
866 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 15, NO. 4, AUGUST 2007

On Queue Provisioning, Network Efficiency and
the Transmission Control Protocol

Robert N. Shorten and Douglas J. Leith, Member, IEEE

Abstract—In this paper, we propose a sender side modification
to TCP to accommodate small network buffers. We exploit the fact
that the manner in which network buffers are provisioned is in-
timately related to the manner in which TCP operates. However,
rather than designing buffers to accommodate the TCP AIMD al-
gorithm, as is the traditional approach in network design, we sug-
gest simple modifications to the AIMD algorithm to accommodate
buffers of any size in the network. We demonstrate that networks
with small buffers can be designed that transport TCP traffic in
an efficient manner while retaining fairness and friendliness with
standard TCP traffic.

Index Terms—AIMD, buffer sizing, TCP.

I. INTRODUCTION

AKEY ISSUE in the design of Internet routers is that of
buffer sizing. Router buffers are usually sized with two

primary objectives in mind.
1) Accommodating short-term packet bursts. Due to the na-

ture of transport protocols such as TCP, Internet traffic
tends to be bursty. Should too many packets arrive in a
sufficiently short interval of time then the egress link lacks
the capacity to process all of the packets immediately. The
first job of the router buffer is to mitigate packet loss due
to bursts by accommodating these packets in a queue until
they can be serviced.

2) Ensuring AIMD throughput efficiency. Most network
traffic is carried by the TCP. The AIMD congestion
control algorithm used by TCP reduces the number of
packets in flight by half on detecting network congestion.
If network queues are too small, this backoff action will
cause them to empty with a corresponding reduction in
link utilization.

Router buffers are designed with both of these objectives in
mind; the buffer size should be large enough to accommodate
typical packet bursts in the network, and should be chosen so
that the buffer does not empty for significant periods of time
when TCP responds to network congestion. The typical rule of
thumb in the design of router buffers is to provision the buffer to
be equal to the bandwidth of the link served by the router (mea-
sured in packets per second) multiplied by the average round-
trip time of the flows utilizing the router : the Delay-

Manuscript received April 25, 2005; revised March 14, 2006; approved by
IEEE/ACM TRANSACTIONS ON NETWORKING Editor F. Paganini. This work was
supported by Science Foundation Ireland Grants 00/PI.1/C067 and 04/IN3/I460.

The authors are with the Hamilton Institute, NUI Maynooth, Na-
tional University of Ireland, Maynooth, Co. Kildare, Ireland (e-mail:
robert.shorten@nuim.ie; doug.leith@nuim.ie).

Digital Object Identifier 10.1109/TNET.2007.893879

Fig. 1. Link utilization versus buffer size and number of TCP flows (NS sim-
ulation: bandwidth 100 Mb, average delay 80 ms).

Bandwidth Product (DBP). While provisioning network buffers
in this manner has served the networking community well in the
past, it is generally accepted that buffers in future routers are
unlikely to be provisioned in this manner. For example, strong
arguments are given in [1] to suggest that queues provisioned
according to the DBP rule in high delay-bandwidth networks
may be difficult to realize physically

An alternative strategy to the DBP rule for buffer provi-
sioning is to exploit statistical multiplexing effects of packets
arriving at network buffers to justify arguments in favour of
smaller buffer sizes; see the recent papers [1]–[3], [18] and
the references therein for a summary of work in this direction.
Roughly speaking, these papers all suggest that one may exploit
statistical multiplexing of TCP flows to enable deployment of
much smaller router buffers than that suggested by the DBP rule
(without adversely affecting link utilization). While approaches
of this type are of merit, and certainly provide key insights into
the behavior of networks, they are crucially dependent upon
the assumptions that (i) the buffer of interest serves a large
number of flows at any instant of time and (ii) only a small
proportion of flows perform an AIMD backoff in response to
network congestion (i.e., flows are not synchronized). If these
assumptions do not hold then provisioning network buffers in
this manner will lead to poor utilization of the bottleneck link
bandwidth. This is illustrated, for example, in Fig. 1 which
shows link utilization versus buffer size for a single TCP flow
and for 100 TCP flows. With a single flow, when congestion
occurs the flow reduces the number of packets in flight by half.
When the queue size is small, this leads to the queue emptying

1063-6692/$25.00 © 2007 IEEE

Authorized licensed use limited to: The Library  NUI Maynooth. Downloaded on February 23,2010 at 10:28:41 EST from IEEE Xplore.  Restrictions apply. 



SHORTEN AND LEITH: ON QUEUE PROVISIONING, NETWORK EFFICIENCY AND THE TRANSMISSION CONTROL PROTOCOL 867

for a significant period of time before the probing action of the
AIMD congestion control leads to it filling again. Hence, link
utilization is lowered. With 100 flows, at any given congestion
event on average only a relatively small proportion of flows
will backoff and hence the likelihood of the queue completely
emptying is less. This statistical multiplexing of flow backoffs
means that link utilization is on average higher.

The example in Fig. 1 also indirectly highlights a further fun-
damental issue. In this example, all flows are long-lived and the
number of flows is constant over the life of each experiment,
but in practice a network can be expected to contain flows with
a broad mix of connection sizes and where flows frequently
start/stop. In such a rapidly changing packet-switched environ-
ment, it is far from straightforward to define, or to measure,
the “number of flows” at any instant. Further, the traffic mix
can be expected to change significantly over time, e.g., over the
course of a day. It is unclear how buffer sizing rules based on
the number of long-lived flows might be applied in such envi-
ronments [18].

These observations suggest that if there is a requirement to
ensure high network utilization irrespective of the level of flow
synchronization or the number of flows traversing the link, then
one must either dynamically adjust the router buffer size to
regulate utilization (as suggested in [4]) or adjust the end-to-end
protocols themselves so as to ensure high network utilization
(irrespective of the level of flow synchronization, or the number
of flows traversing the link). In this paper, we explore the latter
of these alternatives. We suggest modifications to the TCP
AIMD algorithm to address the buffer-provisioning problem
in a way that retains the benefits of statistical multiplexing
when many flows share a link while also achieving good link
utilization with small numbers of flows. We exploit the fact
that the manner in which network buffers are provisioned
is intimately related to the manner in which TCP operates.
However, rather than designing buffers to accommodate the
TCP AIMD algorithm, we suggest simple modifications to
the AIMD algorithm to accommodate buffers in the network.
We shall see that with only minor modifications to the AIMD
algorithm, networks with small buffers can be designed that
transport TCP traffic in an efficient manner.

This paper is structured as follows. We begin the discussion
by reviewing the origins of the DBP rule and by discussing
the relationship between queue provisioning and throughput
through the link served by the buffer. We then revisit the DBP
rule and suggest an alternative strategy to maintain high link
utilization through the bottleneck link. As discussed above,
our proposal involves suggesting minor modifications to the
standard TCP algorithm and we discuss the relevant imple-
mentation issues, including presenting a number of network
measurements that demonstrate the efficacy of the proposed
algorithm in real networks. We also examine the effect of these
modifications on the fairness, friendliness and convergence rate
of networks carrying TCP traffic. Finally, our conclusions are
summarized in Section VIII.

II. THE DELAY-BANDWIDTH PRODUCT RULE

AIMD congestion control operates a window-based conges-
tion control strategy. Source maintains an internal variable

Fig. 2. Dumbbell topology.

(the congestion window size) which tracks the number
of sent unacknowledged packets that can be in transit at any
time, i.e., the number of packets in flight. On safe receipt of
data packets the destination sends acknowledgement (ACK)
packets to inform the source. When the window size is ex-
hausted, the source must wait for an ACK before sending a
new packet. Congestion control is achieved by dynamically
adapting the window size according to an additive-increase
multiplicative-decrease (AIMD) law. Roughly speaking, the
basic idea is for a source to probe the network for spare ca-
pacity by increasing the rate at which packets are inserted into
the network, and to rapidly decrease the number of packets
transmitted through the network when congestion is detected
through the loss of data packets. In more detail, the source
increments by a fixed amount upon
receipt of each ACK. On detecting packet loss, the variable

is reduced in multiplicative fashion to .
Standard TCP uses the values and 0.5.

While the basic function of congestion control is to regulate
network congestion, it is clearly desirable to also ensure that the
network flows, on aggregate, fully utilize the available network
resources. Consider, initially, a network with a single bottleneck
link (multiple bottlenecks will be considered later); see Fig. 2.
When the network experiences congestion, the link buffer is full
and the network bottleneck is necessarily operating at link ca-
pacity. The corresponding data throughput through the bottle-
neck link is given by

(1)

where indexes the instant just before sources respond to the
th network congestion event and denotes the value of

when congestion is detected by each source. is the link ca-
pacity, is the bottleneck buffer size, is the round-trip
time experienced by the th source when the bottleneck queue
is empty and is the round-trip time when the queue
is full. Here denotes an event just before packets are
dropped due to overflow of the buffer, and after each
source has responded to the th congestion event by reducing
its number of packets in flight.

We let if flow experiences a loss at the th
congestion event and otherwise (i.e., flow does
not backoff). Then, following congestion, the data throughput
is given by

(2)

Authorized licensed use limited to: The Library  NUI Maynooth. Downloaded on February 23,2010 at 10:28:41 EST from IEEE Xplore.  Restrictions apply. 



868 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 15, NO. 4, AUGUST 2007

Fig. 3. Link utilization versus difference in round-trip times for two TCP flows
and a dumbbell topology. Solid line marks link utilization with drop synchro-
nization. (NS simulation, �T = 50 ms, T = 1:2 ms, B = 10 Mb/s, queue size
scaled with T to maintain a constant provisioning ratio of 0.75).

under the assumption that the bottleneck buffer empties.1 If the
sources backoff too much, data throughput will suffer as the
queue will empty for a period of time and thus the link will
operate below its maximum rate. A simple method to ensure
maximum throughput is to equate the rates and .
This can be achieved by enforcing the following constraint:

(3)

For a given choice of one may seek to choose such that
for all . Evidently, for the case of networks

employing standard TCP, namely 0.5, it follows
. This is the origin of the DBP rule.

A. The DBP Rule and Statistical Multiplexing

The DBP rule is derived from consideration of link utiliza-
tion in the worst case where all flows backoff at each conges-
tion event. While this situation applies when only a single TCP
flow is present, it also occurs with many flows provided that
the flows are synchronized, i.e., every flow experiences a loss
at every congestion event. When flows are not synchronized, by
definition only a proportion of flows backoff at each congestion
event. Thus on average more packets remain in flight than in
the synchronized case and so the queue is less likely to empty.
Consequently, under unsynchronized conditions we expect that
the link utilization will be strictly greater than under synchro-
nization (assuming the queue is sized less than the BDP - oth-
erwise the utilization is trivially always 100%). This behavior
can be seen, for example, in Fig. 3 which shows the link uti-
lization achieved by two TCP flows as the round-trip time of
the second flow is varied. While the link utilization varies in a

1This assumption merely streamlines the presentation. If the queue does not
empty at the kth congestion event, we have trivially that R(k) = R(k) and
link utilization is 100%.

Fig. 4. Minimum queue size for 99.99% link utilization versus number of TCP
flows. Dumbbell topology. Key: � flows have the same round-trip time (T =
1:2 ms); + flows have different round-trip times (T uniformly distributed in
interval [0, 30 ms]). (NS simulation, �T = 50ms,T = 1:2ms,B = 10Mb/s).

complex manner as the flows move in and out of synchroniza-
tion (this type of behavior is well known and associated with
so-called phase effects), it can be seen that the utilization al-
ways respects the synchronized case lower bound on efficiency
that is marked on the figure.

Appenzeller et al. [1] and others have observed that synchro-
nization becomes rare as the number of competing TCP flows in-
creases. Thus, when there are many flows the opportunity exists
to use smaller queues with little loss in efficiency. This behavior
is illustrated, for example, in Fig. 4. In this figure, the minimum
queue size to ensure 99.99% link utilization is plotted as the
number of competing TCP flows is increased. The markers
denote results when the TCP flows all have the same round-trip
time and the delay-bandwidth product is 85 packets. It can be
seen that for up to 45 flows it is necessary to size the queue at
the delay-bandwidth product because of the presence of syn-
chronization. However, for larger numbers of flows the queue
size required rapidly falls to around 50 packets. Note that in this
example the provisioning requirement does not fall below about
50 packets as the number of flows is increased further. Fig. 4 also
illustrates the corresponding behavior when the flows have dif-
ferent round-trip times. We can see that in this case large queues
are still necessary for small numbers of flows but that the queue
provisioning requirement quickly decreases and, indeed, falls
substantially below the 50 packet limit that was evident in the
same round-trip time case.

In general, we expect that the actual reduction in queue size
that can be achieved while maintaining a required link utiliza-
tion depends in a complex manner on details of the network and
prevailing traffic conditions. Nevertheless, under some simpli-
fying assumptions (flow backoffs are independent, individual
flow congestion windows are uniformly distributed about the
same average size and there are sufficiently many flows that the
aggregate is normally distributed) Appenzeller et al. [1] shows
that the queue size can be scaled as and the utility of this
result is confirmed by considerable empirical evidence.

Authorized licensed use limited to: The Library  NUI Maynooth. Downloaded on February 23,2010 at 10:28:41 EST from IEEE Xplore.  Restrictions apply. 



SHORTEN AND LEITH: ON QUEUE PROVISIONING, NETWORK EFFICIENCY AND THE TRANSMISSION CONTROL PROTOCOL 869

Fig. 5. Congestion window and queue occupancy time histories with adaptive
AIMD algorithm. The delay bandwidth product is 85 packets. (NS simulation,
bandwidth 10 Mb/s, RTT 100 ms, queue 25 packets).

Note, however, that this reduction in queue size is crucially
dependent on 1) the presence of many flows and 2) absence
of synchronization. With few flows or when synchronization is
prevalent, high link utilization continues to require large buffers
provisioned in line with the DBP rule.

III. REVISITING THE DELAY-BANDWIDTH PRODUCT RULE:
ADAPTIVE AIMD

The discussion in Section II illustrates a key property of net-
works that are designed to carry TCP traffic: namely, that queue
provisioning is strongly coupled to the parameters of the TCP
AIMD algorithm. With reference to (3), efficient link utiliza-
tion is achieved when after each congestion
event. As already discussed, one strategy to achieve this goal
is the DBP rule. The DBP rule is, however, only one of many
strategies that could be adopted to ensure that (3) is satisfied. In
particular, for any given queue size one may simply set

(4)

for all ; thereby ensuring that for all . The
effect of this AIMD modification can be seen in Fig. 5. In this
example, the queue provisioning is less than the delay-band-
width product and the queue empties for a substantial period
following backoff by a factor of 0.5 (see the first backoff event in
the figure) with an associated reduction in link utilization. Once
the flow adjusts its backoff factor to the level of buffer provi-
sioning we can see that the queue now just empties following
a backoff event and the link continues to operate at capacity as
desired. With this approach, network queues are provisioned to
accommodate the level of packet burstiness and to meet latency
and jitter requirements, rather than to accommodate the TCP
AIMD parameters.

Adjustment of the flow backoff factors can lead to unfair-
ness between competing flows. However, fairness can be readily
restored by making a corresponding adjustment of the flow in-
crease parameters . In a network of competing TCP flows, in

Fig. 6. Example of window fairness between two TCP sources with different
increase and decrease parameters (NS simulation, network parameters: 10 Mb
bottleneck link, 100 ms delay, queue 40 packets.).

equilibrium the mean peak congestion window of flow is pro-
portional to [5]

where denotes the proportion of network congestion events
at which flow experiences a packet drop (in the synchronized
case for all flows).2 AIMD flows with increase and de-
crease parameters chosen such that the ratio is the
same will be fair if they have the same round-trip time and the
same probability of experiencing a loss at congestion; see,
for example, Fig. 6. Hence, we adjust according to

(5)

so that is decreased as increases, thereby maintaining
2. A ratio of 2 is selected as this corresponds

to the ratio for standard TCP, where 0.5. In this
way, we maintain backward compatibility and friendliness to-
wards legacy TCP flows. (Backward compatibility and support
for incremental rollout are discussed in detail later.)

Comment: Different RTTs. It is interesting to note that the
proposed scheme elegantly deals with the situation where com-
peting flows have different round-trip times. In this situation,
with standard TCP for 100% utilization the DBP rule requires
the buffer to be sized according to the largest round-trip time.
Of course, it is probably preferable to use instead an average
round-trip time in order to avoid excessive queueing delay for
those flows with short round-trip times, albeit at the price of
reduced link utilization. In contrast, with the adaptive scheme
the buffer size is selected independently of the round-trip times
of the flows and decision making is instead located at the net-
work edges where each flow is individually responsible for ad-
justing its own backoff factor appropriately. In this way, we
avoid the tradeoff between high link utilization for flows with
long round-trip times and low queueing latency for flows with
short round-trip times.

2Note that � here is quite different from the loss event probability p that is
used in the Padye square root formula [6].

Authorized licensed use limited to: The Library  NUI Maynooth. Downloaded on February 23,2010 at 10:28:41 EST from IEEE Xplore.  Restrictions apply. 



870 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 15, NO. 4, AUGUST 2007

Fig. 7. Efficiency of TCP versus queue size. Results shown are for a single TCP
flow, or multiple synchronized flows. The solid line is the theoretical efficiency
curve. (NS simulation: bandwidth 100 Mb, RTT 40 ms).

Comment: Constraining variations. Increasing the
backoff factor to improve efficiency decreases responsive-
ness (as measured by number of congestion epochs before
convergence). Conversely, decreasing the backoff factor in-
creases responsiveness but decreases efficiency, at least when
queues are small. Note that large queues resolve the tradeoff
between efficiency and responsiveness in favour of using a
small backoff factor. However, when queues are small the
situation is less clear. One approach is to restrict the backoff
factor to an interval . The value selected for
then reflects the preferred compromise between efficiency and
responsiveness. We suggest that a reasonable choice for
in current networks might be 0.8 for the following two reasons:
1) a backoff factor of 0.8 ensures 100% link utilization with
queues sized at only 25% of the delay-bandwidth product which
is already a fairly large reduction in the buffering requirement,
and 2) a backoff factor of 0.8 corresponds to a convergence
time of 7 congestion epochs for 80% convergence and 12
congestion epochs for 95% convergence and so the slow down
in responsiveness is relatively small. While this value is used in
the rest of this paper, other choices of backoff limit are certainly
possible and the final choice is left as future work.

Comment: Implementation. We note that the feasibility of
obtaining reliable measurements of instantaneous RTT is an
open question and do not propose use of this quantity. Minimum
and maximum RTT are, however, relatively straightforward to
estimate and this is discussed in more detail later. We note also
that the proposed adaptive AIMD approach remains entirely
within the well studied AIMD paradigm: the only change pro-
posed is to the AIMD parameters used.

IV. ADAPTIVE AIMD PERFORMANCE

A. Single Bottleneck

We begin by considering the case of a single network bottle-
neck. By design, the adaptive AIMD scheme ensures full link
utilization across a wide range of queue provisioning levels (see
Fig. 7). In particular, for 100% utilization under synchronized

Fig. 8. Link utilization versus queue size and number of flows. (bandwidth 155
Mb/s, delay 80–250 ms). The solid line indicates a 1=

p
n curve corresponding

to the 98% case with adaptive backoff.

operation we require the queue size to be at least 25% of the
delay-bandwidth product when the backoff factor is constrained
to be less than .

As noted previously, this is a worst case bound on queue size.
When flows are unsynchronized, the opportunity exists to use
smaller queues with little loss in efficiency. This is illustrated,
for example, in Fig. 8. In this figure, the queue sizes for 98%
and 99.5% link utilization are plotted as a function of number of
flows for both the standard TCP AIMD algorithm and the adap-
tive AIMD algorithm proposed here. The results are for a net-
work topology with a single bottleneck link and round-trip times
distributed in the range 80–250 ms. It can be seen that there is
a substantial reduction in the queue provisioning requirement
when the adaptive AIMD algorithm is used. Also evident is the
approximate dependence of queue size noted by [1]. We
have obtained similar results over a wide range of network con-
ditions although space restrictions mean that we cannot include
them here.

The foregoing results relate to link utilization. Fig. 9 illus-
trates the impact of the adaptive algorithm on the network loss
rate. This figure plots loss rate as the proportion of standard to
adaptive TCP flows is varied. It can be seen that the loss rate,
measured as the proportion of sent packets that are dropped, falls
as the number of adaptive flows is increased. This can be un-
derstood by noting that the adaptive algorithm adjusts the flow
increase and decrease parameters in a coordinated manner that
maintains the same congestion epoch duration, and thus number
of packet losses, as standard TCP when flows are synchronized.
The increased throughput with the adaptive algorithm means,
however, that the proportion of packets lost falls compared with
standard TCP. Thus, the adaptive algorithm protocol serves not
only to increase link utilization, but also the network goodput
as well.

B. Mix of Connection Lengths

Real network paths typically contain TCP flows with a wide
mix of connection sizes. We can expect this to reduce the ben-

Authorized licensed use limited to: The Library  NUI Maynooth. Downloaded on February 23,2010 at 10:28:41 EST from IEEE Xplore.  Restrictions apply. 



SHORTEN AND LEITH: ON QUEUE PROVISIONING, NETWORK EFFICIENCY AND THE TRANSMISSION CONTROL PROTOCOL 871

Fig. 9. Utilization and loss rate as function of number of adaptive and conven-
tional TCP flows (out of 25 flows in total, remaining flows are conventional TCP
flows). NS simulation, 155 Mb bottleneck link, 40 ms delay, queue 25 packets.

efits of adaptive AIMD as flows that complete before exiting
slow-start gain no benefit from adapting their AIMD backoff
factor. Further, it is possible that the presence of many flows in
slow-start may increase the burstiness of traffic arrivals. Recall
that queue sizing is determined both by the AIMD backoff char-
acteristics and by the level of burstiness. Fig. 10 plots the queue
size required for 98.0% and 99.5% utilization on a 155 Mb/s
link with a mix of round-trip times and a mix of long-lived
flows and web traffic. Web traffic connection sizes are gener-
ated according to a Pareto distribution, with exponentially dis-
tributed inter-arrival times between web sessions. Web traffic is
bi-directional and the overall number of web sessions is chosen
such that the mean number of web sessions active at any time is
approximately equal to the number of long-lived connections.
Comparing Fig. 10 with Fig. 8, we can see that the trends are
similar; that is, that the required buffer size tends to decrease as
the number of flows is increased and that the adaptive backoff

Fig. 10. Link utilization versus queue size and number of flows for a mix of
long-lived flows and web traffic.(bandwidth 155 Mb/s, delay 80–250 ms).

scheme supports significant reductions in buffer size, compared
with standard TCP, particularly when there are smaller numbers
of flows. Observe that the overall size of buffer required is rather
larger than that in Fig. 8 when no web traffic is present. This is
perhaps unsurprising — we attribute this difference to the pres-
ence of web flows persistently operating in slow-start mode re-
sulting in both an increased level of packet burstiness and an
increased packet loss rate for long-lived flows.

C. Impact of Reverse Path Traffic

It is well known that reverse-path traffic can increase the
burstiness of the forward path TCP stream as a result of ACK
compression and ACK losses. Increased burstiness typically in-
creases the likelihood of packet losses when small queues are
used, and may thus constrain the minimum queue size that can
be used. We note, however, that the cost of a back-off event
due to a reverse-path induced network burst is dependent on the
amount by which a flow releases bandwidth after a loss event.
In the presence of small buffers, the adaptive AIMD algorithm
acts to decrease aggressiveness and to increase the back-off fac-
tors of network flows. Thus, we expect to see an improvement in
network performance, compared to standard TCP, on links with
small queues and reverse path traffic.

We present two sets of experimental results to illustrate the
performance of the proposed adaptive algorithm in networks in
which there is reverse path queueing; see Figs. 11 and 12. These
plots show link utilization and loss rate as the proportion of stan-
dard to adaptive TCP flows is varied. Fig. 11 shows results for
ten long-lived reverse path flows, while Fig. 12 shows the corre-
sponding results with 20 long-lived reverse path flows. We note
that long-lived, rather than short-lived, reverse path traffic is the
most demanding case as it creates sustained queueing on the re-
verse path, leading to persistent ACK compression and substan-
tial ACK losses for the forward path flows. It can be seen that the
adaptive AIMD flows achieve both significantly improved link
utilization (e.g., increasing utilization from 55% to 79% with
20 reverse flows) and reduced loss rate (by approximately 50%)
compared to standard TCP flows.

Authorized licensed use limited to: The Library  NUI Maynooth. Downloaded on February 23,2010 at 10:28:41 EST from IEEE Xplore.  Restrictions apply. 



872 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 15, NO. 4, AUGUST 2007

Fig. 11. Utilization and loss as function of number of adaptive and conventional
TCP flows (out of 25 flows in total, remaining flows are conventional TCP flows)
with reverse path flows (10 long-lived TCP connections). NS simulation, 155 Mb
bottleneck link, 40 ms delay, queue 125 packets.

D. Multiple Bottlenecks

It may occur that packets are queued at multiple queues, e.g.,
at the ingress and egress access links along a path or, as consid-
ered in the previous section, due to reverse path traffic. Consid-
ering initially the worst case (from a link utilization viewpoint)
situation where flows are synchronized, it is easy to see that the
proposed adaptive backoff strategy can be readily extended to
ensure high link utilization at the congested links in multiple
bottleneck topologies. At congestion we have that

(6)

where is the number of links at which packets are queued,
is the queue occupancy of the such link and the

bandwidth. Selecting the backoff factor as

(7)

Fig. 12. Utilization as function of number of adaptive and conventional TCP
flows (out of 25 flows in total, remaining flows are conventional TCP flows).
with reverse path flows (20 long-lived TCP connections). NS simulation, 155
MB bottleneck link 40 ms delay queue 125 packets.

then after backoff

(8)

That is, the TCP flows adapt their backoff factors to just empty
all of the queues that they see along the end-to-end path.

Comment: Number of Bottlenecks. Note that this analysis
encompasses situations where different flows may see different
numbers of backlogged queues along their respective network
paths.

Comment: Reverse-path Queueing. Note also that since
RTT measures the two-way delay along a path it includes the ef-
fect of reverse path queueing. In terms of adjusting flow backoff
factors, we consider reverse path queueing to be simply a mul-
tiple bottleneck situation. By using a value of that re-
flects reverse path queueing, our algorithm will correctly adapt
flow backoff factors to empty both the forward and reverse path
queues.

Authorized licensed use limited to: The Library  NUI Maynooth. Downloaded on February 23,2010 at 10:28:41 EST from IEEE Xplore.  Restrictions apply. 



SHORTEN AND LEITH: ON QUEUE PROVISIONING, NETWORK EFFICIENCY AND THE TRANSMISSION CONTROL PROTOCOL 873

Fig. 13. Two-bottleneck topology.

Comment: Variation in Bottleneck Number. The analysis
also extends to situations where, for example as flows start and
stop, the number of bottleneck links may vary — see example
below. To implement the backoff calculation in [7], we use

as before. Increases in the number of
bottleneck links generally lead to an increase in round-trip
time and this will be immediately reflected in the value of

. To capture changes that lead to a reduction in the
round-trip time, we add exponentially fading memory to our
estimate of , namely at each congestion event we
reset our estimate according to

(9)

with . We have not found the performance of the algorithm
to be especially sensitive to the value of used and suggest that
a reasonable value of , which corresponds to the fading
memory already used in the smoothed RTT calculation in TCP.

For example, consider the two bottleneck topology shown in
Fig. 13. Flow 1’s fair share of the 100 Mb/s link is approximately
50 Mb/s but because of the 40 Mb/s link it cannot achieve this.
Hence, when only flow 1 is active, there exists a single bottle-
neck with packets queueing at the 40 Mb/s hop. When flow 2
becomes active, flow 1 continues to be constrained to 40 Mb/s
throughput (with packets queueing at the 40 Mb/s link) while
flow 2 obtains 60 Mb/s bandwidth on the 100 Mb/s link (with
flow 2 packets queueing at this link, along with flow 1 packets
that are in transit). When a packet drop occurs, the round-trip
time of flow 1 is while that of flow 2 is

and the flow backoff factors adapt to just empty all
of the queues in the network; see Fig. 14.

E. Support for Incremental Rollout

Incremental rollout requires 1) backward compatibility with
legacy flows, i.e., TCP friendliness, and 2) that any proposed
change to TCP yields worthwhile benefits without requiring uni-
versal adoption or a “big bang” rollout. As noted previously, the
proposed adaptive AIMD algorithm adjusts its AIMD increase
and decrease parameters in a coordinated manner that ensures
backward compatibility with legacy TCP flows. This is illus-
trated in Fig. 15, where in a network of 25 flows the proportion
of standard and adaptive AIMD flows is varied. It can be seen
that the ratio of the mean peak congestion windows of the stan-
dard and adaptive flows always stays close to unity. Fig. 9 shows
the corresponding impact on link utilization. For the proposed
adaptive AIMD algorithm, we can see that there is a strictly in-
creasing gain in efficiency as the number of adaptive flows is in-
creased. That is, there is an efficiency gain even if only a small
percentage of flows utilize the adaptive algorithm.

Fig. 14. Example of backoff adjustment with cross-flow from 25–30 s (NS sim-
ulation, two-hop topology of Fig. 13, hop 1: 40 Mb/s, 1.5 ms delay, queue 30
packets, hop 2:100 Mb/s, 10 ms delay, queue 80 packets.).

Fig. 15. Fairness of adaptive and conventional TCP flows versus number of
adaptive AIMD flows (out of 25 flows in total, remaining flows are conventional
TCP flows). NS simulation, 155 Mb bottleneck link, 120 ms delay, queue 125
packets. Network includes background web traffic of approximately 1% link
bandwidth.

F. Experimental Results

In addition to NS-2 simulation tests, we have implemented
the adaptive AIMD algorithm in Linux and evaluated its perfor-
mance on an instrumented test-bed network. This network con-
sisted of six Linux Xeon 2.8 GHz servers with PCI-X Intel Pro
1000 NICs and a similarly specified router running FreeBSD 4.8
and using DummyNet to emulate specified network propagation
delays. TCP traffic is generated using iperf. Table I presents a
sample of the results we have obtained on this test-bed network
for a range of network conditions, queue sizes and number of
flows. The reported throughput values are averages taken over
10-minute test runs. The results obtained are in excellent agree-
ment with the theoretical analysis and simulation results pre-
sented earlier.

Authorized licensed use limited to: The Library  NUI Maynooth. Downloaded on February 23,2010 at 10:28:41 EST from IEEE Xplore.  Restrictions apply. 



874 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 15, NO. 4, AUGUST 2007

TABLE I
EXPERIMENTAL MEASUREMENTS OF LINK UTILIZATION VERSUS NUMBER OF

FLOWS FOR BOTH STANDARD TCP AND TCP WITH ADAPTIVE BACKOFF OVER

A RANGE OF NETWORK CONDITIONS

TABLE II
EXPERIMENTAL MEASUREMENTS OF FLOW THROUGHPUT VERSUS NUMBER

OF FLOWS FOR BOTH STANDARD TCP AND TCP WITH ADAPTIVE BACKOFF

OVER PATHS IN THE INTERNET

We have also carried out a number of tests over production
networks. The range of network conditions and paths available
to us over production networks is less flexible than in the
test-bed network and measurements are more limited — for
example, we cannot alter router queue sizes or control/measure
other traffic sources. We have carried out tests on paths between
servers located at the Hamilton Institute (Maynooth, Ireland),
at CERN (Geneva, Switzerland), and at Lawrence-Berkeley
National Lab (San Francisco, CA, USA). In these tests, the
bottleneck is a 20 Mb/s link located in Ireland. Results are
shown in Table II for different numbers of flows. It can be
seen that, in line with our analysis, with adaptive AIMD the
aggregate throughput achieved is largely independent of the
number of flows. For reference, the corresponding results for
standard TCP are also presented. Throughput is consistently
lower than with adaptive backoff because of under-buffering at
the bottleneck link.

V. IMPLEMENTATION

The proposed adaptive AIMD algorithm requires that each
TCP flow estimate and . While the feasi-
bility of obtaining reliable measurements of instantaneous RTT
remains an open question, minimum and maximum RTT are rel-
atively straightforward to estimate and this is discussed in more
detail in this section.

is the speed-of-light round-trip propagation delay
along the path of a flow. We base our estimate of on
observing the minimum time elapsed between transmission of
a data packet and receipt of the corresponding acknowledge-
ment. This estimate is largely unaffected by variable factors
such as queueing delays and reverse path traffic as these tend
to increase the transit time for a packet and are therefore filtered
out by taking the minimum. We have observed instead that the
main estimation issues are associated with the impact of route
changes. Route changes that reduce the speed-of-light delay will
be correctly detected by observing the minimum time elapsed
between transmission of a data packet and receipt of the cor-
responding acknowledgement. However, routing changes that
increase the propagation delay will not be detected by this ap-
proach and so the value of estimated may be smaller
than the actual propagation delay. In this case, the backoff factor
used in the adaptive AIMD algorithm is too small, leading to
a reduction in efficiency for that flow (at worst reverting to the
conventional TCP backoff factor of 0.5). While this might be re-
solved by adapting the estimator in a suitable manner,
we argue that it is an unnecessary complication since substan-
tial increases in speed-of-light delay during the lifetime of a flow
seem fairly rare and therefore the overall potential for efficiency
loss is minor.

estimates the sum of the propagation delay and
the maximum queueing delay along a path. The maximum of
the instantaneous RTT (measured using packet time stamps
in most modern implementations) frequently overestimates

because of delays introduced by delayed acking and
other short term increases in packet transit time (e.g., routing
table updates, etc., may temporarily increase router forwarding
delay). Spurious short term increases in round-trip time can
be filtered out by using the maximum of the smoothed RTT
instead of the instantaneous RTT. The smoothed round-trip
time is already used within the TCP timeout algorithm and so is
readily available. While seeking to filter out spurious short-term
increases, we do want our measurement to reflect longer term
changes in delay due, for example, to changes in the number
of bottleneck links, routing changes and so on. Changes that
lead to an increase in delay will be immediately reflected in the
value of . As discussed previously in Section IV-D,
changes that lead to a reduction in delay can be tracked by
adding a fading memory to the estimate; see (9).

Our ability to effectively estimate and
in challenging network conditions is illustrated in Fig. 16. Here,
the flow of interest shares a link with bidirectional web traffic.
The web traffic, which is stochastic and bursty in nature, creates
complex variations in both forward and reverse path queueing
delays. It can be seen that the adaptive backoff scheme never-
theless performs well, correctly adjusting the backoff factor and
rejecting the spurious delay spikes generated by the web traffic.
Further evidence of the practicality of estimating and

is provided by the experimental tests discussed in the
previous section. While limitations on the range of experiments
that we are able to perform mean that we cannot prove correct
performance under all conditions, the foregoing analysis and re-
sults do provide good support of correct operation in practical
situations.

Authorized licensed use limited to: The Library  NUI Maynooth. Downloaded on February 23,2010 at 10:28:41 EST from IEEE Xplore.  Restrictions apply. 



SHORTEN AND LEITH: ON QUEUE PROVISIONING, NETWORK EFFICIENCY AND THE TRANSMISSION CONTROL PROTOCOL 875

Fig. 16. Example of operation with bidirectional web traffic sharing link (NS
simulation, network parameters: 40 Mb bottleneck link, 20 ms delay, queue 30
packets, 10 web flows in each direction.).

Comment: Smoothed RTT and Throughput. We note that
smoothed RTT reflects the average delay experienced by a large
number of packets. It is therefore closely related to the achieved
throughput sustained over several round-trip times, from which
we can see that substantial changes in this quantity are rarely
spurious. This also leads us to the possibility of adapting the
backoff factor based on throughput rather than round-trip time
measurements if so desired. For example, we have that the
backoff factor can be expressed as

(10)

where is the throughput of flow immediately before
the th congestion event, the throughput of flow im-
mediately after the th congestion event. Both quantities are
readily measured from packets ACK’ed over a round-trip time.
This avoids the need to measure the ratio
directly.

VI. THE COST OF ADAPTIVE AIMD

It has been well documented that even small modifications
to the basic TCP algorithm can have a large impact on network
properties. In this section, we consider the cost of our suggested
modifications to the standard TCP algorithm. In particular, we
consider the impact of our algorithm on the network conver-
gence rate. From [5] we have that:

1) Convergence. Consider a network of AIMD flows with
drop-tail queues. For synchronized flows, the flow conges-
tion windows converge to a unique periodic cycle at an
exponential rate. In the case of unsynchronized flows, the
mean peak congestion window of each flow converges ex-
ponentially to a unique equilibrium value.

2) Convergence rate. Convergence rate refers to the rate
at which the mean congestion windows of the network

Fig. 17. Illustration of TCP convergence rate (NS simulation, � = 1;

� = 0.5, dumb-bell with 10 Mb/s bottleneck bandwidth, 100 ms propagation
delay, 40 packet queue).

flows converge to their equilibrium values, e.g., following
start up of a new flow. In the case of synchronized flows,
the convergence rate of the flow congestion windows is
bounded by the largest backoff factor
in the network, with the 95% rise time measured in con-
gestion epochs bounded by (yielding
a rise time of four congestion epochs for a backoff factor
of 0.5 and 10 congestion epochs for a backoff factor of
0.75). See, for example, Fig. 6. When flows are unsyn-
chronized, we work in terms of the mean backoff factor

. The convergence rate of the network
mean congestion windows is bounded by the largest mean
backoff factor , with the 95% rise
time bounded by .

These analytic results indicate that congestion control strate-
gies that reduce the AIMD backoff factors to achieve high uti-
lization of network resources can result in slowing of the rate of
convergence of the network to its equilibrium. A backoff factor
of 0.75 has a 95% rise time of 10 congestion epochs compared
with a rise time of only four congestion epochs when the backoff
factor is 0.5. For example, see Fig. 18. Note that this analysis fo-
cuses on the congestion avoidance behavior and ignores the im-
pact of slow start which would tend to accelerate convergence
following start-up of a new flow, although slow start would have
little impact on the convergence time following a cross-flow dis-
turbance. For the delay-bandwidth products commonly encoun-
tered in current networks, the impact on convergence time of
increasing the backoff factor to 0.8 is felt to be minor. Hence,
while a mode switch might be included to accelerate conver-
gence, this does not seem necessary on low to medium delay-
bandwidth product paths. In contrast, on high delay-bandwidth
paths, such as transatlantic multi-gigabit speed paths, it is well
known that the current AIMD algorithms suffer from slow con-
vergence and our adaptive AIMD algorithm would obviously
suffer similarly. A number of proposals exist that seek to im-
prove performance in high delay-bandwidth product environ-

Authorized licensed use limited to: The Library  NUI Maynooth. Downloaded on February 23,2010 at 10:28:41 EST from IEEE Xplore.  Restrictions apply. 



876 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 15, NO. 4, AUGUST 2007

Fig. 18. Illustrating poor responsiveness with larger backoff factors: flow
starting at 50 s has backoff factor of 0.5, flow starting at 65 s has backoff factor
of 0.75. NS simulation, 10 Mb bottleneck link, 80 ms delay, queue size 40
packets.

ments [19], [20] and, although these are outside the scope of the
present paper, we do note that any proposed changes compatible
with the existing TCP AIMD algorithm would also be compat-
ible with the adaptive AIMD algorithm.

VII. SCOPE OF OUR RESULTS AND FUTURE WORK

The analysis and results we present here encompass a wide
range of network conditions including, in particular, paths with
both single and multiple bottlenecks (the number of which may
change over time), a mix of long-lived flows and web traffic, and
competing flows with a range of different round-trip times. Is-
sues which are not considered in this paper and are left as future
work include link utilization with active queueing disciplines
(we justify our focus on drop-tail queueing by noting that it re-
mains the prevalent queueing discipline in modern networks)
and the impact of wireless links on utilization.

VIII. RELATED WORK

One of the first mentions of the DBP rule seems to be in an
RFC by Jacobson et al. [7] although it is also implicit in the
original Jacobson TCP paper [8]; subsequent simulation studies
include the work by Villamizar and Song [9]. The role of statis-
tical multiplexing in allowing small buffers is discussed in detail
in the recent paper by Appenzeller et al. [1] and the reader is re-
ferred to the references therein for details of other work on this
topic.

The idea of modifying the TCP congestion control to improve
throughput efficiency is not new and dates back at least to the
work of Brakmo et al. on TCP [10]. More recent work includes
FAST TCP [11]. In both of these approaches, the TCP transmis-
sion rate is adapted in response to changes in round-trip delay
with the aim of maintaining queue occupancy at a small, but
non-zero, value, thereby improving link utilization while also
avoiding the packet drops associated with the probing action of
AIMD congestion control. However, this involves a paradigm
change in congestion control with a shift from use of packet

drops as an indicator of congestion to use of delay as a conges-
tion indicator. In the present paper, our aim is instead to remain
within the well tested AIMD paradigm.

The idea of adapting AIMD parameters to reflect prevailing
network conditions or achieve certain goals is also not new and
a wide body of work exists on this topic [12]–[16]. The body of
work most related to our proposal was developed in the context
of wireless networks and error-prone links by Gerla et al. [17].
They consider a TCP variant denoted TCP-Westwood that pro-
poses modifying the AIMD backoff factor using an on-line esti-
mate of the bandwidth available on a path. However, the strategy
presented in the present paper differs from TCP-Westwood not
only in the manner in which the AIMD backoff factor is adjusted
(e.g., we make no attempt to estimate the per-flow packet rate of
the bottleneck link and our adaptation scheme does not require
complex adaptive filtering strategies) but also in our adjustment
of the AIMD increase parameter according to
in order to maintain network fairness and friendliness.

IX. CONCLUDING REMARKS

In this paper, we present a new approach to the buffer-pro-
visioning problem that retains the benefits of statistical multi-
plexing when many flows share a link while also achieving good
link utilization with small numbers of flows. We exploit the fact
that the manner in which network buffers are provisioned is in-
timately related to the manner in which TCP operates. However,
rather than designing buffers to accommodate the TCP AIMD
algorithm, we suggest simple modifications to the AIMD algo-
rithm to accommodate buffers in the network. We demonstrate
that with only minor modifications to the AIMD algorithm, net-
works with small buffers can be designed that transport TCP
traffic in a very efficient manner.

We argue that the benefits of modifying TCP according to the
proposed adaptive AIMD algorithm are compelling: namely, a
nearly complete decoupling of network provisioning from the
details of the TCP AIMD congestion control algorithm. This
is achieved without any negative impact on link utilization or
network fairness properties and results in lower network loss
rates, and reduced sensitivity to reverse path queueing.

ACKNOWLEDGMENT

The assistance of Baruch Even in collecting the experimental
results presented is gratefully acknowledged.

REFERENCES

[1] G. Appenzeller, I. Keslassy, and N. McKeown, “Sizing router buffers,”
in Proc. ACM SIGCOMM 2004, Portland, OR, Aug. 2004.

[2] A. Dhamdhere, H. Jiang, and C. Dovrolis, “Buffer sizing for congested
Internet links,” in Proc. IEEE INFOCOM 2005, Miami, FL, Mar. 2005,
pp. 1072–1083.

[3] D. Wischik and N. McKeown, “Buffer sizes for core routers: Part 1,”
ACM SIGCOMM Comput. Commun. Rev., vol. 35, no. 3, pp. 75–78,
2005.

[4] R. Stanojevic, R. Shorten, and C. Kellett, “Adaptive tuning of drop-tail
buffers for reducing queueing delays,” IEEE Commun. Lett., vol. 10,
no. 7, pp. 570–572, Jul. 2006.

[5] R. Shorten, F. Wirth, and D. Leith, “A positive systems model of TCP-
like congestion control: asymptotic results,” IEEE/ACM Trans. Net-
working, vol. 14, no. 3, pp. 616–629, Jun. 2006.

[6] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modelling TCP
throughput: A simple model and its empirical validation,” in Proc.
ACM SIGCOMM 1998, Vancouver, Canada, Sep. 1998.

Authorized licensed use limited to: The Library  NUI Maynooth. Downloaded on February 23,2010 at 10:28:41 EST from IEEE Xplore.  Restrictions apply. 



SHORTEN AND LEITH: ON QUEUE PROVISIONING, NETWORK EFFICIENCY AND THE TRANSMISSION CONTROL PROTOCOL 877

[7] V. Jacobson, R. Braden, and L. Zhang, “TCP extensions for high-speed
paths,” IETF RFC 1185, 1990.

[8] V. Jacobson, “Congestion avoidance and control,” in Proc. ACM SIG-
COMM 1988, Palo Alto, CA, Aug. 1988.

[9] C. Villamizar and C. Song, “High performance TCP in ANSNET,”
ACM Comput. Commun. Rev., vol. 24, no. 5, pp. 45–60, 1994.

[10] L. Brakmo, S. O’Malley, and L. Peterson, “New techniques for
congestion detection and avoidance,” in Proc. ACM SIGCOMM 1994,
London, U.K., 1994, pp. 24–35.

[11] C. Jin, D. Wei, and S. Low, “FAST TCP: Motivation, Architecture, Al-
gorithms, Performance,” Caltech CS Report, Caltech CSTR:2003:010,
2003.

[12] Y. R. Yang and S. S. Lam, “General AIMD Congestion Control,” Univ.
of Texas, Austin, Tech. Rep. TR-2000-09, May 2000 [Online]. Avail-
able: http://www.cs.utexas.edu/users/lam/NRL/TechReports/

[13] A. Kesselman and Y. Mansour, “Adaptive AIMD Congestion Con-
trol,” 2003 [Online]. Available: citeseer.ist.psu.edu/kesselman03adap-
tive.html

[14] M. Carson, “TCP-Carson: A loss event adaptive AIMD protocol for
long-lived flows,” M.S. thesis, Dept. Comput. Sci., Worcester Poly-
technic Inst., Worcester, MA, May 2002 [Online]. Available: http://
www.cs.wpi.edu/~claypool/ms/tcp-carson/

[15] S. Floyd, M. Handley, J. Padhye, and J. Widmer, “Equation-based con-
gestion control for unicast applications,” in Proc. ACM SIGCOMM
2000, Stockholm, Sweden, 2000, pp. 43–56.

[16] S. F. Deepak Bansal, H. Balakrishnan, and S. Shenker, “Dynamic be-
havior of slowly-responsive congestion control algorithms,” in Proc.
ACM SIGCOMM 2001, San Diego, CA, Aug. 2001, pp. 43–56.

[17] C. Casetti, M. Gerla, S. Mascolo, M. Sanadidi, and R. Wang, “TCP
Westwood: Bandwidth estimation for enhanced transport over wireless
links,” in Proc. ACM Mobicom 2001, Rome, Italy, 2001, pp. 287–297.

[18] G. Vu-Brugier, R. Stanojevic, D. J. Leith, and R. N. Shorten, “A cri-
tique of recently proposed buffer-sizing strategies,” ACM SIGCOMM
Comput. Commun. Rev., vol. 37, no. 1, pp. 43–47, 2007.

[19] D. J. Leith, R. N. Shorten, and Y. Li, “Experimental evaluation of TCP
protocols for high-speed networks,” IEEE/ACM Trans. Networking, to
be published.

[20] D. J. Leith and R. N. Shorten, “H-TCP protocol for high-speed long-
distance networks,” in Proc. 2nd Workshop on Protocols for Fast Long
Distance Networks, Argonne, Canada, 2004.

Robert N. Shorten graduated from the University
College Dublin (UCD), Ireland, in 1990 with a First
Class Honours B.E. degree in electronic engineering,
and in 1992 with a Masters degree in image pro-
cessing. From 1993 to 1996, he was the holder of a
Marie Curie Fellowship to conduct research at the
Daimler-Benz Research Institute for Information
Technology in Berlin, Germany. He completed the
requirements for the Ph.D. while at Daimler-Benz
Research and then spent a short period as a visiting
post-doc at the Center for Systems Science at Yale

University. In 1997, he was awarded a European Presidential fellowship to
return to Ireland. He is a co-founder and a Senior Researcher of the Hamilton
Institute, NUI Maynooth, Ireland. He is an Editor of the IEE Proceedings on
Control Theory. His research interests include stability theory, linear algebra,
and network congestion control.

Douglas J. Leith (M’02) graduated from the Univer-
sity of Glasgow, Scotland, in 1986 with a first class
B.Sc. (Eng.) degree in electronics and electrical engi-
neering and computer science and received the Ph.D.
degree, also from the University of Glasgow, in 1989.

Following the award of a Royal Society personal
research fellowship to study nonlinear control, in
2001 he joined the National University of Ireland
Maynooth as Director of the Hamilton Institute
(www.hamilton.ie). His current research interests
include Internet congestion control and dynamics,

resource allocation in wireless networks and nonlinear time series analysis.

Authorized licensed use limited to: The Library  NUI Maynooth. Downloaded on February 23,2010 at 10:28:41 EST from IEEE Xplore.  Restrictions apply. 


