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Abstract—1In this paper, we study the problem of tracking a step
reference signal using sampled-data control systems. We are inter-
ested in the tracking performance, defined as the integral square
of the tracking error response between the system’s output and
the reference input. This performance is deemed the best achiev-
able by a sampled-data controller with a linear time-invariant dis-
crete-time compensator if it is the minimal attainable by all such
controllers that stabilize the system. Our primary objective is to
investigate the fundamental tracking performance limit in sam-
pled-data systems, and to understand whether and how sampling
and hold in a sampled-data system may impose intrinsic barriers
to performance. We consider two tracking performance measures,
with one defined with respect to the unit step signal, and another
with respect to a delayed step signal and averaged over one sam-
pling period. We derive an analytical closed-form expression in
each case for the best achievable performance. The results show
that a performance loss is generally incurred in a sampled-data
system, in comparison to the tracking performance achievable by
analog controllers. This loss of performance, as so demonstrated by
the expressions, is attributed to the non-minimum phase behaviors
as well as the intersample effects generated by samplers and hold
devices. Thus, sampled-data controllers do result in an additional
performance limit, which is seen as a necessary tradeoff for other
advantages offered by this class of controllers.

Index Terms—Discretization, frequency-domain lifting, inter-
sample effects, non-minimum phase zeros, performance limit,
sampled-data systems, tracking.

1. INTRODUCTION

OR a given plant, the optimal tracking ability, measured by
F the minimal tracking error between its output and a refer-
ence input to be tracked via a stabilizing controller, depends on
the plant, the class of controllers, as well as the reference signal.
When the plant and the reference input signal are given, and the
controller has been designed, the implementation mode of the
controller, i.e. via an analog or a digital controller, will also lead
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to different tracking performance. In this paper, we consider
the tracking performance problem for sampled-data systems, in
which the plant operates in continuous time while the controller
in discrete time. We consider single-input, single-output (SISO),
linear time invariant (LTT) plants. The reference input will be the
unit step signal. The tracking performance is defined as the inte-
gral square of the error response, measured by the minimal error
achievable by all possible sampled-data stabilizing controllers
with an LTT compensator. Our main objective is to investigate
what may affect the tracking performance in this setting, and
whether any limit to this performance may exist, and if any, how
and why it arises.

The tracking capability of feedback systems is an important
attribute and has been the subject of research for many years.
For SISO stable plants, the ability to track step signals with an
LTI controller is considered in [21], [24]. It has been shown that
the tracking capability is completely determined by the location
of non-minimum phase zeros of the plant, whether in contin-
uous time or in discrete time. Recently, these studies have been
extended to multi-input multi-output, unstable plants with pos-
sible time delays [10], [26], [33], wherein it was found that the
tracking performance is determined by the delay times, as well
as the location and directional properties of the unstable poles,
and the non-minimum phase zeros in the plant, and that the ef-
fects of delays, poles and zeros can be completely described via
closed-form expressions. A similar conclusion holds with re-
spect to other benchmark signals than the step signal, including
sinusoidal and ramp signals [11], [28].

Problems concerning tracking with sampled-data controllers
have been widely studied as well; see, e.g., [13]-[15], [18],
[19], [36] and the references therein. These problems become
considerably more difficult, and closed-form expressions for
tracking performance are not yet available; instead, the existing
work addresses exclusively numerical design of optimal sam-
pled-data controllers. Among several issues which are unique to
sampled-data tracking systems, one important problem is con-
cerned with whether the tracking performance in a sampled-data
system may become worse than that of the corresponding analog
system. If this is the case, why then is a performance loss in-
curred in the sampled-data system? Furthermore, what may be
the cause contributing to this loss of performance? Would the
loss be fundamental of the sampled-data implementation of the
controller? If so, can the loss be recovered with sufficiently fast
samplers? These issues form the primary objectives of inquiry
in the present paper.

The tracking problems being considered in this paper can be
posed as sampled-data s control problems and tackled using
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existing numerical methods (see, e.g., [13], [15]). It is worth
noting that problems of this kind have been studied in a more
general setting where linear time-varying (LTV) and periodic
controllers are considered [15], [38]. Despite the restriction, the
consideration of LTI controllers nevertheless enables us to ob-
tain analytical results that differ considerably from numerical
solutions. Specifically, our main results are analytical expres-
sions of the minimal tracking error, whereas the error is defined
either as the integral square error in tracking the standard unit
step signal originated at the time zero, or as an averaged error
in tracking a delayed step reference. These analytical results
are crucial for answering the aforementioned questions, which
a numerical solution generally fails to address. First, the results
show that the time delay and the non-minimum phase zeros of
the analog plant continue to impose limits on the sampled-data
tracking performance, in exactly the same manner as in using an
analog controller. Second, it is well-known that due to the induc-
tion of samplers, the ensuing discretization of the plant is likely
to generate new non-minimum phase zeros (i.e., zeros outside
the unit disc), despite that the original analog plant may itself
be minimum phase [2], [3], [6], [17]. The analytical expressions
obtained in this paper reveal that such zeros will also have a nega-
tive effect on the tracking performance. Third, in order to contain
sampling noise and prevent sampling aliases, an analog pre-filter
is generally included in a sampled-data system; for the same
reason, discretization of this filter may also generate non-min-
imum phase zeros and hence they too will affect the tracking
performance. Finally, our results exhibit further a relationship
between the plant’s harmonic contents and the tracking perfor-
mance, showing that the high-frequency harmonics will have a
negative effect on the tracking performance as well. In summary,
it will be seen that sampling and hold as a whole results in un-
desirable “byproducts” unfound in analog systems, which con-
tribute to the degradation of the tracking performance.

The notation used throughout this paper is fairly standard.
For any complex number z, we denote its complex conjugate
by z. For any vector u, we denote its transpose by «”, and
its conjugate transpose by 7. The transpose and the conju-
gate transpose of a matrix A are denoted by A” and A7 re-
spectively. We assume that all the vectors and matrices have
compatible dimensions, and for simplicity, their dimensions are
omitted. Let the open right half plane (RHP) be denoted by
C;+ = {s : Re(s) > 0}, the open left half plane (LHP)
by C_ := {s : Re(s) < 0}, the imaginary axis by Cy, the
open unit disc by D := {z : |z| < 1}, the exterior of the
closed unit disc by D¢ := {z : |z| > 1}, and the unit circle
by T := {z : |z| = 1}. We will encounter the Lo spaces
L2(Co), Lo(T), defined over Cp, T, the Ho spaces together
with their orthogonal complements Ha(C ), Hy (C), Ha(D),
Hz (D), and the Hoo spaces Hoo(C4), Hoo (D), and RH oo (D).
These spaces correspond to continuous-time (Cy, €4 ) and dis-
crete-time (T, D) frequency responses and transfer functions,
and RHo.(D) is the set of all proper stable rational transfer
functions in the discrete-time sense; the reader is referred to [13]
for the definitions and properties of these spaces.
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Fig. 1. The sampled-data tracking system.

II. PRELIMINARIES

A. Problem Formulation

We consider the SISO unity feedback system! depicted in
Fig. 1, in which P7 represents the plant model with a possible
delay, F' a lowpass, anti-aliasing filter, and a sampled-data con-
troller consists of a discrete-time compensator K4, followed
by a hold device Hy and preceded by a sampler S. The sig-
nals 7 and y are the reference input and the system output,
respectively. We take St as an ideal point sampler, and Hp
a ZOH, which are synchronized and are of the sampling pe-
riod 7' > 0. Thus, the sampled sequence {vy},_, is given by
v = v(kT), k = 0,1, -, and the ZOH yields as its output the
signal u(t) := uy, for kT < t < (k + 1)T.

For a given reference signal r, the digital compensator K,
is designed such that it stabilizes the analog plant P” and the
continuous-time output y tracks the continuous-time reference
r. The signal e := y — r represents the tracking error response.
We take r to be the unit step signal

(1 t>0
T(t)_{o t<0’ M

Assume that the system is initially at rest. The problem then
is to determine the best tracking performance achievable by all
possible digital LTI compensators K that stabilize the plant.
Here we measure the tracking performance by the energy of
the tracking error response, denoted as .J. and quantified by the
integral

oo

Jo= [le@Pdt= [l -r@Pd. @
Jura- ]

0

With the filter F' and the sampling rate 1" given, the best attain-
able tracking performance by this class of sampled-data con-
trollers is

*

sd T c:

inf
K ,(z) stabilizes P7(s)
The minimal .J. achievable by an analog controller was found in
[10], [24], whose discrete-time counterpart was obtained in [33],
both of which admit explicit expressions of the best tracking per-
formance in their respective settings. Our aim in this paper is to
derive a corresponding solution for the sampled-data tracking
problem, that is, an explicit expression of minimal .J. achievable
by sampled-data controllers. Alternatively, we will also study a
similar performance measure which seeks to average a quadratic

1Qur analysis extends readily to more general two-parameter control systems.
For clarity of presentation, and to highlight the fundamental limitation issues,
we choose to focus on the unity feedback structure only.
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error over a time-shifted reference signal. This alternative per-
formance problem is deferred to Section IV.

Unless otherwise specified, throughout this paper we shall
assume

Assumption 1:

1) P™(s) = P(s)e™ "%, where 7 > 0, and P(s) is rational,

stable, proper, and P(0) # 0;
2) F(s) is rational, stable, minimum phase, strictly proper,
and F'(0) # 0,

3) K4(z) is rational and proper.
It is worth noting that these assumptions are non-restrictive ex-
cept the stability assumption on P(s), which can be removed
if a two-parameter controller structure is adopted and hence is
deemed inessential.2 For example, P(0) # 0 is a standard re-
quirement to ensure that .J, be finite. If an anti-aliasing filter F’
is included in the system, the condition that F/(0) # 0 is also
necessary.

For a one-sided signal g(¢) with Laplace transform G(s), we
denote the Z-transform of the sampled sequence {g(kT')}72
by G4(z), and write it as Z{G(s)}; that is

Ga(z) = Z{G(s)} = Z{Sr {£L7{G(s)}}}

where Z is the Z-transform operator, St the sampling operator,
and £! the inverse Laplace transformation. Define

1— e—sT

S

H(s)

Let (FP"H)4(z) denote the ZOH-equivalent discretization
[13], [16] of F(s)P"(s), that is

(FP"H)4(z) =Z{F(s)P"(s)H(s)}
(1o [F7),

It is useful to note that despite the presence of delay,
(FPTH)4(z) remains to be a rational function; an explicit
construction of such a discretization can be found in, e.g., [16]
(pp- 171). Moreover, the stability of F'(s) and P(s) guarantees
that (F'P™H )4(z) is stable. Thus, under Assumption 1, the set
of all stabilizing LTI controllers is given by

Ko = {Ku() = Q) [L = (PPTH)(2)Q()] ™
Q(z) € RH(D)}. (3)

The optimal tracking performance achievable via an LTI con-
troller can then be determined as

J. = inf Jo. “4)

J:(l = lnf
) K QERH o (D)

dEK

2Tracking performance with a two-parameter sampled-data controller can be

investigated analogously as in this paper, by combining the developments in

[1] and [10], which can be shown, as expected, to be unaffected by the plant

unstable poles. Thus, in studying fundamental performance limit, the stability
assumption does not pose an essential restriction.
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B. Frequency-Domain Lifting

We shall tackle the optimal tracking problem from a fre-
quency-domain approach. Let the sampling frequency and the
Nyquist frequency be

27 T
ws = —, WN = —
T Mo
respectively. We refer to the frequency range Qn = [—wy, wn]

as the baseband. A fundamental fact concerning a sampled
signal is that its frequency response consists of infinitely
many shifted copies of the original continuous-time frequency
response

1 ,
Ga(e*T) = 7 Z G(s + jkws).

k=—o0

We shall write Gi(s) = G(s 4+ jkws). Consider G(s) :=
G°(s)e~",7 > 0. By adirect appeal to [7], or a straightforward
extension of contour integral argument [25, p. 147] employing
the Jordan lemma [22, p. 259], one can show that the above se-
ries converges uniformly to G4(e*T), under the condition that
G"(s) is the Laplace transform of the step response of a system
whose transfer function is strictly proper and rational. In light
of this condition and Assumption 1, we may write

(FPTH)U(57) = 22 3" Hiljo) P () Fi(j).

k=—oc0

Let R(s) be the Laplace transform of the reference input 7(¢):
R(s) = 1/s. Then, the output response can be expressed in the
frequency domain as

Y (jw) = PT(jw)H (jw)Sa(e’" ) Ka(e’T)
1 _ :
X Fi(jw)Ri(jw)
k=—o00
where S4(z) = [I + Kq(2)(FPTH)u(z)]~! is the sensitivity
function of a discretized system. Employing the parameteriza-
tion (3), we obtain the error response as

E(jw) = R(jw) = P7(jw)H (jw)Q(e™")

x% > Fi(jw)Ri(w) (5)

k=—o0

and thus the tracking performance can be expressed in the fre-
quency domain as

so= [ewra=g. [ Bk ©
0 —00

Frequency-domain lifting techniques were developed in, e.g.,
[1], [8], [18], [37], which have been the subject of numerous
studies of sampled-data control problems (see also [38] for an
extension to linear, periodically time-varying systems). In what
follows we briefly describe this procedure, while referring to
[1], [8] for much of the technical detail. Let E(jw) € L2(Cy).
Define, on the interval 2, the sequence of functions
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We may arrange the sequence {Ex(jw)}2 .. as an infinite-
dimensional vector & (jw), that is

E(jw):=[+- Ei(jw) Eo(jw) E_1(jw) --"

This operation can be described by the linear lifting operator
T : L3(Cp) — L2(02nN), such that T E(jw) = E(jw), where
L2(Qy) is the Hilbert space with the inner product

X Veson) =57 [ ( 2 Ykowm(jw)) do

k=—oc0
and the norm

1
lewen = | 57 [

O

It is known [1], [8] that
(X,Y) = (X, V) zo0n)

1Ell2 =M€l 2(20)-

Consequently, the tracking performance .J. can be quantified
using the lifted version of E(jw); specifically

Je = €12, 0y (7

1/2

( > |Yk<jw>|2> dw

k=—oc0

Denote P™H(jw)

PTH(jw) = [+ Pl(jw)Hi(jw) PG (jw)Ho(jw)

PT (jw)H_1(jw) -]"

It follows that
- 1 T . JgwT\ T .
E(w) = |T = ZPTH(jw)Q™ ) F " (jw) | R(jw)-

Here, in the last expression, 7 is the unit operator on the lifted
signal space L2(2n), such that 7€ (jw) = £(jw). The com-
posite operator PTHQF T is known as an FR-operator [1], [18].
In light of (7), the best achievable tracking performance can then
be found by solving the optimal model-matching problem

2

Jia=

inf ‘ (8)

QERH o (D)

[I - %PTHQ}"T} R

L2(2n)

Our goal is obtain an analytical solution to this problem.

III. TRACKING PERFORMANCE WITH UNIT STEP

Our main result is given in the following theorem, which is
a closed-form, analytical expression of the best tracking perfor-
mance achievable by a sampled-data control scheme, in which
the discrete-time controller K4 is assumed to be LTI. We shall
need the allpass factorization of P(s), given as

P(s) = L(s)P™)(s) )

where P(™) () represents the minimum phase part of P(s), and
L(s) is an allpass factor, such that

m.

Zi (27 — S)

Lis) = 11 2i(Zi + 8)
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with z; € C4, ¢ = 1,---,m,, being the non-minimum phase
zeros of P(s).

Theorem 1: Let the reference input r(t) be the step signal
given by (1). Then under Assumption 1

Jig=Jdp+ Jf (10)
where
oL 2 o 0 + 1
J, = —+T Jn (T
p =T+ ; ’ + ; 1 w(T)
my
N+ 1
Jr =T
! ; Xi—1
and J5,(T") > 0 is defined as
wN
T? 1
Jh(Tl)=— | ————
w(T) 2 ) 1 —coswT
0
2
- | )
T k_; (wHkw,s)?
x log S s ¢ dw  (11)
X P (jw)
2(1 — coswT) k:z—:oo o)
with z; € C4, 7 = 1,.--,m,, being the non-minimum phase
zeros of P(s), o; € D° ¢ = 1,---,m,, the non-minimum
phase zeros of z(PU™ RH)4(z) = 2Z{P™)(s)R(s)H(s)},
Ai € D¢ ¢ = 1,---,my the non-minimum phase zeros of

(FH)q4(z) = Z{F(s)H(s)}, with all non-minimum phase
zeros of the discrete-time transfer functions counting the zeros
at infinity.
Proof: See Appendix A. ]

We remark that the singular integral in J;, (1) converges, a
technicality that we choose to omit herein but will become self-
evident in the proof of Theorem 1; alternatively, it is straightfor-
ward, though somewhat tedious, to show that the integrand has
a removable singularity at w = 0.

The quantity J, in (10) represents the performance limit in-
herent of the plant, in which the first two terms, i.e.,

arise due to the time delay and the non-minimum phase zeros of
the continuous-time plant. This term coincides with the minimal
tracking error attainable by the optimal analog controller. Thus,
Theorem 1 shows that the influence on the tracking performance
by the nonminimum phase zeros and the time delay remain in
complete existence, in exactly the same way, when the optimal
analog controller is replaced by a sampled-data controller. The
theorem makes it clear that with a discrete-time LTI controller,
sampled-data control will generally worsen the tracking per-
formance, due to the presence of the additional terms, which
are all non-negative. Since the sampled-data controllers consti-
tute a special class of LTV controllers, this result reinforces the
previous finding in [27], that the optimal tracking performance
achievable via an LTI or an LTV analog controller coincides. On
the other hand, it is also known [15] that with the sampled-data
scheme, .J¥, can be further improved if the discrete-time LTI
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controller is allowed to be time-varying, which may serve as an
even more fundamental measure of tracking performance.

The third and fourth terms in .J, are seen as the undesir-
able “byproduct” of the sampled-data tracking scheme, cap-
turing the negative effect of the sampling and hold operations
on the tracking performance. The third term is attributed to the
non-minimum phase zeros of an auxiliary discretized system,
with a ZOH-equivalent discretization of P("™)(s)R(s); a sim-
ilar effect arises with the anti-aliasing filter, represented by Jy.
Together with the third, the fourth term in ./, manifests in a more
explicit fashion the effect of intersample behavior, an important
aspect of sampled systems, displaying an explicit dependence
of the tracking performance on the high-frequency harmonics
of P(")(s). It is useful to note that this effect is independent of
the anti-aliasing filter F'.

It is well-known that sampled systems are prone to non-min-
imum phase zeros. In particular, it is known [2], [3], [17] that
for a continuous-time system with pole-zero excess greater
than two, the sampled system with a ZOH will always result in
zeros outside the unit disc, provided that the sampling period
is sufficiently small. It is also known that a continuous-time
system with pole-zero excess greater or equal to one results in a
discrete-time system with a zero at the point infinity, and hence
the sampled system becomes non-minimum phase. Theorem
1 shows that such discrete-time non-minimum phase zeros,
known as the sampling zeros, as well as the high-frequency
harmonics, are the very reason why it is difficult for a sam-
pled-data system to retain the tracking performance achievable
by an analog controller.

In summary, it is clear that sampled-data controllers will in
general lead to a degradation in the tracking performance. A
plausible question is whether with a fast sampling rate, this
degradation can be made small. Toward this end, we first note
that the third term in .J, will diminish, and so will J. Indeed,
according to [2] (see also [3], [6], [17]), for sufficiently small
T > 0, the transfer function (P("™) RH)4(z) will contain zeros
mapped from the zeros of the minimum phase transfer functions
P(™)(s)R(s), approaching the point z = 1 from the interior of
the unit disc. The remaining zeros of (P RH)4(z) will ap-
proach those of the so-called Euler polynomial. As such, for
sufficiently small 7" > 0, the second term in .J,, is only deter-
mined by the zeros of the Euler polynomial, which are always
real negative. Consequently, we claim that for sufficiently small
T>0

myp

TZ 0'1'+1 _O(T),

o, —1
i=1 "

More generally, it turns out that the optimal performance .J, as
a whole will decrease at a linear rate to the performance achiev-
able by the optimal analog controller. We state this result in the
following corollary. The proof is given in Appendix B.
Theorem 2: Under the assumptions in Theorem 1, as T — 0

12)

S

M 2
J=14 Z+O(T)'
i=1 """

It is then clear that the effects of sampling and hold will become
negligible for sufficiently small 7" > 0; in other words, the per-
formance loss due to the use of sampled-data controllers can be
recovered in the limit, with an arbitrarily fast sampler.
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IV. AVERAGE TRACKING PERFORMANCE

An alternative, complementary measure that can be used to
quantify the tracking performance is the Ho performance cri-
terion that seeks to average the quadratic error in (2), over a
time-shifted reference signal. In this formulation, we consider
the tracking error defined by

oo

J(6) = / y(t) —r(t— O)dt, 0<0<T.

(13)

Note that J(0) = J.. The averaged tracking performance is

defined as
T
/ J(6)d8
0

and the optimal average performance becomes

J = (14)

S| =

Joy = inf J.
K i(z) stabilizes P(s)

Averaged Hs performance measures in the spirit of (14)
were advocated in [5], [12], [20] for sampled-data systems,
and studied in [38] for more general periodic LTV systems.
Our following result, a counterpart to Theorem 1, gives an
analytical expression as well for the optimal average tracking
performance.

Theorem 1: Let the reference input r(¢) be the step signal
given by (1). Let also (A¢, By, C'f) be a minimal realization of
F(s). Define

Afd :eA/T
T
de = /eAfthdt
0
t
B _ AsT
f<t> = /6 de’r
0
T
1
Brai= g [ Byt
0
T
1
Npi= /Bf(t)Bf(t)dt
0

Agi= (S5 - BraBT)"”
Fui(2) = (FH)a(2) + (2 = 1)Cy(2 = Aga) ' Bya
F,,,Q(Z) = (Z — 1)Cf(ZI — Af,l)_lAf.

Then under Assumption 1

T

I R (15)
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where J, is given as in Theorem 1

a 2 vitl g
i=1 "

Y (o (e[ ||
%/1—coszlog (1+ |Fa1( |

0

JH(T) :=

andy; € D, v =1, -+, m,, are the non-minimum phase zeros
of F,1(z) counting the zeros at infinity.
Proof: See Appendix C. ]

It is clear that the essential difference between .J}; and J¢,
results from the use of the anti-aliasing filter F'. On the other
hand, the performance limit due to the plant, i.e., the term .J, is
invariant of the measures and thus appears more fundamental to
the tracking performance. Theorem 1 and Theorem 2, therefore,
reinforce each other, demonstrating the fundamental role of J,
in a sampled-data tracking system regardless of the performance
measures adopted.

Analogously, the following asymptotic property of J¢, can
be established. The proof is similar to that for Theorem 2 and
thus omitted.

Theorem 4: Under the assumptions in Theorem 1, as T" — 0

JSd—T+Zz+O T). (16)

We note that the convergence of J¢; was previously established
in [34]. However, Theorem 4, much like Theorem 2, presents
a stronger characterization of this convergence, establishing a
linear convergence rate.

V. CONCLUSION

In this paper we have derived explicit expressions for the
optimal performance in tracking a step reference signal via
sampled-data controllers. Our results demonstrate that the
best tracking performance achievable by LTI controllers is
negatively affected by 1) the time delay and non-minimum
phase zeros of the continuous-time plant; 2) the non-minimum
phase zeros resulted from discretization; and 3) the effects due
to sampling and hold operations, attributed to both sampling
zeros and the plant high-frequency harmonics. While the first
source inherits completely and exactly from the analog tracking
system, the rest results from the use of a sampled-data con-
troller. Nevertheless, it is also shown that with an arbitrarily fast
sampler, this tracking performance does approach asymptoti-
cally that achievable by an analog controller, hence recovering
in full the performance loss incurred by the sampling and hold
operations.

The present work can be extended in a straightforward
manner to multi-input multi-output systems, using a combi-
nation of the techniques developed herein and in [9], [10]. It
can also be readily generalized to systems with unstable plants.
In the latter vein, two-parameter controllers can be used to
achieve the optimal performance, which as shown in [9], [10]
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for analog systems and in [29], [33] for discrete-time systems,
are exempted from the effect of plant unstable poles. Indeed, it
can be shown, by combining the development in [1] (where a
two-parameter sampled-data control structure was considered)
and the techniques in [10] and the present paper, that this
remains true for sampled-data systems, and that in fact, despite
the presence of plant unstable poles, the optimal tracking
performance achievable by a two-parameter sampled-data con-
troller will coincide with that in the present setting, i.e., a stable
plant controlled by a one-parameter sampled-data controller.
As such, our study of stable plants suffices to expose the funda-
mental limit to the achievable tracking performance, which is
solely determined by the non-minimum phase behavior of the
plant and the intersample effect of a sampled system.

APPENDIX A
PROOF OF THEOREM 1

Proof: The proof of Theorem 1 requires a lengthy deriva-
tion. Our first step is to separate the non-minimum phase
zeros of P(s). For this purpose, we invoke the allpass fac-
torization (9). Introducing the diagonal operators D(jw),

L(jw) : L2(2N) — L2(Qn), so that

L(jw):=diag (---, L1(jw), Lo(jw), L-1(jw), --*)
D(Jw) :dlag ( o e_jT(“)+WS)7 e_j'“’-’7 e_jT(“’_WS)7 .. ) .
It follows that P H(jw) = D(jw)L(jw)P ™ H(jw), where:

POVH(jw) 1= [+ (™ (jw)Hi(jw) P{™ (juw) Ho(je)
PO ) H () -]

We claim that

me 2
Ji = 4T Al
S T*Z;zﬁ m (AD)
with
1 2
J = inf H[[——P(m)HQ}'T}R :
QERM o (D) T L2(9n)

Indeed, since (e™ — 1)R(s) € Hz(C4) and (L71(s) —
1)R(s) € Hy(Cy), it follows analogously as in [10] that:

X _ 2 _ 2 "
Jsa= H(D ! I)R“cz(QN)'i'H [ﬁ ' I] R |LQ(QN) +Jn
=™ = DR],+ 117 = R]], + 7,
i=1 "
We next evaluate J;;,. Define
1 1 = m - . 2
ZCSES DY) | P o) Hi ()

1
= ?ﬂm)HH( Jw)PUIH (jw).
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It is possible to carry out a spectral factorization [13], [35] for
®,(e?*T), such that

q)d(ejWT) = @d(e_jWT)G)d(ejWT).
We note that ®,4(e?“T) can be constructed explicitly as a ra-

tional function [8], which ensures that ©4(z) € RHo (D), and
0;'(2) € RHo (D). Note that

©a)P = 3 PO ).

k=—oc0
Since
mo- {3 70

we have |04(1)|> = 1"+ | P(0)|2. Without loss of generality, we
may take
04(1) = VTP(0). (A3)

Define the infinite dimensional vector

. 1 m . — jw
M;(jw) = ﬁp( TH(jw)O, ' (e™T)
and the operator
o ME (jw)
WG = (1 oyt

It is straightforward to verify that W (jw)W(jw) = Z, and
hence

2
JE = inf

1
= I—=pm ]-'T} R
™ QERHoo D) HW [ TP HQ

Lo(QN) '
(A4

Using the identities

PMHH)  (e79T
MR = - T T 6
Fr(jw)R(jw) = H%(Fy)d(ejw)
T2
RE(jw)R(jw) =

(1= e=T)(1 = e=3=T)

it follows from a standard, albeit tedious calculation of (A4)
that:

Jr=Jd 0+ Ja

with
S T CACE ;
o 1= ed=T2 “
0

P EH)” 2
R L
ml QeRl%w(]D) z—1

2

2473

where (PUHH)y(2) = (PYHH) (27", ©7(2) =
O4(z71). As such, we compute J* ;. Toward this end, we
factorize z(P™ HH)4(z) and (F H)4(z), respectively, as

(m)

P (P(m)HH)d (2) = Ly(2) (P<m>HH) (2)

d
(FH)a(z) = Ly(2)(FH){" (2),

where (P HH){™(z) and (FH){™(z) are the minimum
phase parts of z(P"™) HH)4(z) and (FH)4(z), respectively,
and

are the all-pass factors. Write [(P(m)HH)((im)]N(z) =
(P HH)™(271) and LY(2) := L.(2!). Note that
L4(1) = Ls(1) = 1. Note also that

(P(m)HH)d ()= (1— 271 (P(m)RH)d (2).

Hence, the transfer functions (P(™ HH)y(z) and
(P RH)4(z) share the same non-minimum phase zeros in
D°. Furthermore, since (P RH),(z) is a rational function,
(P HH)4(2) € RHoo(D). We may then write

L [(P EE) ™™ m 2
[( o )d ] —Lf(FH){(i )®dQ

z—1

* = inf
ML eRHo D)

2

or alternatively

(m) (m)]~ 2
[(P H?)d ] _Ld(FH)((im)@dQ
Jr= inf O

QERMH o (D)

z—1
2

where Lq(z) := Ls(2)L(2). Since, according to (A2), (A3)

(Pram e

Ou(z1
. € M3 (D)
we obtain
2
(P HHE) ™ (27
T = sity — ~ VT
ml 21
2
m 2
b inf VT = Lo(FH)§"0,4Q
QERH o0 (D) z—1 ,
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Furthermore, following the development in [33], we note that

VT — Ly(FH) " 0,Q _T‘ L' -
z—1 ) z—1 ||,
— %(FH)gm)@dQ i
+T L
z—1
2
and
L;l(z)—12_§0i+l mf)\i-l-l
z—1 2_i=10i_1 i )\i—l
Denote
e yrl
J82 - <
z—1
2
2

ws| (PO HH)™ (e74T)
:g dw.

eiwT — 1

0

It is then clear that

d—'r+z +TZZ“_L1

It is also clear that the optimal tracking performance .J?, can be
achieved by the solution of the discrete-time model-matching
problem

)\ _1 sl+J52~

_ ﬁ(FH)EIm)(Z)Gd(Z)Q('@
z—1

inf
QERH (D)

2

which can be solved using standard H» optimal control proce-
dures (see, e.g., [13]), or based on a cheap control approach [29].

The remaining part of the proof proceeds by evaluating J4; +
Js2, which, by a direct calculation, is found to be

P HH m)(ewl)
o 1= doed
Jsl + Js2 = 5 / d
m

w.
1 —coswT

Making the variable substitution y = tan(w7'/2), we have

(PCmmH) " (1) }
dy

@d( 1+Jy)

1—jy

2

Y
T 1 ﬁRe{
Jsl + Js2 = 5 /

2r Y

Introduce the function

(m) (m) +s
f(s) = % : (P HH), (1—5)
0, (1+s)

1—s
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Since (P(m)HH)fim)(z)/Gd(z) is analytic in D¢, f(s) is ana-
lytic in C4. Denote f(jy) = u(y) + jv(y). Then the Hilbert
transform [23]

_ Y / U(?/)Q— U(Q?JO)dy
Yy =Y

—00

holds for any real number g. Note from (A2), (A3) that f(0) =
1(0) = 1. Hence by invoking the Hilbert transform, we obtain

R J PEm) D ()
RC

Jo1 + Js2 = / y2 Y

= — 7 lim @
y—0 vy

Based on this recognition, we then find

Im { () (142) }

"i(i*?i)

Js1+ Jso = — — lim

Il

I
L
=

1
7T
) z=1

d (1+ 3y
“y <1—jy> y:o}
651(1) B {(P(m)HH)((lm)}l(l)
©(1)  (pemmEH)™ (1)

=T

Note that J,(T) = Js1 + Js2, and hence the singular integral
in Jp,(7T) is bound to converge. To complete the proof we next
resort to the Schwarz integral formula [23], which, when applied
to the function ©4(z)/04(1), yields

2w

, 1 [ a(e)|?

10g®1(z) :_/e —i—zl ©4(e??) it
@d(l) 4 it — 2 @d(l)

0

By evaluating the derivative of log(04(2)/04(1)) at z = 1, we
obtain

Oy(1) _ i/ - EZGD) 2dt
041) ~  ar ) (=1 —eit) | 0.(1)
0
7 log ‘ Oa(e’)
_ 1! / %W | 4 (A5)
2T 1 —cost
0

Authorized licensed use limited to: The Library NUI Maynooth. Downloaded on December 1, 2009 at 05:34 from IEEE Xplore. Restrictions apply.



CHEN et al.: BEST ACHIEVABLE TRACKING PERFORMANCE IN SAMPLED-DATA SYSTEMS

Similarly

(m) (m) ity |2
. Y’ . (P HH) ™ ()
{(P( JHH), }(1) _L/IOg (o) (1) »
(P(m)HH)((lm) (1) 2 J 1 —cost
(A6)
Since
jwT 2 1 = (m) - . 2
|Ou(e D))" =5 > [P ) Hiljw)|
k=—oc0
(m) & ’
m m jwT _ (m) - 2/ -
(P ) = & A
it follows from (A5) and (A6) that
m mN’
o) {(Pmmm) Y (1)
©1)  (pemHH)"™ (1)
17 1 ) Ou(e)
~or _ & (m) , -
27r0 1 —cost (P(m)HH)d (eit)
o g™ 1]
.(P HH)d (1) it
©4(1)
wN
. T/ 1
27 1 —coswT
0
S| p™ GV EL 2
> k (jw)Hy(jw)
x log { T25==> s ¢ dw.
X R HR ()
(A7)
The proof is then completed by substituting
1_eij
Hi(jw) = —.
k(Jw) J(w + kws)
|
APPENDIX B

PROOF OF THEOREM 2

Proof: Inlight of Theorem 1, it suffices to consider a delay-
free plant and assume that P(s) is minimum phase, and show
that the corresponding tracking performance approaches zero at
a linear rate, i.e.,

:d = O(T)-

We accomplish this goal using a time-domain lifting approach
[4]1,[30], [31], [36]. In particular, we rely on a formalism of [13],
which studied a more specialized tracking problem under an Hs
criterion.
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K -

Fig. 2. Generalized feedback system.

Let us first consider a generalized continuous-time plant G,
with the realization

A B, B
Do
Csy 0 0

A generalized feedback system is shown in Fig. 2. With a contin-
uous-time plant G' and a sampled-data controller K, the system
can be converted into one with a discrete-time controller K4 to-
gether with a generalized discrete-time plant G 4, which take the
places of G and K, respectively. The state-space realization of
the discrete-time plant is given by

Ay B, Boy
G G
Ga= [Gd“ Gd”} = | Cia 0 Dizq | (B1)
day da2 Cs 0 0
with
T
Ay = eAT By = /eAthdt
0
and

[Cia  Di2a]"[Cra  Diadl
T

= /eéTt[Cl D12]T[Cl Dlz]eétdt

0

where

1A By
=t )

To pose the tracking problem in the above generalized frame-
work, we first construct

| 1/s —P(s)
G‘[mam —P@W@J' ®2)

Let (Ap, By, Cp, Dp) and (Ay, By, Cy, Dy) be the minimal re-
alizations of P(s) and F'(s), respectively. In the remainder of
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this appendix, we impose Assumption 1, and assume addition-
ally that P(s) is minimum phase. Hence, Dy = 0, since F'(s)
is strictly proper. A minimal realization for G(s) is given by

0 0 0
A= 0 Ap 0
By  -BsCp, Ay
1 0
B=[B;, By]=|0 B,
0 BsD
c_fal_[v -6 o
Cy o 0 C
_ 0 DP
D= {0 0 ] (B3)

Discretize G(s) to obtain G4(z), as outlined above. We note that
(A, Bs) is not stabilizable. However, there exist K, that inter-
nally stabilize P(s)F(s). The set of all stabilizing controllers is
given by

Ka={Q(1+Gu.Q) ™ - Q e RH. D)},

The minimal tracking performance is then found to be

2
- QERMo. (D) ||Gd11 + GdleGd21||2 ‘

We refer the above discretization scheme to [13] (Chap. 12),
which was carried out therein for a similar tracking problem.

We next perform an asymptotic analysis3 on JJ,;. Using the
asymptotic expansion

A — T4+ At + O(1?)

we find that for a sufficiently small 7" > 0
1
[Crg Disd) = VT [[C1 D1,] <I+ 5AT) + O(TQ)} .

We may now calculate the transfer functions Gg4,,, G4,,, and
Gg,,. It is immediate to find from the realization (B3) that

= Cha(zI — Ad)_lBl
=T [ (TZ)}
Ga,, (2) =Ca (=21 — Ad) By

1dez

Gdu( )

1
-1

=Cy(zl — Aya)”

= (FH)u(2) =

Gay, (2) = Cra(z] — Ag) ™' Bag + Di2g
= — VT [Cp(2] — Apa) 'Bpa+ D, + O(T?)]
= VT [(PH)() + 0]

3This asymptotic analysis was performed in [32], which unfortunately con-
tains an error and hence led to an erroneous result.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 53, NO. 11, DECEMBER 2008

Here we have taken A, = e*T, Ay = eArT

T
de:/
0

= O(T). Thus, we find that

T
Bya = / et B dt, et Bydt
0

and the fact that B,y = O(T'), Byq

|Gd11 + Gdlz QGd21 |2
— [(PH)a+ O(T?)] (FH)aQ
z—1

2

+O(T?)

Select Q* € R'Hoo(D) so that

2

H 1—(PH) (FH),Q*

z—1 9
C 1— (PH)4(FH)Q|?
QGRH D) z—1 9
—T 0'1' +1
X g; — 1
=1

where o; € D¢ are the non-minimum phase zeros of
(PH)4(z)(FH)4(z), which, according to [2], [3], [17],
will approach to the zeros of the Euler polynomial. For this
to be possible, however, it is necessary that (PH)q(F'H).Q*
possesses an order O(1) when 7' — 0; in other words, the order
of Q* cannot be lower than O(1/7?). We are thus led to

1 — (PH)y(FH 2
*<T  inf H (PH)a(FH)Q +0O(T?)
QERH o (D) z—1 9
7S 2L o,
i=1 oi—1

which, along with the recognition from Theorem 1, that J, >
O(T), establishes the claim J?; = O(T). This completes the

proof. ]
APPENDIX C
PROOF OF THEOREM 3
Proof: We first note that for any § € [0,T"), J(T — 6) can
be expressed as
J(T —0)
=5 / | R(jw)e /T P7(ju) H (ju) Q(e")
™
_ . )
T Z w(jw) Ry (jw)e I T =0 wtkwo)| g,
k=—oc0
— 5 [ IRG)E™ = TP ) Hw) Q)
™
_ . .
Xz S0 Pl Ra(jw)| do
k=—oc0
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where F?(s) = F(s)e=(T=%)%_ 1t follows as in the proof of Denote
Theorem 1 that

L : M(2) 1= C(eI = Ap) ™ 1 (2 = )]
J(T—60)=60+ H [I - T’PTHeJ‘”TQ(]-‘“’)T] R . N(§) = [ Bia ]
L2 () T Bs(9)
Note that for 6 € [0, T), a proper rational ZOH-equivalent dis- - 1 A
cretization exists for F%(s) [16, p. 175] given as N := T /N(H)dﬂ
r 0
(F*H)ule) = Oste = Ay (T + 22 L] -
# A= /N(e)NT(e)de — NN™.
where 0
T Then, a direct calculation yields the expression

I'y = /eAfthdt = Byq — Bf(@)

2

o z
Iy = /eeAfthdt = Bs(0). %0/ Hﬁ - Q(Z)Mf(Z)N(g)HZ d0

Ws

= % / [T —VTQ(&TYM;(’“T)N —VTNQ

In view of the convergence condition alluded to in Section II-B,

we have 0 ' ' o )
x (€T T)ME (e77T) + Q7T ) My (e77)
NN RN X(A+ NNT)Qe )M (e77T) | dw.
7 (FUw) RGw) =7 3 F(w)Ri(iw) !
k=—co Furthermore,
_ (FPH)q(eT)
1l —emieT 0 0 0 T
- A_[U Ef—BfaB?J_[Af][O Al
Following the proof of Theorem 1, we are led to

Since

me 2 myp 1
JT=0) =047+ = +T Y 22+ Ji(T) + T4 (9)
i=1 i=1

7 g

B 0
M) = Fate), M| | = Fuate)
fa
where
2 we obtain
. VT = 204(2)Q(2)(FPH) 4(2)
Je(0) = ]
2
T A 2 R 2
. 1 _ \/T - QFal QF(I2
Since ?/Jf(a)de = ‘ ZT 1
0 2 2
T T
. 2
/J(e)da - /J(T— 6)do _|IVT 0] - Q[Far Fur
0 0 z—1 )
we have Consequently, we have
T T
go= 2 [y 9)d6—T+J—|—1/J(9)d9 T VT 0] —0uQ[Fa Fusl|
T, T T ) R @ =—+J,+ inf dlial “a2li
0 0 2 QERH o (D) z—1 )
Write Q(z) = ©4(2)Q(z), and note that Conduct then the spectral factorization

2

0 - _ -1 5 Bfa , , 2 ,
2(F°H)q(z) = Cf(ZI Afd) (I ( 1)I] |: } ®f(e—JwT)®f(erT) — |Fa1(eij)| + ||Fa2(erT)||2

By(9)

Authorized licensed use limited to: The Library NUI Maynooth. Downloaded on December 1, 2009 at 05:34 from IEEE Xplore. Restrictions apply.



2478 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 53, NO. 11, DECEMBER 2008

and solve the Hs problem in the above equation, we obtain

Far(¢*7) |2

A b S K7IG d

= — v+ — | —————dw

sd 7o TP T 9p |edwT — 12
0

2

N VTG — 04(2)Q(2)
1n
QERH o (D) z—1

2

Note that |F,1(1)/©¢(1)| = 1, and that with no loss of gener-
ality, we may take F,1(1)/©;(1) = 1. Following the steps in
evaluating J;},; (cf. Appendix A), we find that

2
F,q1(z
i |V )
QERH o (D) z—1
2
T Far (2 D) T Far (1)
_ \/—9f(7‘1 \/_ef(l)
z—1
2
ma \/TFEI")(Z) _JT 2
S e 1 n 0,(2)
¥ —1 z—1

where ") (%) is the minimum phase part of F,(z). In sum-
mary, we have shown that

K me ’"2(;) 2
i Of(z
4 = J T ! T !
1=1 9
ws 1 Fal(ej“’T) 2
+ T_2 —1 (™) dw
2 ledeT — 12
0
T i+ 1
=5+t TZ % +
wsq Far(e’7)
+ r’ ! Re{ O, (e7<T) }dw
2w 1 — coswT '
0

Mimicking the steps in calculating J,; + Js2, we obtain

71—Re{—%;<<:5553}dw / 1

1 —coswT 1 —coswT
0 0
Fo(eieT 2
xlog | 1+ M dw.
|Fa1(e7<T))]
The proof is thus completed. [ |
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