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Abstract—This paper investigates a slotted random access
system where packet capture is modeled using communication
theoretic techniques. It is shown that the optimum rates and at-
tempt probabilities depend on the receiver architecture, operating
signal-to-noise ratio (SNR) and block length. High SNR analysis
reveals that joint decoder asymptotically yields either a collision
channel or a non-interacting channel, and single-user decoder
results in a collision channel. Specific scenarios are investigated
at intermediate SNR to determine when this all-or-nothing regime
applies.

I. I NTRODUCTION

Random access multiple access or broadcast channels with
different physical layer parameters have been well studied
in literature [9] [10] [6] [5] [2] [3]. Traditional analysis
of stability of such systems assumes a relatively simplistic
capture model [8], or leaves it as a parameter to be determined
by the physical layer [7]. On the flip side, traditional informa-
tion theoretic techniques assume “perfect capture”, indicating
that, at the appropriate pre-determined rates, both users must
transmit simultaneously for arbitrarily long block-lengths. For
practical block-lengths and realistic probabilities of error, it
is intuitively better for users not to collide, but the “collision
causes full loss” assumption is high unrealistic, given allthe
advancements in receiver architectures, especially for MIMO
systems.

In this paper, we analyze the the behavior of the ALOHA
protocol in the context of multiple access channel. We consider
two regimes - high signal-to-noise ratio (SNR) and intermedi-
ate SNR, and different kinds of decoder - single user decoder,
successive interference cancellation decoder and multi-user
(i.e., joint) decoder. We show that, depending upon the SNR
and the type of decoder, the probability of transmission attempt
that maximizes the per-user throughput can lie between0 and
1, i.e., it is not always beneficial for both users to transmit
simultaneously.

The rest of this paper is organized as follows: In Section
II, we present the channel and queuing model. In Section III,
we focus on the case of high SNR and derive expressions for
the optimal probability of transmission attempt for different
decoders. In Section IV, we analyze the system with an
intermediate value of SNR. We conclude in Section V, and
numerical results in the Appendix.
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II. SYSTEM MODEL

A. Channel Model

We consider the multiple access channel described in [11].
There are2 non-co-operating users who want to transmit data
to a single receiver. Each transmitter hasm antennas, and
the receiver hasn antennas. The transmitted signal from each
user to the receiver undergoes Rayleigh fading, which remains
constant over a block ofℓ ≥ 2m+n−1 transmit symbols (slow
fading). The fading coefficients are known at the receiver,
while the transmitters only know the statistics of the respective
channels and not the realizations. Further, the received signal
is corrupted by additive complex Gaussian noise. The noise at
each of the receive antennas at each time is i.i.d.CN (0, 1),
whereCN (0, a) denotes a complex Gaussian random variable
with i.i.d. zero mean, variancea/2, Gaussian random variables
as its real and imaginary parts. SNR denotes the ratio of the
user’s transmit power to the (Gaussian) noise power at the
receiver. Thus, the received signal at the end ofℓ time-slots is

Y =

√

SNR
m

2
∑

i=1

HiXi + W.

The fading coefficients matrix{Hi}i=1,2 models the slow
fading channels. The entries of{Hi}i=1,2 are i.i.d.,CN (0, 1).

B. Queuing Model

We consider a2-user multiple access channel as shown
in Figure 1. The two users, A and B, each serve a queue
with input rateΛA(SNR) = λA log SNR andΛB(SNR) =
λB log SNR bits per transmission slot, respectively. We assume
that each transmission slot isl transmit symbols long, i.e., the
same duration as the channel coherence time. When the queue
is nonempty, each user selects a packet uniformly at random
from the queue and attempts transmission, with probability
pi, i = A, B, and independently of the other user. Each
user transmits at rateRi(SNR) = ri log SNR, i = A, B.
Depending upon the channel realization, the type of decoder,
the transmission rate and whether the other user attempts trans-
mission, a user’s transmission is successfully decoded by the
receiverC with a certain probability. There is instantaneous
feedback from the receiver to the respective transmitters which
enables them to delete successfully received packets from their
queues and retain those packets whose transmission has failed.
We derive the capacity region for the2-user MAC, i.e., all pairs
(λA, λB) such that the queues are stable. Thereafter the aim is



to obtain the value of the attempt probabilitiespi, i = A, B
for the max-min fair operating point ([1], Section 4.2). We
study the system in the following regimes:

• High SNR, joint (optimal) decoder at the receiver,
• High SNR, single user decoder at the receiver,
• High SNR, successive interference cancellation decoder,
• Intermediate value of SNR, single-user decoder at the

receiver.
The first two decoders represent the two extremes of possible
decoders: one is complex to implement but gives better per-
formance in terms of throughput, while the other is simpler
to implement but has poorer throughput. The last two regimes
are of interest for practical scenarios.
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Fig. 1. The System Model - Multiple Access Channel

III. T HE HIGH SNR REGIME

In order to analyze the system throughput at high values of
SNR, we start with a definition and an important result from
[11].

Definition 1. A scheme {C(SNR)} is said to achieve spatial
multiplexing gain r and diversity gain d if the data rate
R(SNR) and the average probability of error Pe(SNR) satisfy

lim
SNR→∞

R(SNR)

log SNR
≥ r,

and

lim
SNR→∞

log Pe(SNR)

log SNR
≤ −d.

Fact 1: ([12], Thm. 2) For a point-to-point channel with block-
lengthℓ ≥ m+n−1, the optimal diversity-multiplexing trade-
off curve (r, d∗(r)) is given by the piecewise linear function
joining the points(k, (m − k)(n − k)), 1 ≤ k ≤ min(m,n).
Fact 2: ([11], Thm. 3) For a multiple access channel with
K users and block-lengthℓ ≥ Km + n − 1, when all the
users transmit at the same rater (symmetric case), the optimal
diversity functiond∗sym(r) is given by

d∗sym(r) =

{

d∗m,n(r), r ≤ min(m, n
K+1 ),

d∗Km,n(Kr), r ≥ min(m, n
K+1 ),

where d∗m,n(r) denotes the optimal diversity function for a
point-to-point channel withm transmit antennas andn receive
antennas. Instead if the users transmit at ratesrk, k =
1, 2, . . . ,K, then the maximum diversity achieved is given by

d∗(r1, r2, . . . , rK) = min
S⊆{1,2,...,K}:S 6=∅

d∗|S|m,n

(

∑

k∈S

rk

)

,

where| · | for a set denotes the number of elements in the set.

A. Capacity Region and Max-Min Fair Solution

As mentioned earlier when the queue is nonempty, each
user selects a packet uniformly at random from the queue
and attempts transmission, with probabilitypi, i = A, B,
and independently of the other user; and each user trans-
mits at rate Ri(SNR) = ri log SNR, i = A, B. Let
Pe(R̃A(SNR), R̃B(SNR)) denote the probability of decoding
error when users transmit at ratẽRA(SNR) and R̃B(SNR),
respectively at the given value of SNR; the transmission model
implies that R̃i(SNR) ∈ {0, Ri(SNR)}, i = A, B. In the
high SNR regime we will also denote the probability of error
by 1[d(r̃A,r̃B)=0] where d(r̃A, r̃B) is the diversity gain for
transmitting at rates̃Ri(SNR) = r̃i log SNR andr̃i ∈ {0, ri}
for i = A, B in the system considered.

Our model falls in the general class of models analyzed by
Navare, Mergen and Tong [7] and the system capacity region
for transmission probability pair(pA, pB) can be written as

RSNR(RA(SNR), RB(SNR), pA, pB) = α ∪ β,

where

α = RSNR
1 (RA(SNR), RB(SNR), pA, pB),

β = RSNR
2 (RA(SNR), RB(SNR), pA, pB).

Here, RSNR
1 (RA(SNR), RB(SNR), pA, pB) is the set of

(ΛA(SNR),ΛB(SNR)) pairs inℜ2
+ that satisfy

ΛB(SNR) <

RB(SNR) [pB(1 − pA)(1 − Pe(0, RB(SNR)))

+ pBpA(1 − Pe(RA(SNR), rB(SNR)))] =: R̄B(SNR),

ΛA(SNR) <

RA(SNR)

[

pA

(

1 − ΛB(SNR)

R̄B(SNR)

)

(1 − Pe(RA(SNR), 0))

+
ΛB(SNR)

R̄B(SNR)
pA(1 − pB)(1 − Pe(RA(SNR), 0))

+
ΛB(SNR)

R̄B(SNR)
pApB(1 − Pe(RA(SNR), RB(SNR)))

]

,

(1)

and RSNR
2 (RA(SNR), RB(SNR), pA, pB) is the set of

(ΛA(SNR),ΛB(SNR)) pairs inℜ2
+ that satisfy

ΛA(SNR) <

RA(SNR) [pA(1 − pB)(1 − Pe(RA(SNR), 0))

+ pApB(1 − Pe(RA(SNR), RB(SNR)))] =: R̄A(SNR),

ΛB(SNR) <

RB(SNR)

[

pB

(

1 − ΛA(SNR)

R̄A(SNR)

)

(1 − Pe(0, RB(SNR)))

+
ΛA(SNR)

R̄A(SNR)
pB(1 − pA)(1 − Pe(0, RB(SNR)))

+
ΛA(SNR)

R̄A(SNR)
pBpA(1 − Pe(RA(SNR), RB(SNR)))

]

,

(2)



and the net capacity region is

RSNR =
⋃

(RA(SNR),RB(SNR))∈ℜ2
+

RSNR(RA(SNR), RB(SNR)),

where

RSNR(RA(SNR), RB(SNR)) =
⋃

(pA,pB)∈[0,1]2

RSNR(RA(SNR), RB(SNR), pA, pB).

The physical layer particulars impact the capacity region by
the characterization ofPe(R̃A(SNR), R̃B(SNR)). It is easy to
argue from this formulation and the symmetry of the problem
that the max-min fair operating point is of equal throughput,
i.e., (SSNR(p,R(SNR)), SSNR(p,R(SNR))) and is achieved by
settingpA = pB = p andRA(SNR) = RB(SNR) = R(SNR)
and thereafter maximizing over allowed values ofp and
R(SNR). From the discussion above we can directly write

SSNR(p,R(SNR)) =

p(1 − p) · R(SNR) · (1 − Pe1(R(SNR)))

+ p2 · R(SNR) · (1 − Pe2(R(SNR))),
(3)

where Pe1(R(SNR)) = Pe(R(SNR), 0) = Pe(0, R(SNR))
(equality holds by symmetry) andPe2(R(SNR)) =
Pe(R(SNR), R(SNR)). The first term in the above expression
equals the probability that exactly one user attempts transmis-
sion, multiplied by the rate of transmission and the probability
that the transmission is successfully decoded. The second term
considers the case when both users transmit and the probability
that the transmission is successfully decoded.

In the high SNR regime, the users can pick
(RA(SNR), RB(SNR)) ≈ (rA, rB) log SNR and have
P SNR

e (r̃A, r̃B) (for all possible values of(r̃A, r̃B)) decay to
zero, polynomially in SNR, as long as the diversity achieved
for the chosen rate pair is positive, i.e., ifd∗(r̃A, r̃B) > 0. In
this setting,

RSNR
1 (RA(SNR), RB(SNR), pA, pB) ≈

R1(rA, rB , pA, pB) log SNR,

which is given by the set of(λA, λB) pairs inℜ2
+ that satisfy

λB < rB

[

pB(1 − pA)1[d(0,rB)>0]

+ pBpA1[d(rA,rB)>0]

]

=: r̄B ,

λA < rA

[

pA

(

1 − λB

r̄B

)

1[d(rA,0)>0]

+
λB

r̄B

pA(1 − pB)1[d(rA,0)>0]

+
λB

r̄B

pApB1[d(rA,rB)>0]

]

,

(4)

and

RSNR
2 (RA(SNR), RB(SNR), pA, pB) ≈

R2(rA, rB , pA, pB) log SNR,

which is given by the set of(λA, λB) pairs inℜ2
+ that satisfy

λA < rA

[

pA(1 − pB)1[d(rA,0)>0]

+ pApB1[d(rA,rB)>0]

]

=: r̄A,

λB < rB

[

pB

(

1 − λA

r̄A

)

1[d(0,rB)>0]

+
λA

r̄A

pB(1 − pA)1[d(0,rB)>0]

+
λA

r̄A

pBpA1[d(rA,rB)>0]

]

,

(5)

and the net capacity regionRSNR ≈ R log SNR where

R =
⋃

(rA,rB)∈ℜ2
+

R(rA, rB),

and

R(rA, rB) =
⋃

(pA,pB)∈[0,1]2

R(pA, pB).

In the Appendix, we plot the achievable rate region of the
system for a high value of SNR, with different rates and
attempt probabilities,without assuming that the decoding is
error-free when the corresponding diversity is positive.

The physical layer particulars now impact the capacity
region by the characterization of1[d(r̃A,r̃B)>0]. It is easy
to argue from this formulation and the symmetry of the
problem that the max-min fair operating point is of equal
throughput, i.e., (SSNR(p,R(SNR)), SSNR(p,R(SNR))) ≈
(S(p, r), S(p, r)) log SNR and is achieved by settingpA =
pB = p and RA(SNR) = RB(SNR) ≈ r log SNR and
thereafter maximizing over allowed values ofp and r. The
above discussion implies

S(p, r) = p(1 − p) · r · 1[d1(r)>0](1 − P SNR
e1 (r))

+ p2 · r · 1[d2(r)>0](1 − P SNR
e2 (r)), (6)

whered1(r) = d(r, 0) = d(0, r) (equality holds by symmetry)
andd2(r) = d(r, r).

B. The Joint Decoder Case

Theorem 1. For a given (large) value of SNR and the input
rate Λ, with the joint decoding of the transmitted messages,
the optimal attempt probability for each of the users, p∗ ≈ 1
and transmission rate ≈ min(m,n/2) log SNR for each user.

Proof: Fix a value ofΛ = λ log SNR for large, finite
SNR, and a rate of transmissionr log SNR for each of the
two users. In order to find out the set of ratesλ that can
be supported for the given SNR, we calculate the maximum
throughput of the system as follows. Letd∗1(r) (resp.d∗2(r))
denote the diversity gain for the system when only one (resp.
both) users attempt transmission. In other words, for large
SNR, the probability of error at the receiver when only one
of the users transmits (resp. both transmit) is upper bounded
by SNR−d∗

1(r) (resp. SNR−d∗

2(r)). Hence, from Equation (6)



for large enough SNR, the throughput of the system can be
written as

S = S(p, r) = p(1 − p) · r · (1 − SNR−d∗

1(r))

+ p2 · r · (1 − SNR−d∗

2(r)).

Thus, S is a quadratic function ofp. Maximizing S with
respect top, we get

p0 =
1 − SNR−d∗

1(r)

2(SNR−d∗

2
(r) − SNR−d∗

1
(r))

, (7)

and the optimum attempt probability, which maximizes the
throughput S, is given by

p∗ =

{

p0, 0 < p0 < 1

1, otherwise.

Now, if r ≥ min(m,n/2) then d∗2(r) = 0, implying p0 =
1/2, exactly. This givesSmax = r/4, wherer can at most
be min(m,n). Thus, the maximum throughput per user, if
one choosesr = min(m,n) − ǫ for some smallǫ > 0, is
Smax ≈ 1

4 min(m,n).
If r = min(m,n/2) − ǫ for some smallǫ > 0, then for

large SNR, the denominator of Equation (7) is small, while
the numerator is close to1, implying p0 ≫ 1 and p∗ = 1,
with Smax ≈ min(m,n/2).

In conclusion, since2min(m,n/2) > 1
4 min(m,n) for all

positive integersm,n, the optimal choices for the transmission
rate and the probability of transmission attempt for each user
are (min(m,n/2) − ǫ) log SNR and1, respectively.

C. The Single User Decoder Case

In this case, the receiver attempts to separately decode the
received message according to the codebook of the individual
users. In case of a collision (i.e., both users transmitting
simultaneously), the effective SNR for each user’s message
is SNR

1+SNR ≈ 1, for large SNR. This leads to a situation where
a collision implies packet loss. At large SNR, the only term
in the throughput expression that survives is the first term
– corresponding to only one user transmitting and the other
remaining silent. (We note that the throughput expression
needs to be more general than Equation (6) to include the
terms corresponding to the cases when the receiver decodes
only one message after the collision. But this effect can be
ignored at high SNR.)

Theorem 2. At high SNR and for the case of single user
decoder at the receiver, the optimal probability of transmission
attempt is close to 1/2 and the optimal rate of transmission
is min(m,n) log SNR.

Proof: As before, we find the system throughput as a
function of the attempt probability,p, and each user’s rate,
s log SNR for s > 0. From Equation (6), withPe2 ≈ 1 for
large SNR, we get

S = S(r, p) = p(1 − p)(1 − SNR−d∗

1(r))r.

S is maximized atp = 1/2 for any value ofr. Hence, the
maximum value of the throughput(S) is attained by choosing
r = min(m,n) − ǫ for someǫ > 0, which implies, for large
SNR, that SNR−d∗

1(r) ≈ 0 and the maximum throughput per
user≈ 1

4 min(m,n) log SNR, with the optimal probability of
transmission attempt= 1/2.

As expected, the maximum throughput of the system is
lower in the case of single decoder than the case of joint
decoder.

The above analysis can be readily extended to the case when
there areK non-co-operating users and a single receiver. The
system model is almost identical, and the received signal is
given by

Y =

√

SNR
m

K
∑

i=1

HiXi + W.

We assume that the block length satisfiesℓ ≥ Km+n−1. In
the case of single-user decoding of the transmitted messages,
we show that the optimal attempt probability for each user
tends to1/K for SNR → ∞, and the maximum throughput
per user is≈ 1

K
(K−1

K
)K−1 min(m,n) log SNR.

Theorem 3. For a given (large) value of SNR and the
input rate λ, with the single-user decoding of the transmitted
messages, the optimal attempt probability for each of the users,
p∗ ≈ 1/K and transmission rate ≈ 1

K
min(m,n) log SNR for

each user.

Proof: The proof of this theorem is very similar to that of
Theorem 2. We calculate the system throughput as a function
of the attempt probability,p, and each user’s rate,r log SNR
for r > 0. Since collision implies loss of all the transmitted
packets when SNR is large, the expression for the throughput
per user (normalized bylog SNR) is

S = S(p, r) = p(1 − p)K−1(1 − SNR−d∗

1(r))r.

S is maximized atp = 1/K for any value ofr. Hence, the
maximum value of the throughput(S) is attained by choosing
s = min(m,n) − ǫ for someǫ > 0, which implies, for large
SNR, that SNR−d∗

1(r) ≈ 0 and the maximum throughput per
user≈ 1

K
(K−1

K
)K−1 min(m,n) log SNR.

D. Successive Interference Cancellation

As pointed out by Tse, Viswanath and Zheng in [11], it is
possible to achieve a nonzero diversity in the MIMO multiple
access channel even when the decoder is not the optimal joint
decoder but the successive interference cancellation decoder.
With this decoder, the first user’s message is decoded treating
the other users’ interference as noise, its effect is subtracted
from the received signal and then the scheme is repeated until
all the users’ messages are decoded. Failure to decode a user’s
message at any step will terminate the algorithm, losing allthe
remaining users’ messages. This decoding scheme is better
than the single user decoder which, at high SNR, reduces
to a collision channel. The performance of this scheme is
determined by the first user. From [11], we know that for



n ≥ Km andγ := n− (K − 1)m, the probability of error for
user1 at high SNR is given by

P ′
e1(SNR) ≈ SNR−d∗

m,γ(r).

Conditioned on the fact that the first user’s message is suc-
cessfully decoded, the second user’s message isnot decoded
with probability

P ′
e2(SNR) ≈ SNR−d∗

m,δ(r),

whereδ := n − (K − 2)m.
Hence, for a two-user system, where each user transmits at

a rates log SNR, the system throughput can be written as

Ssys = 2p(1 − p) · r log SNR· (1 − Pe1(SNR)) +

p2((1 − P ′
e1)(2 − P ′

e2(SNR)))r log SNR. (8)

We thus have

Ssys

log SNR
= 2p(1 − p)r(1 − SNR−d∗

m,n(r)) +

p2r(1 − SNR−d∗

m,n−m(r))(2 − SNR−d∗

m,n(r)).

Remark: We note thatn ≥ 2m, implying m ≤ n−m. Hence,
the number of transmit antennas is the bottleneck in a sense.
At high SNR, the casep = 1, r = m − ǫ for some small
ǫ > 0 gives Ssys = 2m log SNR, whilep = 1/2, r = m − ǫ
givesSsys = 0.5m log SNR. However, one needs to take into
account the fact that the diversity for single user detection in
case of collision is lower than in the joint decoder case. Hence,
although the above expression suggests the optimal operating
points to be(p, r) ≈ (1,m) for SNR→ ∞, the true optimal
operating points at a finite (but reasonably large) SNR will
lead to a different choice of(p, r).

IV. T HE INTERMEDIATE SNR REGIME

Analyzing the maximum throughput of the system for either
the joint decoder or single-user decoder forany value of SNR
is difficult. We focus on the particular case ofm = 1, n = 2,
with the single user decoder at the receiver. The transmission
scheme considered here is M-QAM. In this case, the received
vector is given by

Y =
√

SNR(H1X1 + H2X2) + W. (9)

Now, the system throughput, as given by Equation (6) is

S = 2p(1 − p) · R · (1 − Pe1(R)) + 2 · p2 · R · (1 − Pe2(R)).

Here, 1 − Pe1(R) is the probability that a single user’s
transmission is successfully decoded. From [4], Section 9.3.1,
we know that the probability of bit-error for M-QAM with
AWGN is upper-bounded as

Pb ≤ 2 exp

(

−1.5SNR
M − 1

)

.

Relation betweenPb and Pe1:
If the packet size isℓ symbols, each packet carriesℓ log M

bits. Further, assumingPb to be small, we getPe1 = 1− (1−
Pb)

ℓ log M ≈ (ℓ log M)Pb, implying

Pe1 ≤ 2ℓ log M exp

(

−1.5SNR
M − 1

)

. (10)

Analyzing Pe2: Pe2 is the probability that a single user’s
message is successfully decoded in the event of a collision.
The receiver attempts to separately decode the message of
each transmitter using maximal ratio combining (MRC), which
is optimal decoding ([13], Section 3.6.2). In particular, for
decoding the message from user1, the receiver multiplies the
received vectorY with H

∗
1 and, treating interference as noise,

decodes the message from user1 based on the nearest neighbor
rule. Assumingθ to be the angle between the complex vectors
H1 andH2 (i.e., cos θ =

||H∗

1H2||
||H1||·||H2||

), the effective SNR seen
by the first user is

SNReff =
E(||H∗

1H1||2|X1|2)
E(||H∗

1H2||2|X2|2) + E(||H1||2)E(||W||2)

=
SNR· E(||H∗

1H1||2)
SNR· E(||H1||2||H2||2 cos2 θ) + E(||H1||2)

.

The same effective SNR is seen by user2. We thus get an
expression forPe2 similar to Equation (10) with SNR replaced
by SNReff .

For θ = π/2, the channel coefficient vectorsH1 and H2

are orthogonal and there is no loss of SNR for any user. The
parameterθ is uniformly distributed on[0, π/2] and for each
value ofθ, the effective SNR is given by the above expression.
The average throughput is thus a function ofθ, integrated over
the interval[0, π/2] and scaled by the factor2/π. Hence, the
optimal attempt probabilityp and the constellation sizeM (or
equivalently, the rate) can be computed numerically, if notin
closed form.

V. CONCLUSION

In this paper, we considered the general diversity-
multiplexing trade-off in multiple access channels under dif-
ferent scenarios: high/intermediate SNR, different typesof
decoders (single user, successive interference cancellation,
joint for all users). We derived expressions for the optimalrates
and probabilities of transmission for each user under these
models. We showed that these rates and probabilities change
depending upon the type of decoder and the SNR range, and
in particular, the optimal attempt probability can be strictly
between0 and1.

APPENDIX

We plot the achievable rate region for two user, high
SNR case for different values of transmission rate and the
probabilities of attempt. Our set up has SNR= 20 dB, m = 3
transmit antennas andn = 4 receive antennas. The achievable
region is in general non-convex.

As seen from the plots, when operating near the maximum
possible multiplexing gain (3, in this case), the input rate a
user can support is heavily dependent on the other user’s input
rate. The system has maximum throughput when effectively



only one user is operating. However, at lower values of mul-
tiplexing, the sum throughput and maximum of the minimum
of the input rates each user can support areboth achieved at
(or near) the point of unit transmission probability.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

λ
1

λ 2

Fig. 2. Achievable Region forr = 2.8, p = 0.75

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

λ
1

λ 2

Fig. 3. Achievable Region forr = 2.8, p = 0.90

REFERENCES

[1] D. Bertsekas and R. Gallager.Data Networks. Prentice-Hall, Englewood
Cliffs, NJ, 1987.

[2] Robert G. Gallager. A Perspective on Multiaccess Channels. IEEE
Transactions on Information Theory, IT-31(2):124–142, Mar. 1985.

[3] Sylvie Ghez, Sergio Verd́u, and Stuart C. Schwartz. Stability Properties
of Slotted Aloha with Multipacket Reception Capability.IEEE Trans-
actions on Automatic Control, 33(7):640–649, Jul. 1988.

[4] Andrea Goldsmith. Wireless Communications. Cambridge University
Press, 2005.

[5] Jie Luo and Anthony Ephremides. On the Throughput, Capacity, and
Stability Regions of Random Multiple Access.IEEE Transactions on
Information Theory, 52(6):2593–2607, Jun. 2006.

[6] Muriel Médard, Jianyi Huang, Andrea J. Goldsmith, Sean P. Meyn,
and Todd P. Coleman. Capacity of Time-Slotted ALOHA Packetized
Multiple-Access Systems Over the AWGN Channel.IEEE Transactions
on Wireless Communications, 3(2):486–499, Mar. 2004.

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

λ
1

λ 2

Fig. 4. Achievable Region forr = 2.8, p = 0.50

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

λ
1

λ 2

Fig. 5. Achievable Region forr = 1.46, p = 0.70

[7] Vidyut Naware, G̈okhan Mergen, and Lang Tong. Stability and Delay
of Finite-User Slotted ALOHA With Multipacket Reception.IEEE
Transactions on Information Theory, 51(7):2636–2656, Jul. 2005.

[8] Ramesh R. Rao and Anthony Ephremides. On the Stability of Interacting
Queues in a Multiple Access System.IEEE Transactions on Information
Theory, 34(5):918–930, Sep. 1988.

[9] Junmin Shi and Yi Sun. Random Access Channel with Retransmission
Gain. In Military Communications Conference, Oct. 2006.

[10] Brooke Shrader and Anthony Ephremides. Random Access Broadcast:
Sstability and Throughput Aanalysis.IEEE Transactions on Information
Theory, 53(8):2915–2921, Aug. 2007.

[11] David N. C. Tse, Pramod Viswanath, and Lizhong Zheng. Diversity-
Multiplexing Tradeoff in Multiple-Access Channels.IEEE Transactions
on Information Theory, 50(9):1859–1874, Sep. 2004.

[12] David N. C. Tse and Lizhong Zheng. Diversity and Multiplexing: A
Fundamental Tradeoff in Multiple Antenna Channels.IEEE Transac-
tions on Information Theory, 49(5):1073–1096, May 2003.

[13] Sergio Verd́u. Multiuser Detection. Cambridge University Press, 2005.


