to

RME varies between Vmax/KM for small ligand concentrations and 0 for high ligand

concentrations. Therefore, we consider the quotient Vmax/KM as a measure of the

extent of nonlinearity, i.e., the increase in total clearance for small ligand

concentrations.

In order to jointly analyze the slow and the fast receptor synthesis and

degradation scenario, we set
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R0 ¼ Rm þ Ri ¼
ksynth

kdegR

� 1þ kinterR

krecyR

� �

ð27Þ

and replace the quotient ksynth/kdegR in Eq. 19 by R0/(1 ? kinterR/krecyR) according to

Eq. 27. Moreover, we extend the definition of klyso to the slow scenario by setting

klyso = kbreak in this case (note: for the fast scenario klyso = kbreak ? kdegRL). Then,

the extent of nonlinearity for both, the fast and the slow scenario, is given by

Vmax

KM
¼ R0

VcNA
� kon

koff

kinterRL
1þ krecyRL

klyso

� �

þ 1
� 1

1þ kinterR

krecyR

� �

kinterR

krecyR

� �

0

@

1

A

p

; ð28Þ

where p = 0 for the slow scenario and p = 1 for the fast scenario. The above

equation allows us to study in detail the influence of the various parameters on the

extent of nonlinearity.

It can be inferred from Table 1 that ligand-specific, receptor system-specific as

well as mixed parameters influence the extent of nonlinearity of the PK:

nonlinearity increases for higher affinity drugs (kon) and cell types, which have a

higher receptor concentration at the surface of the cell membrane (R0, krecyR) and

faster degradation processes (klyso). In contrast, higher values of koff, krecyRL and

higher kinterR, kdegR will decrease the extent of nonlinearity by resulting in a lower

number of intracellular ligand receptor complexes, free receptor molecules, or a

smaller number of receptor molecules at the cell surface membrane.

In order to more clearly highlight the contribution of the dissociation constant

KD, we also give the following alternative representation of Eq. 28:

Vmax

KM
¼ R0

VcNA
� 1

KD
� 1

1
kinterRL

1þ krecyRL

klyso

� �

þ 1
koff

� 1

1þ kinterR

krecyR

� �

kinterR

krecyR

� �

0

@

1

A

p

: ð29Þ

As can be inferred from the above relation, the extent of nonlinearity can be very

different for ligands with the same dissociation constant KD, but different absolute

values of koff. The difference depends on the relative magnitude of the two terms in

the first denominator in Eq. 29, i.e., 1/koff to 1/kinterRL � (1 ? krecyRL/klyso).

Table 1 Contribution of the

different parameters to the

extent of nonlinearity

With increasing value of the

corresponding parameter the

extent of nonlinearity will

increase (:) or decrease (;). For

each parameter, it is indicated

by (RS) or (L) whether it is

related to the receptor system or

the ligand, respectively

Increase of parameter Resulting change in

extent of nonlinearity

R0 : (RS)

krecyR : (RS)

kon : (L)

klyso : (RS & L)

kinterRL : (RS & L)

koff ; (L)

kinterR ; (RS)

krecyRL ; (RS & L)
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Methods

In order to simulate Models A, B and C, we numerically solved the corresponding

system of ODE’s with Matlabs built-in ode15s integrator (The Mathworks, Inc.,

Natick/MA, USA, version 7.4). Parameter values for the reduced Models B and C

were derived from those of Model A using the established relations (12)–(14), and

(19) and (13), respectively. Subsequently, numbers of molecules where converted

into concentrations (nM).

The models were compared based on the simulated extracellular drug concen-

tration. The specific details of the simulation studies are given in the respective

Result section to allow for an easier comparison.

EGFR system with endogenous/physiological ligand

The application of our approach is illustrated using the EGFR system as an example.

The properties of the EGF/EGFR system will be analyzed using experimentally

measured parameters for the degradation of the epidermal growth factor, binding to

the epidermal growth factor receptor and subsequent internalization [20, 34]. The

rate constants of the corresponding reactions are listed in Table 2.

Hendriks et al. [20, 34] explored EGF as ligand to measure rate constants of the

EGFR system. Since receptor is degraded as a consequence of ligand degradation,

we choose the scenario of fast receptor synthesis and degradation for all

investigations, i.e., Eqs. 12–14 and 19. However, not all rate constants of the

herein proposed detailed model of RME were explicitly measured in [20, 34]. Since

EGF is predominantly degraded from the EGF-receptor complex [5] rather than

from the free form, we set kbreak = 0 resulting in klyso = kdegRL = 0. Since the

parameter ksynth was not available in literature, we used the steady state assumption

for the receptor system prior to any ligand administration and the experimentally

measured steady state number of membrane receptor Rm
(SS) [28] to determine ksynth

using the relation ksynth = kdegR � Ri
(SS) with Ri

(SS) = Rm
(SS) � kinterR/krecyR. The initial

number of receptors are Rm(0) = Rm
(SS), Ri(0) = Ri

(SS), and RLm(0) = RLi(0) = 0;

the initial concentration of extracellular ligand is Lex(0) = 40 nM.

Table 2 Parameter values for

the EGF/EGFR system

All parameter values have been

extracted from Hendriks et al.

[20, 34] and Shankaran et al.

[28]. See also section ‘‘RME for

the EGF/EGFR system’’

Parameter Numerical value

kon 5.82 1/(nM h)

koff 14.4 1/h

Rm
(SS) 2 9 105 molecules

krecyR 3.84 1/h

kinterR 4.2 1/h

kdegR 0.96 1/h

krecyRL 1.2 1/h

kinterRL 15 1/h

kdegRL 1.2 1/h

Vc 4 9 10-10 1/cell
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EGFR system with exogenous/therapeutic protein ligand

The analysis of drug-EGFR interaction are performed using data from the

monoclonal antibody zalutumumab (2F8), as published by Lammerts van Bueren

et al. [11]. Zalutumumab is a human IgG1 EGFR antibody that potently inhibits

tumor growth in xenograft models and has shown encouraging antitumor results in a

phase I/II clinical trial [35, 36]. We transformed the originally published system of

difference equations [11, Supplement] into the corresponding continuous system of

ordinary differential equations1 (ODEs):

d

dt
Apl ¼ kipAint � kpiApl � kelApl ð30Þ

d

dt
Aint ¼ kpiApl � kipAint � kb

bBmaxðAint=VintÞh

ðAint=VintÞh þ Kh
M

� Ab

 !

ð31Þ

d

dt
Ab ¼ kb

bBmaxðAint=VintÞh

ðAint=VintÞh þ Kh
M

� Ab

 !

� bkdegAb; ð32Þ

where Apl, Aint and Ab represent the amount of therapeutic protein in the plasma,

interstitial and binding compartment, respectively; Vint the interstitial volume, kpi

and kip the rate constants for transfer between the plasma and interstitial

compartment, kb the rate constant for binding to and dissociation from EGFR,

and kel the elimination rate constant. Furthermore, bkdeg denotes the rate constant for

elimination by EGFR internalization and degradation, bBmax the maximal binding

capacity of the therapeutic protein to EGFR, KM the concentration corresponding to
bBmax=2, and h the Hill factor. The initial amount of drug Apl(0) and the parameters

are listed in Table 3. The reported value of KM = 5 lg/ml did not allow us to

reproduce the results in [11, Fig.1A]. Only a value of KM = 0.5 lg/ml exactly

reproduced the in silico data, hence we choose the corrected value for subsequent

analyses. Amounts are converted to concentrations by dividing by the corresponding

volume.

Transforming the system of ODEs (30)–(32) from units [mg/kg] to [mg/ml] by

dividing by the corresponding volumes yields equations for Cpl = Apl/Vpl, Cint =

Aint/Vint, Cb = Ab/Vint, in terms of the following scaled parameters q12 = Vpl � kpi,

q21 = Vint � kip, CLlin ¼ kel � Vpl;Bmax ¼ bBmax=Vint; CLRS ¼ bkdeg � Vint. The model

(30)–(32) scaled to units [mg/ml] can be directly compared to our PK model (20)–(23)

with C1 = Cpl, Cex = Cint and CRS = Cb, parameterized with the scaled parameters

above. We remark that alternatively, our compartmental PK models could have been

stated in units [mg/kg].

1 The originally published equations in [11, Supplement] are identical to a certain discretization of the

system of ODEs (30)–(32). The advantage of stating the system as continuous ODEs is that subsequently

any numerical scheme can be used to solve them, in particular high accuracy ODE solver with adaptive

step size control.
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Results

RME for the EGF/EGFR system: an example for ligand–receptor interaction

For all subsequent in silico studies, the parameter values are stated as given in

section ‘‘EGFR system with endogenous/physiological ligand’’, unless stated

otherwise.

Influence of receptor system properties on RME

We illustrate the approximation features of the two reduced models for predicting

concentration-time profiles of the ligand in comparison to the detailed model based

on the EGF/EGFR system. The initial concentration is Cex(0) = 40 nM. In

Fig. 4(left), the predictions of the extracellular EGF concentration Cex is shown for

the three Models A, B and C. All models result in very similar concentration-time

Table 3 Parameter values used

by Lammerts van Bueren et al.

[11]

KM has been corrected, see text

for details. Vpl represents the

plasma volume

Parameter Numerical value

Vpl 35 ml/kg

Vint 70 ml/kg

bBmax 2 mg/kg

kip 0.043 1/h

kpi 0.043 1/h

kb 0.069 1/h

kel 0.0055 1/h

bkdeg 0.005 1/h

KM 0.5 lg/ml

Apl(0) 2 and 20 mg/kg

h 1.0
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Fig. 4 Concentration-time profile of the extracellular ligand concentration for the Model A (circles on
blue solid line), Model B (squares on blue dashed line) and Model C (diamonds on red dashed line). Left:
Parameter values used according to Table 2. Right: As in left figure, but decreasing kdegRL 10-fold
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profiles: Almost instantaneously, the amount of ligand in the RS is in equilibrium.

Due to the high concentration of ligand in comparison to the concentration of

receptor, the RS is saturated and the ligand is eliminated at a constant rate. Between

approximately 40-60 h, the system undergoes a transition from saturated to non-

saturated elimination, which is manifested in the linear decline in the final phase (in

the semi-logarithmic representation). For the EGF/EGFR system, the detailed model

of RME is well approximated by Model B and also by Model C, the latter taking

into account only the apparent saturable elimination. Based on the predictions of

Model B, we computed the amount of ligand LRS in the receptor system. In

accordance with Eq. 15, LRS is negligible in comparison to extracellular EGF

concentration (cf. Fig. 5, solid line) while Cex [ 0.01 nM.

In order to study the impact of LRS on the approximation quality of Model C, we

artificially decrease kdegRL by a factor of 10. All other parameters of the detailed

Model A, including the initial EGF concentration, are identical. Parameters of

Model B and C have been recalculated according to Eqs. 12–14 and Eqs. 19 and 13,

respectively, resulting in particular in an increased maximal binding capacity Bmax.

The predictions of the concentration-time profile of the extracellular EGF

concentration Cex based on the three Models A, B and C are shown in Fig. 4(right).

While Models A and B give almost identical results, the prediction based on Model

C differs significantly. Model C over-predicts the extent of elimination by RME. As

shown in Fig. 5 the over-prediction corresponds to periods in time where the

assumption (15) is violated: While Bmax/(KM ? Cex) is small for both settings up to

time 60 h, it starts to increase thereafter, in particular for the setting corresponding

to Fig. 4(right).

Influence of different cell types on RME

The detailed model A allows us to analyze the influence of processes on the overall

disposition of ligand in the extracellular space such as, e.g., the ligand receptor

internalization rate constant kinterRL. Alterations in kinterRL have been observed

experimentally [37, 38] and could be the result of a mutation of the EGF receptor. In

view of Eq. 28 we would expect a decrease in the overall elimination capacity with

decreasing internalization rate constant kinterRL. Figure 6(left) shows the impact of
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Fig. 5 Evolution of the ratio
Bmax/(KM ? Cex) for the two
scenarios shown in Fig. 4 left
(solid line) and right (dashed
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an altered kinterRL on the concentration-time course of EGF with Cex(0) = 40 nM.

As can be seen, cells with a reduced internalization rate constant kinterRL/4 and

kinterRL/16 show a much lower apparent elimination than the reference cells with the

rate constant kinterRL. The difference in the apparent elimination does not only

depend on the absolute magnitude of change of kinterRL, but more precisely on the

magnitude of change of 1/kinterRL � (1 ? krecyRL/klyso) in relation to 1/koff, as can

been inferred from Eq. 29. Changes in kinterRL will have less impact, if 1/koff is large.

This can be seen in Fig. 6(right), which shows the same situation as in the left

figure, but with koff decreased by a factor of 100 (we also decreased kon by the same

factor in order to keep KD constant).

RME in the monoclonal antibody/EGFR system: an example for therapeutic

protein–receptor interaction

In this section we will illustrate how our unified theoretical approach to RME

allows for resolving seemingly contradictory statements about the performance of

empirical models of RME. In [11], Lammerts van Bueren et al. reported about a

preclinical study involving a mAb against EGFR in monkeys and their

subsequent data analysis. They developed a two-compartment pharmacokinetic

model comprising a first-order elimination of the mAb from plasma, a binding

compartment (representing EGFR-expressing cells) that equilibrates with the

interstitial compartment, and a saturable internalization and degradation of bound

mAb. For a detailed description of the model and the corresponding parameters

see section ‘‘EGFR system with exogenous/therapeutic protein ligand’’. Lammerts

van Bueren et al. concluded that the observed nonlinear decrease of mAb

concentrations in cynomolgus monkeys could not be explained by a saturable

elimination in terms of a Michaelis–Menten model and proposed an alternative

model, which described the data well. In a different study, the Michaelis–Menten
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Fig. 6 Illustration of the dependence of RME on the rate of internalization using the detailed model of
RME (Model A). Parameter values according to Table 2. Left: concentration-time profiles of the
extracellular ligand EGF (Lex) for three different internalization rate constants of the ligand–receptor
complex: kinterRL (solid line), kinterRL/4 (dashed line), kinterRL/16 (dotted line). Right: same as before, but
with decreased association and dissociation rate constants: kon/100 and koff/100, respectively. Note that
KD is identical in the left and right graphics
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model was reported to successfully describe in vivo data for a monoclonal

antibody [10].

The model proposed in [11] is comparable to the two-compartment model

introduced in the section ‘‘Integration of RME into compartmental PK models’’, Eqs.

20–23. In order to understand the inferences made by Lammerts van Bueren et al.

[11], we simulated their model defined in Eqs. 30–32 and compared the results to the

correspondingly parameterized Models B and C (see Fig. 7, left). Since the

experimental data presented in [11] were not available and since model simulations

and data were reported to be in good agreement, we used the Lammerts van Bueren

model as a surrogate for the experimental data. As in [11], we choose a high and low

initial mAb input of 2 and 20 mg/kg. While the predicted mAb plasma concentra-

tions based on Model B are identical to the prediction based on the Lammerts van

Bueren et al. model, predictions based on Model C deviate significantly. A closer

inspection reveals that the assumption Bmax/(KM ? Cex(0)) � 1 is violated for the

low dose of 2 mg/kg. Consequently, the amount of mAb inside the RS cannot be

neglected and we would expect to see deviations between predictions based on

Models B and C. Hence, the use of a Michaelis–Menten based nonlinear elimination

in the interstitial compartment, which neglects the drug distributed into the receptor

system, leads to an over-prediction of drug elimination by RME (see Fig. 7, left).

The difference between the predictions based on Model B and C should

disappear, if the maximal binding capacity is sufficiently decreased. This is shown

in Fig. 7(right), where the binding capacity Bmax has been decreased to one 20th of

its original value.

In summary, the inference made in [11] that a Michaelis–Menten term is not

adequate for modeling the nonlinearity present in the data is valid for the specific

conditions of their experimental design. However, this cannot be generalized to a

statement about the validity of the Michael-Menten approximation of RME, as can

be seen from Fig. 7(right) and also from the results presented in section ‘‘RME for

the EGF/EGFR system’’.
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Fig. 7 Comparison of model predictions for zalutumumab (2F8) based on the Lammerts van Bueren
et al. model (circles on solid line) and the herein proposed compartment models (20)–(23) (squares on
solid line) and (24)-(25) (diamonds on dotted line). Left: parameterization as given in Table 3. Right:
maximal receptor capacity Bmax decreased to one 20th of the original capacity
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Discussion

Drugs that demonstrate nonlinear pharmacokinetic behavior at therapeutic concen-

trations often cause difficulties in designing dosage regimens and determining

relations between drug concentrations and effects. The theoretical bases and

potential causes of nonlinear/dose-dependent pharmacokinetics are many-fold and

have been extensively reviewed (see [17] and reference therein). Therapeutic

proteins bind with high affinity to specific targets. For many protein drugs

elimination by RME plays a major role in their elimination from the body [3]. RME

is suspected to be a major source for the nonlinear pharmacokinetic behavior that is

observed in pre-/clinical data of numerous protein drugs [6]. In this article we

theoretically investigated the process of RME on the pharmacokinetics of

therapeutic proteins.

The detailed Model A (see Fig. 1) represents RME for an endogenous compound

in terms of a system of biochemical reactions (1)–(5), including the binding of the

ligand to the receptor, subsequent internalization of the complex and eventually

degradation as well as receptor recycling, degradation and synthesis. Two reduced

models have been derived under the assumption that the redistribution processes

between the receptor species Rm, RLm, Ri and RLi are in quasi-steady-state. For the

EGFR system, this assumption has been shown experimentally [27]. For other

receptor systems, the steady state assumption seems reasonable since intracellular

processes are typically much faster than the time scale of interest in pharmaco-

kinetic studies.

With respect to the pharmacokinetics of therapeutic proteins, two aspects of

RME are of particular importance:

1. Distribution as a consequence of the drug binding to the receptor and

subsequent internalization of the complex; and

2. Elimination as a consequence of endocytosis.

Unfortunately both processes typically cannot be differentiated experimentally in

pharmacokinetics. Model B explicitly takes into account the amount of drug LRS

distributed in the receptor system and the elimination by intracellular degradation,

e.g., lysosomes. While the elimination is a linear process in terms of LRS, the

distribution into the receptor system itself is a saturable process, specified in terms

of Bmax and KM. Model C is derived from model B by assuming in addition that LRS

is negligible in comparison to the extracellular amount Lex. In view of the above two

sub-processes, this is equivalent to the assumption that the distributional aspect of

RME can be neglected. Notably, even if the distributional aspect is negligible, the

receptor system could still very efficiently transport ligand molecules into the cell,

where they are subsequently degraded. This can be explained from Eq. 17. It states

that the maximal elimination rate Vmax is the product of the maximal ligand binding

capacity Bmax and the degradation rate constant kdeg. The maximal elimination rate

Vmax may still be large due to a large kdeg, even if Bmax is small. The latter implies a

negligible amount of ligand LRS within the receptor system. The receptor system

acts as a mechanism that transports ligand molecules into the cell to eventually

degrade them. Whether or not the receptor system also serves as a distribution phase
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is independent from the elimination aspect. This yields the following guidance for

the usage of the two reduced models:

Model B: Elimination and distribution of ligand into the receptor system are

important processes to be considered.

Model C: The distribution of ligand into the receptor system can be neglected,

only the elimination process is important, which in this case is non-linear.

Based on Model B and the computable criterion (15) it can easily be checked

whether the condition for the applicability of Model C are fulfilled. This has been

demonstrated for the EGF/EGFR system in section ‘‘RME for the EGF/EGFR

system’’, see Figs. 4 and 5.

The reduced models are derived under the quasi-steady state assumption that the

receptor redistribution processes are much faster than the ligand pharmacokinetics.

This assumption is of the same type as the assumption underlying the Michaelis–

Menten model of enzyme reactions, where it is assumed that the complex formation,

dissociation and catalytic transformation are much faster than the transformation of

substrate into product. In order to finally derive reduced models, we have to make an

additional assumption on the time-scale of receptor synthesis and degradation.

There are three different scenarios: receptor synthesis and degradation is (i) as fast

as receptor redistribution (or faster); (ii) slower than the time scale of ligand

pharmacokinetics; or (iii) at an intermediate time scale, i.e., comparable or faster

than ligand PK but slower than receptor redistribution. The first two scenarios

correspond to our fast and slow scenario. Under these assumptions it is possible to

either treat receptor synthesis and degradation the same way as the redistribution

processes (in the fast scenario) or neglect it and treat the total amount of receptor as

a constant (in the slow scenario), since in the latter it would not impact the total

number of receptors on the time scale of interest. In the third scenario, however,

receptor synthesis and degradation would need to be taken into account in terms of

an additional ODE. Unless further assumptions are made, this would require to

consider the full system of Eqs. 1–5—which is not suitable for PK parameter

estimation in clinical trials.

The elimination process of RME is specified in terms of the parameters Vmax and

KM. Noteworthy, the maximal elimination rate Vmax is independent of the processes

of complex formation (kon) and dissociation (koff) of the receptor-ligand complex.

However, the parameters kon and koff influence the amount of extracellular ligand

molecules KM, at which the elimination rate is half-maximal.

In Fig. 6, we studied the impact of different internalization rate constants kinterRL

on RME. An altered kinterRL could, e.g., result from a mutation in the EGF receptor,

as it has been observed experimentally [37]. Our analysis in section ‘‘Nonlinear PK

caused by RME’’ shows that the ligand elimination rate is affected by various

processes inside the cell. For example, the elimination rate decreases with

decreasing complex internalization rate constant, but the difference is much less

pronounced for a ligand with decreased association and dissociation rate constants

kon and koff—even though the dissociation constant KD is the same in both scenarios

(see Fig. 6, left vs. right). From the detailed Model A, this phenomenon is

understandable: given a ligand that forms a complex with rate constant kon, once the
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ligand–receptor complex is formed at the membrane, its fate is a balance between

dissociation (specified in terms of koff) and internalization (specified in terms of

kinterRL). If, e.g., koff/kinterRL � 1 then the complex will predominantly be

internalized. Based on KD alone, this property of receptor systems can not be

observed. The ratio koff/kinterRL has recently been introduced as one of two key

parameters to characterize different cell surface receptor systems (termed the

consumption parameter) [28]. In general, our analysis shows that reduced ligand

elimination from the extracellular space can be due to altered processes inside the

cell other than the velocity of internalization of the complex. The influences of the

processes can be deduced from Eq. 28 and is summarized in Table 1. The

nonlinearity increases with parameters that accelerate’ the processes of receptor

availability at the surface (R0, krecyR) or that accelerate’ the transport and

intracellular degradation of extracellular ligand (kon, kinterRL, klyso). Counteracting

processes (related to the parameters koff, kinterR, krecyRL) decrease the extent of

nonlinearity.

Target-mediated drug disposition (TMDD) models explicitly account for binding

to a target and potential degradation of the resulting complex [16–18]. Although

originally developed to describe effects of extensive drug target binding in tissues,

TMDD has more recently also gained interest as a model of saturable elimination

mechanisms for specific peptide and protein drugs, including RME [6, 18, 19].

Between TMDD and the herein presented approach, there are a number of distinct

differences. First, the TMDD approach considers pharmacological target binding as

the key process controlling the complex nonlinear processes. Particular features of

receptor trafficking inside the cell are not taken into account. Second, whenever a

drug molecule is degraded in the TMDD setting, both, a drug and a receptor

molecule are degraded. In the herein presented approach, degradation of the drug

does not necessarily imply degradation of the receptor, since the receptor can be

recycled. This is, e.g., an important characteristics for the ligand TNF-a. Third, in

[16], a reduced model of TMDD is presented based on a equilibrium assumption. In

this reduced TMDD model, the unbound extracellular drug concentration is a

function of the total concentration, the total receptor concentration Rtot and the

equilibrium dissociation constant KD [16, Eq. 11]. In our reduced model B, in

contrast, the extracellular drug concentration is a function of the total concentration,

the maximal receptor binding capacity Bmax and the quasi-steady state parameter

KM (cf. Eq. 8). As a consequence, the models make qualitatively different

predictions. For instance, KM does not only depend on the ratio of koff and kon (i.e.,

KD), but also on the actual magnitude of the two parameters, in addition to the

dependence on receptor systems parameters. This implies that two drugs with the

same KD but different koff values might be impacted by RME very differently. This

has been illustrated in Fig. 6 (compare left and right graphics) and discussed above.

If the reduced models of RME are used as part of structural PK models to

estimate parameters in the course of clinical data analysis, the question arises

whether or not the identified RME parameters Bmax, KM, kdeg and Vmax allow for a

mechanistic interpretation, e.g., whether Bmax can be interpreted as the maximal

RME ligand binding capacity. This question is tightly linked to the question of

identifiability of model parameters, sometimes referred to as the inverse problem.
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Identifiability has been studied in detail in the context of compartmental models

(see, e.g., [39, Chap. 5–9]). In general, the identifiability of model parameters

depends on the structural model (number of compartments, compartment to which

the RME process is linked, existence of additional routes of elimination, etc.), prior

knowledge of model parameters and the quality of the experimental design [39,

Chap. 5]. To illustrate this, we used the detailed model to generate a set of simulated

data, to which we fitted the reduced Models B and C (data not shown). We found

that for a well-designed experiment (i) the estimated parameters of the reduced

RME models obey the expected relations (12)–(14) and (19); (ii) that Model C will

not result in a good fit, if the condition Bmax/(KM ? Lex) � 1 is violated. This was

the case for the in vitro data shown in Fig. 4(left), as well as for the in vivo data

shown in Fig. 7(left), where already the authors in [11] reported that they were not

able to fit a Michaelis–Menten based PK model to the experimental data. However,

if the experimental design is not adequate, then we would expect—in accordance

with the parameter identifiability problem [39, Chap. 5–9]—that the above

conditions (i) and/or (ii) are violated. This was the case for the in vitro data shown

in Fig. 4(right), where both Model B and Model C could be fitted to the generated

data based on Model A, although the condition Bmax/(KM ? Lex) � 1 was violated

(resulting in deviation of the estimated parameters from the expected parameters of

6-20% for Model B and 500% for Model C). Since the criteria in Eq. 15 has not

been met, the violation of relations in Eqs. 19 and 13 for Model C is in accordance

with our expectations. Furthermore, for the situation corresponding to Fig. 4(right),

the expected relation Vmax = kdeg � Bmax (see Eq. 17) was violated, while it was

satisfied for the situation corresponding to Fig. 7(left). These results eventually

motivate the following recommendation:

Consistency check: Use both reduced Models B and C to fit the data and check the

two conditions (15) and (17):

Bmax

KM þ Lex

� 1 and Vmax ¼ kdeg � Bmax: ð33Þ

A violation of the conditions might indicate an insufficient experimental design,

and/or insufficient convergence of the fitting algorithm (local minimum).

Different empirical models have been proposed and used to model the nonlinear

pharmacokinetics of therapeutic proteins [7–15]. While, e.g., a Michaelis–Menten

based RME model as part of a PK model allowed for describing data in one PK data

analysis (e.g., [10]), it failed to do so in another (e.g., [11]). Due to lack of a sound

theoretical basis to understand the different performances of empirical models, this

certainly was an unsatisfactory situation. The herein presented analysis gives a

thorough background of RME and a clear rationale as to when the proposed reduced

models are applicable. In addition, the functional relations between the parameters

of the detailed Model A and the reduced Models B and C might also serve as a first

step to scale in vitro observations on RME to in vivo predictions of either target

mediated disposition or Michaelis–Menten elimination, dependent upon the

expression level and turnover of the target.
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