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Hamilton Institute, NUIM, Ireland
rade.stanojevic@nuim.ie

Abstract— The need for efficient counter architecture has
arisen for the following two reasons. Firstly, a number of data
streaming algorithms and network management applications
require a large number of counters in order to identify important
traffic characteristics. And secondly, at high speeds, current
memory devices have significant limitations in terms of speed
(DRAM) and size (SRAM). For some applications no information
on counters is needed on a per-packet basis and several methods
have been proposed to handle this problem with low SRAM
memory requirements. However, for a number of applications it is
essential to have the counter information on every packet arrival.
In this paper we propose two, computationally and memory
efficient, randomized algorithms for approximating the counter
values. We prove that proposed estimators are unbiased and give
variance bounds. A case study on Multistage Filters (MSF) over
the real Internet traces shows a significant improvement by using
the active counters architecture.

Index Terms— Counter architecture, high-speed measure-
ments, router, data streaming algorithms.

I. INTRODUCTION

Statistics counters are an essential element of most of data
streaming or sampling algorithms. Maintaining them at high
line speeds is a challenging research problem. Briefly, we
need an architecture (1) to store a large number of counters
(say millions) and (2) to update a large number (say tens
of millions) of counters per second. While chip and large
Dynamic RAM (DRAM) can easily satisfy condition (1),
DRAM access times of 50 − 100ns cannot accommodate
large number of counter-updates needed1. On the other hand,
expensive Static RAM (SRAM) with access times of 2− 6ns
allow much more counter increments per second, but are not
economical for large number of counters. Recently, several
solutions [16], [22], [17], [18] are proposed that use hybrid
SRAM/DRAM architecture: for each counter m-bit counter
(m � 64) is stored in SRAM while full counter is stored
in DRAM. SRAM counters are updated on per-packet basis
and when some of them come close to overflow different
Counter Management Algorithms (CMA) decide which coun-
ters should be flushed to DRAM. These approaches share a
common feature: it is not possible to estimate counter value
without accessing DRAM. We use the term Passive Counters
to refer to such schemes. For a number of applications it is
essential to have an estimate of the counter on every packet
arrival. For example, in Multistage Filters (MSF) [6], the
conservative update step requires knowledge of counters at
each stage, and is essential for good performance of MSF:
[6] reports up to 100 times higher false-positive ratio without

1Moreover one cannot expect in the near future that the speeds of DRAM
(which increase approximately 7% per year) will reach the speeds of backbone
links (which roughly double every 18 months)[6], [1].

conservative updates. Similarly, in Smart Sampling [3], the
sampling probability depends on the current estimate of the
flow size. The algorithm for building a Spectral Bloom Filter
[2], the algorithm for online hierarchical-heavy-hitter identifi-
cation [21] as well as efficient implementations of hash tables
[19] also require the volume estimates on per-packet basis.
We will use term Active Counters for schemes that allow
estimate of full counters on per-packet basis without DRAM
access. Thus active counters have to store enough information
in fast memory. Storing the full-width counter in SRAM is an
example of an active counter. At high-speeds these counters
would require up to 64 bits to prevent overflow. The main
objective of this paper is the design of small active counter
architecture with small errors between the small-counter-based
estimate and the real volume. Having efficient small active
counters would reduce SRAM space needed for a number of
applications; or equivalently, for given SRAM space one can fit
more small active counters than regular 32(or 64)-bit counters,
which in turn can significantly improve performance of data
streaming algorithms with limited memory.

A. Related work

The design of efficient statistics counter architecture has
been identified as an important problem by Shah et al [18].
They propose hybrid SRAM/DRAM architecture in which
DRAM is used to store the statistics counter while a small
SRAM is used to enable counter updates at line rate. In
other words, suppose that we need to track n counters of
size M bits, then n counters of full size M bits are stored
in DRAM and n counters of a smaller size m < M bits are
cached in SRAM. The counters in SRAM are updated on
every packet arrival to keep track of the recent history of
counter updates and are periodically flushed to corresponding
DRAM. The decision as to which counter should be flushed
to DRAM is made by a Counter Management Algorithm
(CMA). By maintaining smaller SRAM counters required,
SRAM space is reduced, while larger access times of DRAM
are compromised by accessing DRAM not too often. The size
of SRAM counters, as well as the frequency of DRAM access
is determined by CMA. CMA decides which counters should
be updated first. Different proposals have different CMAs.
The following features are shared by previous proposals:

• full counters are stored in slow DRAM.

• counters stored in DRAM are exact.

In order to provide the exact values of DRAM counters
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CMA must ensure that no SRAM counter overflows before
updating to DRAM.

Shah et al [18] propose a CMA called Largest Counter First
(LCF). In LCF, SRAM counter with the largest value is flushed
to DRAM. LCF is difficult to implement at high speeds for the
following two reasons. First, LCF requires a large amount of
control memory: while LCF SRAM counters are 9 bits wide
control memory can take up to 20 bits per counter. Second,
LCF requires finding the largest of n counter values which is
the main performance bottleneck of LCF.

In order to reduce control memory consumption of LCF and
expensive search for the largest counter value, Ramabhadran
and Varghese [16] proposed a new CMA called Largest Recent
with threshold T , LR(T ). Briefly, LR(T ) tracks the list of
counters with values greater than the threshold T and makes
the decision as to which SRAM counter should be flushed to
DRAM using only this list. By doing this, the computational
complexity of LCF is significantly reduced, while the usage of
the efficient data structure called aggregated bitmap requires
only 2 bits per counter devoted for the control memory.
Compared to LCF (that consumes 29 bits per counter) LR(T )
requires only 11 bits per counter.

Roeder and Lin [17] developed an extension to LCF and
LR(T ) to reduce the memory requirements for nonuniform
traffic patterns. Namely, if the frequency of updating fast
memory counters is not uniform over counters, then allocating
more bits to SRAM counters with more frequent updates
would reduce the number of DRAM accesses; therefore the
amount of fast memory space needed for storing recent history
counters can be reduced. They propose multiple levels of fast
memory instead of one: one level of SRAM and one or more
levels of CAM (Content Addressable Memory) for storing
the partial counter values. Their enhancement can reduce the
amount of equivalent fast memory storage up to 28%.

A recent paper by Zhao et al [22] removed the basic
design objective of previous approaches that does not allow
SRAM-counter overflows. The key observation is, assuming
that SRAM counters are large enough, counter overflows
occur rarely enough so that a small buffer for storing this
overflowed counters would be sufficient to allow the exact
tracking of DRAM counters with extremely low probability
of data loss2. The implementation of their proposal requires
l(µ) = �log2(

1
µ )� bits for SRAM counters, and ε < 1 (say

0.01) bits per counter for buffer that keep track of overflowed
counters. Here µ represents the ratio between the access times
of SRAM and DRAM. For currently available SRAM/DRAM
devices, µ is in the range [1/50, 1/10] which implies l(µ) ∈
{4, 5, 6}. We believe that the multilevel SRAM/CAM/DRAM
architecture, similar to those proposed in [17], can further
reduce equivalent fast memory storage, but this is out of scope
of the present paper.

2To quote[22] “However, in practice there is no need to worry about
this probability, since it can be made so small that even if router operates
continuously for billions of years (say from Big Bang to now)), the probability
that a single loss of increment happens is less than 1 over a billion”.

B. Our contributions

The current proposals for efficient counter statistics archi-
tecture belong to class that we call passive counters: full
counter information is stored in DRAM, and it is not possible
to estimate the full counter value without accessing DRAM.
While for many applications passive counters are good enough
[11], [12], for a number of applications need for full counter
value, or its estimate, is required on per-packet basis [6], [2],
[3], [21]. In these cases, at high speed links (say 10Gbps
or more), it is necessary to have enough information for
estimation of full counter based on information stored in the
fast memory. The design of efficient active counter architecture
is the main concern of this paper.

Briefly, the main contributions of this paper are the
following:

• Two active counter architecture schemes, SAC and
HAC, are proposed that have small per counter memory
requirements, yet small expected error.

• The proof of unbiasedness of presented estimators and
the analysis of the expected error.

• The framework for the resource control of SAC and
HAC, and a demonstration of the potential benefit of proposed
solutions is presented in a case study done with Multistage
filters over real Internet traces.

Both of our schemes are randomized and therefore give the
estimate of total traffic rather than the exact values. Our first
scheme called SAC use only SRAM memory, with m bits per
counter devoted for tracking values in range [0, 2M ] where
M > m. The standard error of this scheme is proportional
to 1√

2k+2k−r
, for some r < k < m. In order to reduce the

error we developed the second scheme called HAC which uses
hybrid SRAM/DRAM architecture. In HAC the main counter
information is stored in SRAM, while DRAM is used for
storing augmenting counters which are used to reduce the
standard error. Our analysis shows that if η is the relative
frequency of accessing of DRAM, and ĉ the estimate of the
counter, then the standard error of HAC is proportional to η√

ĉ
(which can be substantially smaller for large counter values).

We argue that in applications of statistics counters for
firewall support, intrusion detection, performance monitoring,
flow control, packet schedulers, load balancing or traffic
engineering, no need for exact counters exist. We believe
that small errors (of say 1%) are acceptable, so that all
reasons for design of existing passive counters apply to active
counter architecture as well. We also believe that storing
counter information in on-chip SRAM can be beneficial for
remote monitoring/control as it would reduce latency of SMNP
queries at heavily utilized network processors that usually have
low priority (and therefore high latency).

Throughout this paper we use the following notation. For a
real number x: by �x� we denote the largest integer not greater
than x by �x� we denote the smallest integer not less than x
and by {x} = x − �x� we denote the residuum of x modulo
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1 UpdateCounter(i, inc)
2 A[i] = A[i] + � inc

2r·mode[i] �
3 With probability { inc

2r·mode[i] }: A[i] = A[i] + 1

4 if A[i] > 2k

5 mode[i] = mode[i] + 1;
6 p = {A[i]

2r };

7 A[i] = �A[i]
2r �;

8 With probability p: A[i] = A[i] + 1;
9 endif
10 if mode[i] == 2l

11 RenormalizeCounters(r)
12 r = r + 1;
13 endif

14 Initialize()
15 r = 1;
16 mode[i] = 0;
17 A[i] = 0;

18 RenormalizeCounters(r)
19 for s = 1 : n
20 old−mode = mode[i];
21 mode[i] = �mode[i] · r

r+1 �;
22 r1 = mode[i] · (r + 1) − old−mode · r;
23 p = {A[i]

2r1 };

24 A[i] = �A[i]
2r1 �;

25 With probability p: A[i] = A[i] + 1;
26 endfor

Fig. 1. The pseudocode of SAC.

1.

II. SIMPLE ACTIVE COUNTERS (SAC) SCHEME

Suppose that we have q · n bits of SRAM allocated for
n counters. Let Vi be real value of counter i. Our goal is
to develop scheme that estimates Vi using only q bits of
SRAM memory. Our scheme works as follows. We divide the
available q bits of the i-th SRAM counter in two parts: l-bit
exponent part that we call mode[i], and the k-bit estimation
part A[i]. We use the estimator

V̂i = A[i] · 2r·mode[i] (1)

Here r is the global parameter, and is determined by scale
over which this set of counters run. To update A[i] we use
a randomized scheme. Suppose that we need to increment
the counter i by value inc. If inc ≥ 2r·mode[i] then we first
increment A[i] by � inc

2r·mode[i] � and then increment A[i] by 1
with probability given by normalized value of the residue:

1
2r·mode[i] (inc − � inc

2r·mode[i] � · 2r·mode[i]). Similarly, for inc <

2r·mode[i] we increment A[i] by 1 with probability inc
2r·mode[i] .

The pseudocode of the scheme is given in Figure 1. Renor-
malization step moves counters to a higher scale: r = r + 1.

Initially, we statically divide the available memory of q bits
in two parts of size l and k such that l+k = q. How to chose
“right” allocation pair (k, l) depends on various factors, and
we will discuss this in detail in Section V.

The analysis from Section IV shows that the standard error
of the scheme is approximately proportional to 1√

2k+2k−r
.

This error can be substantial for very small k. Intuitively,
for large counters, the frequency of updates is very small,
which implies the large variance of the background estimator.
In the next section we present the architecture that will
use augmenting DRAM counters to reduce the variance of
estimators.

1 UpdateCounter(i, inc)
2 if inc

2r·mode[i] > 1
η

3 A[i] = A[i] + � inc

2r·mode[i] �
4 With probability { inc

2r·mode[i] }: A[i] = A[i] + 1

5 else
6 With probability 1

η do
7 B[i] = B[i] + inc;

8 if B[i] ≥ 2r·mode[i]
η ;

9 A[i] = A[i] + 1;

10 B[i] = B[i] − 2r·mode[i]
η ;

11 endif
12 enddo
13 endelse
14 if A[i] > 2k

15 mode[i] = mode[i] + 1;

16 B[i] = RandomUniform[0, 2r·mode[i]
η ]

17 p = {A[i]
2r };

18 A[i] = �A[i]
2r �;

19 With probability p: A[i] = A[i] + 1;
20 endif
21 if mode[i] == 2l

22 RenormalizeCounters(r)
23 r = r + 1;
24 endif

25 Initialize()
26 r = 1;
27 mode[i] = 0;
28 A[i] = 0;
29 B[i] = 0;

30 RenormalizeCounters(r)
31 for s = 1 : n
32 old−mode = mode[i];
33 mode[i] = �mode[i] · r

r+1 �;
34 r1 = mode[i] · (r + 1) − old−mode · r;
35 p = {A[i]

2r1 };

36 A[i] = �A[i]
2r1 �;

37 With probability p: A[i] = A[i] + 1;

38 B[i] = RandomUniform[0, 2(r+1)·mode[i]
η ];

39 endfor

Fig. 2. The pseudocode of HAC.

III. HYBRID ACTIVE COUNTERS (HAC) SCHEME

Suppose again that we have q bits per counter in SRAM,
divided in two parts with sizes of k (A[i]) and l (mode[i])
bits. Assuming knowledge of the full counter value Vi, setting
A[i] to round( Vi

2r·mode[i] ) would imply the lowest errors under
this circumstances. However, knowledge of the exact value Vi

does not exist, so we have to find other ways to capture the
top k bits of Vi. As we noticed, purely SRAM solution exhibit
O( 1√

2k
) errors. This is due to high variance of the background

estimators. To illustrate this, consider the following example:
scale r = 2, mode[1] = 5, with all increments equal to 1. In
this setting, A[i] is incremented by 1 with probability 2−10.
Suppose that the counter Vi updates come with a rate of 1
per unit of time, this means that the time between the two
consecutive A[i] increments is given by the geometric random
variable G(p0), with p0 = 2−10. The expected value of G(p0)
is 1/p0 = 1024, while the variance of G(p0) is 1−p0

p2
0

≈ 220.
Suppose now that we have available additional memory which
can be accessed only occasionally, say once in 16 time units
on average. Let B[i] be the additional memory space and
in the every time unit increment B[i] by 1 with probability
p1 = 1/16. By incrementing A[i] when B[i] reaches 64, the
time between two consecutive A[i] increments is given by
the random variable Z1 which is sum of 64 i.i.d. geometric
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random variables G(p1). The expected value of Z1 is 64· 1
p1

=
1024, while the variance of Z1 is 64 · 1−p1

p2
1

≈ 214, which

is approximately 26 times smaller than in the case without
additional memory. We can think of B[i] as of additional
counters stored in the slower DRAM with rare accesses.

Our second scheme HAC formalizes the reasoning from the
simple example presented above. The basic SRAM architec-
ture is the same as in SAC: a memory of n · q bits; each
q bits counter is divided in k bits estimate space A[i] and l
bits mode[i]. The difference between SAC and HAC is in the
way they increment A[i]. In HAC, each of n counters have
a shadow counter in DRAM, B[i]. Let η be the allowable
relative DRAM frequency: every η SRAM accesses we can
have one DRAM access. We update B[i] with probability 1

η ,
and increment A[i] when B[i] “overflows”.

Figure 2 contains the pseudocode of HAC. For low r and
mode[i] (if statement in line 2 is positive) there is no need
for DRAM, which become beneficial only when r ·mode[i] is
larger.

At low speeds, η can be equal to 1, which means that
we can store full counters in DRAM. However, in our case
of interest, η > 1, for the moment we will assume that is
manually configurable constant. In Section V we will present a
possible control strategy for η, that will take into consideration
the available system bus and DRAM bandwidth. In the case
of constant η no need for the renormalization of DRAM
counters B[i] exists. However, in the case of dynamic η, the
renormalization of B[i] is necessary.

Compared to other existing counter architectures HAC does
not have exact counter value, but stores only its estimate. Note
a paradigm shift: the main counter information is stored in
SRAM while DRAM is used to store information only from the
recent history.

IV. ANALYSIS

In this section we provide the analysis of the proposed
schemes: SAC and HAC. Throughout this section we concen-
trate on a single counter, say (A[1],mode[1]), and denote it
with (A,mode). Let u1, u2, . . . be the sequence of increments
of counter (A,mode). Denote Vj =

∑j
s=1 us. For each

j = 1, 2, . . ., denote by Aj the k-bit random variable A after
j updates, by modej we denote the random variable mode
after j updates, and by rj the random variable that determines
scale r after j updates. In the next theorem we show that the
following estimator of Vj is unbiased:

V̂j = Aj · 2modej ·rj .

Theorem 1: The SAC estimator V̂j is unbiased:

E[V̂j ] = Vj .
Proof: Denote by (A′

j ,mode′j , r
′
j),(A

′′
j ,mode′′j , r′′j ) and

(A′′′
j ,mode′′′j , r′′′j ) the values of (A,mode, r) after execution

of the lines 3, 9 and 13 of the SAC algorithm given in Figure
1 (Recall that index i is omitted, and that inc = uj+1). We
have that

E[A′
j · 2r′

j ·mode′
j |(Aj ,modej , rj)] =

(
Aj + � uj+1

2rj ·modej
�
)
·

·2rj ·modej + { uj+1

2rj ·modej
} · 2rj ·modej = Aj · 2rj ·modej + uj+1.

Thus

E[A′
j · 2r′

j ·mode′
j ] = E[Aj · 2rj ·modej ] + uj+1. (2)

After the line 9 is executed, we have that either
(A′′

j ,mode′′j , r′′j ) is equal to (A′
j ,mode′j , r

′
j) or mode′′j =

mode′j + 1 and

E[A′′
j · 2r′′

j ·mode′′
j |(A′

j ,mode′j , r
′
j)] =

⌊
A′

j

2r′
j

⌋
· 2r′

j ·(mode′
j+1)

+
{

A′
j

2r′
j

}
· 2r′

j ·(mode′
j+1) = A′

j · 2r′
j ·mode′

j .

Thus, in both subcases

E[A′′
j · 2r′′

j ·mode′′
j ] = E[A′

j · 2r′
j ·mode′

j ]. (3)

Similarly

E[A′′′
j · 2r′′′

j ·mode′′′
j ] = E[A′′

j · 2r′′
j ·mode′′

j ]. (4)

Since (A′′′
j ,mode′′′j , r′′′j ) is equal to (Aj+1,modej+1, rj+1),

from (2), (3) and (4) we conclude that

E[V̂j+1] = E[Aj+1 · 2rj+1·modej+1 ] =

E[Aj · 2rj ·modej ] + uj+1 = E[V̂j ] + uj+1.

Now by a straightforward mathematical induction argument
the assertion of the theorem follows.

The following theorem establishes the same result for the
HAC.

Theorem 2: The HAC estimator V̂j is unbiased:

E[V̂j ] = Vj .
Proof: Similarly, as in proof of Theorem 1 we denote

by (A′
j ,mode′j , r

′
j),(A

′′
j ,mode′′j , r′′j ) and (A′′′

j ,mode′′′j , r′′′j )
values of (A,mode, r) after the execution of the lines 13, 20
and 24 of the HAC algorithm (given in Figure 2) respectively;
inc = uj+1.

From the proof of the Theorem 1 we have that the relations
(3) and (4) are satisfied. Now we prove that relation (2) is
satisfied as well. We distinguish two cases:

1st Case: uj+1

2r·mode[i] > 1
η . Then HAC is identical to SAC

and (2) follows.

2nd Case: uj+1

2r·mode[i] ≤ 1
η . First, note that if B is a random

variable uniformly distributed in the segment [0, a] then for
any real number x, the random variable mod(B + x, a) =
B + x − a · �B+x

a � ∈ [0, a] is also uniformly distributed in
[0, a]. This means that if we initialize the DRAM counter B
with the uniform distribution, it will remain uniform (in the
appropriate segment [0, 2rj ·modej

η ]) after the updates (line 10).

This implies that the probability of B + uj+1 > 2rj ·modej

η is
given by uj+1

2
rj ·modej

η

. Thus counter Aj is incremented by one

(line 9) with probability

q0 =
1
η
· uj+1

2rj ·modej

η

=
uj+1

2rj ·modej
.
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Formally

E[A′
j · 2r′

j ·mode′
j |(Aj ,modej , rj)] = (Aj + q0) · 2rj ·modej =

= Aj · 2rj ·modej + uj+1.

Which implies

E[A′
j · 2r′

j ·mode′
j ] = E[Aj · 2rj ·modej ] + uj+1.

A. Variance estimation

Suppose that a counter runs in scale r and mode m > 0.
Then by definition the value A of k-bit counter is in the range
[2k−r, 2k − 1]. Denote by T (A,m) the random variable that
represents the amount of total traffic needed from the start
of counting until the SAC (HAC) counter reaches the state
(A,m). In this section we evaluate the variance of T (A,m),
assuming an uniform increment size θ.

Theorem 3: Suppose that increments to the SAC counter
are uniform and given by θ > 0. Then, for the random variable
T (A,m) defined above we have:

E[T (A,m)] = A · 2rm (5)

and

V ar[T (A,m)] = 2k−r

(
1 +

22rm − 1
2r + 1

− θ(2rm − 1))
)

+

+(A − 2k−r)
(
22rm − θ2rm

)
. (6)

Proof: Recall that for a geometric random variable3

G(p): E[G(p)] = 1
p and V ar[G(p)] = 1−p

p2 . For each s denote
by W (r, s) the random variable that represents the amount of
traffic needed to make one increment of the counter (A,mode)
when mode = s. The probability of incrementing the counter
(A,mode) in a single trial is ps = θ

2rs . Therefore, the number
of trials before the increment of (A,mode) is G(ps) and since
each trial corresponds to θ of the total traffic we have

W (s) = θG(ps).

Time from the beginning of counting can be divided in m +
1 intervals, corresponding to each mode s = 0, 1 . . . ,m. In
mode s = 0 A is incremented q0 = 2k times, for modes
s = 1, 2 . . . ,m − 1, we have qs = 2k − 2k−r increments,
while in mode s = m until the k-bit counter is A the number
of its increments is qm = A− 2k−r. Denote by Q(s) the total
arrived traffic in each of these m + 1 intervals. Now for any
s = 0, 1, . . . ,m

Q(s) =
qs∑

j=1

Wj(s),

where Wi(s) is the set of independent identically distributed
(i.i.d.) random variables, with distribution given by W (s).
Therefore:

E[Q(s)] =
qs∑

j=1

E[Wj(s)] = qs · θ 1
ps

= qs · 2rs.

3Geometric random variable represents the number of Bernoulli trials
needed for the first success, when the success of each trial has probability p.

and

V ar[Q(s)] =
qs∑

j=1

V ar[Wj(s)] = qs·θ2 1 − ps

p2
s

= qs·22rs(1−ps).

Now T (A,m) is given by:

T (A,m) =
m∑

s=0

Q(s).

The expected value of T (A,m) is now:

E[T (A,m)] =
m∑

s=0

E[Q(s)] = q0 +
m−1∑
s=1

qs · 2rs + qm · 2rm =

= 2k + (2k − 2k−r)
m−1∑
s=1

·2rs + (A − 2k−r) · 2rm =

= 2k−r + (2k − 2k−r)
m−1∑
s=0

·2rs + (A − 2k−r) · 2rm = .

= 2k−r +(2k − 2k−r)
2mr − 1
2r − 1

+ (A− 2k−r) · 2rm = A · 2rm.

And the variance

V ar[T (A,m)] =
m∑

s=0

V ar[Q(s)] = q0+
m−1∑
s=1

qs ·22rs(1−ps)+

+qm ·22rm(1−pm) = 2k +(2k −2k−r)
m−1∑
s=1

·22rs(1− θ

2rs
)+

+(A − 2k−r) · 22rm(1 − θ

2rm
) = 2k−r+

+(2k−2k−r)
m−1∑
s=0

·(22rs−θ2rs)+(A−2k−r)·(22rm−θ2rm) =

= 2k−r + 2k−r(2r − 1)(
22mr − 1
22r − 1

− θ
2mr − 1
2r − 1

)+

+(A − 2k−r) · (22rm − θ2rm),

and (6) follows.
With δ(T (A,m)) we denote the Coefficient of variation:

δ(T (A,m)) =

√√√√E

[(
T (A,m) − A2rm

A2rm

)2
]

=

√
V ar[T (A,m)]
(E[T (A,m)])2

The following corollary characterizes the asymptotic be-
haviour of δSAC(T (A,m)) at the beginning of mode m:
A = 2k−r.

Corollary 1: For SAC counters at the beginning of mode
m (A = 2k−r):

δ2
SAC(T (A,m)) =

1
2k−r+2rm

(
1 +

22rm − 1
2r + 1

− θ(2rm − 1)
)

.

(7)
When r · m is large:

δSAC(T (A,m)) ≈
√

1
2k + 2k−r

.
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Proof: The equality (7) follows directly from (5) and (6).
When r · m is large

δSAC(T (A,m)) ≈
√

1
2k−r+2rm

22rm

2r + 1
=

√
1

2k + 2k−r
.

In HAC case we have the following
Theorem 4: Suppose that the increments to the HAC

counter are uniform and given by θ > 0 with relative DRAM
access frequency η. Then, for the random variable T (A,m)
defined above it holds:

E[T (A,m)] = A · 2rm (8)

and
V ar[T (A,m)] = A · 2rm · θ(η − 1). (9)

Proof: As in the proof of Theorem 3, we divide the
time into m + 1 intervals, each corresponding to one mode
s = 0, 1, . . . , m and denote by W (s) the amount of traffic
needed to make one increment of the HAC counter at mode s.
Thus, W (s) is given by the amount of traffic needed for the
DRAM counter B to overflow (ie. become larger than 2rs

η )
which is equal to the sum of b = 2rs

ηθ ) i.i.d. random variables
Zi ≡ θG( 1

η ). Therefore

W (s) =
b∑

i=1

Zi.

For W (s) we have

E[W (s)] =
b∑

i=1

E[Zi] = b · θ · 1
1
η

= 2rs.

and

V ar[W (s)] =
b∑

i=1

V ar[Zi] = b · θ2 ·
1 − 1

η
1
η2

= 2rs · θ(η − 1).

Now, the amount of traffic Q(s) that corresponds to mode
s is given by the sum of qs i.i.d. random variables Wj(s)
identically distributed as W (s): Q(s) =

∑qs

j=1 Wj(s). Note
that V ar[W (s)] = θ(η − 1) · E[W (s)] which implies that

E[Q(s)] = qs · 2rs

and

V ar[Q(s)] = θ(η − 1) · qs · 2rs = θ(η − 1) · E[Q(s)]. (10)

Thus, for T (A,m) =
∑m

s=0 Q(s), from the proof of Theorem
3 we conclude that (8) is satisfied. Now (9) follows from (8)
and (10).

From the previous theorem we get:

δHAC(T (A,m)) =

√
A · 2rm · θ(η − 1)

(A · 2rm)2
=

√
θ(η − 1)
A · 2rm

.

Remark 1. The variance calculated above neglected the
initial period when inc

2r·mode[i] > 1
η , during which the HAC

is identical to the SAC. Since the SAC error is smaller than
the HAC error in this regime, we do not use the hybrid scheme
until the end of this period. Thus, the real HAC error is

strictly less than the HAC error presented above. However,
the difference is small since the initial period takes a relatively
short period of time.

Remark 2. Note that from the Cauchy-Schwartz inequal-
ity, for any real valued random variable X:

√
E(X2) ≥

E(|X|). Taking X to be the relative error of T (A,m),
X = T (A,m)−A2rm

A2rm , the previous inequality implies that the
expected relative error is not greater than δ(T (A,m)):

E

[∣∣∣∣T (A,m) − A2rm

A2rm

∣∣∣∣
]
≤ δ(T (A,m))

V. RESOURCE CONTROL

In this section we discuss possible approaches for control-
ling two variables that determine accuracy of our schemes: k
and η.

A. Allocating q bits in two parts.

The basic question is the following. Given q bits of available
memory for a counter (A,mode), how many bits should we
allocate to A and mode? Allocating more bits to A gives less
space for mode and therefore implies a potentially larger scale
r. Larger r implies larger errors for fixed k. Figure 3 depicts
the graphs of δSAC(T (A,m)) for k = 8 allocating bits for
A, in three modes r = 1, 2, 3, in the SAC case. On the other
hand, allocating too much space for storing mode might waste
precious space for A. Thus, for a single counter (of size q)
one possible way to choose the values k and l is to pick k and
l = q−k for which δ(T (A(k),mode(k))) is minimized. Thus,
assuming that the performance objective is minimizing the
value of δ(T (A(k),mode(k))) then k should be dynamically
updated to a value that minimizes δ(T (A(k),mode(k))).

In the case of multiple counters we should pick a common k
for all counters. The performance objective can depend on var-
ious factors. For example some counters might require higher
precision then others; for various applications counters with
very low or very high values might be more important than
others. In general, for n counters: (Ai,modei), picking the
optimal k is formally equivalent to the optimization problem:

min
n∑

i=1

fi(Ai(k),mode(k), δ(T (Ai(k),mode(k)))). (11)

Here fi are cost functions. If none of the counters is
prioritized by default, fi is independent of i. One should
be careful since changing k might cause change of scale r
and all counters should be re-normalized to take into account
the new conditions. This re-normalization can be done in a
straightforward manner and will not be discussed here.

B. Controlling the η

In the HAC case an important parameter that determines
accuracy of active counters is relative DRAM access fre-
quency η. Lower η corresponds to better accuracy of the
HAC counters. However, there exist a tradeoff between the
usage of DRAM and the accuracy of the HAC scheme.
The performance bottleneck in many network processors is
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Fig. 3. Coefficient of variation δSAC(T (A, m)) for r = 1, 2, 3 and θ =
1, 1000; k = 8.

the system bus and DRAM bandwidth. From the point of
exploitation of this resource we can distinguish two cases:

1. The devoted number of DRAM accesses used by HAC
in a unit of time ∆ (say 1 sec) is constant and is given by α.

2. DRAM bandwidth is shared between HAC and other
applications.

In both cases we can isolate the buffer for storing the
DRAM access queries required by HAC. The rate by which
this buffer is serviced depends on the level of utilization and
the DRAM bandwidth resource allocation algorithm. Bearing
in mind that η is the parameter that controls the arrival rate
to this buffer, we can exploit ideas from the large spectrum of
AQM algorithms. For example we can control η based on
queue length; by tracking the low pass filter of the queue
length as in RED like schemes [9], [7], [8] we can dynamically
update η to keep the queueing delay low. Virtual queue
techniques can be used as well [10], [13], as well as other
control strategies. For the stability of such control schemes, it
is beneficial that there does not exist feedback delay unlike the
case of TCP/AQM where feedback delays can be significant
and dangerous from the stability point of view.

The HAC algorithm defined in Section III assumes invariant
sampling rate η. In the context of variable η the augmenting
DRAM counters B[i] should take into account the sampling
rate. To do this, we can track η[i] - the sampling rate at the
last update of i-th DRAM counter B[i]. At every update of
the counter B[i] we first re-normalize B[i] taking into account
the current η:

B[i] := B[i] · η[i]
η

,

then reset η[i] to the current value of η

η[i] := η.

After this, continue with updating the counter B[i]. By doing
this unbiasedness of the appropriate counters is preserved. In
normal conditions, measurements [14] show that, on typical
150Mbps+ links, basic IP parameters (such as the number
of active connections, proportion of TCP traffic, aggregate IP

0 1 2 3 4 5 6 7 8 9 10

x 10
5

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

A⋅ 2rm

Re
lat

ive
 er

ror

Single trajectory
δ

SAC
(T(A,m))    

Fig. 4. Relative error for a single SAC with unit increments; q = 12, k = 8.
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Fig. 5. Relative error for a single HAC with unit increments; q = 12, k = 8.

traffic, etc.) do not change dramatically in short time periods
which protects η from large oscillations.

Remark 3. At highly loaded links, DRAM bandwidth
and network processors are also highly utilized and therefore
necessitate higher η. While the accuracy of HAC scheme
decreases as η increases, at highly loaded links counter values
grow as well which is beneficial for HAC accuracy. However,
we are unable to quantify this tradeoff between link (DRAM
bandwidth) utilization and HAC accuracy since it is a function
of other network processor parameters which are hard to
characterize.

Remark 4. A relatively small queue for storing DRAM up-
dates can (in conjunction with appropriate queue management
algorithm) ensure virtually zero loss of data (see [22]).

VI. EVALUATION

In the first experiment4 we evaluate the behavior of a single
SAC (and HAC) counter over a stream of unit increments. The
stream length is L = 1000000. Figures 4 and 5 depict observed
relative errors of SAC and HAC respectively, together with
the corresponding coefficient of variation. The counter size is
q = 12 and k = 8.

Both SAC and HAC are designed to accept nonuniform
increments. The technical report [20] contains experiments
that show the behavior of both schemes under nonuniform
increments given by a NLANR trace [15].

A. Errors versus counter size q

In this experiment we evaluate the average errors for
SAC and HAC as a function of counter size q. We use

4All MATLAB simulations used in this section can be downloaded from
http://www.hamilton.ie/person/rade/AC/
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the cost function f(A(k),mode(k), δ(T (A(k),mode(k)))) =
δ(A(k),mode(k)) for dividing q bits in two parts.

Figure 6 depicts the results based on a stream with
unit increments in the SAC case. Averages are based
on 10 independent runs. Figure 6 also contains the
δSAC(T (A(k),mode(k))) for k that minimizes the cost func-
tion. As we already noticed (Remark 2, Section IV-A) the
coefficient of variation δ is greater than the expected relative
error.

In the HAC case the comparison between errors and counter
size is not that straightforward as it depend on several other
factors: η and the value of the counter A · 2r·mode. In the
SAC case the rounding error which is of order5 O( 1

2k ) is
negligible compared to expected δSAC and we neglected it
in computing the expected error δSAC . However, in HAC
case δHAC can be much smaller and for estimating the error
we use δ′HAC(T (A,mode)) = δHAC(T (A,mode)) + 1

A .
Figure 7 depicts the errors of the HAC estimates after 500000
unit increments averaged over 10 independent runs, and two
different η: 8 and 32.

B. Case study: MSF

In this section we investigate the effects that active counters
could have on one of the state of the art algorithms for

5We track the top k bits(A ∼ 2k).

MSF q S1 S2

Standard 24 40 24
With AC 9 16 16

TABLE I

PARAMETERS OF MSF COUNTER SIZE AND FLOW ENTRY SIZE.

identification of heavy hitters: Multistage Filters (MSF)[6]. As
we said, previously proposed passive counters [18], [16], [17],
[22] cannot be used since they store full counter information
in DRAM, which is too slow to track the conservative-update
step of MSF. MSF uses memory divided in two parts. The first
part contains d levels with b counters (of size of q bits) on each
level, while the second part contains the hash table that keeps
information on heavy hitters; we denote by FC the number
of available flow entries and by S the size of a flow entry, in
bits. We use S bits of a flow entry to track information on
the flow size (S1 bits) and the flow identifier + hash overhead
(S2 = S−S1 bits). Table I determines the parameters for two
cases: one without active counter enhancements (standard),
and another with active counters (with AC).

Smaller sizes of counters allow more counters per stage and
more flow entries. The price that must be paid is the inaccuracy
caused by smaller counters. Here we show that the gain
obtained by more counters outweight the inaccuracy of small
counters. We run MSF over two unidirectional NLANR traces:
MRA and FRG [15]. The average number of packets per sec-
ond is 60K (MRA) and 69K (FRG). The average throughput is
285Mbps (MRA) and 428Mbps (FRG). The available SRAM
memory is 40Kbit. We use the recommendation from [6] to
determine other parameters of MSF (b,d and FC) in both
cases. Since in both cases counters are not large enough (the
largest is of order of magnitude of 107) to exploit the benefit
of HAC for simplicity we use only SAC6. By using the cost
function fi(Ai(k),modei(k), δSAC(T (Ai(k),modei(k)))) =
δSAC(T (Ai(k),modei(k))) the optimization criterion stabi-
lizes k at value k1 = 6 for the basic 9-bit counters. For 16-bit
(flow container) counters that track flow sizes the value of k
that solves the same optimization problem is k2 = 12.

The metric of interest is the average error for the set of
flows indexed by the set I defined as in [6] by:

Err(I) =
∑

i∈I |est(fi) − r(fi)|∑
i∈I r(fi)

(12)

Here r(fi) is the exact size of flow fi and est(fi) is the
MSF estimate. By LK we denote the set of top-K flows. We
evaluate the average errors for the top-100, top-250, top-500
and top-1000 flows. The results are presented in Figures 8 and
9. Observe that the errors of top-100 flows are approximately
the same both with and without SAC, while the ratio between
the errors Err(LK) for MSF with standard counters and MSF
with SAC grows as K grows: MSF with SAC gives up to
6 times smaller errors in measuring the top-1000 flows. In
parallel we show the errors of MSF with SAC using half as
much memory (20Kbit).

6Using HAC would give errors that are strictly less then using only SAC, but
the difference is not significant in the present experiment, so we concentrate
on SAC only.
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VII. SUMMARY

In this paper we propose two randomized active counters
algorithms, SAC and HAC, prove their unbiasedness and eval-
uate the variance of the corresponding random variables. While
active counters are essential for a number of recently proposed
data streaming and/or packet sampling algorithms [6], [2], [3],
[21], they can also be beneficial for other applications like
remote monitoring at heavily loaded network processors (See
Section I-B).

SAC uses only SRAM but exhibits larger errors than HAC
which uses augmenting DRAM for storing information on
the recent history to reduce the variance. Storing full counter
information in SRAM and recent history information in
DRAM is a paradigm shift from the previous passive counters
proposals [16], [22], [17], [18] that use DRAM for full counter
information and SRAM for recent history details. Having in
mind the possible high load of DRAM bandwidth caused by
other applications we suggest dynamic control of the DRAM
access frequency. This enhancement can be directly exploited
by other SRAM/DRAM proposals that usually neglect the
variability of the available DRAM bandwidth.

Finally we conclude with a list of open problems that we
plan to investigate in the future.

Open problem 1. Let Λ be a data streaming algorithm that
uses limited memory (given by S bytes) and active counters
architecture with q-bits per counter. Pick q such that cost C(Λ)
(errors, false positives, false negatives, or something else) is
minimized.

Open problem 2. Characterize available DRAM bandwidth

at (heavily loaded) network processors and investigate (adap-
tive) hybrid SRAM/DRAM schemes under variable DRAM
access frequency using rich AQM theory.

Open problem 3. The proposed solutions can be immedi-
ately extended to multi-operations arithmetics (present solu-
tions consider only additive counters). Could the theory be
extended? Are there applications that need it?
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