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Abstract—This paper investigates a slotted random access Il. SYSTEM MODEL

theoretic techniques. It 5 shoun that the optimum rates and at. A Chiannel Model
tempt probabilities depend on the receiver architecture, operang We consider the multiple access channel described in [11].
signal-to-naise ratio (SNR) and block length. High SNR analysis There are2 non-co-operating users who want to transmit data
reveals that joint d(_acoder gsymptotlcally yleld_s either a collision to a single receiver. Each transmitter has antennas, and
channel or a non-interacting channel, and single-user decoder : . . '
results in a collision channel. Specific scenarios are investigated tNe receiver has antennas. The transmitted signal from each
at intermediate SNR to determine when this all-or-nothing regime User to the receiver undergoes Rayleigh fading, which nesnai
applies. constant over a block df> 2m+n—1 transmit symbols (slow
fading). The fading coefficients are known at the receiver,
while the transmitters only know the statistics of the resipe
Random access multiple access or broadcast channels witannels and not the realizations. Further, the receivgaki
different physical layer parameters have been well studiéicorrupted by additive complex Gaussian noise. The ndise a
in literature [9] [10] [6] [5] [2] [3]. Traditional analysis €ach of the receive antennas at each time is idA[(0, 1),
of stability of such systems assumes a relatively simplistivhereCA(0,a) denotes a complex Gaussian random variable
capture model [8], or leaves it as a parameter to be detedminth i.i.d. zero mean, varianag/2, Gaussian random variables
by the physical layer [7]. On the flip side, traditional infos- as its real and imaginary parts. SNR denotes the ratio of the
tion theoretic techniques assume “perfect capture”, atitig USer's transmit power to the (Gaussian) noise power at the
that, at the appropriate pre-determined rates, both usess nfeceiver. Thus, the received signal at the end time-slots is
transmit simultaneously for arbitrarily long block-lehgt For 2
practical block-lengths and realistic probabilities ofoey it Y = 1’%2Hixi 1+ W.
is intuitively better for users not to collide, but the “delbn m 3
causes full loss” assumption is high unrealistic, giventlad
advancements in receiver architectures, especially favi®l
systems.
In this paper, we analyze the the behavior of the ALOHB. Queuing Model
protocol in the context of multiple access channel. We @®si  \ve consider a2-user multiple access channel as shown
two regimes - high signal-to-noise ratio (SNR) and intermedy, Figure 1. The two users, A and B, each serve a queue
ate SNR, and different kinds of decoder - single user decodgkin input rate A4(SNR) = A4log SNR andAp(SNR) =
successive interference cancellation decoder and magfi-uy . 1o SNR bits per transmission slot, respectively. We assume
(i.e., joint) decoder. We show that, depending upon the SNt each transmission slotiigransmit symbols long, i.e., the
and the type of decoder, the probability of transmissicenafit - same duration as the channel coherence time. When the queue
that maximizes the per-user throughput can lie betweand is nonempty, each user selects a packet uniformly at random
1, i.e, it is not always beneficial for both users to transmffom the queue and attempts transmission, with probability
simultaneously. pi, i = A, B, and independently of the other user. Each
The rest of this paper is organized as follows: In SectiQixer transmits at rat®;(SNR) = r;1ogSNR, i = A, B.
I, we present the channel and queuing model. In Section Ihepending upon the channel realization, the type of degoder
we focus on the case of high SNR and derive expressions {Rg transmission rate and whether the other user attenapts-tr
the optimal probability of transmission attempt for diffet mjssjon, a user's transmission is successfully decodedy t
decoders. In Section IV, we analyze the system with gBceiverC with a certain probability. There is instantaneous
intermediate value of SNR. We conclude in Section V, andedback from the receiver to the respective transmittéistw
numerical results in the Appendix. enables them to delete successfully received packets freim t
. . . 4 gueues and retain those packets whose transmission texs fail
This work is supported in part by an ARO Young Investigatorafy NSF
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Grant 07/IN.1/1901. (Aa, Ap) such that the queues are stable. Thereafter the aim is

I. INTRODUCTION

The fading coefficients matri{H,},—, » models the slow
fading channels. The entries ¢H,};—; » are i.i.d.,CN(0, 1).



to obtain the value of the attempt probabilitigs i = A, B where|-| for a set denotes the number of elements in the set.
for the max-min fair operating point ([1], Section 4.2). We . . . . .
study the system in the following regimes: A. Capacity Region and Max-Min Fair Solution

High SNR, joint (optimal) decoder at the receiver, As mentioned earlier when the queue is nonempty, each
High SNR, single user decoder at the receiver user selects a packet uniformly at random from the queue

« High SNR, successive interference cancellation decod8fd attempts transmission, with probabiliy, i = A, B,
. Intermediate value of SNR, single-user decoder at tf@'d independently of the other user; and each user trans-
mits at rate R,(SNR) = r;logSNR ¢ = A, B. Let

receiver. - - . .
The first two decoders represent the two extremes of possigl@(RA(SNR)’ Rp(SNR)) denote the probability of decoding
ror when users transmit at rafe4 (SNR) and Rp(SNR),

decoders: one is complex to implement but gives better pé&F- : | _ I\
formance in terms of throughput, while the other is Simmeq’aspec'uvely at the given value of SNR; the transmissionehod

to implement but has poorer throughput. The last two regimggp”es thatR?(SNR) € {0, RB;(SNR)}, i = 4, B In the
are of interest for practical scenarios. high SNR regime we will also denote the probability of error

bY 1i4(74.7s)—=0) Where d(74,75) is the diversity gain for

@n transmitting at rates?;(SNR) = 7; log SNR and7; € {0,r;}
Ax=Aalog SNR 0, for i = A, B in the system considered.
@ Our model falls in the general class of models analyzed by

:@ Navare, Mergen and Tong [7] and the system capacity region
for transmission probability paifpa, ps) can be written as

Ap = Aglog SNR RNR(RA(SNR), R5(SNR), pa, pp) = a U S,
@ where
Fig. 1. The System Model - Multiple Access Channel a = R%NR(RA(SNR)7 Rp (SNR),pA,pB)7

= RSNR(RA(SNR), R5(SNR),pa, p5).
IIl. THEHIGH SNR REGIME & > (Bal ), B ( )P4, P5)

SNR i
In order to analyze the system throughput at high values Fre’sgﬁ_\i A(RAS(I\SISR)’RB(.SNQ’{K’E?B){ Is the set of
SNR, we start with a definition and an important result fro Al ), A )) pairs in3t; that satisfy

[11]. Ap(SNR) <
Definition 1. A scheme {C'(SNR)} is said to achieve spatial Rp(SNR) [pp(1 —pa)(1 — Pe(0, Rp(SNR)))
multiplexing gain » and divers_it_y gain d if the data r_ate + papa(l — P.(RA(SNR),75(SNR)))] =: Rg(SNR),
R(SN\R) and the average probability of error P,(SNR) satisfy AA(SNR) <
. R(NR) Ap(SNR
S\IIRIEIOO 1og NR 2 T RA(SNR) [pA (1 — Rf;((SNR;) (1 - Pe(RA(SNR)aO))
and As(SNR
fn OEP(SNR) 4 22O (1~ ps)(1 — P(RA(SNR),0)

NR—oe  logNR  — 5(SNR)
Fact 1: ([12], Thm. 2) For a point-to-point channel with block- + MPAPBG — P.(RA(SNR), R5(SNR)) |,
length? > m+n—1, the optimal diversity-multiplexing trade- Rp(SNR)
off curve (r,d*(r)) is given by the piecewise linear function @)

joining the points(k, (m — k)(n — k)), 1 <k <min(m,n). and RSVR(R4(SNR), R5(SNR),pa,pp) is the set of
Fact 2: ([11], Thm. 3) For a multiple access channel Witf(AA(SNR),AB(SNR)) pairs inR2_ that satisfy

K users and block-length > Km + n — 1, when all the

users transmit at the same ratésymmetric case), the optimal A4(SNR) <

diversity functiond,,,(r) is given by RA(SNR) [pa(1 —pp)(1 — P.(RA(SNR),0))
Aoy (1) = iy (K . o Ap(SNR) <
TKm.n r), 7 > min(m, K+1)’ A (SNR
where d;, . (r) denotes the optimal diversity function for a Rz(SNR) |pp (1 - Ri:ESNR;) (1 - P.(0, Rz(SNR)))

point-to-point channel withn transmit antennas andreceive

antennas. Instead if the users transmit at ratgs k£ = + MPBO —pa)(1 = P.(0, R5(SNR)))
1,2,..., K, then the maximum diversity achieved is given by RA(SNR)
A4(SNR
* o + BaBNR) (1= P.(RA(SNR), Ri(SNR)|
d*(ri,72, ..., rg) = min d‘s‘mn Zrk , R4(SNR)
SC{1,2,....,K}:S#0 "\ @)



and the net capacity region is which is given by the set ofA 4, Ap) pairs in%t2 that satisfy

RNR = U RNR(R4(SNR), R(SNR), Aa <14 [pa(l = pB)Ldra,050]

(Ra(SNR), R (SNR)) €02 + PAPBLd(ra,rp)>0]] = TA,

A
where AB <TB {PB (1 - 7‘*::) Lia(0,r5)>0)

RSNR(R4(SNR), R5(SNR)) = ) %)
A
+ o1 = pa)ligors
U  RSMR(RA(SNR), Rz(SNR), pa,pp). 7o P80 P>
5)€[0,1]2 A
(pa,pB)€[0,1] + ’r::poAl[d(TA’rB)>O]:| ,
The physical layer particulars impact the capacity regipn b
the Characterization CPE(RA(SNR), RB (SNR)) It iS easy to and the net Capacity regimSNR ~ Rlog SNR where
argue from this formulation and the symmetry of the problem
that the max-min fair operating point is of equal throughput R = U R(ra,rB),
i.e., (SSNR(p, R(SNR)), SSNR(p, R(SNR))) and is achieved by (rarm)ER2
settingps = pp = p and R4(SNR) = Rp(SNR) = R(SNR)
and thereafter maximizing over allowed values @fand and
R(SNR). From the discussion above we can directly write R(ra,rp) = U R(pa,pB)-
SNR(p, R(SNR)) = (pap5)€0.1]2
p(1 —p) - R(SNR) - (1 — P.;(R(SNR))) In the Appendix, we plot the achievable rate region of the

2 (3) system for a high value of SNR, with different rates and
+p7 - R(SNR) - (1 = Feo (R(SNR))), attempt probabilitiesyithout assuming that the decoding is
where P.;(R(SNR)) = P.(R(SNR),0) = P.(0, R(SNR)) error-free when the corresponding diversity is positive.
(equality holds by symmetry) andP.o(R(SNR)) = The physical layer particulars now impact the capacity
P.(R(SNR), R(SNR)). The first term in the above expressiorregion by the characterization ofjg(s, 7,)>0)- It is easy
equals the probability that exactly one user attempts tnéss to argue from this formulation and the symmetry of the
sion, multiplied by the rate of transmission and the prolitgbi problem that the max-min fair operating point is of equal
that the transmission is successfully decoded. The seeond tthroughput, i.e., (SSNR(p, R(SNR)), SSNR(p, R(SNR))) =~
considers the case when both users transmit and the pripabilS(p, ), S(p, 7)) log SNR and is achieved by settings =
that the transmission is successfully decoded. pg = p and RA(SNR) = Rp(SNR) ~ rlogSNR and
In the high SNR regime, the wusers can pickhereafter maximizing over allowed values pfandr. The
(RA(SNR),R5(SNR)) = (ra,rp)logSNR and have above discussion implies
PSNR(7, 7) (for all possible values of7,,75)) decay to

SNR
zero, polynomially in SNR, as long as the diversity achieved Sp,r) = pl=p) -7 L, @yso(l = P37(r))
for the chosen rate pair is positive, i.e.df(74,75) > 0. In +p? 1 Lgy =01 (1 — PR(r)), (6)
this setting,

whered; (r) = d(r,0) = d(0,r) (equality holds by symmetry)
RINR(RA(SNR), R3(SNR), pa, pB) ~ anddy(r) = d(r, 7).
RI(TAverpAva)logSNR .
B. The Joint Decoder Case

hich is given by the set af\ 4, A irs inR2_ that sati
which is given by the set ofA.1, A) pairs i that satisfy Theorem 1. For a given (large) value of SNR and the input

Mg <75 [pB(L = PA)l{(0.rp)>0] rate A, with the joint deco_di_ng of the transmitted messages,
the optimal attempt probability for each of the users, p* ~

+ 1 TALT =7 3 .. .
PPl A 75)>0] B and transmission rate ~ min(m, n/2) log SNR for each user.

AB
A4 <Ta [pA (1 - 77B> Lid(ra.00>01 4 Proof: Fix a value of A = Xlog SNR for large, finite
g @) SNR, and a rate of transmissiorlog SNR for each of the
+ EPAU = PB)L{d(r4,0)>0] two users. In order to find out the set of rateésthat can
Ap be supported for the given SNR, we calculate the maximum
+ FpApBl[d(rA,rB»o]] ) throughput of the system as follows. Lét(r) (resp.d;(r))
B denote the diversity gain for the system when only one (resp.
and both) users attempt transmission. In other words, for large
SNR SNR, the probability of error at the receiver when only one
R3(Ra(SNR), R5(SNR), pa, pp) ~ of the users transmits (resp. both transmit) is upper baiinde
Ra(ra,r5,pa,p5) log SNR by SNR™4 () (resp. SNR%:("). Hence, from Equation (6)



for large enough SNR, the throughput of the system can Beis maximized atp = 1/2 for any value ofr. Hence, the

written as maximum value of the throughpyf) is attained by choosing
a2 (r) r = min(m,n) —€ for somee > 0, which implies, for large
S=S5(pr) = p(l—p)-r-(1-SNR) SNR, that SNR% (") ~ (0 and the maximum throughput per
+p? -7 (1 —SNR M), user~ i min(m,n)log SNR, with the optimal probability of
) ) ) o ) transmission attempt 1/2. [ ]
Thus, S is a quadratic function op. Maximizing S with As expected, the maximum throughput of the system is
respect top, we get lower in the case of single decoder than the case of joint
1 — SNR-4 (™ decoder.
Ppo = P G @) The above analysis can be readily extended to the case when
2(SNR™%1 — SNR™) there areK non-co-operating users and a single receiver. The

and the optimum attempt probability, which maximizes thgystem model is almost identical, and the received signal is
throughput S, is given by given by

K
/SNR
1, otherwise. m =

)

Now, if > min(m, n/2) thend;(r) = 0, implying py = Ve assume that the block length satisfies K'm+n —1. In
1/2, exacﬂy_*-rhis QivesS,,., = 7/4, wherer can at most the case of single-user decoding of the transmitted message

be min(m,n). Thus, the maximum throughput per user, i€ show that the optimal attempt probability for each user

one chooses = min(m,n) — ¢ for some smalle > 0, is tends tol/K for SNR — oo, and the maximum throughput

Spaz ~ X min(m, n). per user isv % (£=1)5 =1 min(m, n) log SNR.

If r = min(m,n/2) — € for some smalle > 0, then for Theorem 3. For a given (large) value of SNR and the
large SNR, the denominator of Equation (7) is small, whilgyout rate \, with the single-user decoding of the transmitted
the numerator is close to, implying po > 1 andp® = 1, messages, the optimal attempt probability for each of the users,
With Sy, A~ min(m,n/2). p* ~ 1/K and transmission rate ~ - min(m, n) log SNR for

In conclusion, sinc€ min(m,n/2) > + min(m,n) for all  each user.
positive integersn, n, the optimal choices for the transmission

rate and the probability of transmission attempt for eagrus_ Proof: The proof of this theorem is very similar to that of
are (min(m,n/2) — ¢) log SNR andl, respectively. m heorem 2. We calculate the system throughput as a function

of the attempt probabilityp, and each user’s ratelog SNR
C. The Single User Decoder Case for » > 0. Since collision implies loss of all the transmitted

In this case, the receiver attempts to separately decode %?eCKEtS when SNR s large, the expression for the throughput
per user (normalized blpg SNR) is

received message according to the codebook of the individua
users. In case of a collision (i.e., both users transmitting S = S(p,r) =p(1 _p)K—1(1 —SNR‘dT("))r.
simultaneously), the effective SNR for each user’s message o
is (2R ~ 1, for large SNR. This leads to a situation whereg is maximized ap = 1/K for any value ofr. Hence, the

a collision implies packet loss. At large SNR, the only terrf1@ximum value of the throughpuf) is attained by choosing
in the throughput expression that survives is the first terfn= min(m,n) — ¢ for somee > 0, which implies, for large

— corresponding to only one user transmitting and the othaNR, that SNR (") ~ 0 and the maximum throughput per
remaining silent. (We note that the throughput expressidi§er~ % (“&+)" ' min(m,n)log SNR. u
needs to be more general than Equation (6) to _mclude t € Successive Interference Cancellation
terms corresponding to the cases when the receiver decodés

only one message after the collision. But this effect can beAs pointed out by Tse, Viswanath and Zheng in [11], it is
ignored at high SNR.) possible to achieve a nonzero diversity in the MIMO multiple

) ) access channel even when the decoder is not the optimal joint
Theorem 2. At high SNR and for the case of single user gecoder but the successive interference cancellationdéeco
decoder at the receiver, the optimal probability of transmission  \wjith this decoder, the first user's message is decodedrigeati
attempt is close to 1/2 and the optimal rate of transmission  the other users’ interference as noise, its effect is soteita
is min(m, n) log SNR. from the received signal and then the scheme is repeated unti
Proof: As before, we find the system throughput as gll the users’ messages are d(_acoded. Failurg to deche’sa user
function of the attempt probabilityp, and each user's rate, Message at any step will terminate the algorithm, losin¢hall
slog SNR for s > 0. From Equation (6), withP,, ~ 1 for remaining ysers’ messages. Thls.decodlng scheme is better
large SNR, we get than the single user decoder which, at high SNR, reduces
to a collision channel. The performance of this scheme is
S =5S(r,p) = p(1 —p)(1 — SNREM)p. determined by the first user. From [11], we know that for



n > Km and~ := n— (K — 1)m, the probability of error for bits. Further, assuming, to be small, we geP.; =1 — (1 —
userl at high SNR is given by Py)tlos M ~ (¢1log M)P,, implying

~ & 1.5SNR
P’ (SNR) &~ SNR™%m~ (") P.; < 20log M exp (— ) : (10)

M-1
Conditioned on the fact that the first user's message is SL')_{:-

cessfully decoded, the second user's messagetislecoded nalyzmg.Peg: Pez is the probabl[lty that a single USers
with probability message is successfully decoded in the event of a collision.

The receiver attempts to separately decode the message of

P’,(SNR) ~ SNR™@m.s(") each transmitter using maximal ratio combining (MRC), whic
is optimal decoding ([13], Section 3.6.2). In particulaoy f
whereg :=n — (K — 2)m. decoding the message from uderthe receiver multiplies the

Hence, for a two-user system, where each user transmitgedeived vectod” with H; and, treating interference as noise,
a rateslog SNR, the system throughput can be written as decodes the message from uséased on the nearest neighbor
rule. Assuming’ to be the angle between the complex vectors

Ssys = 2];(1 - ) / rlog SN/R' (1 Pe1(SNR) + H, andH, (i.e.,cos§ = %) the effective SNR seen
p (1= P5y)(2 = P53 (SNR)))rlog SNR (8)  py the first user is
We thus have E(|[H{H, []*|X1]*)
SNR.jf = * 2 2 2 2
Seys E(|[HTHz|[?|X2[?) + E(|[Hq|[?) E(][W][?)

= 2p(l - p)r(l — SNR_d:"’"(T)) + SNR.- E(HHTH1H2)

P?r(1 — SNR @mn=m(1)(2 — SNR™ %m.n (M), ~ SNR: B(|[Hy|[?[[Ha[? cos? 0) + E(|[H.[[?)”

The same effective SNR is seen by ugnWe thus get an

Remark: We note that > 2m, implyingm < n—m. Hence, expression folP,, similar to Equation (10) with SNR replaced
the number of transmit antennas is the bottleneck in a se SNR./

At high SNR, the case = 1, = m — ¢ for some small
e > 0 gives Sgys = 2mlog SNR, whilep = 1/2,r = m — ¢

log SNR

For 0 = =/2, the channel coefficient vectoild; and Hy
. .__are orthogonal and there is no loss of SNR for any user. The
GIVes Sy = 0.5m log SNR. However, one needs to take.'ntcbarameteﬁ is uniformly distributed or0, /2] and for each
account thg fact_that the d|ver3|ty fqr_smgle user detectfo value of6, the effective SNR is given by the above expression.
case of collision is lower than in the joint decoder case.dgen The average throughput is thus a functiorfpintegrated over
although the above expression suggests the optimal opgraf, interval[0, 7 /2] and scaled by the fact@/n. Hence, the

points to be(p, ) ~ (1’f7.n.) forbSNR—> oo,btlheltrue ogt’i\ln;zal optimal attempt probability and the constellation siz&/ (or
operating pomts at a _|n|te (but reasonably large) W quivalently, the rate) can be computed numerically, if inot
lead to a different choice afp, ). closed form

IV. THE INTERMEDIATE SNR REGIME V. CONCLUSION

Analyzing the maximum throughput of the system for either In this paper, we considered the general diversity-
the joint decoder or single-user decoder &y value of SNR multiplexing trade-off in multiple access channels undiér d
is difficult. We focus on the particular case of = 1,n = 2, ferent scenarios: high/intermediate SNR, different typés
with the single user decoder at the receiver. The transomissdecoders (single user, successive interference cariogllat
scheme considered here is M-QAM. In this case, the receivigiht for all users). We derived expressions for the optinasts
vector is given by and probabilities of transmission for each user under these
models. We showed that these rates and probabilities change
Y = VSNRH, X; + Ho Xo) + W. ©) depending upon the type of decoder and the SNR range, and
Now, the system throughput, as given by Equation (6) isin particular, the optimal attempt probability can be slyic
between) and 1.

S = 2p(1 _p) "R (1 - Pel(R>) +2 'p2 "R (1 - Pe2(R))' APPENDIX
Here, 1 — F.,(R) is the probability that a single user's e plot the achievable rate region for two user, high
transmission is successfully decoded. From [4], SectiBrl9. SNR case for different values of transmission rate and the
we know that the probability of bit-error for M-QAM with probabilities of attempt. Our set up has SNR0 dB, m = 3

AWGN is upper-bounded as transmit antennas and= 4 receive antennas. The achievable
region is in general non-convex.
1.5SNR . .
P, <2exp | — 1) As seen from the plots, when operating near the maximum

possible multiplexing gain3( in this case), the input rate a
Relation betweenP, and P.;: user can support is heavily dependent on the other users inp
If the packet size i¥ symbols, each packet carriésog M rate. The system has maximum throughput when effectively



only one user is operating. However, at lower values of mul
tiplexing, the sum throughput and maximum of the minimurr
of the input rates each user can support lao#h achieved at

(or near) the point of unit transmission probability.
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Fig. 2. Achievable Region for = 2.8, p = 0.75
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Fig. 3. Achievable Region for = 2.8, p = 0.90
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