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Abstract

This work demonstrates the development of mobile, location-aware,

eyes-free applications which utilise multiple sensors to provide a continuous,

rich and embodied interaction. We bring together ideas from the fields of

gesture recognition, continuous multimodal interaction, probability theory

and audio interfaces to design and develop location-aware applications and

embodied interaction in both a small-scale, egocentric body-based case and

a large-scale, exocentric ‘world-based’ case.

BodySpace is a gesture-based application, which utilises multiple sensors

and pattern recognition enabling the human body to be used as the inter-

face for an application. As an example, we describe the development of a

gesture controlled music player, which functions by placing the device at

different parts of the body. We describe a new approach to the segmenta-

tion and recognition of gestures for this kind of application and show how

simulated physical model-based interaction techniques and the use of real

world constraints can shape the gestural interaction.

GpsTunes is a mobile, multimodal navigation system equipped with in-

ertial control that enables users to actively explore and navigate through an

area in an augmented physical space, incorporating and displaying uncer-

tainty resulting from inaccurate sensing and unknown user intention. The

system propagates uncertainty appropriately via Monte Carlo sampling and

output is displayed both visually and in audio, with audio rendered via gran-

ular synthesis. We demonstrate the use of uncertain prediction in the real

world and show that appropriate display of the full distribution of potential

future user positions with respect to sites-of-interest can improve the quality

of interaction over a simplistic interpretation of the sensed data. We show

that this system enables eyes-free navigation around set trajectories or paths

unfamiliar to the user for varying trajectory width and context. We demon-

strate the possibility to create a simulated model of user behaviour, which

may be used to gain an insight into the user behaviour observed in our field

trials. The extension of this application to provide a general mechanism for

highly interactive context aware applications via density exploration is also

presented. AirMessages is an example application enabling users to take an

embodied approach to scanning a local area to find messages left in their

virtual environment.
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Chapter 1

Introduction

1.1 Designing Interaction

The computer is no longer just for performing calculations, writing and

printing documents or storing information, it acts as a tool for access to

a vast source of information, it acts as a link to our loved ones, to social

interactions and networks, it effectively acts as a portal to the world. The

emphasis here then should be on the word tool. The rise of mobile comput-

ing has acted as a catalyst for the emergence of a new kind of location-aware

interaction. The design of a richer, more embodied interaction with our de-

vices in this location-aware context is highly desirable and to achieve this,

we must consider the field of interaction design. Interaction design is defined

by Preece et al. (2002) as the design of spaces for human communication

and interaction. In particular it is about experiences that enhance the way

in which people communicate and interact (Preece et al. 2002). Our mobile

device will act as tool for this interaction and in this work we attempt to

design and demonstrate highly interactive tools for use with location-aware

mobile computing. In order to achieve this we must adopt a new approach

to interaction design, one more appropriate for this new, highly mobile and

embodied kind of location-aware interaction. First we should learn from

more traditional forms of interaction.

1



1.2 Instrumenting Interaction

1.2 Instrumenting Interaction

Human beings have always used tools to interact with their surround-

ings. The most fundamental tool we poses as humans is our hands but the

hand alone is not enough to achieve many tasks. People needed to extend

their powers in order to achieve more and this led to the development of

the first hand-held tools. Hammers, axes and chisels, all very primitive, are

the most basic of human inventions and may be thought of as some of the

earliest examples of interaction design. A skilled craftsman is well practiced

and perceives his tool effectively as an extension of himself or his powers.

He becomes part of a tightly coupled feedback loop involving himself and

his tool. He brings together his skills and intentions via this feedback loop

and learns both the subtleties of his tool and the consequences of his actions

to the point where the tool itself becomes almost transparent. This is the

most basic and fundamental notion of a tool and these notions of extension,

transparency and ubiquity are something we should strive to achieve when

developing new tools or designing interaction for our purposes. Through

Figure 1.1: Basic tools.

the industrial age we saw the development of advanced mechanical tools

designed to extend the power of the human hand to a far greater range of

applications. This serves to broaden the definition of a tool, since strictly

speaking these tools were no longer handheld. McCullough (1998) created

the following definition:

A tool is a moving entity whose use is initiated and actively
guided by a human being, for whom it acts as an extension,
toward a specific purpose

2



1.3 Computer-Human Interaction

we can think of the entity as being either physical or conceptual, the motion

may be manual or machine powered, the guidance may be manual or by

indirect control. A tool, by definition, is for serving intent, whereas a

machine can operate on its own. But this does not mean that a machine,

which possess a certain amount of autonomy, can not be thought of as a

real tool. A pilot can still perceive the plane to be his tool, even if much

of the low level functionality of the plane is automated because he is still

a very important part of the whole control loop. It is for this reason that

the notion of a computer as a tool was originally met with some skepticism,

but by thinking of the computer and user as a tightly coupled loop of

control, we can begin to visualise the computer as a tool, which the user

manipulates depending on their intentions. This notion of using control

theory in interaction design is a important part of this thesis. By thinking

of the ‘loop of control’ as the basis for our interaction design and building

our interaction from here, we offer a new method of interaction design to

the community. This is important for the emergence of handheld computing

since the computer (as in figure 1.2), for the first time, becomes a truly

handheld tool more suited to a continuous control style of interaction as

apposed to the more discrete traditional forms of interaction.

1.3 Computer-Human Interaction

The early skepticism regarding the use of a computer as a tool, de-

spite the undeniable ‘machine-like’ qualities of early computers, was most

likely due to the fact that the earliest interfaces were designed by engineers

for engineers and although they were highly functional for their particular

needs, they had not necessarily been explicitly designed with general usabil-

ity concerns in mind. The emergence of personal computers used by the

general public brought with it a necessity for the design of interfaces and

interaction accessible to all but was ultimately hindered by remnants from

these early interfaces. Beale and Edwards (1999) argue that current input

devices, such as a keyboard, are more oriented towards the requirements

of the computer than the user and state that human-computer interac-

tion should be more akin to everyday human-human interaction. With the

3



1.3 Computer-Human Interaction

Figure 1.2: Old and new.

emergence of the field of human-computer interaction and the inclusion of

psychologists, sociologists and computer scientists in the field of interaction

design, computers have ultimately emerged in recent years to be one of our

most powerful tools for creativity (McCullough 1998).

1.3.1 Input

Traditionally computers have produced large amounts of output for rel-

atively little input. The use of discrete key pressing activity on a keyboard

provides a low bit-rate when compared to modern day continuously con-

trolled applications, which take data simultaneously from multiple sensors.

This kind of system has become more prominent recently as these sys-

tems become more mobile and consequentially more location-aware, more

context-aware and are equipped with more and more sensing. We are set

to see the amount of input increase dramatically, perhaps even surpassing

the level of output for the first time. With our own equipment, described

later, we have the potential to take data simultaneously from up to thirteen

different sensors while only displaying information to users via the visual,

audio or haptic channels. It is essential then that we take advantage of this

increased input bandwidth and develop tools which take real advantage of

this switch.

There are a considerable number of input devices on the market for

desktop-based computers. Apart from the obvious keyboard and mouse,

4



1.3 Computer-Human Interaction

we have joysticks, touch pads, trackballs, touch-screens, tablets and gloves

to name but a few. In contrast, mobile devices have relatively little in

the way of input capability. The only readily accepted and available forms

of input for mobile computing are key-pads, buttons, touch-screens and

for some devices, externally attachable qwerty keyboards, but even these

are considered inadequate for effective input, especially when used whilst

mobile.

The startlingly paced emergence of mobile computing has exposed old

interaction metaphors as being inadequate in this domain. In the literature,

two main problems regarding mobile usability are cited. The first problem

cited is limited screen size (Fishkin et al. 2000). And the second is text

entry, which is still extremely limited when using a mobile device, although

we have seen some positive research into developing new methods of text

entry for mobile computers (Zhai and Kristensson 2003, Ward et al. 2000,

Williamson and Murray-Smith 2005a). The use of mice is obviously not

practical for any mobile device and the compromised software keyboard

causes significant difficulty for most people. The stylus may obscure the

small screen, obscuring information the user may like to interact with and

involves the use of both hands. Also, the repeated tapping movements

required can become tedious to use for a long period of time and they

demand a great deal of visual attention. They are reasonable for the entry

of small amounts of data in almost any environment, but as soon as it

is required to enter a large amount of data this method quickly becomes

inadequate (Fallman 2002).

Handwriting recognition has also been commonly employed on mobile

devices. Various handwriting recognition systems, such as Graffiti, have

been relatively successful but the fundamental weakness of handwriting

recognition is its speed, typically around 15 wpm (Card et al. 1983). This

is poor compared to the average 30 wpm with a keyboard on a desktop com-

puter. It can be argued then that mobile computing has almost demanded

a rethink of the fundamentals of interaction design in the search for a more

natural and less obtrusive interaction technique.
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1.3.2 Novel Interaction

New kinds of interaction with computers such as voice control, gestural

interaction and more recently, brain-computer interaction (Blankertz et al.

2006, Blankertz et al. 2007) have begun to emerge but are still in their

infancy and it remains to be seen whether these kinds of new technology

can surpass the traditional keyboard and mouse.

The use of gesture is often mentioned as one possibility for a more

natural and expressive interaction technique. Gestures are a natural form

of communication for humans. Purcell (1985) notes:

“the fluidity and expressiveness of human gesture is a fundamen-
tally important component of interpersonal communication”

It is argued that this interpersonal communication between humans should

equally be applied to the communication that takes place between humans

and computers and Wexelblat (1998) suggests that:

“gestural interaction could herald a new kind of environment,
one in which people could interact with computers in a natural,
conversational manner”

It seems natural then that we would want to incorporate at least some

form of gestural interaction into our mobile tools. It is one of the aims of

this thesis to initiate the development of software tools specifically designed

for location-aware applications, since by definition mobile computers are

mobile. We wish to introduce the concept of using the mobile computer as

an instrument or tool, which incorporates the both fundamentals of gesture

and allows interaction with the environment in a rich and embodied manner.

1.3.3 Embodied Interaction

The Graphical User Interface was an important invention for desktop

computing. It removed the need for a knowledge of complex command-line

languages and presented the inner workings of the computer to the user in

a graphical form. It was a metaphoric representation of everyday objects

with which a novice user could interact with and have at least an inclination

of what would happen if they, for example, moved the file symbol onto the

trash can symbol. Fishkin et al. (2000) notes:
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Figure 1.3: The traditional metaphor used for deleting a file on the desktop

It is interesting to note that while a whole sensory-motor world is
created within the confines of the computer display, the physical
computer itself has become an anonymous, invisible “box”. All
the attention is on a disembodied display.

With the emergence of mobile computing it has become necessary to move

forward from this disembodied GUI. One of the main differences between

mobile computing and desktop computing is the ability to take a mobile

device out into the real world. They are held in the hand and touched and

the addition of sensing opens up the opportunity to shake, flick, gesture or

tilt the devices, we can point them at things or point them at ourselves,

we can use our natural movements and involve our body and our limbs in

ways that evolution has allowed us to do for a very long time. McCullough

(2005) notes:

Place begins with embodiment. Body is place, and it shapes your
perceptions. Embodiment is not just a state of being but an
emergent quality of interactions.

We must then recreate these everyday metaphors, utilised so effectively by

the GUI, in the context of mobile computing and embodied interaction.

Should it now be possible, instead of using your mouse to drag the file

symbol to the trash can symbol, to take the file from the place you stored it

on your body and physically place it in the virtual trash can in front of you?

Rukzio et al. (2006) describe an experimental comparison of some currently

used embodied mobile interaction techniques, i.e. touching, pointing and
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Figure 1.4: A file is removed from the body and placed in the virtual trash
can.

scanning, finding that location is by far the most important factor for the

selection of the correct metaphor within a given context. This leads us

then to think about how we might construct a new kind of location-aware

interface and what kind of embodied metaphors for interaction should we

choose? In chapter 3 we design our interaction around the body to produce

an egocentric interface with embodied gestures to different parts of the body.

In chapter 4 we expand the interaction out into the space of the real world

to produce an exocentric interface which requires users to interact with and

explore the space in an embodied manner. These two very different kinds of

embodied interaction demonstrate the potential for the use of embodiment

and embodied interaction in our designs, which is made possible by the

emergence of mobile computing. Again though we must define new ways

of thinking about the design of this interaction and lay down some new

principles for interaction design in this embodied and spatial context.
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1.4 Spatial Interfaces

The notions of “space” and spatial organisation to facilitate and struc-

ture our interaction is something intuitive. The world in which we live is

structured in a way which moulds and guides our actions and interactions.

We are always arranging our most commonly used tools around ourselves.

Our mobile phones are always within arm’s reach. In the office we have our

computers, our books and our filing cabinets all close at hand and arranged

in a spatial way. It is likely that you could reach for something on your

desk and grab it even with your eyes closed because spatial mapping and

the representation of our own personal space in our minds is very powerful.

So it is important that we exploit this power in the design of our interfaces

and this is demonstrated in chapter 3.

Harrison and Dourish (1996) argue that a focus on spatial models is

misplaced. Drawing on understandings from architecture and urban design

they highlight a critical distinction between “space” and “place”. While

designers use spatial models to support interaction, they show how it is

actually a notion of “place”, which frames interactive behaviour. They

explain that space is about the structure of the three dimensional world in

which objects and events occur, and in which they have relative position and

direction. Physically, a place is a space with which we poses understandings

of behavioral appropriateness and cultural expectations.

We are located in “space”, but we act in “place”. Furthermore,
“places” are spaces that are valued. The distinction is rather
like that between a “house” and a “home”; a house might keep
out the wind and the rain, but a home is where we live.

The notion of egocentric and exocentric interfaces becomes important

here. Marentakis and Brewster (2005) define, in their work with a spatial

audio interface, an egocentric display to be one where the sound position is

fixed to the user and remains unchanged no matter what the direction of the

user is, whereas in an exocentric presentation, sound position is fixed to the

world and is updated in real time based on the direction of the user relative

to the sounds. In an egocentric setting we have the ability to build highly

personal spatial interfaces, such as that in chapter 3 where users have the
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ability to associate different files or functionality with different parts of their

body, which is obviously a very personal, intimate and egocentric thing.

Exocentric spatial interfaces are much more open and expansive. The work

conducted in chapter 4 shows that it is possible to treat the world as our

interface and here is where it becomes important to consider the notion

of ‘place’. This kind of interface opens up the possibility to interact with

objects placed in our interface or even other people in other places, creating

new opportunities for the exploration of the social mechanisms for this kind

of interaction.

More and more often researchers involved with mobile computing and

interaction design are considering the relationship between the human and

their mobile device. Socially, the mobile computer has become very impor-

tant and people have come to rely on their devices as an important part

of their lives. Ask a typical user how they would feel if they lost their de-

vice and they would likely tell you that they would feel lost, disconnected,

invisible or even naked. This is due to the subconscious connection that

people make between their mobile phones and their social lives, and with

their connections to friends and family. Removing the device causes a sub-

conscious connection to a loved one to be broken or a potential invite to a

social gathering to be lost. These emotional responses to the current state

of mobile technology are a hint that our devices are becoming an important

part of a user’s life.

Although there has been a considerable amount of work conducted in

the field of audio interfaces, there is still a desire to develop more tools for

use in this eyes-free, location-aware context. We are set to see a move away

from more traditional, visual, screen-based user interfaces. Audio interfaces

are considered more appropriate for mobile computers being used ‘on the

move’ since most visual attention should be allocated to more safety critical

tasks, such as avoiding passing cars, and there has been work conducted on

‘eyes-free’ interaction (Cohen and Ludwig 1991, Savidis et al. 1996, Brewster

et al. 2003). In a mobile computing context the environment in which the

user of a mobile device finds himself is constantly changing but existing

interfaces are largely failing to take advantage of these contextual changes.

We wish to incorporate this changing context into our interaction designs,
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giving our interfaces a strong location-aware and ‘eyes-free’ flavour but to

make this possible we also need to consider the natural uncertainties these

changing contexts bring us.

1.5 Embracing Uncertainty

One of the fundamental problems affecting the development and general

acceptance of novel mobile interfaces comes from the omnipresent or ‘always

present’ uncertainties in our sensor measurements and the fact that these

sensors are usually indirect proxies for what we really want to measure. Un-

certainties can arise from various sources including general internal sensor

noise or noise from the outside world. It is essential then that we embrace

this uncertainty in a way which makes our interfaces more acceptable. But

how do we approach this and what effect will this have on the users of our

system?

Location-based games are becoming more prominent as technology de-

velops. Recent examples of location-based games include AR Quake(Piekarski

and Thomas 2002), Treasure (Chalmers et al. 2005), Pirates! (Björk et

al. 2001), Mindwarping (Starner et al. 2000) and Feeding Yoshi (Bell et

al. 2006), demonstrating how handheld computers and see-through head-

mounted displays can be combined with sensing systems such as GPS and

video-tracking to create experimental gaming experiences. These projects

offer glimpses of the potential new applications for location-based technolo-

gies. They are especially useful for studying how participants experience

location and context-sensing technologies when confronted with consider-

able technical uncertainty arising from GPS or wireless network coverage.

(Benford et al. 2005).

Can You See Me Now (Benford et al. 2006) is a game where online play-

ers are chased through a virtual model of a city by runners equipped with

GPS and WiFi technologies. The runners are required to run through the

actual city streets in order to catch the online players. They present an

ethnographic study of the game, which reveals the diverse ways in which

online players experienced the uncertainties inherent in GPS and in WiFi.

Mostly the participants were unaware of these uncertainties, but sometimes
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they saw them as a problem, or treated them as a feature of the game,

and even occasionally exploited uncertainty within game play. The au-

thors encourage designers to deal with such uncertainties as a fundamental

characteristic of location-based experiences rather than treating them as

exceptions or bugs that might be ironed out in the future.

Within this thesis it is one of the aims to examine the effects of uncer-

tainty and explore whether a truthfully uncertain display, which we may

also refer to as an honest display can actually improve experiences with

location-aware applications. Can the proper representation or exposure of

uncertainty help improve control performance in an interaction task?

1.6 Modelling Interaction

Many successful computer interfaces have been implemented over the

years but there remains a distinct lack of well-founded theoretical principles

in their design. There exist many interfaces which have been carefully

designed at a high-level, which have then been evaluated with many users

with some statistical analysis applied to show the usability of that interface

but there are still few solid theoretical frameworks for interaction, which can

describe and predict behaviour from the lowest motor-level control actions

to the highest level goals and intentions. Thimbleby (1990) notes:

I find reports of experiments sometimes related to my particular
problem but without some underlying theories, how can I know
how safely I can generalise those results to apply in my design,
with my users, in my language?

In this work we consider model-based approaches to our interaction, which

are considered to be beneficial for a number of reasons. By basing our in-

teraction on a simulation of a physical model we provide the user with a

natural intuitiveness which is not present for non-model based approaches.

This approach is also beneficial since it enables a more active exploration of

the potential range of interaction with a device, encouraging a user to dis-

cover the limits of their interface and maybe use it in unusual ways. Others

have illustrated the benefits of this kind of approach. Eslambolchilar et al.

(2004) describe a working system where they support human behaviour in a
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document browsing task by adapting the modeled dynamics of the naviga-

tion and the visual feedback. Rath and Rocchesso (2005) advocate the use

physics-based sound models, which they hypothesise can afford immediate

and accurate grasping of everyday phenomena, giving their own example

of a rolling ball on a beam, which they say can be used as a metaphor in

a variety of interaction tasks. Their initial experiments indicate that the

performance in continuous interaction tasks can be improved by carefully

designed physics-based sound models. Cook and Lakatos (2003) described a

series of studies in human auditory perception based on the use of physical

synthesis models. They find that use of realistic physically-based models

allows individual parameters to be isolated and tested. Rocchesso et al.

(2003) describe the use of “cartoonified” physical sound models, where the

physics have been exaggerated somewhat in order to increase both com-

putational efficiency and the perceptual sharpness for the user. This is

an important engineering benefit, akin to Computer Generated graphics or

animation, where the altering of simple parameters allows the whole look

and feel of a system to change. This more scientific approach to designing

interaction is helpful since it allows us to designed our interaction such that

the ‘look and feel’ of the interaction may be altered or shaped by simply

adjusting the parameters of our model.

1.7 Thesis Outline

1.7.1 Our Place

It is important that this thesis has its place. The main aim of this thesis

is to demonstrate the potential for rich and highly interactive location-aware

applications, which take advantage of newly emerging sensing capabilities.

It is hoped that this thesis will act as a bridge between the worlds of human-

computer interaction, interaction design and control engineering with the

purpose of introducing and demonstrating the use of the kind of tools from

the world of control engineering, which have natural applications to interac-

tion design and have a very strong and rich history, which can be of benefit

to the HCI community. We also wish to formulate and present some new
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design ideas and principles from this control theory basis and present them

in a way which is useful to researchers from the field of HCI.

1.7.2 Structure

Chapter 2 introduces the theoretical background to the work, expanding

on the themes noted above and introducing some tools to be used and

challenges to be met in the course of this work. The essential characteristics

of interaction and the signals associated with this interaction which we are

required to understand are introduced and the use inertial sensing in the

domain of mobile computing is discussed.

Chapter 3 introduces BodySpace. This is a gesture-based application,

which uses inertial sensing and pattern recognition to enable the human

body to be used as the egocentric interface for an application, in this exam-

ple, for a music player. We describe the development of a gesture controlled

music player, which functions by placing the device at different parts of the

body. We describe a new approach to the segmentation and recognition

of gestures for this kind of application and show how simulated physical

model-based interaction techniques can shape the gestural interaction. We

describe how this is received by users in informal testing.

Chapter 4 introduces the GpsTunes application. This is a mobile, GPS-

based multimodal navigation system, equipped with inertial control that

allows users to explore and navigate through an exocentric augmented phys-

ical space, incorporating and displaying the uncertainty resulting from inac-

curate sensing and unknown user intentions. The system propagates uncer-

tainty appropriately via Monte Carlo sampling. Control of the Monte Carlo

exploration is entirely tilt-based and the system output is displayed both

visually and in audio. Audio is rendered via granular synthesis (described

in section 4.5.1) to accurately display the probability of the user reaching

targets in the space. We also demonstrate the use of uncertain prediction in

a trajectory following task, where a section of music is modulated accord-

ing to the changing predictions of user position with respect to the target

trajectory.

Chapter 5 brings together the work conducted in chapters 3 and 4 to in-

14



1.8 Thesis Claims

troduce a mechanism for providing highly interactive context and location-

aware applications and describe as an example the AirMessages system.

AirMessages, allows the dropping and retrieval of text messages in the real-

world via a gesture-based interface. An informal user study is conducted,

which highlights some potential problems, improvements and provided some

interesting insights into the use of this kind of system.

1.8 Thesis Claims

The work in this thesis explores the design space of mobile devices

equipped with inertial and location sensing and audio and vibrotactile feed-

back. From a design-theoretic point of view we have introduced a new style

of designing interaction, which considers interaction design from a more

theoretical level, starting from the basic notion of treating this kind of con-

tinuous interaction as a loop of control and building the application around

this principle, thinking carefully about inputs to the system, processing of

those inputs and the fedback provided. We have created interfaces using

these principles, which use the egocentric body and exocentric real-world en-

vironment as interfaces to interact with objects. We have also demonstrated

the utility and generality of a model-based approach to the interaction with

mobile devices with the aim of allowing other HCI researchers to extract

this approach and adapt it to their own interfaces. We have demonstrated

the utility of incorporating uncertainty and constraints into the interaction

design, which it is hoped can be adopted for the general improvement of

interaction with location-aware applications.

From a technical point of view we have developed a new approach to the

detection and segmentation of body-based gestures using an end-point or

goal state detection approach. We have demonstrated a dynamic systems

approach to the representation of gestures. We have shown that the feeding

back of uncertainty can improve performance in location-based interaction

and that the use of natural constraints in the environment can aid inter-

action. We have shown that appropriate display of the full distribution of

potential future user positions with respect to sites-of-interest using Monte

Carlo sampling can improve the quality of interaction over a simplistic in-
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terpretation of the sensed data and demonstrated the use of tilt to control

the Monte Carlo sampling time horizon and the use of magnetometers to

provide rapid bearing updates, enabling the sensing of content in the local

environment via multimodal (audio and vibration) sensing. We introduce

new metrics for usability analysis, which provide objective measures of the

way in which a system was used.

Novel applications have been developed. Applications of the BodySpace

system, i.e. BodyMusic and Off-The-Wall Interaction are described. We

also introduce the gpsTunes application and a derivation of this known as

airMessages.

From an empirical point of view we have shown that our BodyMusic ap-

plication could be used by a number of users and demonstrated the initial

utility of our proposed off-the-wall interaction system. Field trials con-

ducted for the gpsTunes application show that users are able to traverse

to unknown locations using a basic system and that they can also follow

unknown trajectories or paths using this system. We also find that when

users are performing the same task in a familiar environment with natural

visual distracters, such as people or friends and natural constraints such

as paths and buildings, that they perform significantly better than when

asked to perform the same task in a wide open featureless playing field. A

field trial using the airMessages system shows that users are able to probe a

local density map or ‘context’ effectively, using the full functionality of the

designed interface, to find messages and drop new messages with the use of

gestural interaction. We find that users who utilise the degrees of freedom

in the system most effectively are those who also complete the tasks fastest.
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Chapter 2

Background and Challenges

2.1 Introduction

In the past, location was not something which had to be considered

in interaction design, since most computers were extremely large, desktop-

based and definitely not mobile. The Global Positioning System and to

a lesser extent the MEMS implementation of inertial sensing have acted

as a catalyst in the rise of location-aware mobile computing and we have

recently seen an abundance of novel location-aware applications. These ap-

plications, though, are limited by the traditional metaphors for interaction

with a mobile device, so for this reason there exists a movement towards the

development of novel approaches to interaction in this new context. This

thesis presents two contrasting location-aware applications, each of which

takes a different approach to this location-aware label. So what tools are

beneficial for the development of such applications and how should they be

used? And how can the addition of inertial sensing influence and enrich

this kind of interaction? These are both questions we wish to address in

this chapter.

In the remainder of this chapter we will review existing work in this area,

consider some of the challenges, introduce some useful tools and show the

feasibility of building highly interactive location-aware systems on a mobile

device.
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2.2 Inertial Sensing

2.2 Inertial Sensing

Movement-based interaction based on inertial sensing is still a relatively

new paradigm for interacting with mobile devices. As with location-aware

computing, in recent years there have been an ever increasing number of ap-

plications developed, which take advantage of inertial sensing in the mobile

domain. Inertial sensing, though, is by no means a new area of research.

For well over 50 years researchers have been developing sensing techniques

and sensors for aircraft and military applications (Titterton and Weston

2004), yet research in the mobile devices community has largely failed to

take advantage of the tools and algorithms developed in this time. One

reason for this may be the undeniable lack of superficial similarity between

a large passenger-carrying aircraft and your average handheld mobile device

but the underlying principles of inertial sensing apply to both.

So what can inertial sensing bring to our mobile devices? The prin-

cipal application of inertial sensing has been to the development of more

natural and less obtrusive interaction techniques generally but also has a

significant influence on context and location-aware systems. A number of

commercial products now come equipped with inertial sensors. The Sam-

Figure 2.1: Nokia 5500 sports training phone, Samsung SCH-S310 gesture
phone and Sony S2 sports walkman.

sung SCH-S310 comes with a built-in accelerometer used for simple gesture

recognition, the Nokia 5500 mobile phone also has a built in accelerome-

ter used for sports training, the iPod nano has a separate wireless sensor

which fits into the shoe and is used for calculating run distances and calorie

burning and the Sony S2 sports walkman utilises inertial sensing to choose
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playlists based on the runners current pace. It is envisioned that the use

of multi-modal interfaces can expand the input bandwidth for interaction

with mobile computers and aid interaction. Hinckley et al. (2000) described

a mobile device instrumented with a proximity sensor and a two-axis tilt

sensor. They demonstrate several new functionalities which make use of

the sensors, such as recording memos when the device is held like a cell

phone, switching between portrait and landscape display modes by hold-

ing the device in the desired orientation and scrolling the display using tilt

demonstrating that inertial sensors can provide alternatives to the physical

and on-screen buttons in handheld devices. These functionalities are now

becoming more common in consumer electronics. There are a number of

digital cameras which can orientate a picture depending on how the camera

is held and more recently the Apple iPhone has been introduced, which can

switch between portrait and landscape mode depending on the orientation

of the device.

Many researchers have since focused on tilt-based inputs and audio and

haptic outputs (Rekimoto 1996, Partridge et al. 2002, Wigdor and Balakr-

ishnan 2003, Oakley et al. 2004, Hinckley et al. 2005) demonstrating the

utility of one-handed control of a small screen device. The use of these

systems whilst on the move has also been demonstrated by Pirhonen et al.

(2002) and Crossan et al. (2005).

Examples of other kinds of applications include, for example, a dice,

which employs inertial sensing and perceives movement and rolls to record

what face it lands on. It is thus able to detect bias for unfair behaviour due

to its physical imperfections (Laerhoven and Gellersen 2006). Other systems

employ inertial sensing for movement based exercise, for example. Foody

et al. (2006b) describe a project where they wish to develop an effective

feedback system for a human interface to promote mental and physical

exercise and relaxation via therapies such as Yoga or Tai Chi. They describe

a prototype sourceless kinematic-feedback based video game, which utilises

inertial sensing in the form of an Inertial Measurement Unit, to render

and animate a skeleton on screen, which gives participants instructions on

which posture to assume next. Development of new interaction techniques

specifically designed for mobile scenarios and inertial sensing, it is thought,
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will help eradicate some of the limitations of current systems including

the use of small hardware buttons and stylus keyboards, which can be

cumbersome and difficult to use at times, especially when used ‘on the

move’.

2.3 Our Sensors

2.3.1 Hardware

The equipment used in the course of this work consists of an HP iPAQ

5550 running WindowsCE equipped with a MESH – Modality Enhancing

Sensor-pack for Handhelds (Oakley et al. 2004) Inertial Measurement Unit

(IMU) backpack consisting of 3 Analog Devices ±2g dual-axis ADXL202JE

accelerometers, 3 Analog Devices ±300deg/s single chip gyroscopes, 3 Hon-

eywell devices HMC1053 magnetometers and a vibrotactile device. The

main vibrotactile display is a modified VBW32 transducer, originally de-

veloped as an aid for hearing impaired people, which resonates at 250Hz

and has a dynamic range of 54 dB. A standard orthogonal inertial sensor

arrangement is used with the sensitive axis of the respective inertial sensors

mounted coincident with the principle device axes providing us with direct

measures of lateral accelerations, turn rates and magnetic field strength as

well as the current GPS latitude and longitude. Our GPS is a Trimble

Lassen Sq module, produced for mobile devices, and is also built-in as part

of MESH (see figure 2.2). This module boasts a 9m resolution with up to 6m

resolution around 50% of the time it is used (Trimble Navigation Ltd. 2002).

It also provides us with velocity resolution of 0.06m/s and an 18m altitude

resolution. This module suffers the same problems that most GPS mod-

ules suffer, in that there are occasional problems with resolution, latency,

slow updates (1Hz update for this module), signal shadowing and noise in

the signal, which can be detrimental to a system. It is for these reasons

that systems like that described in chapter 4 require further support from

other inertial sensors such as accelerometers, gyroscopes and magnetome-

ters, which we have at our disposal with MESH. In our applications, apart

from utilising the GPS for positioning, we have also used the accelerometers
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Figure 2.2: Left: Mesh device alone and attached to an HP5550 Pocket Pc.
Right: The MESH circuit board showing the main components related to
the navigation task

to calculate pitch and roll, the magnetometers in conjunction with the ac-

celerometers to achieve tilt-compensated heading and the vibrotactile unit

to provide the user with appropriate feedback.

2.3.2 Other Hardware

There has been a significant amount of research conduced with vari-

ous kinds of sensor pack in recent times. Tuulari and Ylisaukko-oja (2002)

describe their sensor pack, SoapBox (Sensing, Operating and Activating

Peripheral Box). Like MESH, the device contains both accelerometers

for measuring the 3 dimensional acceleration or tilt of the device and a

magnetic sensor for determining direction or heading. It also contains an

Illumination sensor, which measures the intensity of visible light and an

optical proximity sensor, which measures the level of reflection from RF

pulses, allowing the device to calculate distances. Similarly, Foody et al.

(2006a) have built a USB interfaced motion capture sensor, which contains

3-axis linear accelerometers and a 3-axis magnetometer. Researchers at Mi-

crosoft have developed SenseCam (Hodges et al. 2006), a sensor augmented

wearable stills camera, which is designed to capture a digital record of the

wearers day. This camera contains a number of sensors including an ac-

celerometer for sensing movement, a microphone for sensing audio activity,
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a temperature sensor and a passive infrared sensor. Smart-Its (Holmquist

et al. 2004) are small, self-contained, ‘stick-on computers’ that users can

attach to objects, which were designed to aid researchers and designers in

the construction of responsive or intelligent environments. The standard

sensor board has five sensors including light, sound, pressure, acceleration,

and temperature. Aylward and Paradiso (2006) describe a wireless sensor

system for the capture of expressive motion when worn at the wrists and

ankles of a dancer. Each sensor node includes a 6-axis inertial measure-

ment unit comprised of three orthogonal gyroscopes and accelerometers, as

well as a capacitive sensing to measure close range node-to-node proxim-

ity. The WASP project (Microsoft Research 2007) is a wearable platform,

designed to enable the development of mobile and ubiquitous prototype ap-

plications that rely on sensing. Traditionally, wireless sensor networks have

relied upon ad-hoc peer to peer networks but wasp uses a cellular com-

munications infrastructure enabling a host of new applications beyond the

environmental monitoring applications that are typical of sensor networks.

2.4 Mobile Signals

The data we receive from our sensors are reasonable measures of ac-

celeration, angular rate and magnetic field, all with a specified variance

and if the variance on these signals was small, we could simply work with

the mean value from the sensor. For example, raw data from a mouse has

very low variance and is very easy to work with directly but data from an

accelerometer has a higher variance and we need to decide exactly what

information we wish to infer from this data and treat it in an appropriate

way. In appendix B we discuss exactly what we are receiving from our

sensors but for now it is beneficial to examine some of the differing signals

received from the sensors in different situations. In figure 2.3 we see data

from an accelerometer, gyroscope and a magnetometer for the situation

where a device is left on a table with no movement at all. This is basic raw

data and contains no notable features although we see a downward trend

in the accelerometer data, possibly related to a rise in temperature. If we

examine the histograms in figure 2.4 we see that even in the case where a
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device is left untouched on a surface, there is an inherent uncertainty in the

data received from the sensors, indicated by the spread of the distribution.
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Figure 2.3: Unfiltered accelerometer, gyroscope and magnetometer data for
a device motionless on a table.

We can easily observe the difference between the two types of movement in

figure 2.5 where the device was placed in the user’s pocket as they walked

and in figure 2.6 where the device is held in hand and tilted first back and

then forward. From figure 2.5 we may make the basic observations that

there is a rhythmic structure in the data from the accelerometer and we

observe that the magnetic field changes over time as the user walks further

away from their starting position. And for figure 2.6 it is clear from all the

sensor data where the tilting and stats and stops. Likewise for figure 2.7 it

is clear to us from the accelerometer data that the device has been moved

and from the gyroscope data that it has also been rotated somewhat. But

how can we make more concrete observations from this kind of data? How

can we infer the actual acceleration value or tilt of the device from the ac-

celerometers? What is the current angular rate from the gyroscopes? And
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Figure 2.4: Histogram for the data shown in figure 2.3 providing us with a
notion of the inherent uncertainty in measurements from these sensors.

what is our precise current heading from the magnetometers? In appendix

B we answer these questions and demonstrate standard approaches to the

inference of more precise values from these kind of sensors and apply this

in a mobile computing context. For now we must consider the limitations

placed upon us by the use of this kind of sensor.

2.5 Mobile Limitations

Although at a low level the tasks of determining the position and at-

titude of a missile and a mobile phone are the same, there do exist some

obvious differences which may act to limit us when applying aspects of

this mature field of research in our mobile computing context. For exam-

ple, the sensors we are required to use are the cheapest possible, giving

us noisier data than the data from the high-end sensors used in an air-

craft. The mechanical gyroscopes used in aircraft applications have biases
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Figure 2.5: Unfiltered accelerometer, gyroscope and magnetometer data
from sensors in a user’s pocket while they are walking.

of 0.0002− 0.002◦/s/g compared to 0.01− 0.05◦/s/g in a typical vibrating

mass gyroscope as is used in mobile devices (where s is seconds). Like-

wise for accelerometers, a typical mechanical accelerometer has a bias of

0.0001g − 0.01g compared to a value of ∼ 0.025g for a MEMS-based ac-

celerometer.

As if to compound the problem, with a mobile device we will generally

experience more variable movements and changes of context compared to

the slow, smooth and relatively invariant rotations and constant context

of a passenger carrying aircraft. For example, we may be walking down

the street receiving high amplitude walking data and then enter a car and

drive off receiving smoother driving data containing two-dimensional low

frequency accelerations combined with high frequency vibrations from the

vehicle. With a mobile device we are also subjected to the kind of distur-

bances that an aircraft will generally not need to deal with. For example,

the output from magnetometers is very sensitive to local perturbations in
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Figure 2.6: Unfiltered accelerometer, gyroscope and magnetometer data
from sensors when they are tilted back and forward from horizontal.

the magnetic field from iron framed buildings, tables, filing cabinets, com-

puters etc. that are not a problem for an aircraft traveling at 20000 ft.

It is necessary then that mobile applications are designed to deal with

the inherent uncertainty and ambiguity we receive when using these sensors.

For this task we are required to introduce a number of tools to aid the

development of this interaction.

2.6 Control Theory

Control theory is a broad field which has undergone development for the

best part of a century and there exists an enormous literature on control

theory for engineering systems. Control theory is concerned with the anal-

ysis of closed-loop systems. In a closed-loop system (figure 2.9) feedback

is a critical component. Put simply, a “controller” tries to manipulate the

inputs of a system to control the desired output relative to the ‘reference

26



2.6 Control Theory

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
−0.5

0

0.5

1

1.5
x−accelerometer

ac
c 

(g
)

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
−5

0

5
x−gyroscope

an
g 

ra
te

 (
ra

d/
s)

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
2200

2400

2600

2800

3000
x−magnetometer

time (s)

x−
m

ag
 (

co
un

ts
)

Figure 2.7: Unfiltered accelerometer, gyroscope and magnetometer data
from a typical large arm gesture as displayed in figure 2.8.

variable’ in order to realise some desired behaviour.

Control theory has traditionally been concerned with the automatic reg-

ulation of external systems. The earliest known ‘control application’ was

the control of ancient water clocks around 2000 years ago but the first well

documented application was a dynamics analysis of the centrifugal gover-

nor, which is a specific type of system that controls the speed of an engine

by regulating the amount of steam admitted. Control theory then became

an important part of military fire control and guidance applications (Bas-

kett 2000, Blakelock 1991). More recently the use of control theory has

become more relevant in other fields including sociology and economics,

where, for example, optimal control techniques were used to influence pol-

icy involving unemployment-inflation tradeoffs (Athans and Kendrick 1973).

Control theory is now also increasingly being applied to the field of Human

Computer Interaction (Williamson 2006, Eslambolchilar et al. 2004, Eslam-

bolchilar and Murray-Smith 2006, Eslambolchilar 2007).

27



2.6 Control Theory

Figure 2.8: A typical gesture performed to the back of the head.

2.6.1 Manual Control

Manual control is a sub-field of control theory that deals with the human

control of dynamic systems. It was originally developed by feedback control

engineers for military tasks involving humans, such as the control of aircraft

and for tracking tasks or tracking for anti-aircraft gunners. Jagacinski and

Flach (2003) gives a modern view of control theory for humans which high-

lights somewhat the potential application of standard control techniques

to the field of Human-Computer Interaction while Kelley (1968), Sheridan

and Ferrell (1974) and Poulton (1974) are classical examples of work in the

field. There are a number of aspects of manual control theory which are

relevant for the design of human-computer interfaces.
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Comparator
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Figure 2.9: Negative feedback control loop with the error signal fedback to
maintain control.

Discrete or Continuous Control

It is important that we understand the difference between discrete and

continuous control. Schmidt and Lee (2005) describe discrete movements

as having a definite beginning and end whereas continuous movements have

no recognisable beginning or end and may continue until explicitly stopped.

Examples of discrete movements include kicking a ball, turning a key or

opening a door whereas continuous movements include swimming, running

or steering a car and are typically oscillatory in nature.

Craik (1947) suggested that the output of the human operator perform-

ing a perceptual-motor control task consisted of a sequence of discrete,

“ballistic” movements. Traditionally user interfaces on mobile devices have

utilised a discrete control approach and conventional interfaces use button

presses or clicks to navigate in discrete steps through some menu structure.

Few interfaces use a continuous control. Schmidt and Lee (2005) describe

continuous movements as those that have no recognisable beginning or end.

And one important aspect of interaction with a mobile or wearable device

especially is that it has the real potential to be continuous, with the user

in constant, tightly coupled interaction with the system. Examples of this

kind of interaction are given in (Williamson and Murray-Smith 2005a, Ward

et al. 2000, Lantz and Murray-Smith 2004). A positive insight from con-

trol theory can enhance the development of these interfaces by providing a
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quantitative approach to interface design meaning that interaction need no

longer consist of an exchange of discrete messages, but can form a rich and

continuous dialogue.

Tracking

Poulton (1974), in his book describes in depth the field of tracking and

manual control. Tracking is concerned with the execution of accurate move-

ments at the correct time and can involve true motion or relative motion.

Tracking is an everyday task for humans. We are constantly tracking with

our eyes and hands. When we drive a car what we are doing, in a basic way,

is tracking with a control system. So it is natural to extend the concept of

tracking to our interface designs and apply some principles from this field

to help us understand more the ways in which a user interacts with our

interfaces. The aim in any tracking task is to minimise the error between

some control object and a target. For example, following a path on screen

with a cursor. This task may be performed in two ways. One is known as

compensatory tracking; when the error is all that is available to the user

and the second method is known as pursuit tracking; where both the target

to follow and the current output are available. A pursuit display has an

advantage over a compensatory display in that with the pursuit display it

is possible to predict future movement of the track more accurately and so

reduce any lag present. It is also possible with a pursuit display for the

user to learn the control system more easily because the consequences of

the user’s actions are not compounded with changes in the reference signal

(Poulton 1974).

2.7 Inferring Intention

One way in which we can use the well developed tools of control engi-

neering is in the inference of user intention. Inferring the intention of a user

is a difficult problem and we need to extract as much information from the

evidence space (an augmentation of the sensor space which represents the

current state of the system in terms of values inferred from sensors over

some time window (Williamson 2006)) as we can. The evidence space en-
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codes all of the information necessary to make a decision from our sensors.

From a control perspective the intention of an interface can be thought of

as the reference value to which it attempts to hold some other system. This

implies that we may think of any device which engages in control as having

intention. In a usability context we may think of a usable system as one

which takes a user’s actions and accurately translates them to some action

or intention. The detection of user intention has been investigated by Pow-

ers (1973) who illustrated examples of intentional behaviour which could

be empirically detected using continuous control models. He also demon-

strated the extension of control from low level control processes to much

higher level processes such as the control of a persons self image. Williamson

and Murray-Smith (2004) describe an interface built on this principle and

Williamson covers this in depth in his thesis (Williamson 2006). Utilising

methods from perceptual control theory and dynamic systems, they present

a method for performing selection tasks based on the continuous control of

multiple, competing agents who attempt to determine the user’s intentions

from their control behaviour. Just by analysing the behaviour from a num-

ber of variables from some state vector x, user’s are able to select their

desired target without the use of an explicit visible pointer because the

system has successfully determined the user’s intention.

So what must we consider when attempting to ascertain the intention

of a user? Signal uncertainty must be considered. Uncertain signals are

omnipresent for inertial sensing in mobile computing and increase the width

of the distribution of potential intentions so it is important that we treat

uncertainty in an appropriate manner. ‘Constraints’ are also something

we must consider. Real-world constraints, although not measured directly

by our sensors, are something which influence the potential intentions of a

user significantly and are something which can simplify the inference task

significantly as we show in chapters 3 and 4.

2.7.1 Uncertainty

Our knowledge of the world is uncertain. As mentioned previously, the

sensors we are attempting to use in this work are inherently uncertain.
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But uncertainty is not just about uncertainty from our sensors, on a more

fundamental level it is about uncertainty in the intentions of the user and

uncertainty in the system’s belief about the user’s intention that is fedback

to the user. When humans interact with their mobile device, there are a

large number of variables which we may not observe directly. Uncertainty

can arise from many sources. From sensor noise, from model inaccuracy,

from the user’s physical state when they are walking or sitting in a vehicle,

from the their emotional state, from disturbances in the environment or

from variability in the user’s general performance of actions as illustrated in

figure 2.10, which shows five different attempts at the same gesture from the

same user. It may not be possible to directly associate any of these variables

with a specific intention with respect to the interface but they do, as a whole,

affect the interaction and the communication of intention. Another problem

we face comes from the fact that we do not have direct access to what we

really wish to measure. We wish to measure exactly how much the phone

has been moved but what we get is a complex acceleration trace, so the

way we interpret this trace is important. From a theoretical perspective, our

system must assume a distribution over all potential states meaning that the

system’s observations are too abstracted from the actual intentions of the

user. It is this abstraction which motivates the incorporation of uncertainty

into our interfaces, in both inference and feedback, to aid the negotiation

of interaction between user and computer.

2.7.2 Constraints

Part of our evidence space should include real-world constraints, which

place limits on the number of possible intentions possessed by a user and

the movements they can feasibly make in any given period. By thinking

of the natural constraints placed on our system, which limit the range of

potential user behaviour and afford us some extra information that our

system may use to interpret these intentions, we may narrow down the

number of potential goals for that user. So what kind of constraints must

we consider? Concrete examples of the use of constraint are demonstrated

in chapters 3 and 4. We can consider physical constraints from the world
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around us or the physiological and cognitive constraints of the user. Even

social or environmental constraints can be considered depending on the

user’s current context. If a user is walking down the street it is more likely

that they will wish to call someone or gesture with their device than if

they are riding a bike. The potential range of user intentions when a user

is riding a bicycle is far more limited because the bicycle constrains the

potential number of intentions. Likewise, if the user is sitting on a bus the

likelihood of them getting off of the bus at a designated stop is far higher

than them getting off the bus at random place on the road. The number

of potential places they wish to go in the real world, or the distribution

of potential intentions, is constrained just by the fact that they are on a

bus. It is this kind of real world inference that cannot be extracted directly

from a stream of sensor data but which is important in the inference of user

intention and it is important that this way of thinking is utilised to help us

mould and shape our uncertain signals in a constructive manner.

Characteristic and repeated patterns of user behaviour may also be

considered as constraints. Krumm and Horvitz (2006) present a system,

Predestination, which uses a history of a drivers destinations, along with

data about driving behaviours, to predict where a driver is going. As time

progresses the possible number of potential destinations for that driver be-

comes more and more constrained. Other work which makes use of typical

user behaviour to make predictions includes that of Ashbrook and Starner

(2003) who find potential destinations by clustering GPS data, then pre-

dict destinations from a number of potential candidates, and Marmasse and

Schmandt (2002) who predict a person’s destination from a list of previ-

ously visited destinations. All these systems are, in one form or another,

exploiting constraints in the user’s behaviour, where behaviour is a result

of constraints and desires, exploiting biases in the physical environment,

cognitive constraints or even fatigue, to deduce a user’s intention.

2.8 Feedback

Feedback is essential for the control of any system subject to uncer-

tainty. If we do not receive feedback on our actions, in any context, we are
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unaware of the effect those actions had, we have an open-loop system. This

is particularly true when it comes to interaction with our mobile devices.

If we press a button on our mobile phone or PDA and nothing happens

this can be very disconcerting. If your system takes fifteen seconds to boot

and there is no progress bar this is also disconcerting, especially if you did

not anticipate this delay. So it is important that appropriate feedback is

designed to enhance and allow the user to engage in a positive relationship

with their device. Feedback can come from a number of channels or modal-

ities so we need to consider the correct choice of modality, or combination

of modalities, when designing feedback for our system.

2.8.1 Multiple-Modalities

The most obvious feedback modality for humans is visual. Our eyes are

our most dominant sense so it makes sense that visual feedback is used in

most interfaces. Visual displays are the most common kind of display, from

the earliest days of computing information was being displayed visually on

a monitor or paper trail. Our visual channel has very high bandwidth and a

vast amount of work over the years has gone into the use of visual feedback

to convey a very wide range of information. But the visual channel can

become inefficient in situations where a user is mobile, as they may be

paying more attention at this point to their surroundings, such as passing

cars, lamp posts and other pedestrians. For this reason we attempt to

develop an ‘eyes free’ interaction, focussing principally on the auditory and

haptic modalities. There are significant advantages to non-visual display in

a mobile context since when mobile, a user is likely to allocate the majority

of his visual attention to tasks not involving the device display.

The audio channel is the natural second choice for displaying feedback

and is already used extensively for augmenting our visual modality; we

frequently use our ears to tell our eyes where to look. The vast major-

ity of visual displays also utilise some form of audio feedback to augment

the visual data. The majority of auditory interfaces are limited to discrete

sounds, emitted after certain events such as button presses or used as warn-

ing sounds. This kind of discrete summative feedback has been extensively
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investigated (Brewster et al. 1993, Brewster 1997, Gaver 1986) but there

has been much less work conducted on continuous feedback in continuous

control contexts. The use of continuous control allows the provision of

more formative feedback. Poulton (1974) describes some very early experi-

ments that were based principally on pitch modulation (e.g. (Milnes-Walker

1971)) or interruption rate (for example, for error display as in (Ellis et al.

1953)) and Williamson and Murray-Smith (2005b) describe a general frame-

work for producing formative audio feedback for gesture recognition, where

granular synthesis is used to present the audio display of the changing prob-

abilities and observed states of the performed gesture. There are a number

of issues with audio feedback, which we must consider. There are potential

accessibility issues with depending solely on audio feedback in an applica-

tion. Some users may not be able to hear well and others may be working or

passing through a noisy environment. Audio feedback can also be consid-

ered annoying to users at times, especially when this involves, for example,

altering or interrupting a user’s personal choice of music. There can also

exist issues with the discreetness of audio feedback and privacy issues may

arise if anyone other than the user of the system can hear the feedback.

In these situations it may be beneficial to consider the uses of haptic feed-

back. It is possible to use haptic feedback alone, which could potentially

change the nature of the interaction but this may also be coupled to au-

dio feedback. Linjama and Kaaresoja (2004) describe the implementation

of gesture input supported by haptic feedback. They describe a bouncing

ball game, where tapping the device in horizontal or vertical directions con-

trols ball motion and Chang and O’Sullivan (2005) describe an evaluation

of audio-haptic feedback on a mobile phone, comparing audio-based haptic

user interface (UI) feedback with audio-only feedback and found that users

were receptive to audio-haptic UI feedback. The results also suggest that

the combined audio and haptic feedback seemed to enhance the perception

of audio quality.
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2.9 Sensor Fusion

The information we gather to help us with the inference of a user’s in-

tention comes from a number of distinct sources. So we need methods for

combining these sources appropriately. We are utilising a number of differ-

ent sensors, each with their own characteristic strengths and weaknesses. As

was mentioned before, noise is also a significant problem with most sensors

that can make the output unreliable at times, especially when used alone,

making it difficult to draw any real meaning or intention from an individual

sensor. The use of sensor fusion seeks to overcome some of the drawbacks

associated with inertial sensing and is concerned with the synergistic use

of multiple sources of information i.e. multiple sensors, to provide a more

complete and more usable view of the device context. This is something we

humans are very good at. We are constantly taking information from our

multiple sensors (eyes, ears, nose etc.) and fusing this information to give

ourselves a more complete view of the world. The human vestibular system

is a good example of a natural sensor fusion. It is essential for stable posture

control, taking inertial information from our ear canal to enable us to move

freely. To keep track of our orientation in space, we constantly update our

mental egocentric representation of our surroundings, matching it to our

motion. Researchers have attempted to mimic this system in their work

on self motion, finding that providing consistent cues about self-motion to

multiple sensory modalities can enhance the perception of self-motion, even

if physical motion cues are absent (Riecke et al. 2005).

Brooks and Iyengar (1998) divide sensor fusion into three categories.

The first is complementary sensor fusion. Complementary sensors do not

depend on each other directly but can be merged to form a more complete

picture of the environment, for example, a set of radar stations converging

non-overlapping geographic regions. Complementary fusion is easily im-

plemented since no conflicting information is present. The second class is

competitive sensor fusion. Competitive sensors each provide equivalent in-

formation about the environment. For example, a configuration with three

identical radar units can tolerate the failure of one unit. The third class is

cooperative sensor fusion. Cooperative sensors work together to drive infor-
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mation that neither sensor alone could provide. An example of cooperative

sensing would be using two video cameras in stereo for 3D vision.

From our point of view we would wish to implement a cooperative sensor

fusion system in our mobile devices since we have a number of different

sensors which when used alone may not provide us with the information

that we need but when combined with information from other sensors can

provide us with a more complete picture of our environment. For example,

it is not possible to use acceleration data alone to achieve an accurate

value for velocity due to integration drift and sensor noise but fusing this

information with the less frequent but more accurate velocity information

from a GPS, using a standard sensor fusion algorithm, it may be possible

to achieve accurate realtime velocity information.

Traditional approaches to sensor fusion are usually very rigorous. Ac-

curate position and orientation may be achieved with a fully fused missile

application. But is this possible or even necessary in a mobile device? The

sensors used in a typical mobile IMU are cheaper, less accurate and more

noisy than those used in classic large-scale applications. For these reasons it

is necessary to ‘settle for less’ or accept imperfection in our mobile applica-

tions. It may be difficult to accurately determine an absolute position but

it is possible to determine the device orientation with reasonable accuracy

after suitable alignments and calibrations.

Probabilistic approaches, which we use in the course of this work are

another approach to sensor fusion. Probabilistic approaches provide a nat-

ural way to handle uncertainty and errors in sensed data and can integrate

new sensor data in a consistent way. So if we are using data from multiple

sensors, one of which contains a lot of noise, the data from that sensor will

be naturally downweighted by basic probabilistic inference, thus implicitly

performing sensor fusion on that data.

2.10 Location-Aware Technologies

There are a number of different technologies available at this time for

use in the world of location-aware computing. The United States funded

Global Positioning System (GPS) is probably the most familiar technology

37



2.10 Location-Aware Technologies

to be used in the field. Thirty one satellites orbiting in geosynchronous

orbits above the Earth are utilised in various ways, providing absolute po-

sition estimates to help car drivers find their way. They help to stop hikers

getting lost in the mountains. They can even be used for fun (Chalmers

et al. 2005). The introduction of Galileo in Europe will vastly improve the

accuracy, integrity, reliability and availability of satellite navigation. The

Galileo ‘Open Service’ will be free for anyone to access and signals will be

broadcast in two bands. Receivers will achieve an accuracy of less than 4

m horizontally and 8 m vertically if they use both bands or less than 15

m horizontally and 35 m vertically if they utilise one band only. This is

comparable to the current service with the GPS. Galileo will also provide

an encrypted service, the ‘Commercial Service’, which will be available for a

fee and will provide an accuracy of better than 1m. If the Commercial ser-

vice is combined with data from ground stations, accuracy will be increased

to less than 0.1m. This is expected to increase significantly the number of

satellite location-based applications by 2010.

GSM cell references are another more lower resolution way of determin-

ing the position of your mobile computer. Enhanced 911 (or E911) was in-

troduced by the Federal Communications Commission (FCC) in the United

States and required that, by the end of December 2005, wireless phone

providers develop a way to locate any phone which makes an emergency 911

call to within 150 meters 95% of the time. This has inevitably lead to a sig-

nificant amount of research in this particular area of location-aware systems

(Sayed et al. 2005, Gustafsson and Gunnarsson 2005, Patwari et al. 2005).

The main method used to take a location value from these GSM references

is triangulation. This is a simple and powerful method of local location-

ing. The method revolves around the solutions of a set of linear equations

involving the coordinates of multiple reference points. With this method,

given three or more reference points with known coordinates in range, a

node can estimate its own position, limited only by the precision of dis-

tance measurements and the accuracy of the reference point measurements.

This method can also be used to estimate locations from angles instead of

distances, by using the sine and cosine rules for planar triangles. Wireless

networks are also used for indoor locationing and commonly take advantage
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of triangulation. There has also been a significant amount of research into

hybrid location-aware systems which take advantage of a mixture of GPS,

GSM and wireless. Gwon et al. (2004) describe algorithms for estimating

the location of stationary and mobile users based on heterogeneous indoor

RF technologies. They propose two location algorithms, Selective Fusion

Location Estimation (SELFLOC) and Region of Confidence (RoC), which

can be used in conjunction with triangulation, or with third party com-

mercial location estimation systems. Similarly, Randell and Muller (2001)

describe a low-cost indoor positioning system which utilises a combination

of radio frequency and ultrasonics. And SpotON (Hightower et al. 2001) is a

system created to investigate flexible location sensor deployments in small-

scale environments and uses Radio Signal Strength Information (RSSI) as

a distance estimator to perform ad-hoc lateration.

Relative positioning can also be useful when there is no explicit infras-

tructure available to devices for absolute positioning. Occasionally there

may be no access to GPS in places where the signal is jammed or oc-

cluded. There may also be no wireless infrastructure available. Certain

indoor location systems are capable of providing fine-grained location and

orientation information sufficient for relative positioning tasks (Addlesee et

al. 2001, Priyantha et al. 2001, Patten et al. 2001). Čapkun et al. (2001)

describe the problem of node positioning in mobile ad-hoc networks and

propose a distributed, infrastructure-free positioning algorithm that does

not rely on the Global Positioning System. Their algorithm uses the dis-

tances between the nodes to build a relative coordinate system in which

the node positions are computed in two dimensions. Hazas et al. (2005)

likewise describes a system, Relate, which provides fine-grained relative po-

sition information to co-located devices on the basis of peer-to-peer sensing.

Kontkanen et al. (2004) describes a probabilistic approach to locationing

in wireless radio networks. They demonstrate the usefulness of the a prob-

abilistic modelling framework in solving location estimation (positioning)

problem. They also discuss some of the links between positioning research

done in the area of robotics and in the area of wireless radio networks.

An example use of this kind of approach is given in (Hermersdorf et al.

2006), who show that it is possible to derive complex behavioral patterns
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and device location from collected Bluetooth data.

2.11 Location-Aware Applications

Perhaps the first implementation of a location-aware system was by

Want et al. (1992) who implemented ‘The Active Badge Location System’.

The badge, which uses diffuse infrared signals to provide information about

their location for a central computer, was worn by members of staff in an

office setting and was used to modify the behaviour of programs running on

near-by computers. At the time this system was implemented, mobile com-

puting was new and GPS was not operational and the technologies we take

for granted today such as cellular phone networks and wireless computing

were not available. The Cricket Location-Support System (Priyantha et al.

2000) uses ultrasound emitters and receivers embedded in the object they

wish to locate and the RADAR (Bahl and Padmanabhan 2000) system uses

wireless networking technology to compute the 2D position of objects in a

building.

Even low resolution location information can be used for practical pur-

poses. For example, The ContextPhone (Raento et al. 2005) uses simple

GSM cell references to infer information regarding a user’s context. Drozd

et al. (2006) describe a game for mobile phones, Hitchers, that uses cel-

lular positioning. Players create digital hitch hikers, giving them names,

destinations and questions to ask other players, and then drop them into

their current phone cell. Players then search their current cell for hitchers,

pick them up, answer their questions, carry them to new locations and drop

them again.

The potential range of applications for location-aware computing is vast.

‘Smart Dust’ (Pister et al. 1999) is a location-aware project involving the

combination microelectromechanical sensors with wireless communication

into a one cubic millimeter sized package and may be spread out along

remote roads or mountain ranges to determine, amongst other things, the

velocity and direction of passing vehicles or animals.
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2.12 Location-Aware Audio

Since we are interested primarily in developing ‘eyes-free’ interaction

with our location-aware systems, it is necessary to review some of the pre-

vious work conducted in this area. Location-aware audio systems are not

new and many standard GPS applications come with some form of audio

feedback. Car navigation systems are the most common form of satellite

navigation system in use today and the majority of them utilise at least

some form of combined audio and visual feedback, with direct voice com-

mands being the most popular mechanism for influencing drivers. This

kind of speech based feedback is also popular in pedestrian based GPS

applications, especially for visually-impaired users (Makino et al. 1996).

And more recently Apple and Nike produced a system for the mass market,

which utilises accelerometers in the user’s shoe to keep track of distance and

pace information, which is fed-back to the user via voice commands through

their iPod, although there is no absolute location information recorded in

this case.

There is also a significant amount of work conducted with the use of

non-speech based audio cues. Loomis et al. (1998) describe an experiment

where users are guided along a route of predefined way-points using their

back-pack based system, developed for use by blind users, which uses spa-

tialised audio (either speech or sound) from a virtual acoustic display in

order to convey information about the surrounding virtual environment to

the user. Their system uses information from a GPS combined with heading

information from a fluxgate compass to achieve accurate location. They also

have extensive GIS information on their local area including all buildings,

roads, walkways, bikeways, trees and other details, which is used along with

the heading and GPS information to relate the user to their surrounding

environment. Their experiment was designed to determine whether spa-

tialised audio from a virtual acoustic display resulted in better or worse

route-following performance than verbal cues and they found that the vir-

tual display mode fared best both in terms of guidance performance and

user preference. Other work in the area of pedestrian navigation includes

that of Holland et al. (2002) who describe their prototype spatial audio user
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interface, AudioGPS. Their interface is designed to allow mobile users to

perform location tasks while their eyes, hands or general attention are oth-

erwise engaged. They found with the use of spatial, non-speech audio and

a prototype back-pack based system that very simple and computationally

inexpensive spatial mappings are effective for helping users to find specific

locations.

Using music as the mechanism for guiding users has also been previ-

ously investigated. Nemirovsky and Davenport (1999) describe GuideShoes,

a shoe-based GPS navigation system, which consists of a pair of shoes,

equipped with a GPS, wireless modem, MIDI synthesiser, CPU, and a base

station used to perform all processing. They describe the use of emons,

short musical “emotional cues”, to guide a user to their desired location.

Other work on music-based guidance includes our gpsTunes system (Stra-

chan et al. 2005), where initial testing of a prototypical system had shown,

with the use of a small field study, that it was possible to allow users to

navigate in the real world, using a combined Audio/GPS player to aid nav-

igation. Similarly, Etter (2005) describes a system known as Melodious

Walkabout, which again utilises a user’s music to guide them to their de-

sired location. A study was conducted which concluded that it was possible,

after users had gained some initial experience, to guide people by adapting

their own music in a spatial way. Warren et al. (2005) have conducted a

similar study with their OnTrack system both in a VRML simulation and

in the real world. They show that it is possible to guide a user through a

number of audio beacons to a desired location using continuously adapted

music. Jones et al (Jones et al. 2006, Jones and Jones 2006) present a more

complete system for audio trajectory following with a modulated music ap-

proach. Other work which utilises music as a tool for influencing a user

in this mobile domain was conducted by Oliver and Flores-Mangas (2006)

who constructed a system that takes advantage of the influence of music

in exercise performance, enabling users to more easily achieve their exer-

cise goals. It works by selecting music depending on a user’s jogging speed

and on their current heart rate. Likewise, (Elliott and Tomlinson 2006)

describes a context aware music player, which makes real time choices of

music based on user pace. Although these systems do not take into account
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the location of the user it is still a demonstration of the increasing conver-

gence of mobile devices and audio, particularly music, for the emergence of

a more embodied interaction with these devices.

Probabilistic approaches to the display of information in mobile GPS

remain largely uninvestigated. We described an approach to location-aware

audio computing in (Williamson et al. 2006). The gpsTunes system de-

scribed uses a probabilistic approach to presenting auditory information

about the user’s current state. The display fully represents all estimated

uncertainty in the prediction of which targets the user may be interested

in, and where and how they are likely to move to them. This provides

the interactor with clear, direct feedback when entropy (the measure of the

“spread” of a distribution; see (MacKay 2003)) is low, and appropriately

diffuse feedback as predicted entropy rises. An experiment was conducted

which was designed to test the hypothesis that a probabilistic approach

with an appropriate display of uncertainty could increase the usability and

acceptance of mobile GPS systems, the results of which are described in

chapter 4.

2.13 Gesture Recognition

Gesture Recognition refers to the area with the goal of interpreting

human gestures via mathematical algorithms. Gestures can originate from

any bodily motion or state, most commonly from the hand. The information

contained in a typical gesture from the hand through time is far richer than

the information provided by a general pointing task, the metaphor that still

dominates desktop computing. Gestural approaches show much potential

in the domain of mobile computing due to the lack of screen-space and the

desire for eyes-free displays.

The learnability of gestures is one issue that exists with this kind of

interface. How do users learn what is the correct gesture to perform and

how can this be presented to the user? There is a natural large variation

in the performance of gestures by humans. A large variation in a gesture

from what a system was expecting can result in a misclassification and an

annoyed or frustrated user, which can seriously affect the adoption of such
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systems. Appropriate feedback is one potential solution to aid users ‘in

gesture’ but some form of guidance in the actual learning phase is essential.

Kallio et al. (2006) present a visualisation method as an additional feature

for accelerometer-based gesture control and illustrate how this could be

utilised in providing essential feedback and act as a tutor for new users in

gesture controlled applications.

The field of gesture recognition is broad and there exists well established

gesture recognition techniques, each with their own strengths and weak-

nesses. Methods commonly employed in gesture recognition studies include

simple template matching (Kramer and Leifer 1988), statistical analysis,

neural networks, particle filtering or Hidden Markov Models. Template

matching is well renowned to be the simplest method of recognising ges-

tures but the pattern recognition approach has been the dominant method

of creating gesture recognition systems. Thus far there have not been any

real successful systems produced. The gesture functionality on some web

browsers has been successful to a point, but these implement simplistic

two-dimensional gestures performed with a mouse, which provides clean

and precise data with a clear beginning and end to each gesture. Recently

we have seen the introduction of commercial products, which incorporate

gesture recognition such as the Samsung SCH-S310 mobile phone and the

Nintendo Wii.

Hidden Markov Models’s (HMM’s) are one of the most popular methods

used for temporal classification and have been particularly popular in the

field of speech recognition. One of the most important advantages of HMMs

is that they can be easily extended to deal with complex gesture recognition

tasks. Another advantage of HMMs is that they remove details of the time

evolution of the gesture while keeping the information about the trajectory

which was formed. The condensation algorithm is also used for gesture

recognition. It uses random sampling techniques to simply and elegantly

search a multi-variate parameter space that is changing over time. The

algorithm was proposed by Isard and Blake (1998) for tracking objects in

clutter and has been extended to the field of gesture recognition. Neural

Networks are another choice for use in gesture recognition since they afford

the ability to derive meaning from complicated, imprecise or variable data.
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The multilayer perceptron (MLP) is the simplest form of feedforward neural

network (Bishop 1995). The MLP’s simplicity makes it suited to the type

of problem we are tackling in this work due to its desirable properties such

as its compact parametric model making it suitable for low memory mobile

devices.

2.14 Gesture Variability

Variability is an obvious problem when it comes to the recognition of

gestures. Human beings are very good at distinguishing different kinds of

gesture. We can easily recognise if a gesture performed by two different

people is the same but it is highly unlikely that those two gestures will look

the same when we come to examine the sensed data. Variability can come

from a number of sources. General uncertainty is a contributing factor as

well as the natural variations between humans. The two most common

kinds of variability we experience from gestures are spatial variability and

temporal variability, where spatial variability is the variation in the actual

performed gesture and temporal variability is the variation in the timing

of the performance of the gesture (Schmidt and Lee 2005). Both forms of

variability are illustrated in figure 2.10. It is important that a recognition

system is designed to deal with these kinds of variability. What we desire

is a gesture recognition system which is able to estimate from this variable

data exactly what gesture the user means to perform. Obviously, incor-

porating some degree of flexibility into a recognition system is no problem

and potentially increases the usability of that system but in most cases this

implies that we would need to accept a corresponding decrease in accu-

racy. Additionally, another big factor hampering the general acceptance of

gesture recognition systems is the need to train the system for individual

users, something which is exacerbated by this natural variation from person

to person.

So how may we approach this problem? One way is to examine variabil-

ity at different parts of a gesture. It is likely that some parts of a gesture

will not vary much at all while at other parts the variability will be large.

For example, in figure 2.10 we see that the end point of the gestures don’t
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Figure 2.10: Unfiltered accelerometer data for the same gesture performed
five times by the same person.

vary much at all whereas the beginning and middle parts vary substantially.

The measurement of variability also depends on the domain we are mea-

suring in. A perceived difference in one domain may disappear in another.

For example, if we look at the temporal acceleration signal for a device held

motionless in the hand and the signal for a device laying motionless on a

table, in the temporal domain the signals will look similar but if we examine

both signals in the frequency domain we would see that one of the signals

has information in the 8-12 Hz range from tremor in the muscles.

2.15 Gesture Controlled Applications

There has been significant work conducted on gesture controlled appli-

cations in the past. Some defining work on gesture recognition systems in-

cludes that of (Rubine 1991, Lipscomb 1991, Fels and Hinton 1990, Zimmer-

man et al. 1987). Some later work focussed on virtual reality systems and

virtual environments using a camera in combination with an image recog-
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nition system (Kjeldsen and Kender 1996). The Opera web browser is the

most well known application, which incorporates gesture recognition into

the interaction to perform actions such as page reloading or moving back

and forward a page with discrete mouse gesture. Inertial sensing though,

has emerged as a viable technique for sensing movement in gestural inter-

action with mobile devices. Rekimoto (2001) describes his GestureWrist

system which is a wrist band that recognises hand and forearm movements

and uses these movements to communicate with a computer. Perng et al.

(1999) describe a glove augmented with 2-axis accelerometers on each finger

and one on the back of the hand which makes it possible to detect the angle

of each finger and hence to detect static hand gestures. Using this approach

they developed software that allows the glove to be used as a mouse point-

ing device. Ubi-finger (Tsukada and Yasamura 2002) is a system which

uses acceleration and touch sensors to detect a fixed set of hand gestures.

Using this system they may select target appliances by simply pointing at

the device then control this with simple finger gestures. Kela et al. (2006)

describe the use of a matchbox sized sensor pack, SoapBox, described in sec-

tion 2.3.2, which they use to control the functionality of different appliances

in their design studio. They describe a study which aimed to find the most

natural types of gesture for controlling different appliances, such as a VCR.

They also describe a study designed to compare the usefulness of the gesture

modality compared to other modalities for control such as RFID objects or

PDA and stylus finding that gestures are a natural modality for certain tasks

and can help to augment other modalities. This reflects the conclusions of

Pirhonen et al. (2002) who previously investigated the use of gesture and

non-speech based audio as a way to improve the interface on a mobile music

player. The key advantage of this gestural approach is that it enables eyes-

free interaction with a music player which is advantageous, especially when

the user is ‘on the move’. Cho et al. (2004) present a gesture input device

known as the Magic Wand, equipped with inertial sensors, which enables a

user to perform gestures in 3-D space. They employ a trajectory estimation

algorithm to convert the gestures into a trajectory on 2-D plane and use a

recognition algorithm based on Bayesian networks to achieve a recognition

rate of 92.2%. Choi et al. (2005) describe a gesture-based interaction using
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a tri-axis accelerometer on a mobile phone (the Samsung SCH-S310). The

mobile phone recognises digits from 1 to 9 and five symbols written in the

air and uses a shaking motion to initiate commands for interactive games

and musical instrument applications. Williamson et al. (2007) describe a

completely eyes-free system, Shoogle, which uses inertial sensing and is used

single handed for sensing data within a mobile device, such as the presence

of text messages, via the use of simple ‘shaking’ gestures, which reveal the

contents rattling around “inside” the device. Cho et al. (2007) describe

a tilt controlled photo browsing method for small screen mobile devices.

They describe their implementation on a mobile phone and an interaction

based on a simple physical model, with its characteristics shaped to enhance

usability. Informally comparing their photo browsing system to that on an

iPod, they found that the tilt based approach performed slightly better.

2.16 Social Issues

The social acceptability of such systems is important and must be con-

sidered at the design stage. It is generally accepted that input devices

should be as discrete and natural as possible and this has been a significant

problem with previous gesture-based systems in that they were considered

too obtrusive or too obvious. Costanza et al. (2005) discuss the use of more

subtle interaction with ‘Intimate Interfaces’ and they argue that the use of

a mobile device in a social context should not cause embarrassment and

disruption to the immediate environment. It should be noted though, that

‘subtle’ should not necessarily mean ‘no movement’ and the use of subtle

movements is something essential for the general acceptance of gestural in-

terfaces. The recent introduction of the Nintendo Wii looks set to bring

the concept of using gesture for interaction to the mass market, eliminating

some of the social inhibitions which affected the use of gesture previously

and making the use of gesture in public more socially acceptable. This

should hopefully aid the development of more gesture-based applications in

the near future.
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Chapter 3

Bodyspace

3.1 Summary

This chapter demonstrates the construction of a novel egocentric location-

aware system and presents a new approach to the segmentation and recog-

nition of gestures. A model-based approach to this kind of interaction is

demonstrated and it is shown that this kind of approach to interaction can

enable the easy provision and adjustment of feedback. A small user study

is conducted, which shows that this model based approach to interaction

can be both intuitive and can be learned quickly. The use of real world

constraints is demonstrated and an example is provided which shows that

this may be used for inferring user intention.

3.2 Introduction

The Body Mnemonics project (Ängeslevä et al. 2003a, Ängeslevä et

al. 2003b) developed a new concept in interaction design. Essentially, it

explored the idea of allowing users to store and retrieve information and

computational functionality on different parts of their body as illustrated

in figure 3.1. In this design, information can be stored and subsequently

accessed by moving a handheld device to different locations around the

body. Moving the device to the back pocket, for example, may open a

user’s personal finances application on the mobile device. From a technical

point of view we see this as a gesture to the back pocket but the user may
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think of the back pocket as the actual physical location of their personal

finances.The method of loci is a technique for remembering, which has been

Figure 3.1: Examples of what we may store on different parts of the body

practiced since the time of the ancient Greeks when orators would use the

method to help them memorise long narratives. The ‘loci’ were physical

locations, usually in a large public area or building, such as a market place

or a church. Practicing this method involved walking through this familiar

place a number of times, viewing distinct places in the same order each time.

After this was repeated a number of times, it was possible to remember and

visualise each of the places in order reliably. This physical space within

a room was used as a mental model and different parts of their narrative
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would be placed into the loci where they could be recalled in order by

imagining the same route through the building, visiting each of the loci. In

medieval Europe the method was adapted to include the space around a

persons body or their ‘body space’. Different body positions were used as

markers to remember chants, lists or even as a computational system.

Previous work on this concept focussed mainly on the basic ideas and

requirements for the project without a working, mobile implementation.

Ängeslevä conducted surveys and interviews and found from potential users

that:

the body view is a very personal artefact and that it is rich in
meaning. It therefore has the potential to serve as a powerful
memory aid.

In this chapter we describe the first implementation of a completely hand-

held and fully functioning ‘BodySpace’ system which utilises inertial and

magnetic sensing to recognise when it is placed at different areas of a user’s

body, to control a music player, essentially using the human body as the

mnemonic device. A user may place the device at their hip to control the

volume of their current song or at their ear to switch tracks, as illustrated in

figure 3.15. They may also use their right shoulder to browse through a set

of playlists and their left shoulder to start and stop the current track. The

system uses a combination of pattern recognition and orientation sensing

in order to recognise that the device is placed at the different parts of the

body.

Our system differs from other gesture controlled systems in that we are

not required to explicitly design a lexicon of gestures. The range of gestures

we use is constrained by the limits of the human body, in that the arm can

only move to certain locations around the body and for comfortable move-

ments, has a constrained range of velocities. And since we are required to

gesture to certain parts of the body we already have an obvious, perfectly

natural and easily generated set of gestures at our disposal. Another differ-

ence is that we do not use any buttons at all in our interface, making the

interaction more fluid and natural than a system which requires an explicit

button press or release at the beginning and end of each gesture. This

opens up the opportunity for the design of potentially tiny devices as the

51



3.3 Gesture Recognition and Segmentation

need for a set of buttons is removed. Additionally, we use a model-based

approach to our interaction design which provides us with a real physical

basis for the interaction and allows us to alter the interaction simply by

varying the parameters of our model. Many wearable computers involve

some kind of extra equipment which can be detrimental to normal social

interactions. We feel that the inclusion of our system in a normal mobile

device with natural gestures to different parts of the body is a step in the

correct direction towards the acceptability of gesture based systems.

3.3 Gesture Recognition and Segmentation

As mentioned in chapter 2, one of the major challenges for any contin-

uously sensing system is how do we know when to activate our system?

How do we detect what is meaningful? And how do we detect user inten-

tion? If we construct some state vector x, which represents the state of

our system and analyse the elements it should be possible to detect our

user’s intention, i.e. detect when the user intends the system to activate

when it is placed at a specific part of the body. The state vector should

contain any information relevant to the action to be inferred. In our case

we can use information from any of our sensors. The state can contain in-

formation from the accelerometers or from the gyroscopes, which allow us

to monitor the general movement of the device, be that rotation or larger

translational movements. We may even include tremor from our muscles,

which is observed in accelerometer signals while we hold the device (Stra-

chan and Murray-Smith 2004). For gestural interaction the main inference

we are required to make is to segment the gestures, i.e. where does one

gesture end and another begin (referred to as ‘the segmentation problem’),

and how certain are we about that gesture.

One of the main problems with any gesture recognition system is the

segmentation problem. One popular approach is to this problem is to use a

hardware button to delineate the ends of the gesture, or use long periods of

inactivity between gestures. This is obviously not desirable as it conflicts

with the desired natural, free and easy interaction we wish to produce and

this is one of the main reasons for the failure of gesture recognition systems
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to date. Harling and Edwards (1997), for example, describe a method for

segmenting gestures using hand tension in their work with the recognition of

sign language but obviously another more appropriate approach is required

for use with our mobile devices.

3.3.1 Our Approach

Our approach to the recognition of when the device is placed at different

body parts is a two stage process. The first stage involves identifying if

the device may be at a certain part of the body, which we refer to as the

Segmentation Stage and the second stage involves checking back through

recent accelerometer data and classifying this using a simple multi-layer

perceptron (Bishop 1995), the Recognition Stage.

Segmentation

One of the aims of this project is to avoid the use of explicit button

presses in our gestural interfaces. In previous gesture recognition systems

button presses have been used to segment or separate one gesture from

another but this can have a detrimental effect on the system since the

button press itself may affect the actual gesture being performed and can

interrupt the natural fluidity and the desired free and easy interaction with

the system.

There are two main ways in which this problem can be approached.

The first approach (which we utilised in (Strachan et al. September 13-16,

2004)) would be to set some initial condition for the start of every gesture,

which, for example, could be at the hip or stomach, and work from there to

the end of the gesture, classifying the transient accelerometer data on the

way. But this has problems in that users may not wish to be constrained to

this initial starting condition at the start of every gesture and segmentation

of the data becomes problematic since we are never sure of exactly where

the gesture should end. The second approach, which is novel to this field,

is to work on goal state/end-point identification and subsequently classify

the accelerometer data prior to that. Finally, we chose the second approach

since it aided the construction of a reliable gesture segmentation scheme,
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allowing us to differentiate between when a user has performed a gesture and

when they were simply moving the device around in a general way. Another

benefit of this approach is that it allows the rapid generation of data, which

is beneficial for training purposes. This approach does have its limitations

though, since it can not support formative feedback during (i.e. feedback

at every part of the gesture as opposed to summative feedback, which only

delivers feedback at the end of the gesture) the gesture, but since we are

constrained to gesturing around the body our gestures are small and well

defined enough that users are already naturally familiar with these kinds of

gesture, reducing the need for a more formative ‘in gesture’ feedback.

We chose, in this set-up, to represent the state of our device in a simple

way using its orientation, represented by pitch and roll pairs observed as

it was placed at different parts of the body. By examining pitch and roll

pairs from histograms of previously recorded end-point data, deduced from

accelerometer measurements, is possible to signal that the device may po-

tentially be placed at a certain part of the body, as illustrated in figures 3.2

and 3.3 allowing us to move into the second stage of recognition to confirm

that this potential location is the true location of the device.

We formalise the problem by first stating that the prior probability of

our orientation training set, ω, which holds our values for pitch θ and roll

φ, originating from an area of the body (or class) Cb is P (Cb). This corre-

sponds to the fraction of our samples in each class, in the limit of an infinite

number of observations with an initial assumption that each class contains

the same fraction of samples. When we make a new observation, ω, we may

assume that this observation belongs to one of a discrete set of values Ωl

corresponding to one of the bins in a histogram from our generative training

set as illustrated in figures 3.2 and 3.3. The joint probability P (Ωl, Cb) is

defined as the probability that the observation ω belongs to a body area,

Cb. The conditional probability P (Ωl|Cb) specifies the probability that the

observation falls in bin Ωl of our histogram given that it belongs to class Cb.

In other words, it specifies the fraction of our observations which fall into

bin Ωl for the histogram representing Cb. We may now see that the fraction

of the total number of observations over all classes, which fall into bin Ωl

on histogram Cb is given by the fraction of the number of observations in
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Figure 3.2: Histograms of pitch data, θ, for four positions around the body
(42 samples)

histogram Cb which fall in bin Ωl multiplied by the prior probability for

that histogram P (Cb) which is equivalent to

P (Cb, Ω
l) = P (Ωl|Cb)P (Cb) = P (Cb|Ωl)P (Ωl), (3.1)

where P (Cb|Ωl) is the probability that the class is Cb given that the obser-

vation falls in the bin Ωl and P (Ωl) is the probability of observing a value

from Ωl with respect to the whole data set, irrespective of class, and is

therefore given by the fraction of the total number of observations which

fall into bin Ωl over all classes. If we equate the last two expressions we pro-

duce Bayes’ theorem which gives us a measure for the posterior probability

that our observation belongs to a specific class given the prior probability

P (Cb) of our observation belonging to that class and the class conditional

probability P (Ωl|Cb).

P (Cb|Ωl) =
P (Ωl|Cb)P (Cb)

P (Ωl)
, (3.2)
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Figure 3.3: Histograms of roll data, φ, for four positions around the body
(42 samples)

where P (Cb|Ωl) is the class conditional probability that an observation Ω

(containing values for the pitch θ and roll φ) belongs to an area of the

body or class Cb, P (Ωl|Cb) specifies the probability that the observation Ω

originates from the ellipse corresponding to class Cb in figure 3.4, P (Cb)

is the prior probability of our orientation training set, Ω, originating from

class Cb and P (Ω) is the probability of observing a value Ω with respect to

the whole data set, irrespective of class (Bishop 1995).

Recognition

The recognition stage of classification first waits for a notification of a

potential classification from the segmentation stage. If a possible measured

orientation falls into one of the ellipses in figure 3.4, accelerometer data

for the last second of motion is taken and classified using a simple Multi-

Layer Perceptron to classify one of four body positions, left shoulder, right
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Figure 3.4: the four covariance ellipses corresponding to each part of the
body where data was measured. Cyan - Hip. Green - Left Ear. Red - Right
Shoulder. Blue - Left Shoulder

shoulder, left ear and left hip.

The system uses raw accelerometer data for classification at this stage

and classifies this using a simple Multi-Layer Perceptron. The use of a

Multi-Layer Perceptron shows the generality of the approach and its com-

pact final form makes it suitable for low memory mobile devices. The fact

that the accelerometer data for each kind of gesture used in this configura-

tion is distinct enough to be classified on its own without any pre-processing

is also a good reason to keep the pattern recognition mechanism simple al-

though it is possible in future applications to use more advanced methods

of recognition as more parts of the body are ‘added’ to the system making

the recognition task more complex. Example gesture data for movement

to each part of the body classified in this configuration are shown in figure

3.5.
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Figure 3.5: Example three-dimensional accelerometer data for movements
to the four parts of the body we wish to recognise.

Training

Training of this system involves repeated gestures to selected parts of the

body which we wish to classify as they are requested by the system via voice

commands. Three gestures per location were required to achieve adequate

training in this configuration and data from the x and y accelerometers only

was used. The decision was made to leave out the z accelerometer data as

previous experimentation with gesture data showed this to be the least

useful for these kind of gestures and also to limit the amount of processing

required to be performed by the pocket PC. Example data used to train

the system for three different users is shown in figures 3.6 to 3.7.

The training set-up in this configuration is basic, although it was suffi-

cient for the recognition of four locations on the body and performed well in

initial trials. The addition of a ‘noise’ class could facilitate the elimination

of false positives and an investigation into the best configuration of input

data to use could facilitate the expansion of the system to include more

recognisable body locations.
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Figure 3.6: The x accelerometer input data used to train the MLP for user
1. There are three examples for each of the four different classes of gesture.
This data shows the last 100 samples logged from the end point of the
gesture, sampled at 100Hz.

3.4 Utilising Constraints

As mentioned in chapter 2 one of the fundamental problems affecting the

development and general acceptance of gestural interfaces comes from the

omnipresent uncertainty in our sensor measurements and general behaviour

with our mobile devices. So the accurate interpretation of a user’s intention

from these noisy observations can be a difficult problem.

We may take a step forward by thinking of the natural constraints placed

on our system which limit in some way, the range of potential user intentions

and provide us with some extra information, which our system may utilise

in the interpretation of these intentions. In our body-based application,

one constraint on the potential range of intention is the physical limits

of the user since the range of potential gestures which may be performed

is constrained by the human body in normal and comfortable use. For
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Figure 3.7: The y accelerometer input data used to train the MLP for user
1. There are three examples for each of the four different classes of gesture.
This data shows the last 100 samples logged from the end point of the
gesture, sampled at 100Hz.

example, it is highly unlikely that a user would turn their device through

a full 360 degrees with one hand. The form factor of the device may also

act to place constraints on the interaction. A very small device held in the

hand may produce slightly different data to larger device and could act to

shape the interaction in some way and must be considered. These kind of

constraints also exist in other contexts. If this system was, for example,

used on a wall as illustrated in figure 3.30, there are constraints imposed

from the combined physical length of the users arms and the fact that they

are constrained to the surface of the wall, so it is important that we embrace

these natural constraints, drawing them into our interaction design when

attempting to interpret user intention.
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Figure 3.8: MLP training data for two different users. There are three
examples for each of the four different classes of gesture. This data shows
the last 100 samples logged from the end point of the gesture, sampled at
100Hz.
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3.4.1 Varying Planes

Although the principle problem for our system is to recognise when the

device is placed at a certain part of the body there exists another significant

problem in that when the device reaches a relevant part of the body, it is

required to switch to a new mode of control. But how does the system know

that it is no longer constantly checking for gestures and that it must now

work on a different functionality? For example, in our BodyMusic applica-

tion, described later, how does the system know that it must switch mode

to control the volume or track switching functionality? And how does it

know when to switch back? This is a good example of how we utilise natu-
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Figure 3.9: accelerometer data recorded from the movement of our mobile
device on a well defined plane. We see that there is little activity in on the
z-axis in this example indicating planar movement.

ral constraints to aid our interaction. If we consider a device which is being

moved around on the surface of a wall as in figure 3.30, we would expect

the data from our accelerometers to look a lot like that in figure 3.9. If we

decompose this data using a singular value decomposition we observe that

the eigenvectors of the first two eigenvalues define the plane of motion as
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illustrated in figure 3.10, with anything projected onto the third eigenvector

indicating non-planar motion, i.e. motion off of the wall. We should expect

then that any localised movement around the shoulders, head, hip or any

other part of the body should display similar planar behaviour. We use
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Figure 3.10: The plane created from the first two eigenvectors from the
singular value decomposition of the data shown in blue.

this property in our application to control the mode switching functional-

ity. When it is recognised that the device is at the ear, for example, the

application switches to the ‘track switching’ mode where it remains until

there is significant projection onto the third eigenvector for that plane or

motion at the ear. If it is detected that the device is no longer on that plane

the application switches back to the a general recognition mode.

3.5 Isomorphism

One important issue which needs to be addressed and which is a prob-

lem for any system is the mismatch between what a user perceives the

system to be doing and what the system is actually doing, referred to as

63



3.6 Approaches to Feedback

an isomorphism error (Williamson 2006). Problems can arise when some

activity is sensed by the system but does not communicate any intention,

such as disturbances in motion caused by external forces such as a moving

vehicle. All external disturbances are sensed in the same way as intentional

movements but communicate nothing about the intention of the user. This

issue occurs because of the mismatch between the sensing hardware and

the users expectations of the sensing hardware. In our case the user per-

ceives the system to be checking the position of the device with respect to

the location on the body but in reality what the device is doing is simply

monitoring angles and pattern matching accelerometer data. Any external

disturbance to the device, when looked at as nothing by the user, is seen

as more data to monitor by the system. It is important that we reduce the

effect of this isomorphism error on our system. Of course we can reduce the

effect of this error by creating a better match between the system inference

and user belief or we may use more sophisticated sensing but this is not

always practical due to the limited range of sensing available, the increased

financial cost of more sophisticated sensors or simply the added hassle to

the user.

3.6 Approaches to Feedback

As was mentioned previously in chapter 2, feedback is required for the

control of any system subject to uncertainty. To provide continuous for-

mative feedback with our interaction it is necessary that we provide some

kind of mechanism for achieving this. In previously described systems, sim-

ulated physical models were used to achieve this. Others use a state space

approach where a number of densities can be placed in the space, and the

trajectories in that state space can then be sonified using granular synthesis

(Williamson and Murray-Smith 2005b). We describe here two approaches to

providing feedback. One provides feedback from a simulated physical model

and the other uses a dynamic systems approach to gestural interaction using

Dynamic Movement Primitives, which model a gesture as a second order

dynamic system followed by a learned nonlinear transformation.
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3.6.1 Dynamic Movement Primitives

The Dynamic Movement Primitives (DMP) algorithm proposed by Schaal

et al., is

“a formulation of movement primitives with autonomous non-
linear differential equations whose time evolution creates smooth
kinematic control policies” (Schaal et al. 2004).

The idea was developed for imitation-based learning in robotics and is a

natural candidate for the provision of feedback in continuous control prob-

lems. If we take the generation of body-based gestures as our example, these

dynamic movement primitives allow us to model each gesture trajectory as

the unfolding of a dynamic system, and is better able to account for the

normal variability of such gestures. Importantly, the primitives approach

models from a specific origin to a specific goal as opposed to the traditional

one point to another point gestures used in other systems. This, along with

the compact and well-suited model structure enables us to train a system

with very few examples, with a minimal amount of user training and pro-

vides us with the opportunity to add rich continuous formative feedback

to the interaction during the gesture. Dynamic Movement Primitives also

posses another advantage in that they have guaranteed stability and so they

can perform the control task and predict what kind of behaviour to expect

from the user throughout the gesture.

DMP’s are linearly parameterised enabling a natural application to su-

pervised learning from demonstration. Gesture recognition is made possible

by the temporal, scale and translational invariance of the differential equa-

tions with respect to the model parameters.

A Dynamic Movement Primitive consists of two sets of differential equa-

tions, namely a canonical system, τ ẋ = h(x) and a transformation system,

τ ẏ = g(y, f(x)). A point attractive system is instantiated by the second

order dynamics

τ ż = αz(βz(g − y)− z) (3.3)

τ ẏ = z + f (3.4)

where g is a known goal state (the left shoulder, for example), αz and βz

are time constants, τ is a temporal scaling factor, y and ẏ are the desired
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position and velocity of the movement and f is a linear function approxi-

mator. In the case of a non-linear discrete movement or gesture the linear

function is converted to a non-linear deforming function

f(x, v, g) =

∑N
i=1 ψiwiv∑N

i=1 ψi

, where ψi = e

(
−hi(x

g
−ci)

2
)

(3.5)

These equations allow us to represent characteristic non-linear behaviour

that defines the gesture, while maintaining the simplicity of the canonical

2nd order system driving it from start to goal. The transformation system

for these discrete gestures is

τ ż = αz(βz(r − y)− z) + f (3.6)

τ ẏ = z, τ ṙ = αg(g − r) (3.7)

where ż, z and y represent the desired acceleration, velocity and position

respectively.

Movement Primitive Example

We take a simple example of a gesture to the back of the head. Ac-

celerometer data is recorded for one example of this gesture. The approach

to learning and predicting the dynamic movement primitive is to provide

a step change in reference and pass this through the non-linear deforming

function described above. Values for the f ’s can be calculated along with

sets of x’s and v’s from the canonical system. The attractor landscape is

then learned, in this case, by a Locally Weighted Projection Regression

(LWPR) algorithm (Vijaykumar and Schaal 2000) (although alternatives

such as Gaussian Process regression (Rasmussen and Williams 2005) may

also be used) allowing us to make predictions of the function f given values

for x and v. So if we were to train the system with our desired gesture,

any further performance of the gesture could be compared to the learned

dynamic system and feedback provided which was proportional to any devi-

ation from that dynamic system. Figure 3.11 shows us an example of ‘real

data’ in red along with the learned dynamic system representation in blue.

One thing to notice from figure 3.11 is a higher frequency remnant in the

real data, which is not meant to be modeled by the movement primitive,

but is a remnant from the tremor in the performer’s muscles.
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Figure 3.11: Example of a simulated gesture alongside the real x-axis ges-
ture data from the chest area to the back of the head

Muscle Tremor

‘Muscle Tremor’ is present in everyone. In fact oscillatory behaviour is

a common form of normal biological function and is described by Beuter et

al. (2003) as “an approximately rhythmical movement of a body part”. The

aspect of muscle tremor we wish to exploit is often referred to as a person’s

‘physiological tremor’, which is part of a category of tremor referred to as

‘postural tremor’. The investigation of muscle tremor can be very complex

and there are many differing forms of tremor studied. There are two main

classifications of tremor in use. The first is based on the state activity of a

body part when tremor is observed and the second is based on the etiology

of an underlying disease or condition (Beuter et al. 2003). The classification

of tremor by state activity includes: (Bain 1993, Deuschl et al. 1998)

• Rest Tremor occurring when relevant muscles are not activated and

the body part is fully supported against gravity.
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Figure 3.12: Power spectra of accelerometer data in four differing situations.
Large activity can be seen in the 8-12 Hz range in the case where the device
is squeezed and smaller activity can be seen in the cases where the device
is held in the hand and where the device is in the user’s pocket. For the
case where the device is left on a table there is no 8-12 Hz tremor activity.

• Action Tremor occurring when relevant muscles are activated, which

includes postural, kinetic, isometric, intention, and task-specific tremors.

There are two separate oscillatory components apparent in ‘normal’ physi-

ological tremor. The first component is produced by the physiology of the

arm and has a frequency determined by the mass and stiffness of a persons

limb. This is due to the passive mechanical properties of body parts that

are a source of oscillation when they are perturbed by external or inter-

nal forces. The second component of muscle tremor is referred to as the 8

to 12Hz component. As opposed to the first component, the 8-12Hz com-

ponent is resistant to frequency changes. Its amplitude, however, can be

modified by manipulating limb mechanics (Beuter et al. 2003) and it is this

characteristic of muscle tremor that we can potentially incorporate into our

interaction design.
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The ‘Action Tremor’ category and more specifically, isometric tremor,

which occurs when a voluntary muscle activity is opposed by a rigid station-

ary object, is interesting because it has potential use as an input mechanism

in our interfaces (Strachan and Murray-Smith 2004). Figure 3.12-1 shows

the power spectra of accelerometer data for a PDA held in the hand and

squeezed. We observe here a peak in the 8-12Hz range which is still there,

but to a lesser extent, when we examine the power spectrums from a device

held normally in the hand as in figure 3.12-2 and in the user’s pocket as

in figure 3.12-3 and not observed at all for the device left motionless on

a table as in figure 3.12-4. Figure 3.13 shows a spectrogram for a device,

which is held in the hand and repeatedly squeezed. It is clear where this

squeezing is happening due to the increased activity in the 8-12Hz range,

indicated by the strong red colours. This highlights the potential for use of

this information in our interfaces even for the simple example of ‘device in

hand’ and ‘device not in hand’. There are also possibilities for the use of

the tremor signal as part of the state vector for inferring our current body

pose, as described in section 3.3.1, since a device held at different parts of

the body gives a slightly different characteristic power spectrum.

3.7 BodyMusic: Gesture Controlled MP3 Player

In this example our BodySpace system utilises our body as the interface

for a music player. By placing the device at different parts of the body we

may control the different functionalities of the music player, such as the

play/stop functionality, volume control and track switching.

A model based approach to this kind of interaction has a number of ad-

vantages. As discussed in chapter 2, a model based approach to interaction

with the simulation of a physical model provides an immediate intuition to

the user. This kind of approach also allows us to alter our feedback easily by

simply changing some value or parameter associated with the model, such

as, in the following example, the friction on the surface of the ball in the

bowl, the height of the bowl or the mass of the ball. This kind of approach

is also useful in cases where there may be increased general movement, such

as noise from walking movements or movement from being inside a vehicle.
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Figure 3.13: A spectrogram for the repeated squeezing of a device. We
see increased activity in the 8-12Hz region at the points when the device is
squeezed.

3.7.1 Model: Ball in Bowl

Our system uses a ‘ball in a bowl’ physical model to represent interaction

with this system. We can imagine a ball placed in a bowl or concavity as

shown in figure 3.14. Intuitively, if we tilt this bowl the ball will roll to

the side. If we tilt the bowl over a certain point the ball will roll over the

edge into the next bowl. Similarly, if we give the bowl a sharp flick we

may propel the ball into the next bowl. We use this simulated model to

control the track switching and volume control functionalities of our music

player. When it is recognised that the device is at a certain part of the body

corresponding to that functionality, the system switches to the correct mode

and model associated with that part of the body. So for example, when

we wish to switch tracks, the device is first moved to the left ear where

recognition occurs. A mode switch then happens, allowing the device to
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be tilted back or forward at the ear in order to switch tracks, as in figure

3.14, where each bowl or concavity represents a different track. With a row

track 1 track 2 track 3

Figure 3.14: Combination of bowls which the user must navigate the ball
through in order to switch tracks.

of bowls representing a list of tracks, it is possible to simulate the task of

transferring a ball from one bowl to the next by providing an external force

from the movement of the device. In this case the external force comes

from a flick of the device, as shown in figure 3.15. Increased velocity and

momentum of the flick would allow users to reach the peak, and effectively

fall into the next track. We may model the surface friction and the effort

required to overcome the peak of the bowl with some simple physics. Each

bowl is represented by a simple parabola, with a certain height, y, used to

calculate angle of slope: θ = tan−1(x
y
) and the force: F = mg sin θ (where

mg is mass × gravity) minus surface friction (Kelly 2004). This interaction

is also augmented with vibrotactile feedback allowing the user to feel when

the track switch has happened, where the level of feedback presented to the

user is associated with a parameter of the physical model.

A similar mechanism is used to control the volume of a track. The vol-

ume control is located, in this set-up, at the left hip. So when the device

is placed at the left hip the mode switches to a volume control mode. This

mode is represented by one bowl only as shown in figure 3.16 so that when

the device is held level there is no change in the volume but when the device

is tilted the ball rolls to one end of the bowl over a number of lines, each

representing a vibrational pulse, which in this instance consists of a square

wave with a frequency of 250Hz and amplitude of 45dB. At the end of

the bowl the ball is stopped and a larger vibrational pulse is felt by the

user. One end of the bowl represents the volume-up functionality and one

end represents the volume-down functionality. Why can we not represent

71



3.7 BodyMusic: Gesture Controlled MP3 Player

Figure 3.15: An Illustration of the BodyMusic functionality
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this functionality with a simple threshold crossing in the accelerometer sig-

nal? This would have been simple to implement, but what the model based

approach allows us to do is provide feedback at all stages of the balls move-

ment in an intuitive manner by simply linking the vibrotactile feedback, in

this case, to the current position of the ball within the bowl. This context

θ
volume 

up

θ

volume 

down

Figure 3.16: When the ball rolls into the left side of the bowl the volume
decreases. When it is rolled into the right side of the bowl the volume
increases

could be detected by the system which could then alter the dynamics of

the model. For example, the bowl could become much larger when the user

is walking or the movement of the ball on the surface of the bowl could

become more viscous making false positives much less likely to occur.

Figures 3.17 and 3.18 show examples of how the accelerometer data

interacts with our simulated physical model. Figure 3.17 shows how ac-

celerometer data provides the energy to the model which switches the cur-

rent track by causing the ball to roll into the next bowl as shown in figure

3.14. Here the track is moved forward five times then back again five times.

Figure 3.18 shows that as the device is tilted, the ball in the physical model

is pushed to the edge and passes a threshold which causes the volume to

change. Here the volume is first decreased then increased again.
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Figure 3.17: Example of the data observed for a track switching task.
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Figure 3.18: Example of the data observed for a volume control task.
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Figure 3.19: Visualisation of how the ball moving between bowls corre-
sponds to the model data
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3.7.2 System Testing

Testing was conducted with a number of participants, principally to

demonstrate the that the system worked for more than one user and to

explore how users interacted with the simulated physical model highlighting

any weaknesses and potential improvements in this basic configuration. Six

participants were used, all aged between 21 and 30, with 5 male and 1

female.

Method

Five different tasks were performed by the participants. These tasks

were:

1. Navigate to Track A

2. Decrease the volume on Track A

3. Increase the volume on Track A

4. Move Forward 5 Tracks

5. Move Back 5 Tracks

Each participant was given a brief introduction to and demonstration of the

system before being allowed to practice and develop a feel for the interac-

tion. They were then asked to perform all 5 tasks twice using their left hand

at their left ear, for track switching and at their left hip for volume control.

All data from our accelerometers and our physical model was recorded.

Results

The logged data (logged using a built in data logger within out appli-

cation) shows that after only 3-4 minutes of practice, the system could be

used effectively by all the participants. All participants performed better in

the second run than the first but still none were without mistake. Figures

3.20-3.24 shows the successful performance of each task 1 to 5. One signif-

icant problem, especially in the participants’ initial attempts at using the
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Figure 3.20: Example of a completed traversal to track 7.
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Figure 3.21: Example of volume decrease to zero with false positive increase
at the end.
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Figure 3.22: Example of a volume increase to the maximum value.

system was with track switching. Initial attempts at switching the track, ei-

ther backwards or forwards, generally ended with multiple track changes as

shown in figure 3.25 or complete loss of control of the system as displayed

in figure 3.26. Another common problem observed was the movement of

the device away from the left ear which would occasionally cause an extra

track switch as displayed in figure 3.27. The volume control tasks were

more successful with most users successfully increasing and decreasing the

volume as illustrated in figure 3.21-3.22. One frequently occurring problem,

as illustrated in figure 3.21 and as mentioned for the track switching tasks

was the unwanted volume change as the device was taken away from the

hip. This is a good example of the general segmentation problem affecting

gestural interaction based systems generally.

Observations

Interesting variations in behaviour were observed for these tasks. Each

user had their own comfortable posture when performing the tasks and this
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Figure 3.23: Example of track being moved five forward.

posture usually affected the rest position of their hand when placed at the

ear, although the varying posture did not affect the placement of the device

at the hip to the same extent, indicating a potential reason for the greater

success observed in the volume switching tasks. Other observed behaviour

included the drifting of the hand position as shown in figure 3.28 where the

‘horizontal’ level of the hand gradually changes causing the position of the

physical model to drift, also without the user being aware. This tended to

cause a loss of control, as also shown in figure 3.28. It was also apparent

while observing the participants that forward flicks of the wrist were easier

to perform than backward flicks as illustrated if we compare figure 3.29

for the backwards playlist traversal and figure 3.23 for forward traversal.

Crossan and Murray-Smith (2004) describe a study that examines human

performance in a tilt control targeting task on a PDA with a similar result in

that there is an increase in variability of motions upwards from the centre,

compared to downwards motions of the PDA.

It would be possible to remedy these problems with more careful con-
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Figure 3.24: Example of track being moved five back.
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Figure 3.25: With each flick of the device, here for task 5, the track switches
two times indicating that the ball has skipped two bowls.
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Figure 3.26: User loses control of the system at the end of this task.

11 11.5 12 12.5 13 13.5 14
5

6

7

8

9
currently selected track number

tr
ac

k

11 11.5 12 12.5 13 13.5 14
0

50

100
physical model position

10.5 11 11.5 12 12.5 13 13.5 14 14.5 15
−0.5

0

0.5

1
x−axis acceleration

time (s)

ac
c 

(g
)

Figure 3.27: For task one switching to track 7 was completed in one step
but when the device was moved away from the ear, as indicated, the track
switches again by mistake.
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Figure 3.28: The accelerometer data at the bottom shows a gradual drift
of the ‘rest position’ of the hand which isn’t noticed by the user.
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Figure 3.29: This user had a slight problem with the first two track switches
in task 5 but then soon learns to move one track at a time. The large jump
we at t=39.58 is caused by the wrap around of the track list number.
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struction of the physical model to reflect more the strengths and weaknesses

of the system user. For example, to cut down on the number of false positive

track switches it is possible to simply increase the size of the bowl or to add

more friction to the model, likewise, to aid the forward track mechanism it

would be beneficial to construct a bowl with the ‘forward side’ side higher

than the ‘reverse side’, for example.

3.8 Other Potential Applications

The control of a music player is just one application for this system but

it may also be used for other tasks such as the retrieval or storing of files

around the body or the activation of different functionalities at different

parts of the body, for example, the activation of your to-do list when the

device is placed at your head. You may also wish to call your girl/boyfriend

just by placing the device at your heart or answer the phone by placing the

device at your ear. But this system is not confined to the body, as the

body is simply being used in this example as the mnemonic device or the

interface.

With this kind of application it is possible to ‘interact’ with objects

of interest in our general environment. An object could for example have

a gesture hand-drawn on a ‘PostIt’ sticker attached to the object; if the

user performs that gesture, the software can automatically adapt to the

appropriate context, point out a location on a map, or start a particular

application.

3.8.1 Off-The-Wall Interaction

It is possible to use other interfaces and in this case we have chosen to

use the wall, as in the ‘off the wall’ interaction described earlier or on a

poster.

We produced a prototype application which utilises the wall, or any

poster placed on that wall as illustrated in figure 3.30, as the mnemonic

device. One possible use for a system such as this includes data entry in a

‘wet lab’, for example as suggested by Phil Gray at the University Of Glas-
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Figure 3.30: Another example application for this system. Gestures to
different parts of the poster may display different information.

gow. A molecular genetics laboratory includes various hostile environments

in which a researcher cannot easily enter data via normal mobile input

methods such as laptop PCs and Personal Digital Assistants. Traditionally,

experimental data is stored in hard-backed paper notebooks since PCs are

not normally located in wet research laboratories due to various environ-

mental risks, such as liquid spillage. Thus, data is often duplicated by first

recording it into a laboratory notebook, then inputting it into the PC else-

where. This duplication increases both the chances of erroneous data and

the overall time spent in the data capture process (McLeigh 2007). It would

be useful therefore if researchers in these wet labs had access to a system

which allowed them to input data directly to the system but removed any

risks from working with electronic equipment in this kind of environment.

It would be considered beneficial then if a researcher could simply gesture

on an annotated wall with a simple gesturing device in their hand as in

figure 3.31, with each gesture activating a different functionality associated

with the data entry task.
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Figure 3.31: One gesture being performed on a whiteboard

In order to demonstrate the utility of this approach data was logged for

the 10 gestures shown in Figure 3.32, which shows the x, y and z coordi-

nate accelerations for gestures 5, 6 and 8 from the list, respectively, and it

is observed that these three rather distinct gestures also have three distinct

acceleration traces, with reasonably good repeatability among gestures, al-

though there is some timing variability. To examine the recognition perfor-

mance of the prototype application, 10 example gestures were performed for

each class of gesture by the author and the results recorded. We achieved

95% successful recognition with only 5 misclassifications.

One of the most attractive features of this kind of approach is the possi-

bility of creating new objects for interaction by simply scribbling on a piece

of paper, sketching on a whiteboard as in figure 3.31 or arranging shapes

on a table or other surface. In the case of the molecular genetics wet lab,

during the handling of gels a researcher can potentially get their hands wet,

so the use of PDAs or digital pens is problematic. Vision-based alternatives

to measure gesture movement are more difficult to implement, due to the

variety of hostile environments in which data may be recorded. Interfaces
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Figure 3.32: Acceleration traces for 3 examples of 3 classes of gesture.
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drawn on paper offer a satisfactory solution to data capture in the labo-

ratory. Paper is cheap and can be easily replaced if damaged. It can be

shared between researchers and copied easily. A library of different paper

interfaces can also be created that address different data capture needs.

The “post-it” location-aware approach provides an extremely flexible way

for users to define their own location-aware context, using simple hand-

sketched wall gestures, or in some cases basing the gesture on features of

e.g. the wallpaper, the view from the window, or other features in a room.

3.9 Discussion and Conclusions

In the preceding sections we described a handheld system that utilises

inertial sensing and basic pattern recognition to allow the gestural control

of a music player by simply placing the device at different parts of the body,

rather than having to press buttons, or dial wheels or wear instrumented

clothing. We have demonstrated a new approach to the segmentation and

recognition of gestures for this kind of application and shown that a model-

based approach to this kind of interaction can be both intuitive and enables

the easy provision and adjustment of feedback and provides a constructive

basis for arbitrarily rich multi-modal interaction depending on the complex-

ity of the model and the quality of the sensors used. We also emphasised

the benefits of taking into account constraints in our interaction design and

gave a suitable example.

Initial system testing showed us that the system was intuitive enough to

be learned quickly. All participants understood and could use the system

with only a few minutes practice, which is encouraging. Although the use

was not perfect for any of the users these tests provided us with some

very interesting and intriguing usability and physiological insights as to

how our model based approach to this kind of interaction actually coped

with real people and provided an insight as to how this kind of approach

should be modified to minimise these problems. We found that each user

tended to have their own comfortable posture, which emerged after only

a few minutes of practice, indicating that any system adopting this kind

of approach would need to be personalised somewhat. We also found that
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users were particularly susceptible to hand drift, which tended to cause a

number of false positives and we found that the participants were less adept

with forward flicks than backward flicks, which is perhaps intuitive given

our understanding of human physiology.

In the following chapter we expand our location-aware interfaces away

from the egocentric body space and into the broader spaces of the exocentric

world.
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Chapter 4

Whereable Computing

4.1 Summary

This chapter demonstrates the construction of a novel exocentric location-

aware, eyes free system. The use of Monte Carlo propagation for browsing

virtual environments is introduced, which takes the natural constraints of

the local environment and uses them to aid navigation. It is shown that

the feeding back of uncertainty to users during a target acquisition task can

improve their performance. The guidance of users around a predetermined

density or trajectory is demonstrated and finally we show that it is possible

to produce a simple model of human behaviour, which can mimic behaviour

in this trajectory following task.

4.2 Introduction

Global Positioning Systems are increasingly being integrated into stan-

dard mobile devices such as PDAs, handheld gaming machines, watches,

and mobile phones. The Nokia N95 and Samsung SCH-V850 already come

with built-in GPS. GPS can be unreliable at times since there are frequent

problems with spatial resolution, latency and signal shadowing, which may

all be detrimental to navigation systems. This, coupled with the user’s lack

of knowledge of an area in which they are navigating may, in the worst case,

render their system unusable. There are a number factors which contribute

to the inaccuracy of a GPS, including atmospheric effects, ephemeris er-
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rors and multi-path effects. For a description of these errors and the GPS

system in general the reader may refer to appendix A.

As an example we may think of a user equipped with a handheld satellite

navigation system. When the user enters a built-up area with high build-

ings the GPS signal becomes increasingly shadowed, the number of satellites

visible is reduced and the system becomes increasingly inaccurate. At some

point the user will be given misleading info and lose confidence in the sys-

tem. This problem arises because the system did not convey its increasing

uncertainty to the user and instead presented this confused information as

fact meaning that the user magnifies the systems uncertainty. One real

example of this failure to display uncertainty is the grounding of the Royal

Majesty on the 9th of June 1995. This was a direct result of the crew relying

on a GPS navigation system which showed apparently accurate information

despite not having accurate measurements ((National Transportation Safety

Board 1995), (Degani 2004)). What the crew did not know is that their

GPS system was actually operating in dead-reckoning mode, and was accu-

mulating error rapidly as the ship travelled. However, the GPS continued to

display the position as fact. As a result, the ship ran aground on rocks. It is

for this reason that we seek to introduce probabilistic, multimodal displays

with the appropriate display of uncertainty and with the user engaged in a

continuous negotiation with the system.

We apply these ideas to the GPS navigation problem on our mobile de-

vice, demonstrating a probabilistic approach to navigation using a combi-

nation of GPS and general inertial sensing. The incorporation of techniques

from control and probability theory allows us to embrace the omnipresent

uncertainty, providing a more flexible and usable system. It has been shown

that the introduction of goal-focused predictive displays to an interface,

with appropriate calculation and display of the outcomes, may actually im-

prove control of the system. Smith (1997) gives a rigorous explanation of

the importance of maintaining uncertainty in nonlinear prediction prob-

lems and examines methods which aim to maintain uncertainty rather than

adopt unsubstantiated conclusions. This is not just of interest to techni-

cal systems. There is significant, well-controlled experimental evidence (for

example, the work of Körding and Wolpert. (2004)) that display of un-
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certainty leads to regularised control behaviour in human motor control, in

reaching actions and targeting actions. If this can be generalised to broader

interaction scenarios then it suggests that uncertain displays have the po-

tential to ‘smooth out’ the interaction process and make use of a inherently

uncertain system less frustrating. In this chapter one of the aims is to inves-

tigate this hypothesis using a location-aware audio system, which uses an

implementation based on Monte Carlo propagation for browsing a virtual

environment.

Since the inclusion of GPS in hand-held mobile computers and mobile

phones is a relatively new phenomenon, the ways in which we may use this

new functionality have not yet been fully explored. Is the kind of guidance

with discrete and precise instructions we see in a motor vehicle really ap-

propriate for a person navigating by foot in a much more open and less

constrained world where it is easy for a user to stop an browse to regain

their bearings? In this situation we feel it is much more appropriate to

persuade the user that they should move in a certain direction using subtle

cues and alterations to their comfortable state rather than force them in cer-

tain directions with obtrusive and unsettling commands. The second part

of this chapter therefore, will focus user traversal around a set trajectory

using the same notion of uncertain display described previously. We show

that it is possible to persuade a user around a set path by simply adapting

the music they are listening to. We investigate the limits to which this is

possible and how varying the width of a trajectory affects user behaviour.

Finally we demonstrate that it is possible to build a simple model of this

observed behaviour and use this model to mimic the behaviour observed in

our experiments.

4.3 Monte Carlo Propagation For Browsing

Virtual Environments

The1 novel interaction feature of our gpsTunes system is the browsing

interface which allows us to actively probe the locality. This is achieved by

1The work in this section was conducted in conjunction with John Williamson at the
University of Glasgow and appears primarily in (Williamson et al. 2006).
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projecting possible paths into the future from our current location along

the current heading. Of course, since the sensed state is noisy, and any

prediction introduces further uncertainty, the eventual outcomes form a

density over the area we are exploring.

Ideally, an estimate of the user’s potential future locations would be rep-

resented as a probability density function over the navigable space, taking

into account likely movement areas, sensor noise and obstructions. This

function, however, is extremely complex for non-trivial, i.e. real-life, land-

scapes, and no solution of a simple form is available. Instead, it is possible

to approximate using a set of samples drawn from the density. It is much

simpler to draw such approximating samples than it is to directly evalu-

ate it, and the technique lends itself well to the subsequent display of the

probabilistic information in a particulate form, such as granular synthesis.

Details of Monte Carlo methods can be found in Chapter 29 of (MacKay

2003). For example a visual display may consist of a point cloud overlaid

on a map; goal-directed auditory analogues of this process are described

later in this chapter.

For the gpsTunes browsing task, a simple algorithm for sampling future

possible trajectories is as follows:

• Draw samples x0 . . . xS from a distribution ε around the current state.

This distribution represents the sensor uncertainty at the initial po-

sition (e.g. from the shadow maps described later).

• For each step t until some horizon T :

• xs
t = xs

t−1+h+l(xs
t)+σ(xs

t) where σ(xs
t) represents the model noise at

the new point xs
t (Gaussian, in our examples), and l(xs

t) represents the

derivative of the likelihood map at that point. h is heading specified

by the user. σ(xs
t) can be a constant value or a more complex function;

e.g. from a map indicating the resolution or quality of the likelihood

map.

• Display the samples xs
T

This is somewhat similar to the Hamiltonian (or hybrid) Monte Carlo

sampling process; Chapter 30 of (MacKay 2003) has further details. In
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our implementation, our inertial sensing platform is used to control this

scanning, obtaining a heading from the magnetometers to produce h and

controlling t via vertical tilt, as measured by our accelerometers. Physical

location is estimated via the GPS. Intuitively, this process can be imagined

as a beam of particles flowing out from around the initial state, probing

into likely destinations as in figure 4.1.

4.3.1 Likelihood Maps

If we were to perform a straightforward propagation of particles through

a featureless space we would create a fairly simple distribution of points at

the time horizon, which would be unlikely to model likely possible user des-

tinations effectively. It is extremely unlikely, for example, that a user will

be inside the wall of a building at any point in the future. To represent

these varying positional likelihoods we use a simple likelihood map, giving a

probability p of being in a particular position (as measured by the sensors)

in the mapped area. An example of such a map is shown in Figure 4.1; in

this example the buildings have very low likelihood and there is increased

likelihood around pathways on the map. In this case, the map is gener-

ated by hand from an existing map, but such likelihood maps may also be

generated automatically from digital photogrammetry maps, for example.

In the simplest case the propagation algorithm can be modified to take

account of this likelihood map simply by removing particles at a rate in-

versely proportional to their likelihood given their position. However, our

implementation modifies the dynamics of the particles such that they are

deflected away from regions which are less likely. This causes the samples to

“flow” across the surface by following the derivatives of the likelihood map

producing a browsing system that channels Monte Carlo samples towards

regions of increased likelihood, following traversable paths and avoiding

obstacles in a natural manner.

It is obviously simple to extend this technique to multiple likelihood

maps which may be combined based on context variables. We can imagine

the scenario where a user of the system has two different behaviours, one

walking and one riding a bicycle. The likelihood map for a user walking
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Figure 4.1: Particles flowing around the campus likelihood map. Higher red
values indicate lower probability. The particle paths are illustrated in blue;
the samples at the time horizon are highlighted as bright green dots. From
top left to bottom right: Top Left: shows particles on likelihood map which
is a model for walking behaviour. Top Right: shows the effect of a more
constrained map which models a user on a bike, where particles tend to flow
along available paths. Bottom Left and Bottom Right: show the effect of
the GPS shadow map on the propagation; Bottom Left is a point outside of
shadow, while Bottom Right is a nearby point with heavy shadowing. The
increased dispersion is obvious.

around an area would be much less constrained as they are far more likely to

walk off of the main paths in that situation where as the likelihood map for

a user riding a bicycle would be much more constrained as they are far more

likely to stick to the main roads and paths in this case. Figure 4.1 shows an

example, where suitable likelihood maps for walking and cycling behaviour

are shown. A relatively simple context detection method, using our system’s

sensors, can then estimate the probabilities of these possible alternatives,

and combine these maps to produce a single output map incorporating

context information.
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4.3.2 A Priori Sensor Uncertainty Maps

One further problem with our näıve propagation algorithm is that it

takes no account of the varying uncertainty in sensor measurements, espe-

cially the previously mentioned atmospheric effects, ephemeris errors and

multi-path effects affecting the GPS signal compounded by spatially vary-

ing uncertainty arising from shadowing in our local environment. Such

maps can be constructed ahead of time given knowledge of the geometry of

potential occlusions (for example see (Steed 2004)).

In our working system we simply used a static map of the local area

where buildings are given a low probability and everywhere else given a

high probability since we did not have a detailed knowledge of satellite

positions at this point. But it is possible to construct static occlusion maps

for use in our platform with a raytracing technique based on currently

locked satellite positions, which provide us with the knowledge about the

potential shadow positions. The resulting sensor uncertainty map for our

test region is shown in Figure 4.2.This map may be included in the sampling

algorithm by modulating the diffusion parameter ε at each time step by the

calculated sensor uncertainty at the point. The total sensor uncertainty is

then a combination of the map input and accuracy in the reading produced

by the GPS device itself.

The accuracy of a GPS fix is also computed in the sensor hardware

in real-time. This includes the number of satellites which have locks and

other data giving the fix quality and the “horizontal dilution of precision”.

This horizontal dilution of position gives a scaling factor for the current

uncertainty from 1–50. These may be combined with the a priori sensor

maps to obtain a certainty estimate for the current location.

It would theoretically be possible to improve the accuracy of these maps

by comparing GPS readings with the likelihood maps described in the pre-

vious section; readings suggesting positions of low likelihood decrease confi-

dence in the current veracity of the sensors. Additionally, we have assumed

simple Gaussian diffusion in our spread model, which while a reasonable ap-

proximation, could be improved by diffusing particles proportional to the

likelihood at their new positions (effectively Metropolis-Hastings sampling
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Figure 4.2: Estimated GPS shadows for the test campus region. Shad-
ows are computed via a raytracing algorithm, based on satellite az-
imuth/elevation and an estimated height map for buildings in the area.
Darker regions have less satellite coverage.
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(MacKay 2003)).

4.3.3 Variable Time Horizon Prediction

One way in which a user may interact with our navigation system is

via the direct manipulation of the prediction time horizon. The interactor

can use this to probe further into the future or bring their particle probe

in close to examine nearby objects. In particular, this allows the user to

experience how the uncertainty in the potential goal space changes. It pro-

vides an answer to the question: do all possible movements in this direction

inevitably converge to some likely goal or do they spread out rapidly to a

multitude of potential targets? This feedback directly informs the user as

to how much effort they will have to expend in scanning the space in the

future.

In our implementation the Monte Carlo time horizon is controlled via

vertical tilt (sensed by the accelerometers in the MESH hardware), by anal-

ogy to artillery fire illustrated in figure 4.3. Higher tilt levels project the

Figure 4.3: Artillery fire as an analogy to adjustable time horizon Monte
Carlo prediction horizons. Higher angles have greater range (in time) but
increased diffusion.

particles further into the space, with correspondingly greater uncertainty
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(depending on the model). A tilt back looks into the future and a tilt for-

ward brings us back to the present. There has been debate in recent years

on the particular mappings to use for this particular task. Should a tilt

forward not let us look into the future and a tilt back bring us back to the

present? We chose this particular configuration as the analogy to artillery

fire was easy for users to grasp quickly. Our system has a 20m look ahead

so at maximum extension (maximum tilt is 60 degrees in this version) the

user will be hearing feedback from 30m ahead. At minimum extension they

will be hearing feedback from 2m ahead. So we effectively have a function

which allows users to look ahead in time and receive the feedback from that

point in time in order to inform them if their current heading will require

to be changed in the near future. The intention is that this aspect of our

system will support users as they traverse the trajectory.

4.4 gpsTunes: Navigation By Audio

To our knowledge, the gpsTunes (Strachan et al. 2005) system was the

first of its kind implemented in a truly hand-held, real-world situation.

gpsTunes is a novel application with a location-aware element combined

with a classic mobile application, the music player, and allows us to navigate

in unknown environments via audio and vibrotactile feedback. The system

has two modes of operation.

4.4.1 Non Probabilistic Approach

The first mode takes a simple non-probabilistic approach. This version

of the system was designed to guide a user to a desired target by varying

the volume and ‘bearing’ or direction of the currently playing song. So, for

example, if a user enters an area with which they are not familiar and they

wish to locate their desired building, they may inform the system of where

they wish to go with a click of a map, which will then alter the volume

level and bearing of the music being played. They then attempt to move

towards the sound source keeping the music in front. As they move closer

to the target, the volume of the music will increase, reaching the maximum
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Figure 4.4: User holding the PocketPC and MESH in hand.

(user preferred) volume at the point where the target has been reached.

At this point they will be notified of their arrival by an additional pulsing

sound played over the current track. When building a system such as this

the two most important pieces of information to convey to the user are

the distance from their desired target and the current direction, relative to

targets (Holland et al. 2002). In this mode the distance is conveyed by a

change in volume. A Gaussian density is placed around the chosen target,

and this is mapped to volume of the sound source. The music switches to the

lowest audible volume on the edge (a threshold value) of this distribution.

As the distance to the target is decreased the volume increases back towards

the users preferred level. The direction of the current target is conveyed

to the user by panning the sound ‘source’ around their head using a stereo

shift in the audio. When the user clicks their desired target, the bearing

to the target is calculated using the current GPS estimate of latitude and

longitude. Using the heading calculated from the calibrated magnetometers

in MESH allows the system to pan the sound source to the correct position,

from the user’s perspective. The user can rotate on the spot and hear the

sound source effectively moving round their head.

100



4.5 Target Acquisition

4.4.2 Probabilistic Approach

The second mode of operation for this system uses the probabilistic

approach described in section 4.3, in order to guide the user to where they

wish to go. Using this approach a user may locate or acquire their target in

the local area by probing and examining the locality. Panning to ascertain

the correct direction and varying the Monte Carlo time horizon in order

to gain a feel for the distance. Using this approach the user may guide

themselves to their desired location or ‘target’ listening for impact sounds

which represent Monte Carlo particles impacting with a target as illustrated

in figure 4.9. It is also possible in this configuration to guide a user to

their desired location along a set trajectory or path, using a density based

approach, with the music they are listening to being adapted in a positive

or negative way depending on whether the they are on or off the correct

path.

4.5 Target Acquisition

Two different trials were conducted in the course of this work, both of

them involving the acquisition of targets using our gpsTunes system. The

first trial was an informal look at the effects of adding uncertainty to the

display. The second trial was conducted in a more controlled environment

indoors where participants were required to stand still and scan for targets

placed around them by varying their bearing.

4.5.1 Granular Synthesis

In the target acquisition trials, a granular synthesis technique is used to

display the output samples. Granular synthesis for probabilistic display is

described in more detail in (Williamson and Murray-Smith 2005b). Each

particle is displayed as a short audio impact sound drawn from a selection

of waveforms (each goal has one set of distinct source waves). These sounds

are drawn from samples of a number of real, physical impacts (e.g. wood,

glass, water, etc.) and vary in timbre. In the Monte Carlo case described

here, each grain is associated with a sample, and the likelihood of activation
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with a particular waveform is given by the proximity of the sample to the

goal in the location space. More precisely, we define a distribution fi around

each goal i. This set of distributions is used to transform the physical space

into the goal space, and the probability of activating a sample grain is

given by this distribution. The goal densities are Gaussian in the target

acquisition prototype. The particles can be thought of as impacting on the

target densities; the value of the target map at which they impact modulates

the volume of their presentation. This produces a continuously changing

auditory texture which represents the total distribution of particles in the

goal space. The sound has a flowing impression which varies from sharply

defined audio at low uncertainty or low entropy to a vaguer mixture of

sounds at increased entropy.

4.5.2 Outdoor Field Trial

The aim of this initial field trial was to test the hypothesis that a truth-

fully uncertain display can improve navigation in an environment with high

sensor noise. In these trials, five participants were asked to find four differ-

ent targets (in physical space) using only the audio and vibrotactile infor-

mation presented to them, in an outdoor navigation task. In one case they

were presented with an uncertain, dispersed audio display as illustrated in

figure 4.9 and in the other they were presented with display of the mean

only (i.e. without any uncertainty) as depicted in figure 4.10. The audio

in both cases was augmented with a simple vibrotactile display, in which a

short pulse was produced every time an audio grain was rendered.

As the GPS signal in this area was strong, noise typical of that in an

occluded environment was artificially introduced to the GPS sensed posi-

tion. This noise consisted of a random positional offset (of the order of a

few metres), updated once every five seconds. The time horizon was fixed

at this point to reduce the complexity of the task.

Method

A within-subjects experiment was used; each participant performed both

versions of the trial and the experiments were performed outdoors on the

102



4.5 Target Acquisition

university campus. All participants started in the same position, facing the

same direction and were given a three minute introduction and demonstra-

tion of the system. The first target was selected and the user determined

the direction of the target by panning the device until they heard the audio

cues and felt the vibrotactile feedback indicating that they should move in

that direction. When the participant came sufficiently close to the target

the next target was presented and the same procedure repeated. The area

traversed is illustrated in figure 4.5 along with the targets through which

the users were required to pass.

start

1

2

3

4

~10m

Figure 4.5: Schematic map of the area used for the outdoor field trial with
four different targets indicated by numbered red circles to be found. The
buildings are indicated by the grey blocks and the green circles are trees.
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Results

As a general measure of performance, Figure 4.6 shows the time taken

to complete the task successfully for each user. Time to complete the task

is generally reduced when the display with accurate representation of un-

certainty is employed. One reasonable hypothesis is that less effort should
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Figure 4.6: Completion times for the task for each participant. The task
is completed in a shorter time for the uncertain case, except for the first
participant, where the times are very similar.

be expended by a participant in searching for the target when the uncertain

display is employed. The mean squared derivative of the bearing signal (i.e.

energy normalised by time taken) gives an indication of the effort expended

by the user; Figure 4.7 illustrates the values of the metric for each partici-

pant and condition. These results indicate that there was a large reduction

in the scanning effort required by all participants in the uncertain-display

case. Similarly, the mean squared derivative of the bearing signal (i.e. en-

ergy normalised by time taken) gives an indication of the effort expended by

104



4.5 Target Acquisition

1 2 3 4 5
0

0.005

0.01

0.015

0.02

0.025
Mean Squared Deviation Bearing Signal

Participant

M
ea

n 
D

ev
ia

tio
n

Uncertain
Mean

Figure 4.7: Mean deviations of the bearing signal 1
T

∑T
0

(
dθ
dt

)2
. Smaller

changes are made by participants in the uncertain case.

the user; Figure 4.8 illustrates the values of the metric for each participant

and condition. As in the total energy case, effort appears to be reduced.

Comments from Participants

Some informal comments were elicited from participants at the end of

the experiment. Many of these concerned the apparent latency of the dis-

play, which seemed confusing until participants got a feel for it. One partic-

ipant commented that they had difficulty gaining a feel for the dynamics of

the system because of this delay. Another commented that the vibrotactile

feedback sometimes seemed “more responsive” than the audio feedback.

Observations

From observing the participants it was clear that on first use, there was

a lot of confusion in both the mean case and the uncertain case. However,

after a short period of time, the participants rapidly acquired skill in using
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Figure 4.8: The total energy of the (unwrapped) bearing signal. Less scan-
ning energy is expended by users in the uncertain display case than in the
mean-only display.

the system. It was also apparent that participants had significant problems

with the mean-display case since this resulted in more jumping of the audio.

Once they had determined the direction of the target, sudden jumps in the

audio signal proved confusing (Figure 4.14 illustrates the effect of a jump

in sensor position causing a participant to begin more vigorous scanning).

One participant in particular stopped every time there was a discontinuity

in the feedback and then readjusted his position before moving on.

4.5.3 In A Virtual Environment

Since these results from the informal outdoor field trial provided encour-

aging evidence for our hypothesis, an experiment was conducted to study

the effect of the uncertain audio display in a more controlled environment.

In this setup, participants stood still and had to acquire targets arranged

around them by scanning the space around them with the device as illus-
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trated in figures 4.9 and 4.10. The participants were not required to move

at all during the experiment and target acquisition occurred when their

measured heading remained sufficiently close to the heading of the targets

for a certain period of time. No GPS signal was used; however positional

noise was simulated to produce the effect of a poor quality GPS fix.

Four cases were examined in the experiment: mean display, without

additional noise; mean display, with additional noise; uncertain display,

without additional noise; and uncertain display with additional noise.

Experimental Details

Five targets were laid out in the space, as illustrated in figures 4.9 and

4.10, each of which had to be acquired three times for each condition (fifteen

acquisitions per condition). Acquisition was considered to have occurred

when participants maintained the heading measured by the device within

a funnel of 14.03 degrees for 5.4 seconds. Leaving this zone caused the

countdown timer to pause until the participant re-entered the capture zone.

The targets were arranged in an arc from −π/2 to π/2, at a distance of

approximately 71 metres and the target positions were fixed throughout the

trial. Sporadic noise (Gaussian distributed with 9m standard deviation)

was used to shift the position of targets in the noisy cases. Noise occurred

as steps updated every three seconds, resulting in a square wave like pattern

similar to that of true GPS noise. Heading data was filtered with a low-

Figure 4.9: Targets are arranged in a semi-circle around the static user for
the uncertain display case.

pass filter, with -3dB rolloff at 8Hz before being displayed and recorded.
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Figure 4.10: Targets are arranged in a semi-circle around the static user for
the mean display case.

This eliminated most of the tremor signal (8-12Hz) from the sensed signals.

The heading data and acquisition times were recorded. The experiment

was within-subjects, with a counterbalanced presentation order and eight

participants took part in the experiment.

Results

The mean case, for both the noise and no-noise cases, generally requires

more time for acquisition than the uncertain display. Figure 4.12 gives a

boxplot of the mean time for each acquisition (per participant), illustrating

the distribution of timing in each of the cases. Figure 4.11 shows the en-

ergy (in the low frequency 0.1–2 Hertz band) for each condition and partic-

ipant. There appears to be some reduction in scanning activity in this band

for some participants, although the acquisition criterion may have lead to

successful capture even without significant feedback, leading to anomalous

cases where less energy had to be expended. Figure 4.13 shows a boxplot of

the variance of the error between target heading and device heading. There

is a significant reduction in the uncertain case compared to the noisy case.

Large deviations from the target are less likely when the uncertain display

is employed.

Figure 4.14 shows a typical time series from one participant for the mean

and uncertain (with noise) conditions. There is noticeably more searching

activity in the mean case, where the participant overshoots the target and

has to search back. Figure 4.15 shows the histogram of error (for the same
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Figure 4.11: Low frequency energy (0.1-2Hz) in the heading signal for
each condition. Boxplot shows distribution of energy for each acquisi-
tion (blue=mean, green=uncertain). Energy required is reduced for six
of the eight subjects with the uncertain display. Energy is computed as
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participant) in the region after the error has been reduced by 63%, for both

the mean noise and uncertain noise cases. The mean noise case leads to

a distribution of error with heavier tails (more variation during the final

stages of acquisition). This is compatible with the variance of error plots

in Figure 4.13.

4.5.4 Discussion

The results support the hypothesis that the uncertain display requires

less effort and results in more stable behaviour. However, the results would

have almost certainly been stronger had the selection mechanism been less

susceptible to “random” selections. The capture zone for acquisition was

over-generous in this experiment, under-penalising the mean case. Sub-
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Figure 4.12: Boxplot showing the target acquisition times in each case.
Mean time to complete is reduced in seven out of the eight cases with the
uncertain display.

jective comments from participants suggest that they felt the targets were

larger in the uncertain case than the mean case. They also apparently felt

less “in control” in the uncertain case, despite performing better under these

conditions. Some users (participants 7 and 8 in particular), when asked af-

ter the task, felt that they had not performed well and were confused but,

in reality, looking at their results they appeared to have coped well. This

is unsurprising given the unfamiliarity with ambiguous displays but does

suggest a need for a careful choice of metaphor for uncertain interaction.

Participants also noted no change in difficulty between the uncertain case

where noise was applied and where no noise was applied; however they

noted that the mean case was significantly harder when the artificial noise

was applied.
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Figure 4.13: Boxplot showing the variance of the error during acquisition,
for each condition. There is a visible reduction in the variability of the error
with the uncertain display; large deviations are less common.

4.6 Trajectory Following

The notion of being guided to your destination is something intuitive for

human beings. In this section we discuss a part of our system, within the

gpsTunes framework, which utilises a combination of GPS, inertial sensing

and Monte Carlo sampling and modulates a listener’s music in an unob-

trusive manner in order to guide or persuade them to a desired physical

location through a density. In this case along a set trajectory or path.

Trajectory following is something we usually associate with robotics and

autonomous controlled vehicles. In a very basic way, robots utilise their

sensors in order to update their current state via complex control systems

and trace out a desired trajectory with varying degrees of success. What if

we wish to control a human and guide them from a starting position, along

a trajectory to their desired location? How can we achieve this and what

kind of behaviour should we expect from them?
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Figure 4.14: Heading time series in the mean and uncertain noisy cases for
one participant (3). More scanning behaviour is visible in the mean case.

112



4.6 Trajectory Following

0 10 20 30 40 50 60 70
0

500

1000

1500

Deviation (rads)

F
re

qu
en

cy

0 10 20 30 40 50 60 70
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Deviation (rads)

F
re

qu
en

cy

Figure 4.15: Histogram of error in the mean (top) and uncertain (bottom)
noise cases for one participant (3). Larger deviations in error are more
common in the mean case.
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This kind of system has a number of different applications. One of

the main applications is to mobile guides. It is possible to guide a user

from the beginning of a tour to the end along the exact path which takes

them through all locations of interest. Sports training is another obvious

application. Using this system it is possible to record a runner’s path both

spatially and temporally. On subsequent runs it is then possible to convey

this information to a user so that they have an idea of how they are doing

compared to their previous personal best run. If they were behind their

personal best run they would hear footsteps ahead of them from their ghost

runner which they would need to increase their speed to catch, with the

variation between front and back being displayed in an appropriate way.

4.6.1 Our Application

Our trajectory following application is a part of the overall gpsTunes

system described previously. It is designed to guide a user along a desired

trajectory using audio and vibrotactile feedback via their mobile device, be

that a PDA, music player, mobile phone or Ultra Mobile Personal Computer

(UMPC). If a user is traversing from one point to another in an area with

which they are not familiar, there may be an optimal trajectory to that

point or a trajectory which avoids any potential hazards. In this situation

it is up to our system to guide the user through this preferred path.

The desired trajectory is represented by a density or uncertainty map

(described later) layered on top of a map of the local area, as in figure

4.16. Monte Carlo propagation is then used for browsing this density map,

which allows us to actively probe the locality by projecting possible paths

into the future from some location along the current heading, enabling us

to predict likely positions of the user at future time points. If the user, at

a postulated future position, has strayed from the correct trajectory, this

information may be fed-back to the user so that they may update their

plan. Monte Carlo sampling is, exactly as in the target acquisition task

described previously, used to predict likely positions of the user at future

time points.
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end

start

Figure 4.16: Example trajectory overlaid on a map. Although there are at
least two different routes the user could take from the start point to the
end point they will only receive crisp clear musical output if they stay on
this black trajectory from beginning to end.
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4.6.2 Feedback

Feedback in this system consists of both audio and vibrotactile. In this

case the audio feedback consists of a distortion of the musical waveform.

The distortion takes the form of a reverb effect which is modulated by

the likelihood of the user being on the path at the time horizon. This

is computed by summing the values of the likelihood map at the Monte

Carlo sample points (the red dots in figures 4.18 to 4.25) to estimate the

overall probability of being on the path at the horizon, v =
∑S

0 τ(xs
t),

where τ is trajectory probability density function. This value is used to

modulate the reverb parameters such that a low probability of remaining on

the trajectory results in increased reverberation and this is also mapped into

vibrotactile feedback so that a low probability of remaining on the trajectory

results in a ‘stronger’ vibrotactile feedback. This gives the user some sense

of the changing probabilities without completely destroying their musical

experience. Moving off the path produces echoing and muddy sounding

output; sticking closely to the path produces clean, crisp sound.

4.7 Forming Trajectories

To gather some objective evidence from our empirical studies on the

effects our system has on user behaviour it is important that we make the

correct choice of trajectory. So what factors do we need to consider when

designing for such an experiment?

• complexity: The complexity of a trajectory is important since we all

have our limits. Will an overly complex trajectory lead to a complete

loss of control and a highly frustrated user? And will an overly simple

trajectory really tell us anything at all? Also, what are the effects of

the plausibility of the perceived complexity of a trajectory to the user?

Is there a threshold to what a user will tolerate?

• width: We can imagine that the trajectories in our everyday life

vary in a lot in width. When we are walking through a wide open

playing field our trajectory may be open and wide but when we come
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to the small foot bridge which crosses over the river our imagined

trajectory reduces in width significantly. It is easy for us to perceive

this change and it makes no difference to us in real life but what

if our system guides a user through an unknown trajectory from an

expansive, wide area into a narrow tight area? Will the user display

a tightened behaviour in the thinner part of the trajectory?

• location: The location of the trajectory for our empirical studies

is important. If we are confined to a cluttered environment there

may be a significant number of visual distracters, which may tend to

concentrate the users attention in that area. There may also be a

number of natural distracters, which we tend to be drawn towards,

such as roads, pavements and footpaths. Users would naturally want

to keep to these paths even if our system is attempting to persuade

them otherwise.

So ideally our initial experimental trajectories should be in an open

uncluttered environment, perhaps in a playing field with very little in the

way of visual distraction and will not be overly complex. Smooth curves

should be preferred to straight lines as there is very little needed in the

way of control whilst walking along a straight line although both may be

included. One interesting feature which should be included in a trajectory

is a sharp bend or even a right angle in order to examine user behaviour as

they approach this point. Will they utilise the ‘look ahead’ function more

at this point? Will they overshoot at the corner and be forced back into

the trajectory?

4.8 Trajectory Following Trials

An experiment was conducted to demonstrate that the system may ac-

tually be used to guide users to a desired location by a number of different

users and also to examine the effects of varying trajectory width and the

presence of visual distracters.
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4.8.1 Method

In total 6 participants took part in the experiments all aged between 20

and 29. All participants had used a mobile phone or PDA before but only

3 had any experience with GPS navigation.

Five trajectories were used in total with four of them taking the same

form. The trajectory used represented a well known path from 1 place to

another on the university campus as shown in figure 4.17(e). This trajec-

tory was then translated over to a wide-open, featureless playing field and

given three different widths. Trajectories one to three were identical but

given varying widths and participants were required to traverse these three

trajectories on the playing field. The presentation of these trajectories were

given in a counter-balanced order, in order to reduce learning effects. Tra-

jectory 2 was approximately 9m wide, trajectory one was approximately

18m wide and trajectory three was approximately 36m wide as shown in

figures 4.17(a)-4.17(c). The fourth trajectory presented to the participants

was a simple N-Shape which was also placed over the open playing field

and was approximately 18m wide as shown in figure 4.17(d). The final tra-

jectory presented to the participants was again the same shape as the first

three with a 18m width but this time it was placed back over the campus,

over paths and under trees. Before the experiment began participants were

first given a 5 minute description of the system before being given a practice

run to gain a feel for using the system over a relatively simple trajectory.

Our heading data was filtered with a low-pass filter, with -3dB rolloff

at 8Hz before being displayed and recorded, eliminating most of the tremor

signal (10-12Hz) from the sensed signals. The heading data was recorded

along with the time, latitude, longitude, ground speed, pitch angle of the

device and total uncertainty.

4.8.2 Results

The principal result from this experiment is that it is possible for this

system to guide users to a set location with no user failing to reach the

end point of any trajectory as illustrated in figures 4.28(a) to 4.28(e). A

number of different strategies were employed by the users. Some users
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~150m

(a) This trajectory is approximately 18m

wide.

(b) This trajectory is approximately 9m

wide and is the narrowest.

(c) This trajectory is approximately 36m

wide.

(d) This trajectory is approximately 18m

wide.

(e) This trajectory is located in a campus

setting and is approximately 18m wide. All

other trajectories were located on the play-

ing field in the top left corner.

Figure 4.17: All five trajectories used in the field trials.
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Figure 4.18: A ‘cautious’ approach to trajectory 3 by participant 5.

were highly active in probing the locality, taking a cautious and careful

approach as in figure 4.18. This figure shows a quiver plot where the blue

dots represent the user’s current position, the direction of the cyan arrows

represents the heading direction, the length of the cyan arrows represent

the tilt of the device and the red dots represent the current Monte Carlo

prediction location. If these predictions are located on the white area,

negative feedback is produced, if they are located on the black area there is

no feedback. Other users were relatively inactive in scanning for the most

part but became very active when it was required, employing a ‘straight-

ahead’ approach while receiving no feedback and only scanning when they

began to move off of the correct path to find another good direction leading

to a zig-zagging or bouncing behaviour as shown in figures 4.19 and 4.20.

Figure 4.21 gives an extreme example of this ‘zig-zag’ behaviour. One other

interesting behaviour observed is when the user ‘clings’ to the edge of the

trajectory, as in figure 4.24. They move along the path keeping touch with

the edge, using it as a guide, reassuring themselves every so often that they

are on the correct path although they are receiving poorer quality sound.
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participant 6 − trajectory 3
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Figure 4.19: A ‘bouncing’ approach to trajectory 3 by participant 6.
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participant 1 − trajectory 4
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Figure 4.20: A ‘bouncing’ behaviour in the traversal of trajectory 4 by
participant 1
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Figure 4.21: A ‘straight-ahead’ approach to trajectory 1 by participant 5
leading to a zig-zagging behaviour.
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4.8 Trajectory Following Trials

The inclusion of trajectory 4 allowed us to examine the effects of adding

tight corners where a real understanding of the trajectory space is required

in order to successfully complete the course and from figure 4.22 for comple-

tion time and from observation it was clear that users had most trouble with

this trajectory. Figure 4.20 shows the path recorded for participant 1 on

trajectory 4 in our field trials. This behaviour is typical and shows again

a tendency to ‘bounce’ from the edges of the trajectory. When the user

reaches the corners of the trajectory a lot more probing activity is observed

in the quiver plot, since at this point the user is required to fully exploit

their degrees of freedom, in order to recover the trajectory. Figure 4.27

shows the tilt and walking activity for the same example. We observe from

the z-axis accelerometer data, that at the corner points in the latitude plot

the user stops, then there is a burst of activity in the pitch angle, where the

user is attempting to look-ahead, and a shift in the heading to the correct

direction.
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Figure 4.22: Completion times for all six participants over all five
trajectories.

Looking at figure 4.22 showing the completion times for each participant,
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Figure 4.23: Plot of completion times for each trajectory for all 6 partici-
pants. The mean time for each trajectory is shown as a blue cross.

we see that, if we only consider the first three trajectories traversed on the

open playing field at this point, the participants generally finished more

quickly on the widest trajectory, trajectory 3, although comments from the

user’s suggested that some of them found the lack of feedback and relative

freedom in this case slightly disconcerting. Figure 4.26 shows the plot for

scanning energy, defined as
√∑T

t=0(
dx
dt

)2, where x is the heading signal.

This shows that users tended to scan less for the widest trajectory number

3 and most for the narrowest trajectory number 2. This is intuitive as

we would expect users to react to and increase scanning immediately after

feedback and in the case of trajectory 2 they are generally receiving more

changes in feedback than in the wider trajectory number 3.

Interestingly, we see that the completion time for trajectory 5, from one

point to another through the campus, is significantly lower than for all other

trajectories, including its equivalent trajectory 1, on the open playing field.

So, while we have shown that in a featureless environment like a playing

field, people were able to follow the path, their performance improves signif-
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4.8 Trajectory Following Trials

participant 4 − trajectory 5
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Figure 4.24: A ‘clinging’ approach to trajectory 1.
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Figure 4.25: A user traversing the ‘N’-shaped trajectory number 4.
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4.8 Trajectory Following Trials

icantly when the audio and vibrotactile constraints from the PocketPC are

coupled with the natural constraints of the environment (paths, buildings

etc). This is encouraging since most realistic use of such applications will

be in settings with physically evident constraints in the environment.

Some users also commented that they found the vibrotactile feedback

more useful than the audio feedback, although there was no difference in the

way the feedbacks were triggered. This could be due to the on/off nature

of the vibrotactile feedback (on if they were straying off of the path and

off if they were ok) whereas the audio feedback was part of the music the

they were listening to. It may have been difficult then to perceive small

reverberations in the sound compared to small vibrational pulses.

The routes traversed for all of the participants over all five trajectories

are shown in figures 4.28(a) to 4.28(e)
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Figure 4.26: Plot of scanning energy for each trajectory for all 6 partici-
pants. Mean energy for each trajectory is shown as a blue cross.
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Figure 4.27: A comparison of the effect of a corner on trajectory 4. Vertical
lines indicate the location of the corner.

4.9 Human Behaviour Modelling

As was described chapter 2, manual control is the study of humans as

operators of dynamic systems. It was realised very early by researchers in

vehicle control that the human operator was a very important part of the

system control loop. In order to predict the stability of the full system,

they had to take into account mathematical descriptions of the human

operators along with descriptions of the vehicle dynamics and this is also

true for interaction design if we imagine the user’s device as their vehicle,

with specific dynamics. The Observation of human behaviour previously

in this chapter prompts the question, can we model this specific kind of

behaviour using the classical tools of control theory? There are two main

reasons why this is an interesting question. First, quantitative models of

human behaviour such as that described above may provide insights into

basic properties of human performance (Jagacinski and Flach 2003). And

second, constructing a model of this behaviour previous to conducting any

experiment may give us an insight as to what kind of behaviour we might
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(a) The path recorded for all participants

over trajectory 1.
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(b) The path recorded for all participants

over trajectory 2.
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(c) The path recorded for all participants

over trajectory 3.
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(d) The path recorded for all participants

over trajectory 4.
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(e) The path recorded for all participants

over trajectory 5.

Figure 4.28: The paths recorded for all 6 participants over all 5 trajectories.
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4.9 Human Behaviour Modelling

expect with our particular set up. For example, how could varying the users’

look-ahead functionality in our trajectory following trial have potentially

affected the their behaviour? And what kinds of behaviour might we have

expected from varying the shape of the trajectory?

4.9.1 Our Model

We attempt now to construct a model which represents the behaviour

of our participants. Obviously it is difficult to construct a model which

perfectly describes human behaviour but it should be possible using basic

assumptions to recreate the most basic behaviour.

When examining performance in a tracking task such as this, it is im-

portant that we have some measure for how well a particular participant is

doing relative to another. Modern control theory provides the tools for de-

veloping models of “optimal control” that provide a basis against which to

measure human tracking performance (Jagacinski and Flach 2003). When

approaching an optimal control problem such as this, there are three sets of

constraints that must be addressed. The dynamic constraints, which in this

case are the dynamics of the human controlling the system. The physical

constraints, which in this case are the constraints of our trajectory, which

has a set beginning, end and width. And the value constraints or the ‘per-

formance criteria’, which provide a value system for ranking an optimal or

best path. Generally, this is defined in terms of minimising or maximising

some ‘cost function’, which we are required to construct for our particular

tracking task.

First we need to consider what the user is controlling or perceives them-

selves to be controlling when using the system. In a basic way the partic-

ipants are attempting to traverse to the end of the set trajectory, they are

controlling their position on a playing field. They are not attempting to

traverse to a specific position on the field because they do not know where

the end of the path is, although they are attempting to keep moving for-

ward as instructed. The only information the user has at his disposal comes

from the interface with the scan and look-ahead functionalities. What the

user is attempting to do with this tool is maintain their path within the
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Figure 4.29: Block diagram for our model of human behaviour for the
trajectory following task. θ is our heading direction, h is our level of tilt
and d is the density of the trajectory at some position, indicated by pos

trajectory by keeping any audio or vibrotactile feedback to a minimum,

i.e. minimising some cost. Users may scan around themselves checking for

the best direction, with least feedback and they may look-ahead to check

what will happen in the distance, again aiming to keep any feedback to a

minimum.

Our cost function consists of three main parts as illustrated in equation

4.9.1. The first part is the density of the trajectory at the current level of

look-ahead in the current direction, which we label d. The second part of

the cost function represents the amount of scanning activity displayed by

the user. We represent this current heading direction by θ. The third part

of the cost function represents the amount of look-ahead activity displayed

by the user and is represented as h. Some users exhibit a lot of activity

and some users exhibit little activity and these characteristic differences

can affect how effectively they traverse the trajectory and what kind of

behaviour they display. We represent this difference in user characteristics

by the parameters λtilt and λscan. Our cost function is constructed such that

higher values of λscan penalise higher scanning activity and higher values of

λtilt penalise higher tilting or look-ahead activity.

costt = d + λscan(θ − θt−1)
2 + λtilt(h− ht−1)

2 (4.1)

cost =
t∑

t=0

(costt/T ) (4.2)
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4.9 Human Behaviour Modelling

So for example, high values for λscan and λtilt will represent the behaviour

of an inactive user who does not utilise their scanning and look-ahead func-

tionality to its full potential and low values for λscan and λtilt will represent

a very active user. Within our model, illustrated in figure 4.29 we also in-

clude noise, which in this case we consider to be natural noise from walking

and general arm movements. We could also include other kinds of noise

such as physiological noise from tremor in our muscles, for example.

4.9.2 Model Testing

Figures 4.30(a) to 4.30(c) allow us to gain an insight as to what we

might expect if one part of the interface functionality was penalised. Fig-

ure 4.30(a) shows the behaviour of an ‘ideal’ user who displays both high

scanning and tilting behaviour and traverses the trajectory smoothly, only

scanning where it was required. Figure 4.30(b) shows what we might expect

then if the amount of scanning was penalised. We see from this figure that,

given good initial conditions, the model tends to move in a straight line un-

til it approaches the edge of the trajectory and is forced to change direction.

Figure 4.30(c) shows what we might expect if instead the scanning was ac-

tive and the tilting look-ahead was penalised. Although the model stays

on the trajectory, we see that the model displays more bouncing behaviour

since where the combination of a lack of ability to see ahead and a more

unbounded scanning behaviour causes the model to perform less smoothly

on the curve.

Recreating Behaviour

We may also show that it is possible to mimic, to a certain extent, some

of the behaviour we observed in our trajectory following field trials using

this simple model and gain an insight as to why this behaviour may have

been observed.

Figures 4.31(a) to 4.31(d) show modelled behaviours for the three differ-

ent kinds of behaviour described above, i.e. cautious, bouncing and clinging.

Although the model we have constructed is too simple to recreate fully the

behaviour observed in the real trials, they can still provide us with an in-
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(a) Modelled ideal user who exhibits

high scanning and tilting behaviour.
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(b) A modelled user who displays active

tilting behaviour but little scanning be-

haviour.
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(c) A modelled user who displays active

scanning behaviour but little tilting be-

haviour.

Figure 4.30: The effects of penalising the different parts of our cost function.
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(a) A modeled cautious behaviour.
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(b) A modeled bouncing behaviour.
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(c) A modeled bouncing behaviour for

the n-shaped trajectory number 4.
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(d) A modeled clinging behaviour.
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(e) A modeled n-shape behaviour.

Figure 4.31: Recreation of the main behaviours observed in the trajectory
following field trial.
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sight as to why this behaviour was observed. For example, the bouncing

behaviour in figure 4.31(b) was recreated by penalising use of the scanning

functionality whilst allowing the look-ahead behaviour to be more free, sim-

ilarly for figure 4.31(c). This is intuitive, since we would expect a user, if

they were not utilising their scanning functionality, would tend to move

along in straight lines until it was impossible to go any further as they

hit the edge of the trajectory and were forced to readjust. The clinging

behaviour in figure 4.31(d) was created by penalising the scanning compo-

nent and to a lesser extent the look-ahead functionality. For this behaviour

we also increased the minimum look-ahead, indicating that this user was

not utilising their look-ahead functionality as effectively as they could have

been. The behaviour observed in figure 4.31(e), where the user strays out

of the trajectory for a short period, was created by first penalising the scan-

ning behaviour more than the look-ahead behaviour but more significantly

the look-ahead was constrained to a high value (10-15 pixels ahead). This

meant that the model was looking too far ahead and was actually receiving

feedback from another part of the trajectory, meaning that it became pos-

sible for the model to stray into the white area of the density, exactly as is

observed in figure 4.25 for a real participant, indicating to us then that this

user was constantly looking too far ahead and needed to learn how to use

the functionality more effectively.

4.9.3 Improvements

Our model is not perfect. It is a very simple representation of a hu-

man operator. Some improvements, which could be made include the in-

corporation of real dynamics. It is likely that if we included a dynamic

representation of the user’s motion, instead of the model utilised in this in-

stance with an assumed constant velocity, we would see a lot more realistic

motion at the edges of the trajectory, for example, where a high velocity

may lead to the overshooting of the trajectory. This becomes much more

important in the situation where the user may achieve higher velocities, if

they were riding a bike, for example. Another factor that should be con-

sidered is learning effects. Most users at the beginning of the trajectory
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display slightly different behaviour than at the end, since by the end of the

trajectory they have learned exactly what is happening and have adjusted

their behaviour appropriately. It is also important that we consider such

factors as the computational delay on the display of feedback to the user,

as this is also likely to affect the user’s behaviour somewhat.

4.10 Discussion and Conclusions

In this chapter we have demonstrated that probabilistic, multimodal,

handheld interaction techniques can be applied effectively to allow users

to explore density functions in space, with an example of pedestrian GPS

navigation. The Monte Carlo sampling method provides an effective way

of integrating probabilistic models into practical interfaces, and displaying

the results in a multimodal fashion.

Results from our initial outdoor field trial and our more controlled in-

door field trial support the hypothesis that the uncertain displays require

less effort and result in more stable behaviour. The trajectory following

field trials have shown that it is possible to guide users to a desired location

over a set trajectory or path and a number of interesting behaviours have

been observed. Interactive sonification of the exploration process produced

a navigation system which may be used eyes-free, where the user brings

their sensorimotor systems into the interaction with an augmented environ-

ment. It is clear from this initial data that it is possible for users to navigate

to the final location in a featureless environment like a playing field, using

audio and vibrotactile feedback alone. Their performance and confidence

improves significantly when the audio and vibrotactile constraints from the

system are coupled with the natural constraints of the environment, sug-

gesting that the system is promising for a range of use cases.

We have shown the potential of using a simple model of human be-

haviour to recreate the kind of behaviour observed in our field trials. A

more fully developed model has the potential to provide an insight as to

how a user may perform in an experiment, prior to the experiment and has

the potential to explain, in a quantitative manner, some of the behaviour

observed in a field trial where the user was required to control some system.
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The system presented here though has applications well beyond sim-

ple trajectory following. This system offers a new general mechanism for

providing highly interactive context-aware applications. The densities here

could represent P (Ci|x) - the probability of context state Ci given the cur-

rent state vector x. By treating our system as a separate density layer in

any application it is possible to provide different functionalities. For ex-

ample, densities could be used to represent differing contexts such as local

socioeconomic levels or crime rates, areas of interest to tourists or various

Geographic Information Systems data. In the following chapter we will in-

troduce and demonstrate the use of one other application using this system

and discuss the potential further applications.
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Chapter 5

Messages in the Air

5.1 Summary

This chapter introduces an application, which combines the work con-

ducted in the previous two chapters to provide a mechanism for producing

highly interactive context aware applications based on the probing of a lo-

cal density. We present an example application, airMessages, which enables

the locating and viewing of messages left in the virtual environment. We

demonstrate the utility of a system such as this with a small field study.

Finally, we describe a number of potential applications for this system.

5.2 Introduction

The work developed and lessons learned in the previous two chapters

open up a wealth of opportunities for the creation of highly interactive

location-aware mobile computing environments. We have thus far devel-

oped an egocentric location-aware interface for interaction around the body

in chapter 3 and exocentric interface for interaction in the real-world in

chapter 4, so it is a natural extension now to combine these two forms of

interaction to produce a real world application enabling an embodied, ac-

tive and gestural interaction with the ‘real’ world. The work we describe

here is an attempt to bring augmented reality and virtual environments to

everyday handheld devices without the use of explicit visual information.

What we have achieved with this work is to build an audio based eyes-
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free augmented reality style system fully contained in a hand-held device,

enabling the construction of augmented reality style applications.

The application developed here differs from previous augmented reality

systems in that we do not require the use of external markers or sensors.

This kind of system can be considered desirable because it opens the door

for the active augmentation of our real-life surroundings as well as our

own bodies. For example, it is still possible in this situation to carry our

most used tools, most listened to music or most important documents in

egocentric ‘virtual pockets’ around our body, but also it is possible using the

exocentric interface introduced in chapter 4 to leave these objects in certain

locations in the real world to be picked up at a later date. This embodied

interaction with the virtual environment opens up the opportunity for the

development of techniques enabling audio shape perception or moulding of

virtual objects. It becomes possible for the user to shape and augment

this environment over time in his own personal way, creating a highly a

personalised virtual skin.

5.3 Augmented Reality and Virtual Environ-

ments

By definition, a virtual environment involves the replacing of the real

world with a virtual world. In augmented reality a virtual world augments

or supplements the real world with additional information. Previous work

in this area has focussed principally on the use of visual augmentation and

addressed a wide range of application areas including aircraft cockpit control

(Furness 1986), the aiding of manufacturing processes (Caudell and Mizell

1992), assistance in medical applications (Lorensen et al. 1993) or personal

tour guides (Feiner et al. 1997).

The first augmented reality system was developed by Sutherland (1968)

who constructed an elaborate system designed to present a user with a per-

spective, wire-frame image, which changed as the user moved. One of the

more important applications of augmented reality is to the medical field

and one example of its use is for Ultrasound imaging. Using an optical
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see-through display, an ultrasound technician can view a rendered image of

a fetus overlaid on the abdomen of a pregnant woman. Another example

includes that of Lorensen et al. (1993) who describe a procedure for surgical

planning and surgical support that combines live video of a patient with

a computer-generated 3D anatomy of the patient. This permits surgeons

to plan access to the pathology that exists within the patient and provides

them with a live view of the patients internal anatomy during the operation.

Another significant application of augmented reality is to manufacturing or

maintenance processes. It is easy to imagine a machinery technician, in-

stead of flicking through his repair manual or searching through an online

guide, simply taking his Head Mounted Display (HMD) and visualising any

problems the machinery or computer equipment may possess. Feiner et al.

(1993) describe a system for printer maintenance, KARMA, which explains

simple end-user laser printer maintenance tasks using a head mounted dis-

play, overlaying images indicating the location of the ink cartridge or paper

tray, for example.

Early augmented reality applications were confined principally to indoor

settings. One of the first outdoor systems to be implemented was the Tour-

ing Machine (Feiner et al. 1997). This self-contained backpack-based system

includes magnetometers and accelerometers for head orientation tracking

and a differential GPS for location information. This system also contains

a mobile computer with a 3D graphics board and a see-through HMD. The

system presents the user with information about their urban environment,

in this case the campus at Columbia. Although these “backpack” systems

have been successful proof-of-concept prototypes, they lack the convenience

of a fully hand-held system.

The development of smaller and more powerful devices in recent times

has led to the development of an increasing number of applications on hand-

held devices for truly mobile augmented reality. Some completely handheld

AR applications make use of the screen and cameras available on these

devices. Wagner and Schmalstieg (2005) describe a system designed for

use as a museum guide. Using external markers, which are recognised by

the device, the system may overlay extra information or animations on

the museum exhibits. There exists a number of hand held AR systems
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which make use of these external markers (Wagner and Schmalstieg 2005,

Henrysson et al. 2005, Mohring et al. 2004, Mitchell 2006). Baillie et al.

(2005) describe a fully contained handheld system which combines GPS and

attitude information to visualise a virtual image of a building in the present

or past on screen by simply pointing their device at that building.

Due to the limited screen space and resolutions on these mobile devices

it is beneficial to concentrate more on the audio and haptic senses and

less on the visual sense. There are augmented reality systems which focus

completely on the audio sense, leaving a user’s visual attention free, which

is important, especially when a user is mobile. Bederson (1995) describes

a prototype automated tour guide which superimposes audio on the world

based on a user’s location. Users in a museum may hear information about

exhibits in their local vicinity using a hand held device and sensors located

in the ceiling of the museum. Lyons et al. (2000) describe another audio

augmented reality system that uses a wearable computer and an RF based

location system to play sounds corresponding to the user’s location and

current state. They describe a fantasy style game implemented with this

system. Audio Aura (Mynatt et al. 1997) is a system which augments the

physical world with auditory cues allowing passive interaction by the user.

By combining active badges (Want et al. 1992) and wireless headphones, the

movements of users through their workplace can trigger the transmission

of auditory cues and convey information to the user such as the current

activity of their colleagues or the arrival of new emails.

5.4 Contextual Interaction

As discussed, the reliable detection of user intention is one important

area of research for future mobile applications. Context detection is another.

But the two are not mutually exclusive since the correct classification of a

user’s current context may be extremely important when attempting to

infer a user’s intention.

Context-aware computing is defined as “an application’s ability to de-

tect and react to environment variables” (Barkhuus and Dey 2003). The

most common use of context in human-computer interaction is to tailor the
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behaviour of a system to patterns of use. Brummit et al. (2000) describe

a system, Easy Living, which enables the dynamic aggregation of a num-

ber of I/O devices into a single coherent user experience in an intelligent

environment, in this case a living room. Cheverst et al. (2000) describe an

intelligent electronic tourist guide, GUIDE, which was built to overcome

many of the limitations of the traditional information and navigation tools

available to city visitors. The system combines mobile computing tech-

nology with a locationing system to present city visitors with information

tailored to both their personal and environmental contexts.

Since the notion of context-aware computing was introduced by Schilit

et al. (1994) there have been a number of different definitions, often related

to the level of interactivity. Chen and Kotz (2000) define the notions of

active and passive context awareness. They define active context as that

which influences the behavior of an application and passive context as that

which is relevant but not critical to an application. As an example we

may think of the clock update on a mobile phone as being active if it up-

dates automatically and passive if it prompts the user first before updating.

Cheverst et al. (2001) introduce the notion of information push versus in-

formation pull. A ‘pull’ system is one in which the emphasis is on the user

to decide when context-aware information is presented and they may pull

this information to themselves and a ‘push’ system is based on information

being presented automatically to the user, which is triggered by contextual

events. The system we describe is a ‘pull’ system and is also ‘active’ but

in a slightly different sense. Our system is highly interactive, meaning that

users can probe a density in their immediate environment and actively check

for information in their surroundings rather than relying on the system to

make decisions for them.

5.5 Density Exploration

The application developed here acts as a general mechanism for provid-

ing highly interactive context aware applications. By representing ‘context’

in this situation as a density overlaid on the real world we can search this

density and probe for information stored there using the functionality of
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our interface, described in chapter 4.

This density or context can take many forms. The density may con-

tain messages, which can be left for our friends, the density may contain

information about a particular location, information about when your next

train leaves, information about the local socioeconomic levels in an area

or information about what kind of offers your favourite record shop has

at the moment, all of which can be accessed by simply interacting with

the information placed in that density. Other possibilities for this kind of

system include the cooperation between two or more systems so that you

may keep track of the location of your friends or loved ones, akin to social

networking but in the ‘real world’. It is easy to imagine having the location

of all of the people in your friends network displayed on the screen and

leaving messages, videos, pictures or games in specific locations for people

in your network to pick up. Essentially, it becomes possible with this kind

of system to overlay a ‘virtual skin’ on the real environment, which we can

alter depending on what we are interested in at that point in time. Some

of the possibilities for this system are described later in the chapter.

5.5.1 airMessages

AirMessages is an example application of our density exploration mech-

anism, which combines the functionality of the applications described in the

previous two chapters. Combining again the use of a global positioning sys-

tem, a model of the user’s local environment and Monte Carlo propagation,

users are able to ‘drop’ and retrieve messages in their own personal vir-

tual environment. Users can leave messages, represented as local densities,

anywhere in the environment, which is overlaid on the real world.

Espinoza et al. (2001) describe a similar system, GeoNotes, arguing that

location-based systems must allow users to participate as content providers

in order to achieve a social and dynamic information space. Their system

attempts to blur the boundary between physical and digital space while

at the same time striving to socially enhance digital space by letting users

leave virtual messages, which are linked to specific geographical positions.

Jung et al. (2005) present the design of an enhanced mobile phone messag-
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ing system, DeDe, that allows a user to define in what context a message

will be delivered. ‘Context’ in this particular situation is either the time of

day, the location, whether a specific bluetooth device is currently in range or

whether a certain number is calling. Similarly Ludford et al. (2006) develop

a location-based reminder system, PlaceMail, and demonstrate with a field

study that their system supports useful location-based reminders and func-

tional place-based lists. E-graffiti (Burrell and Gay 2002) is a context-aware

application, which senses a user’s location and displays notes dependent on

that location and allows users to create notes that they can associate with

a specific location. They conduct a field study with 57 participants, finding

the idea of location-specific notes was something that appealed to users.

Our system differs from those described above in that a user may ac-

tively probe his environment in an embodied manner using the tilt of the

device to control the variable Monte Carlo propagation time-horizon and

effectively ‘look-ahead’ or ‘project’ themselves into the distance (higher tilt

gives a further look ahead). The user can sense if they are interacting with

an object anywhere in the local area by hearing, via audio and feeling, via

vibrotactile feedback ‘impacts’ with the message, represented by the Monte

Carlo predictions interacting or impacting with this overlaid density as il-

lustrated in figure 5.3. If the user senses that there may be something in

a specific part of the local area they may then move towards that area to

examine what has been left there with the message being displayed visually

when they are in close enough proximity.

The mechanism for dropping messages is gestural and uses the same

approach as that described in chapter 3, eliminating the need to use any

buttons at all with this application. To drop a message the user simply

gestures to their hip, as illustrated in figure 5.1, where they are notified

via vibrotactile feedback that a message has been successfully left in that

particular location. Future extensions of this functionality might include

more creative ways to drop a message. For example, a more realistic drop-

ping gesture could be used where the message is flicked from the end of the

device to the ground or a ball, representing the message is rolled from the

device into a virtual pocket.
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Figure 5.1: A gesture to the hip, used as the mechanism for dropping a
message into the virtual environment.

Location Projection

The functionality of our interface combined with the kind of activity

performed in this application allows us to describe a new way of thinking

about our ‘look ahead’ functionality. In this situation we may think of a

user ‘projecting’ their location as they interact with the environment and

the local density. The user in figure 5.2 is passively walking through the

local density, sensing anything which they happen to pass through. But

in figure 5.3 the user is probing the local environment whilst projecting

their current position into the distance, the user is effectively saying “what
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would I feel if I was over there...”. This way of thinking allows users to

Figure 5.2: The user takes a passive approach to interacting with the local
density (coloured and black areas) with particles spread around the body,
which can potentially interact with any part of this density causing some
audio and vibrotactile feedback to be displayed to the user. It is possible
to alter the spread of the particles by varying a simple parameter in the
Monte Carlo simulation.

take a much more active and embodied approach to retrieving information

from their current context, listening and feeling for objects located in their

virtual environment. They can scan the horizon and project themselves

forwards in time to build a mental model of their virtual environment and

any objects which it may contain. This kind of interactive system promotes

again the concept of spatial organisation aiding a user’s memory, as a user

may wish to leave specific things in specific locations in their exocentric real

world interface, actively ‘grabbing’ this information as they go.

5.5.2 System Testing

A field study was conducted to test if this system could be used by a

number of different users and to examine how they interacted with this

system.
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Figure 5.3: The user takes an active approach to interacting with the den-
sity. They consciously probe the locality to locate object situated there in
the density without the need to physically walk to those areas.

Method

In total 6 users completed the trials, which involved following a set

scenario around a small area of the university campus. They were first

given an introduction to the system and a brief explanation of the whole

concept. They were also instructed about how to use the gestural interface

and allowed to practice before beginning the walk through. Participants

all started in the same position (indicated in figure 5.4) and were asked to

manually locate the first message, which was placed close by (location 1 in

figure 5.4), using the functionality of the interface. When they had located

this message they then headed towards that location with the message they

had found being displayed as soon as they were in close enough proximity.

This message read:

“go to the Hume building door and drop a message”

The participant then heads to the correct location (location 2 in figure 5.4)

and gestures to their hip in order to drop a message. This dropped message

then appeared on the screen and read:
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startstart

1

2

3

4

~10m

Figure 5.4: The are used for the trial. Participants start at target 4 and
try to locate target 1. They then move to target one, then to 2, then to 3,
back to 4 and back to 2 again where the trial is complete.

“you dropped this message...go and pick up a message in the car
park”

The participant then heads to the car park (location 3 in figure 5.4) where

they are aware a message exists but do not know exactly where in the car

park. As they get closer to the car park they again begin to probe the

local area using the panning and ‘look-ahead’ functionality of the interface,

attempting to locate this message with the aid of audio and vibrotactile

feedback. When located, this message read:

“drop a message outside the Hamilton Institute”

The user then headed back to the Hamilton Institute (location 4 in figure

5.4) and dropped a message there which read:
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“go back to the message you dropped at the Hume building”

When the user returns to the message they originally dropped at the Hume

building (location 2 in figure 5.4) it now read:

“you’re finished!”

and the trial is completed.

What this simple scenario enables us to do is examine how users interact

with the system generally and allows us to observe any interesting behaviour

or any problems that people may encounter. It also allows us to understand

how easy people find the whole concept to grasp. For example, are they

confident that these virtual messages will be where they are told? Especially

when they are told to return to a message that they dropped in the first

place? From a more technical point of view it allows us to examine how

users interact with the functionality of the system and how the use of a

Monte Carlo simulation and a model of the local environment really aids

the user. All data from each of our sensors was logged for each user.

5.5.3 Results and Observations

All users successfully completed the tasks required of them. The locating

of the first target provided users with the most problems as they attempted

to gain a feel for the system. All participants display a very active behaviour

when trying to locate their targets, indicated by the increased arrow length

at the beginning. This is particularly prominent in figure 5.6(a) for the

acquisition of target 1 by participant 1 and for the acquisition of target

3 also by participant 1 in figure 5.7. This quiver plot shows the current

position of the user (blue dots) as measured by the GPS, the direction they

are looking in at that point (direction of the arrow), the level of look-ahead

at that point (length of the arrow) and the Monte Carlo predictions that

provide the feedback (red dots).

Some users (figures 5.6(a) and 5.8(a)) seemed to be aware that the target

they were trying to locate was somewhere in the distance and were using

the look-ahead function effectively, to draw themselves towards the target

and it is observed that with participant 1 in figure 5.6(a) and participant
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route for participant 5

130 140 150 160 170 180 190 200

90

100

110

120

130

140

150

160

1
2

3

4

route for participant 6
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Figure 5.5: The route traversed by all 6 participants.

2 in figure 5.8(a) the look-ahead arrows decrease in size as the user moves

to the target, indicating that they have some kind of ‘fix’ on the target as

they are moving towards it. This is confirmed if we examine the device tilt

data in figures 5.6(b) and 5.8(b), which shows a gradual decrease as the

participant moves towards the target, acquiring it at the end.

A more common strategy was to move ‘straight ahead’ without utilising

the interface much at all after a roughly correct direction had been deter-

mined using the full functionality of the interface. This lack of use of the

interface is confirmed if we look at the tilting and scanning energies in fig-

ures 5.10 and 5.11, which show that participants 3 and 4 used considerably
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(a) Participant 1 locating target 1. This participant displays a

very active look-ahead at the beginning of the route in order

to locate the correct direction of the target and then draws

themselves toward the target as the look-ahead decreases. There

is a slight overshoot just as the target is acquired.

10 20 30 40 50 60 70 80
−20

0

20

40

60

80

100
tilting data from start to target 1 − Participant 1

10 20 30 40 50 60 70 80
0

50

100

150

200

250

300

350

heading data from start to target 1 − Participant 1

(b) Tilt and heading data for the acquisition of target 1 by

participant 1. We observe a gradual decrease in the tilt of the

device, indicating a decrease in the level of look-ahead, as the

participant moves towards the target.

Figure 5.6: Acquisition of target 1 by participant 1.
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Figure 5.7: Participant 1 locating target 3.

less tilting and scanning for target 1 than the rest of the participants. This

is also confirmed if we examine the tilt data from the device for these target

acquisitions.

Figure 5.13(b) shows a long relatively inactive period as the user walks

in the correct direction towards the target and figure 5.12(b) shows the

same but to a lesser extent.

Also, from figure 5.9 we observe that participants 3 and 4 took consid-

erably longer to locate this target than the other participants, indicating

that the ‘straight ahead’ strategy was not a good one.

This strategy also caused an overshoot as observed figures 5.12(a) and

5.13(a) meaning that the participants became slightly confused and were

forced to readjust their strategy and locate the target again. This was

because participants 3 and 4 were not utilising their look ahead function

sufficiently and the Monte Carlo predictions were always slightly ahead of

the users at the horizon they chose to hold the predictions at. This meant
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(a) Acquisition of target 1 by participant 2
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(b) Tilt and heading data for the acquisition of target 1 by participant 2.

There is a gradual decrease in the tilt of the device, indicating a decrease

in the level of look-ahead, as the participant moves towards the target.

This indicates that the participant has a ‘fix’ on the target as they move

towards it.

Figure 5.8: Acquisition of target 1 by participant 2.
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Figure 5.9: Time to acquire each message for each participant.

that when the participants received good feedback they were not seeing the

message, indicating that they were in fact not in the correct area. They

then move on again in that direction, missing the actual target area, and

suddenly the feedback was lost.

One strategy used by the participant in figure 5.14 was successful and

we observe from figure 5.9 that this participant took least time to reach

target 1. This participant also displays high scanning and tilting energy for

target 1 relative to the other participants meaning that they have employed

a ‘sweeping’ strategy, covering a large area with Monte Carlo predictions,

which although effective in this case, is a sign that the user did not fully

grasp how to use the system. This participant employs the same sweeping

strategy for the acquisition of target 3 in figure 5.15 but to a lesser extent.

Observing figures 5.10 and 5.11 allows us to observe how one participant

compared with another for the acquisition of a particular target or message

but it is unfortunately not valid to compare the two acquisitions at targets
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Figure 5.10: Mean tilting energy for each participant for the acquisition of
each target.

1 and 3, where the actual functionality of the interface was being used, since

there was a considerable walking distance between target 2 and target 3.

We may though observe from these figures, the energy in the walks between

two targets. From the point where target 1 is acquired to target 2 and from

the point where target 3 is acquired to target 4 (targets 2 and 4 in figures

5.10 and 5.11), users are simply walking and not utilising the functionality

of the interface at all.

It is also interesting to note that the participants who generally display

the largest scanning and tilting energies relative to the other participants,

i.e. participants 1 and 6, also show the lowest acquisition times relative to

the other participants. This, although subjective at this point, is promising

evidence that the functionality and interactivity provided by this interface

does help the user in this kind of task.

After the users had reached target 1 they were requested to move to

target 2 and drop a message there. We can see here the message drop in
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Figure 5.11: Mean scanning energy for each participant for the acquisition
of each target.

the accelerometer data in figures 5.16, 5.17 and 5.18. We see the data first

as it is coming from a device held normally in front of the chest, then we

observe the abrupt change as the device is rotated and moved to the hip,

then we can see the steady relatively invariant data of a device held at the

hip.
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(a) Participant 3 locating the first target. This participant displays sig-

nificant activity at the beginning to obtain the correct direction but then

stopped using the full functionality, suffering a large overshoot. The par-

ticipant was then forced to scan again to obtain the correct direction

before acquiring the target.
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(b) Tilt and heading data for the acquisition of target 1 by participant

3.

Figure 5.12: Acquisition of target 1 by participant 3.
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(a) Participant 4 locating the first target. This user obtained the correct

direction but then utilised the interface little after, which led to an overshoot

and a new search for the correct direction.
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(b) Tilt and heading data for the acquisition of target 1 by participant 4.

Figure 5.13: Acquisition of target 1 by participant 4.
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Figure 5.14: Participant 6 locating the first target. This participant obtains
the correct direction first time and heads straight to the target.
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Figure 5.15: Participant 6 locating target 3.
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Figure 5.16: Acceleration output for participant 1 dropping a target at
location 2.
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Figure 5.17: Acceleration output for participant 2 dropping a target at
location 2.
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Figure 5.18: Acceleration output for participant 5 dropping a target at
location 2.
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5.6 Potential Applications

By including a separate density layer in any location-aware application

it is possible to provide rich context-aware functionalities since this density

has the potential to represent anything of interest to the user. Below we

describe a number of potential applications for this system.

H
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If you find this let m
e know

...

Figure 5.19: A user interacting with information left at each side of their
garden path. Work objects are left on one side and leisure objects are left
on the other side. The user can feel for and take any objects he is interested
in or leave objects in the appropriate context for use later.

5.6.1 Social Networking

Social networking is one natural application for this kind of interactive

location-aware system. There is already a multitude of social networking

websites and even sites which inform users by text message, when they

are in the vicinity of a friend, or even a friend of a friend as long as the
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user keeps the website updated with their current location (Google Inc.

2007). Using this density based approach it would be possible to keep track

of friends and have their locations represented by a densities in the local

vicinity, which it would be possible to interact with. It is easy to imagine

Figure 5.20: A user is actively interacting with another person’s device at
the other side of the street

interacting with a friend who was near by, by probing the local density rep-

resenting that friend and have the effects of this probing made apparent on

the other persons device as illustrated in figure 5.20. A context aware de-

vice could build a detailed picture of its owner’s personal state, represented

by a state vector, which could indicate, for example, the owner’s current

mood and whether they are open to contact with other people at that point

in time. This creates the potential to build rich state vectors, which could

be interacted with in this density, providing users with particular feedback

depending on the particular structure the vector. Users can also have full

control over their own density, which could become a parameter in their

state vector. If a user didn’t want to be contacted or disturbed by anybody

they could increase the size of their density to cover a wide geographical

area, it would then become difficult to locate them. If the user was available

to be contacted they could decrease the size of their density down to a very

local level.
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5.6.2 Geographical Blogging

Recently we have seen the emergence of a number of so called ‘geograph-

ical blogs’. One such example is a global public art project known as Yellow

Arrow (Counts Media 2007). Yellow arrow stickers can be obtained from a

website and placed anywhere, pointing to something of interest. The Yel-

low Arrow can signify that there is more to see in this particular location,

such as a funny story, a memory or an interesting experience. Each arrow

links digital content to a specific location using the mobile phone. When a

sticker is found, a unique code printed on the sticker can be sent as a text

message to a particular phone number. Moments later a text message is

received with a message left by the sticker’s original owner. By using the

functionality of a system such as ours it becomes possible to eliminate the

need for physical arrows and the sending of text messages. Arrows could

be represented by densities placed over a map and users could sense the

arrow in their local vicinity, automatically retrieving the message left by

the previous person.

Another possibility for the use of a system such as this is for Geocaching

(Peters 2004). Geocaching is a new and increasingly popular sport that

involves using a hand-held GPS unit to travel to a specific longitude and

latitude, often involving walking or hiking to natural locations, in search of

objects hidden by other Geocachers. Using our system it is possible to build

a Virtual Geocaching network, where Geocachers are instead rewarded with

virtual objects or prizes. They would still be required to travel to specific

latitude and longitude coordinates to receive their prize but once there,

they are required to interact with and probe the local environment to find

the virtual object represented by a local density object.

5.6.3 Demographics

Using a density layer to represent such demographics as socioeconomic

levels or crime rates could be very useful. It is unlikely if your device sensed

a high crime rate in a particular area, for example, that you would want to

leave your car there. This kind of information can also be useful in situations

where people may require quick information about the population structure
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of a particular area including such demographics as Age, Sex, Religion etc.

By representing this information as a density and probing it with such an

interface this information, and any fine structure that exists within this

information, can be readily available. Chicago Crime (Holovaty A. 2007)

is a website, which combines crime data for the Chicago area with Google

Maps to provide local geographic information about crime in a particular

area. It is easy to imagine creating a density map based on this crime data,

which could be probed and explored using our interface at a local level.

5.6.4 Tourism

There have been a number of GPS based tourist guides developed in re-

cent times. By and large these guides rely marking general areas of interest

for users to pass by or locate on a map and move towards. By overlay-

ing a density representing particular areas of interest it would be possible

to guide tourists along a set route towards particular areas. This could

be considered beneficial as in current systems, users are required to guide

themselves, through any route they choose, into local ‘hotspots’ but in a

system like this could be taken down specific paths or specific routes to

particular areas of interest. This approach would also be useful for indoor

guide systems if there was an indoor positioning system available.

5.6.5 File Sharing

With the release of the Microsoft Zune, we have seen the first mass

market mobile device with active file sharing capabilities. It is possible using

a Zune to share music with other people in the immediate vicinity and in

the near future we will see the emergence of so-called ‘Zune filling stations’.

These are particular places, perhaps in a local McDonalds or Starbucks,

where it is possible to download music for your player. This is follows on

from the use of ‘proximity servers’, which are used to push information

to people in close proximity with Bluetooth and infrared-enabled phones,

usually at conferences. It is possible in this situation to dispense with the

need for a proximity server and instead use a density layer to represent local

areas of shared files. Users can navigate around their locality, through this
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density hearing and feeling close-by density objects and probing around

with their device to locate their exact positions and receiving feedback

depending on the contents of the object (Eslambolchilar and Murray-Smith

2006). Density objects could contain photos, videos or music, for example.

It would then be possible, if in a particular area, a user found a music file

that they enjoyed listening to, to take this file, effectively removing the file

from the density. They could then carry this file with them until a point

in time where they no longer wanted it and drop this song again wherever

they may be at that point in time. This would then make the file available

again for others to take from this new location.

5.6.6 Sculpting the Virtual Environment

Because various variables in the user’s local environment are represented

by a density it is possible to actively update that layer in real time. It be-

comes possible then to potentially sculpt and mould your own personal

environment in an embodied manner by carving into ‘blocks’ of local den-

sity using the stream of Monte Carlo particles to effectively carve into the

block. Work has been conducted into the audio perception of visual infor-

mation (Wang and Jezekiel 1996, Rath and Rocchesso 2005). Hollander

(1994) examined the ability of subjects to recognise geometric shapes and

alphanumeric characters presented by sequential excitation of elements in

a “virtual speaker array” finding that subjects were able to identify the

patterns with “significantly better than chance” accuracy. The creative

sonification of Monte Carlo particles impacting with a local density is a po-

tential new way of conveying shape information via audio and vibrotactile

feedback.

5.7 Discussion and Conclusions

In this chapter we have demonstrated the construction of an application

which draws together the work conducted in chapters 2 and 3 to allow the

dropping and retrieving of messages in the user’s personal virtual environ-

ment. The system here is an extension beyond the simple target acquisition

165



5.7 Discussion and Conclusions

and trajectory-following applications presented in chapter 4. This is a sys-

tem which has the potential to provide a general mechanism for providing

highly interactive context-aware applications. By treating our system as a

separate density layer in any application it is possible to provide different

functionalities. We described a number of potential applications using this

kind of density based context aware system.

As an example application we constructed the airMessages system, which

is a combination of the bodySpace and gpsTunes systems described in chap-

ters 3 and 4, enabling an embodied and gestural interaction for the searching

and retrieving of messages left in the real world. Results from the field trial

show that users are able to probe the local density effectively, using the

full functionality of the designed interface to complete the task. We also

found that users who used their interface functionality more fully were also

the users who completed the task more effectively. This, although slightly

subjective at this point, is promising evidence that this kind of embodied

interface aids this kind of interaction.
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Chapter 6

Conclusions

6.1 Theoretical Framework

The work in this thesis explores the design space of mobile devices

equipped with inertial and location sensing and audio and vibrotactile feed-

back. We have demonstrated a new theoretical style of interaction design

starting with the basic notion of treating this new kind of continuous inter-

action as a loop of control and building our application around this principle.

We have demonstrated the necessity to think carefully about the inputs to

this control system, the processing of those inputs and the feedback pro-

vided. We have demonstrated two distinct application interfaces built on

a solid theoretical foundation and created interfaces using these principles,

which use the egocentric body and exocentric real-world environment as

interfaces for the interaction.

We have also demonstrated the utility and generality of a model-based

approach to the interaction with mobile devices with the aim of allowing

other HCI researchers to extract this approach and adapt it to their own

interfaces. We have demonstrated the utility of incorporating uncertainty

and constraints into the interaction design, which it is hoped can be adopted

for the general improvement of interaction with location-aware applications.
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6.2 BodySpace

For the egocentric bodySpace interface we developed an example ap-

plication, which utilised inertial sensing and basic pattern recognition to

enable the gestural control of a music player by placing the device at dif-

ferent parts of the body and gesturing to control the functionality, rather

than having to press buttons or wear instrumented clothing.

We described a new general ‘end-point’ or goal based approach to the

detection and segmentation of gestures and planar motion, showing that

this approach could be used by a number of users in a small trial. We

also demonstrated the use of a model-based approach to the design of this

kind of interaction, demonstrating that interaction based on the simulation

of a physical model of a ball in a bowl was both intuitive and easy for

users to understand and may be easily applied to other interface designs.

Although users displayed initial problems while using the system, as we

would expect from the first use of any system, this initial testing provided

us with some interesting usability and motor-control insights as to how our

model based approach to this kind of interaction actually coped with real

people. For example, we found that each user tended to have their own

comfortable posture, which emerged after only a few minutes of practice,

indicating that any system adopting this kind of approach would need some

kind of personalisation, although this could be an iterative process. We also

found that users were particularly susceptible to hand drift, which tended

to cause a number of false positive recognitions. We also found that the

participants were somewhat more limited with one ‘flicking’ direction than

the other, with forward flicks of the device, when placed at the ear, being

more successful than backward flicks.

The work in this chapter also allowed us to demonstrate the use of real-

world constraints in the inference of user intention and how this notion of

using real-world constraints can be considered as part of the interaction de-

sign process. One level of constraint that may be utilised in our particular

example interface comes from the fact that the gesture is performed by the

human arm, which is restricted in its potential movement. Another con-

straint comes from the fact that when the device is placed at a particular
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part of the body, it is restricted to a plane around a part of the body. We

described the use of a dynamic representation of a bodySpace style gesture

as a dynamic system, which could potentially enable the easier provision of

formative feedback and how this kind of dynamic systems approach to rep-

resenting gestures can be used in interaction design. We also demonstrated

the use of tremor from our muscles as a potential new source of information

in the inference process and as a potential proxy for pressure sensing in a

mobile device equipped with accelerometers.

6.3 Whereable Computing

We developed an application, which utilised the ‘real world’ as an ex-

ocentric interface. We demonstrated that probabilistic, multimodal, hand-

held interaction techniques can be applied effectively to allow users to ex-

plore density functions in space, with the example of pedestrian GPS nav-

igation. The Monte Carlo sampling method provides both an effective way

of integrating probabilistic models into practical interfaces and of displaying

the results in a multimodal fashion, which could be of great use to interface

design in general. We described the extension of this system to one which

provides a general mechanism for providing highly interactive context-aware

applications. By treating our system as a separate density layer in any ap-

plication it is possible to provide different functionalities. The densities

here could represent P (Ci|x) - the probability of context state Ci given the

current state vector x.

We have shown that feeding back uncertainty can improve performance

in location-based interaction and that the use of natural constraints in the

environment, similar to what we achieved in the design of the bodySpace

interface, can aid the interaction. We have also shown that the use of tilt to

control the Monte Carlo sampling time horizon and the use of magnetome-

ters to provide rapid bearing updates aided the design of a more embodied

kind of interaction in this context.

We conducted two main field trials, the first of which supported our

hypothesis that the uncertain displays required less effort and results in

more stable behaviour. This field trial also allowed us to introduce new
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metrics for usability analysis, which provide objective measures of the way

in which a system was used and removed the need to rely on the more

traditional subjective measures. The second field trial showed that it is

possible to guide users to a desired location over a set trajectory or path

and a number of interesting behaviours were observed, which we attempted

to classify into certain categories. Interactive sonification of the exploration

process produced a navigation system which could be used in an eyes-free

manner, where the user brings their sensorimotor systems into the inter-

action with the augmented environment for a more embodied interaction.

This initial data from these trials has shown that it is possible for users to

navigate through a set path over a featureless playing field using audio and

vibrotactile feedback alone. Their performance and confidence improves

significantly when the audio and vibrotactile constraints from the system

are coupled with the natural constraints of the environment, suggesting that

the system is promising for a range of realistic use cases.

We also demonstrated the potential possibilities for modelling this kind

of behaviour using a simple control model. We have demonstrated initial

steps towards creating a control model of human behaviour to help us un-

derstand some of the behaviour exhibited by participants in our field trials.

This approach, when more fully developed, has the potential to aid the de-

sign of future interaction and interfaces in general as it has the potential to

give prior knowledge of how users may perform with a particular interface

design.

6.4 Outlook

This thesis has demonstrated the development of a new kind of location-

aware computing and there is great scope for extension of the ideas pre-

sented here. In chapter 2 we introduced the idea of using a control theoretic

approach to interaction design and in subsequent chapters we demonstrated

the use of this approach. For example, in chapter 3 we introduced the con-

cept of controlling a system from a simulation of a physical model and in

chapter 4 we demonstrated the development of a simple model of human

behaviour. This control-theoretic approach to the design of this kind of in-

170



6.4 Outlook

terface can improve both the use of this interface and enable the generalisa-

tion of this approach for other HCI researchers. The appropriate treatment

of uncertainty is something critical for the successful use of location-aware

systems and we have shown in chapter 4 that the explicit use of uncertainty

in our interface design has proved to be beneficial to the interaction process.

Likewise, our embracing of natural constraints in the environment has been

proven to aid the interaction process. In chapter 3 we demonstrate the use

of explicit constraints around the body to shape the gestural interaction for

our gesture-based interface and in chapter 4 we use the natural constraints

of the local environment to infer future user positions in our location-aware

interface. By applying this kind of approach to all areas of interaction de-

sign, it not only has the potential to greatly improve interaction with this

new kind of system but also increase the general acceptance of these novel

approaches to the larger interaction design community.

The use of inertial sensing to create a more embodied and highly in-

teractive style of interaction in this location-aware context has shown that

it is possible for users to engage with a system and interact with objects

placed in their own personal egocentric or exocentric virtual worlds. This

kind of interaction with virtual objects opens the door for the develop-

ment of an abundance of novel applications. Virtual objects can take a

number of forms; local objects of information, text messages or even other

people. There is great potential for the development of social networking

applications in this context, which allow people to interact and negotiate

directly with friends in their personal virtual worlds. This has the poten-

tial to change the way that people think about location and context-aware

computing. Systems change from static, unresponsive on/off systems to

dynamic, responsive, flowing, highly interactive systems and ultimately the

work presented in this thesis has the potential to become a basis for this

rapidly growing field.
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The Global Positioning System

The Global Positioning System (GPS) consists of 32 satellites orbiting

the Earth, transmitting radio signals which enable GPS receivers anywhere

in the world to determine their location, altitude and speed. The first

experimental satellites were launched in 1978 and GPS has since become

indispensable for navigation around the globe.

A.1 Navigation

Navigation is the principle application of the Global Positioning System.

But how does this work? A GPS receiver calculates its position by mea-

suring the distance between itself and three or more GPS satellites using

a technique known as trilateration (Bajaj et al. 2002), a method of deter-

mining the relative positions of objects using the geometry of triangles, not

dissimilar to triangulation, as illustrated in figure A.1. Knowing the po-

sition and the distance of a satellite indicates that the receiver is located

somewhere on the surface of an imaginary sphere centered on that satellite

and whose radius is the distance to that satellite. When four satellites are

measured simultaneously, the intersection of the four imaginary spheres re-

veals the location of the receiver, according to the World Geodetic System

WGS84 (National Imagery and Mapping Agency (NIMA) 1991) coordinates

system. Often, these spheres will overlap slightly instead of meeting at one

point, so the receiver will provide a mathematically most-probable position

and indicate the uncertainty in this estimate.
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Figure A.1: Standing at B, you want to know your location relative to the
reference satellites S1, S2, and S3 on a 2D plane. Measuring r1 narrows
your position down to a circle. Next, measuring r2 narrows it down to two
points, A and B. A third measurement, r3, gives your coordinates at B.
A fourth measurement could also be made to reduce error. Figure adapted
from (Bajaj 2002)

A.2 Accuracy

The position accuracy calculated by any GPS receiver is primarily de-

pendent on the satellite geometry and signal delay but can be affected by a

number of different sources. Figure A.2 shows a log of GPS data over an 8

minute period. The number of satellites visible in this time varied between

4 and 8 and we see that there is considerable variation in the receivers

estimated position. So what factors were contributing to this variation?
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Figure A.2: GPS position variation while the unit is at standstill in an eight
minute period. Units are degrees.

A.3 Sources Of Error

A.3.1 Satellite Geometry

The most significant factor affecting the accuracy of a GPS measurement

is the “satellite geometry”, which describes the position of the satellites to

each other from the view of the receiver. We have a “good” geometry if all

the satellites that our receiver can currently see are well distributed across

the sky leading to the kind of geometry illustrated in figure A.3-A. In this

case we can take position estimates with an error of as little as 2-3 m. A so

called “bad” geometry arises if all currently locked satellites appear in the

same part of the sky as illustrated in figure A.3-B. This kind of geometry

can, in the worst case lead to no position estimate at all but generally this

kind of bad geometry will cause an error of 100-150m. To indicate the

quality of the satellite geometry, the DOP values (dilution of precision) are

commonly used. There are five variants of DOP:
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A B

Figure A.3: The blue area at the point of intersection of the two circles
indicates the possible positions of the receiver, given the uncertainty in the
satellite position indicated by the grey circles. In the good case (case A)
the blue area is small indicating good geometry. In the bad case (case B)
the blue area is larger, indicating bad geometry. Figure adapted from (Köhne
2007)

• Geometric Dilution Of Precision (GDOP) - Overall-accuracy in 3D-

coordinates and time

• Positional Dilution Of Precision (PDOP) - Position accuracy in 3D-

coordinates

• Horizontal Dilution Of Precision (HDOP) - horizontal accuracy in

2D-coordinates

• Vertical Dilution Of Precision (VDOP) - vertical accuracy in height

• Time Dilution Of Precision (TDOP) - time accuracy

Generally speaking HDOP-values below 4 are good and above 8 are bad

and for an accurate position determination, the GDOP value should not be

smaller than 5. (El-Rabbany 2002).

A.3.2 Signal Shadowing

Signal shadowing describes the situation when the line of sight to a

satellite is obscured by a large object or mountain. In urban environments

this is a significant problem since the skyline generally has a higher eleva-

tion, restricting the amount of sky that can be seen by the receiver and

decreasing the likelihood that the receiver will see the minimum 3 satellites

required to make a positional fix. Figure A.5 illustrates the situation where
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a building is obstructing the path to the receiver. Because the satellites

are in non-stationary orbits, even if a GPS unit is in a static position, the

GPS availability will change over time making signal shadowing a signifi-

cant problem. Steed (2004) describes a tool satview, which visualises the

current likely availability of GPS coverage.

A.3.3 Atmospheric Effects

Changing atmospheric conditions can change the speed of GPS signals

and can have a significant effect on the accuracy of GPS signals. These

effects though are minimised when the satellite is directly overhead, and

become greater for satellites nearer the horizon, which is why GPS accu-

racy is inherently lower at extreme latitudes, since the signal is affected for

a longer time. The effects of the ionosphere are generally slow-moving, and

can be averaged over time making it relatively easy to remove this effect.

This effect is illustrated in figure A.4. Humidity can also be a source of

error for GPS signals. This effect is much more localised, occurring in the

troposphere, and changes more quickly than ionospheric effects, making

precise compensation for humidity more difficult. Altitude also causes a

variable delay, as the signal passes through less atmosphere at higher el-

evations. Since the GPS receiver measures altitude directly, this is much

simpler correction to apply (A. and M. 2007).

A.3.4 Ephemeris and clock errors

The navigation message from a satellite is sent out only every 12.5 min-

utes but in reality, the data contained in these messages tend to be “out of

date” by an even larger amount. Consider the case when a GPS satellite

is boosted back into a proper orbit; for some time following the maneuver,

the receivers calculation of the satellite’s position will be incorrect until it

receives another ephemeris update. The onboard clocks are extremely ac-

curate, but they do suffer from some clock drift. This problem tends to be

very small, but may add up to 2 meters (6 ft) of inaccuracy.
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ionosphere

troposphere

disturbed propagation

Figure A.4: the effect of the earths atmosphere on the radio signals from
the GPS satellites

A.3.5 Multipath Effects

GPS signals can also be affected significantly by multipath effects, where

the radio signals from the satellites are reflected off surrounding buildings,

mountains, hard ground, etc. These delayed signals can cause inaccuracy.

A variety of techniques have been developed to reduce multipath errors and

for long delay multipath, the receiver itself can recognise the delayed signal

and ignore it. Multipath effects though are much less severe in moving ve-

hicles. When the GPS antenna is moving, the false solutions using reflected

signals quickly fail to converge and only the direct signals result in stable

solutions but this is a significant source of error for pedestrian GPS based

applications.
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reflected signal

unreflected signal
shadowed signal

Figure A.5: interference from signal reflections and signal shadowing

A.4 Other Applications

The GPS is not just used for military or navigation applications. Sur-

veying and mapping is one common use for the GPS. Survey-Grade GPS

receivers can be used to position survey markers, buildings, and road con-

struction. High precision measurements of crustal strain can be made with

differential GPS. This works by finding the relative displacement between

GPS sensors. Multiple stations situated around an actively deforming area,

such as a volcano or fault zone, can be used to find strain and ground move-

ment. These measurements can then be used to interpret the cause of the

deformation. The availability of hand-held GPS receivers has also led to the

development of games as mentioned in a previous chapter. One such game

is Geocaching (Peters 2004), which is a new and popular sport that involves

using a hand-held GPS unit to travel to a specific longitude and latitude to

search for objects hidden by other geocachers. This popular activity often

includes walking or hiking to natural locations. Combining GPS position

data with photographs taken with a digital camera allows people lookup the

locations where the photographs were taken on a website (Spinellis 2003)

and automatically annotate the photographs with the name of the location

they depict.
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Inertial Sensing For Mobile

Devices

B.1 Introduction

Although inertial sensing has been researched extensively over a long

period of time and there exists a wealth of detailed literature on the ap-

plication of the tools developed for this field, there is a lack of information

about how to apply these techniques in a mobile or handheld domain. This

is understandable as until recently there was no real demand for this kind

of information. For this reason we describe here some of the main points

relevant to the mobile domain and try to apply these in a relevant way.

To describe these techniques in a detailed way would be futile, since it is

unlikely that we could ever reproduce the kind of tight navigation that we

see from robotics or military applications. Despite the obvious differences

such as the small-scale, rapidly changing movements on a mobile device

compared to the large scale, more constant movements on an aircraft we

must also consider some more subtle details such as the physical sensors

we use, which are cheaper and less accurate, and the kinds of angular rates

and accelerations we would expect to see in a mobile application compared

to that of an aircraft or missile application.
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B.2 Mobile Movement

The types of movement we experience with an instrumented mobile

phone are highly variable. The kinds of movement sensed range from dis-

crete hand gestures up to large arm gestures. We may also detect motion

from our general environment or ‘context’. The device may pick up move-

ment from the train your’re riding in or movement from your pocket while

you walk down the street so this variability provides us with much more

complicated problem than the traditional aircraft or missile traveling in a

straight line for long periods of time. Human physiology is another factor.

The human body contains a complex system of oscillators, which make up

the human body and transfer movement into our mobile phones. Tremor

from our muscles adds another dimension to this problem which again adds

to the complexity of this task and makes it distinct from the more tradi-

tional problems.

It’s not all negative though. Human physiology, may actually work as

a constraint on the potential range of movements. The same is true for

movement of the human arm and hand/wrist, which has a finite range

of movement so these constraints in the potential range of motion of a

typical mobile device may act to simplify the problem slightly if we possess

a detailed knowledge of this range of possible movements.

B.3 Coordinate Systems

While the emergence of location-aware and context-aware computing

has opened paved the way for a wealth of new applications, it also poses

a number of challenges. Traditional navigation theory is based around the

prior definition of a number of reference frames. Traditional navigation

around the Earth requires the definition of axis sets, which allow inertial

measurements to be related to the cardinal directions of the Earth, that is,

frames which have a physical significance when navigating in the vicinity of

the Earth (Roth 1999). We will first consider the case of navigation round

the Earth then attempt to apply some of these ideas to navigation with an

instrumented mobile device.
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Each frame is defined as an orthogonal, right-handed axis set as shown

in figure B.1. The first frame we define for navigation around the earth is

referred to as the inertial frame (i-frame). This frame has its origin at the

centre of the Earth and axes which do not rotate with respect to the fixed

stars (Britting 1971). The orientation of the coordinate axes may be chosen

arbitrarily but it is usual to picture the zi axis running from south to north

along the earth’s rotation axis with the orthogonal xi and yi axis in the

equatorial plane, i.e. the plane normal to the earths rotation axis. This

frame may seem too ‘large-scale’ in the context of a mobile device but it is

a necessary and useful basis for the definition of the rest of our reference

frames. We then define the earth frame (e-frame), which again has it’s

origin at the centre of the Earth and axes which are fixed with respect to

the Earth. The ze axis runs from south to north along the rotational axis of

the earth and the xe and ye axes again lie in the equatorial plane rotating

with an angular rate Ω with respect to the inertial frame. The navigation

frame has its origin at the location of the navigation system and has axes

aligned with north, east and the local gravity vector g. The xn and yn axes

lie in the local horizontal plane and have a turn rate ωen with respect to the

earth frame, often referred to as the ‘transport rate’ (Titterton and Weston

2004). The accelerometer frame is an orthogonal axis set whose origin is the

point where motion is measured by the accelerometers. We may also define

an analogous gyroscope frame whose origin measures the point of motion.

The body frame is an orthogonal axis set, which is aligned with the roll,

pitch and yaw axes of the vehicle or device to which the navigation system

is ‘strapped’. We use this frame to describe the orientation of our device.

We will assume for simplicity that the origin of this frame is coincident with

the origins of the accelerometer and gyroscope frames.

What defining these frames allows us to do is picture the device in vary-

ing situations, which may arise for different applications. For the BodyS-

pace application described in chapter 3 we can imagine the principle move-

ments of interest happening in the body frame. Whereas for the gpsTunes

application in chapter 4 we are principally interested in a combination move-

ments from the navigation frame for general movement around an area and

from the body frame for the inertial interface control.
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Figure B.1: The Earth, Inertial and Navigation frame axes. Figure adapted
from (Roth 1999)

B.3.1 Navigation Equation

The navigation equation allows us to generate estimates of acceleration,

velocity and position in our desired reference frame. We can assume that

we will be required to navigate with respect to a fixed, or non-accelerating,

non-rotating set of axes. The particular component of acceleration in the

direction the movement, referred to as the ‘specific force’, and estimates of

the gravitational field are summed to determine components of acceleration

with respect to a space fixed reference frame (Titterton and Weston 2004).

Let r represent the position vector of a point P on the sphere in figure

B.1 with respect to O, the origin of the reference frame. The acceleration

of P with respect to a space-fixed axis set, i.e. the i-frame, is defined by:

ai =
d2r

dt2
|i (B.1)

From our accelerometers we can take a measure of the specific force, f,

acting at a point P where

f =
d2r

dt2
|i − g (B.2)

where g is the mass attraction gravitation vector. Rearranging we get

d2r

dt2
|i = f + g (B.3)
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which is known as the navigation equation. To obtain the velocity in the

i-frame we integrate one time

vi =
dr

dt
|i (B.4)

with a second integration theoretically giving its position in that frame.

In practice we will often be required to resolve velocity and position with

respect to a rotating reference frame, when navigating in the vicinity of the

earth for example. In this situation we will need to revise the navigation

equation slightly to take into account additional apparent forces acting,

which are functions of reference frame motion.

To obtain the velocity in the earth-frame from the velocity in the i-frame

we may use the theorem of coriolis, as follows,

ve = vi − ωie × r (B.5)

where ωie =




0

0

Ωz


 is the turn rate of the e-frame with respect to the i-frame.

Accelerometers usually provide measures of specific force in a body fixed

axis set, denoted fb. In order to navigate it is necessary to resolve the

components of the specific force in the chosen reference frame. If we choose

the inertial frame, for example, we may resolve the components of specific

force by multiplying the body fixed measurements, fb by the direction cosine

matrix, Ci
b using

fi = Ċi
bf

b (B.6)

where Ci
b is a 3x3 matrix which defines the attitude of the body frame

with respect to the i-frame. The direction cosine matrix Ci
b may be calcu-

lated from the angular rate measurements provided by our gyroscopes using

the following equation:

Ci
b = Ci

bΩ
b
ib (B.7)

where Ωb
ib is the skew symmetric matrix:

Ωb
ib =




0 −r q

r 0 −p

−q p 0


 (B.8)
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This matrix is formed from the elements of the vector ωb
ib =

[
p q r

]T

which represents the turn rate of the body with respect to the i-frame as

measured by the gyroscopes.

Determining the orientation of our device is one of our main aims. The

orientation of the device is described by the relative difference between the

axes of the body-frame and the navigation-frame. The orientation at a time

t after the start of motion is a function of the initial motion at t = 0 and

the angular motion of the device which followed. The angular motion is

thus defined by the time history of the angular velocity of the body-frame

relative to the navigation-frame frame (Roth 1999).

B.4 Sensors

In a typical Inertial Measurement Unit (IMU) the essential sensors are

accelerometers, gyroscopes and magnetometers. Any other sensors added

may aid the system in some way but are not essential. The construction

of devices which are used to sense motion may be classified as either me-

chanical or solid-state. Mechanical accelerometers, for example, are well

established and can provide highly accurate measurements of acceleration

even down to a few micro-g in some cases. These sensors though are gen-

erally very large, larger than your average mobile device, and so we must

find a suitable alternative. For this reason we focus on solid-state sensors

which have made significant advances in recent years in terms of their size

and accuracy.

B.4.1 MEMS inertial sensors

The sensors used in a typical IMU for a mobile device are Micro-machined

Electromechanical System or ‘MEMS’ sensors. New applications for in-

ertial sensing have, in recent times, demanded much smaller, less power

consuming, less expensive sensors and MEMS technology has successfully

fulfilled these demands. However, the introduction of MEMS technology

will bring with it more limitations. In general, they bring a decrease in

sensitivity/scale factor and an increase in noise. It may also make thermal
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sensitivity much more of a problem since silicon is very sensitive to thermal

fluctuations. Despite these limitations though, MEMS sensors provide good

enough performance for the acceptance of this trade-off for the reduction

in size and price alone.

B.4.2 Accelerometers

In a basic way, accelerometers are essentially mimicking the human

vestibular system. This system is essential for stable posture control and

enables humans to move freely since it is not earthbound. This is also the

system utilised by our brain to measure head movements without a frame

of reference. Recently, micro-machined inertial sensors, i.e. accelerome-

ters and gyroscopes, have become much more widely available. They are

small in size, can be worn on the body and like the vestibular system, the

working principle of these sensors is based on omnipresent inertia, enabling

measurement anywhere without the need for a frame of reference (Luinge

2002).

To give a feel for how exactly an accelerometer works we may consider

the ‘mass in a box’ analogy where we imagine a mass suspended inside a box

by a spring, as in figure B.2. This mass is allowed to move in one direction

which is the sensitive direction of the accelerometer. The displacement

of the mass with respect to the casing is proportional to the acceleration

along that axis. We can imagine 3 such accelerometers with orthogonal

orientations giving us a measure of the 3D acceleration.

B.4.3 Gyroscopes

Gyroscopes are used to sense the angular rate of turn about an axis.

Like accelerometers, gyroscopes can come in a number of different forms.

Spinning gyros, laser gyros and vibrating mass gyros are the most common

form in use today. The spinning and laser varieties of gyroscope are mainly

used for large-scale navigation are not suitable for use in a mobile device,

since they are both expensive and large (Söderkvist 1994). Vibrating mass

gyroscopes on the other hand are ideal for incorporation into mobile devices

because they are small, inexpensive and have a low power requirement. A
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Figure B.2: This figure conveys the ‘mass in a box’ representation of an
accelerometer whereby a mass is suspended by a spring. Any displacement
of the mass with respect to the outer casing is mapped to a corresponding
acceleration. Figure adapted from (Luinge 2002)

vibrating mass gyroscope, as would be used in most mobile applications,

is based on the principle of a vibrating mass undergoing an additional vi-

bration caused by the coriolis effect as in figure B.3. It consists of a mass,

actuated in the direction given by ract. The displacement of the mass is

measured in the direction perpendicular to the actuation direction. If the

box is rotated with an angular velocity perpendicular to the plane, the mass

will experience an apparent force in the direction perpendicular to the an-

gular velocity and momentary mass speed. The displacement of the mass

in the direction perpendicular to ract is proportional to the angular velocity

of the system. This force is present only in the sensor coordinate system,

not in the inertial coordinate system (Luinge 2002).

B.4.4 Magnetometers

A magnetometer is a sensor used to measure the strength of the earths

magnetic field. The earth has a magnetic field which resembles that of the

simple bar magnet with field lines originating at the south pole and and

terminating at the north pole. The field lines have slightly varying strength

186



B.4 Sensors

distance

measurement

angular

velocity

ract

rcor

Figure B.3: A vibrating mass gyroscope: a mass is actuated in the direction
given by ract. If the box is rotated with an angular velocity perpendicular to
the plane, it will experience an apparent force in the direction perpendicular
to the angular velocity and momentary mass speed. The displacement of
the mass in the direction perpendicular to ract is then proportional to the
angular velocity of the system. Figure adapted from (Luinge 2002)

and direction at different points around the earth but at a local level we

may think of these fields as being constant and use them as a reference,

given a suitable calibration. A typical IMU will usually contain three ‘vec-

tor magnetometers’ which have the ability to measure the component of

the magnetic field in a particular direction, in this case along the x, y or

z axes. The use of three orthogonal vector magnetometers allows us, in

theory, to calculate the magnetic field strength, inclination and declination

of our mobile device. In reality though, this is hampered by the rapidly

varying fields in a typical urban environment due to large metal structures

perturbing the local field. We may achieve a reliable magnetic heading from

our magnetometers after a suitable calibration for the local environment.

The most common kind of magnetometers used in mobile applications

are fluxgate magnetometers. A fluxgate magnetometer consists of a small,

magnetically susceptible, core wrapped by two coils of wire. A current is

passed through one coil, causing an alternating cycle of magnetic saturation.

This creates an electrical field in the other coil, which is measured. If the

magnetic background is neutral the input and output currents will match

but if there is a magnetic field present the current will be magnetised in

alignment with that field, giving us a way of measuring that field.
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B.5 Sensor Output

When we take raw data from an accelerometer what are we actually

seeing? Is this pure acceleration information? The straight answer is ‘no’.

What we are actually seeing is the combination of acceleration, systematic

errors and noise which are characteristic of any physical measurement. As

was mentioned before it is possible to think of an accelerometer as a mass

suspended inside a box by a spring with the displacement of the mass, with

respect the edge of the box, thought of as being proportional to the dif-

ference between the inertially referenced acceleration and the gravitational

acceleration acting along the accelerometers sensitive axis. The difference

between the inertially referenced acceleration and the gravitational acceler-

ation is referred to here as the specific force (Roth 1999).

The accelerometer may be thought of as producing an output oa, mod-

eled as being equal to:

oa = Saa
a
SF + ba + ea (B.9)

where the vector aSF is the specific force vector at the origin of the navigation-

frame and the term Saa
a
SF reflects the ideal linear response of the accelerom-

eters. The matrix Sa is called the accelerometer response matrix. It is a

diagonal matrix:

Sa =

∣∣∣∣∣∣∣∣

Sax 0 0

0 Say 0

0 0 Saz

∣∣∣∣∣∣∣∣
where the elements Sax, Say and Saz are the ideal linear scale factors of

the x, y and z accelerometers respectively. The vector ba is the accelerom-

eter bias vector which describes the offsets that may be present in the

output components from the sensor and is determined at calibration. The

vector ea is the accelerometer noise vector. These include errors from non-

linearities or hysteresis in the accelerometer responses and errors due to the

fact that the accelerometers do not measure at exactly the origin on the

accelerometer-frame (Roth 1999).

Output from the gyroscopes is defined in a similar way to that of the

accelerometers. The gyroscopes may be thought of as producing an output
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og, modeled as:

og = Sgω
g
ib + bg + eg (B.10)

where the vector og is the output of our three gyroscopes and the vector ωib

is the angular velocity of the body-frame with respect to the earth centred

inertial-frame. Sgω
g
ib describes the ideal linear response of the gyroscopes

and as with the accelerometer, the matrix Sg is called the gyroscope re-

sponse matrix:

Sg =

∣∣∣∣∣∣∣∣

sgx 0 0

0 sgy 0

0 0 sgz

∣∣∣∣∣∣∣∣
where sgx, sgy, sgz are the response factors of the x, y and z gyroscopes,

defined in a similar way to that of the accelerometers. The vector bg is

the gyroscope bias vector and describes the biases which exist in the gyro-

scopes. The vector eg is the gyroscope noise vector, which is similar to the

accelerometer noise vector, however, unlike the the accelerometers there are

no errors introduced from the fact that all the gyroscopes do not measure

from the same point, since we know that the angular velocity is the same

at all parts of a rotating rigid body.

B.5.1 Sensor Placement

When building an inertial measurement unit it is necessary to consider

the effects that placing the sensors in different areas of the IMU will affect

the output. In almost all formulations of the reference frames required to

describe a typical INS, accelerometers are theoretically placed at the origin

of the accelerometer frame. This is obviously always an approximation

since the finite sizes of the MEMS accelerometers stop each sensor from

measuring at exactly the same point but it is a solid approximation to make.

There exists though a fundamental difference between accelerometer and

gyroscope positioning. The point in our mobile device where the gyroscopes

measure is actually of no relevance since from first principles we know that

the angular rate at any point inside a rotating rigid body has the same

angular velocity and we may think of our mobile device as a rigid body. This

is not the case for acceleration so the point from which we are measuring
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motion is of great importance and must be known. What if, for reasons

of limited real estate and size restrictions on the sensor housing etc. we

wish to move the accelerometers off of the sensor ‘origin’ by some known

distance? What affect does this have on our measurements?

Rigid Body Kinematics

We may thnk of the rotation of a mobile device as the 1D rotation of

a rigid body and we may define the angular velocity of a point on a the

rotating body as ω. This value doesn’t change from point to point on the

rotating rigid body. When we have determined the angular velocity of our

point on the body, the velocity is simply

v = ω × r (B.11)

where r is the position vector of the point considered with respect to the

origin of our reference frame, i.e. the centre of our rotating body. The

acceleration of any point in the rigid body is then obtained by taking the

derivative of equation 1. Thus,

a = ω̇ = ω̇ × r + ω × ṙ = α× r + ω × (ω × r) (B.12)

where α is the angular acceleration vector. So we see that the acceleration

at any point in the rigid body is determined by r as ω and α are constant.

So as we increase r, the distance from the origin, the measured accelera-

tion is increased. To examine the effects of increasing r we consider the

rotation around one axis and examine the varying theoretical accelerations

We see from figure B.4 shows that as the distance, r from the origin is in-

creased, areas of higher accelerations are amplified somewhat whereas lower

accelerations are relatively unchanged.

B.6 Basic Algorithms

We introduce now some basic tools required for working with these kind

of sensors. One of the main things to consider is calibration.

190



B.6 Basic Algorithms

0 50 100 150 200 250 300
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
ac

c−
m

/s

increasing r

0 50 100 150 200 250 300
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
ac

c−
m

/s

increasing r

r

x

y
O

 r=0.1m

 r=0.001m

Figure B.4: As the distance r, the distance of the accelerometers from the
origin of the body-frame is increased the measured acceleration becomes
increasingly amplified

B.6.1 Calibration

Before it is possible to work with any sensor data it is necessary to

perform some simple calibrations. It is necessary to calibrate separately

the accelerometers, gyroscopes and magnetometers.

B.6.2 Accelerometer Calibration

Calibration of the accelerometers is not necessary in all situations. For a

gesture recognition application it may actually be better to work with raw

accelerometer data where as for a tilt application, if we are not working

with the full derived strapdown equations, the data needs to be quickly cal-

ibrated or ‘zero’d’ at the beginning of each use. Zeroing the data essentially

just involves defining the rest point of the device i.e. the values from the

accelerometer where the device is flat in the user’s hand. Any tilting of the

device will then give a deviation from these ‘zero’ values which are then

used as indicators that the device is being tilted. A more rigorous way to

191



B.6 Basic Algorithms

0 5 10 15 20 25
−1

−0.5

0

0.5

1

1.5
x 10

4 y−axis accelerometer data

time (s)

a
cc

e
le

ro
m

e
te

r 
o

u
tp

u
t

0 5 10 15 20 25
−1

−0.5

0

0.5

1

1.5
calibrated accelerometer data

time (s)

a
cc

e
le

ra
ti

o
n

 (
g

)
tilted left

tilted right

horizontal

g
g

Figure B.5: accelerometer data for a device first tilted left then back to
horizontal, then tilted right

calibrate accelerometers, in order to take an actual acceleration value from

them is to first measure a value for gravity, g. We can then divide the out-

put value from the accelerometer in order to achieve a value for acceleration

as a function of g. Measuring a value for g needs to be performed for each

of the x, y and z accelerometers since there may exist slight differences in

the output for each. This simply involves holding the device in the appro-

priate rotation for your chosen accelerometer, as illustrated in figure B.6,

and noting the output value, this value is then the value for g.

B.6.3 Gyroscope Calibration

We calibrate the gyroscopes in order to gain estimated angular rates

in radians per second from the raw sensor data. The calibration of the

gyroscopes involves rotating the device through 360 degrees, on a flat surface

and examining the output from the x, y or z gyroscope. Figure B.7 shows

192



B.6 Basic Algorithms

g

z

yx
0 5 10 15 20 25

−2000

0

2000

4000

6000

8000

10000

12000
varying orientations

time (s)

a
cc

e
le

ro
m

te
r 

o
u

tp
u

t

y

x
z

x

y
z

y

8000

 o
u

tp
u

t

6000

ro
m

te
r

Figure B.6: the device must be held in different orientations for each of the
x, y and z accelerometers in order to achieve a value for g.

gyroscope data for 4 different rotations of our device, each with varying

speed.

To obtain the average angular velocity, ωav, achieved for this rotation

we simply divide 2π by the time taken for the rotation, trot.

ωavx = 2π/trot (B.13)

We then divide this value by the difference between the max, gmax and

min, gmin values from each rotation to obtain the gyroscope calibration

value gcal.

gcal = ωavx/(gmax − gmin) (B.14)

We may then use this value to obtain an angular rate from our gyroscope

data by simply multiplying the value for gcal by the raw value from our

sensor. Obviously the value achieved using this approach is an approximate

value since we are using raw sensor data which we know is not entirely

composed of angular rate information. This method though is acceptable

since it may be performed ‘on the fly’ in any situation making it ideal for

the everyday use of a mobile device.
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Figure B.7: Gyroscope data for 4 different rotations of our device with
varying speeds for each. It can be seen from this data that the rotations
were not perfectly smooth.

B.6.4 Magnetometer Calibration

Calibration of our magnetometer data is used to achieve accurate head-

ing determination. Calibration involves the rotation of our device around

all three axes in order to determine maximum and minimum magnetometer

readings on each axis. This allows us to calculate a value for the ‘compass

bias’, which is a constant vector that the magnetic field of the local envi-

ronment adds to the measurement. We can also calculate the ‘scale factor’,

which is the apparent magnetic field strength of the Earth.

If we look at figure B.8 we see that the plot of x-axis data against y-axis

data for three different positions in the same room produces a circle. In an

ideal world these would be perfect circles and would all have the same radius

but these circles are not perfect for a number of reasons. One reason is the

external magnetic interference mentioned previously and another is that

the device was not held completely horizontal as it was rotated around the

z-axis in the x-y plane. In terms of figure B.8, we may define the compass
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Figure B.8: Plots of x-axis magnetometer data against y-axis magnetometer
data for our device rotated in the horizontal plane in three different positions
in the same room

bias as a vector pointing to the centre of the circle and the magnetic scale

factor as the radius of the circle. As with the gyroscopes it is very difficult

to obtain perfect results from this type of handheld calibration but they

are sufficient. As can be seen from figure B.8 different circles/ellipses with

differing scale factors are produced even in the same room. This implies

the need for constant recalibration in differing magnetic environments.

Using the min and max values from each axis we can determine separate

bias and scale factors for each axis.

bx = (minx + maxx)/2 (B.15)

by = (miny + maxy)/2 (B.16)

bz = (minz + maxz)/2 (B.17)

sx = (minx −maxx)/SCALE (B.18)
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sy = (miny −maxy)/SCALE (B.19)

sz = (minz −maxz)/SCALE (B.20)

where s represents the magnetometer scale factor and b is the compass bias.

SCALE is simply a constant value indicating the number of output units

per earths magnetic field, usually set at 512. The raw magnetometer data,

for the x-axis, may then be calibrated as follows:

Bx,cal = (Bx − bx) ∗ (sx/SCALE) (B.21)

where Bx,cal is the calibrated magnetometer data for the x-axis, similarly

for the y and z axes. This calibrated data is then ready to be used in the

heading calculation but first we require to determine the tilt of our device.

B.6.5 Tilt Determination From Accelerometer Data

It is possible to calculate the tilt of our system, pitch θ and roll φ, from

accelerometer data alone. The gravity vector in our navigation-frame, gn,

is related to its body-frame coordinates, gb, by the expression

gb = Cb
ng

n (B.22)

It can be shown that eqn(8) may be written as:

gc =

∣∣∣∣∣∣∣∣

− sin θ

cos θ sin φ

cos θ cos φ

∣∣∣∣∣∣∣∣
g

dividing both sides of this equation by g and solving for θ and φ results in

θ = arcsin

(
−gxb

g

)
(B.23)

and

φ = arctan

(
gyb

gzb

)
(B.24)

equation(10) is not accurate when gzb
is equal to zero, which occurs when

θ = π/2 or θ = −π/2

What we wish to measure is the specific force vector in the body-frame

frame, f b, which when our device is at rest is simply a measure of the gravity

vector in the body-frame.

gb = −f b (B.25)
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If this is the case we can calculate the tilt of the device by first using the

accelerometer vector output, oa, in the accelerometer-frame to obtain an

estimate of the specific force in the body-frame from which we can make

estimates of the pitch and roll.

If we wish to obtain an estimate of f b from the accelerometer vector

output, oa, the latter must be converted to m/s2 and then corrected for

axis misalignments and sensor biases according to:

f̂ b = Ĉb
aŜ

−1
a oa − b̂b

a,equ (B.26)

where Ĉb
a is the coordinate transformation matrix that transforms a vec-

tor from the accelerometer frame into the mesh frame, Ŝ−1
a is the assumed

inverse of the accelerometer response matrix and b̂b
a,equ is the assumed equiv-

alent accelerometer bias vector in body-frame coordinates.

To reduce the effect of noise in the accelerometer vector output on the

estimated specific force vector f̂ b, a time average of the accelerometer vector

output should be used for the estimation.

A full discussion of accelerometer outputs and various issues associated

with this output and the details of tilt determination can be found in (Roth

1999).

B.6.6 Heading Calculation

Determining the compass heading from magnetometer data is a trivial

procedure if we may assume that the pitch, θ and roll, φ angles are both

0 i.e. that our device is sitting in the horizontal plane. In this case we

may simply calculate the compass heading using only the calibrated x and

y data from the magnetometers. If it is the case that the device is tilted

slightly with respect to the horizontal plane, which in reality is most likely,

we first need to transform the magnetometer data back into the horizontal

plane, that is the plane perpendicular to the Earth’s gravitational vector

(Caruso 1999), using the following equations:

Xh = X cos φ + Y sin θ sin φ− Z cos θ sin φ (B.27)

Yh = Y cos θ + Z sin θ (B.28)
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which take advantage of the pitch and roll angles calculated in the previ-

ously and all of the calibrated x, y and z magnetometer data. The final tilt

compensated heading may then be calculated as follows:

if(Xh < 0), heading = 180− arctan(Yh/Xh)

if(Xh > 0, Yh < 0), heading = − arctan(Yh/Xh)

if(Xh > 0, Yh > 0), heading = 360− arctan(Yh/Xh)

if(Xh = 0, Yh < 0), heading = 90

if(Xh = 0, Yh > 0), heading = 270

We may then use the calculated value for the heading as our azimuth or

yaw, ψ.
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(2004). Building Intelligent Environments with Smart-Its. IEEE Com-

put. Graph. Appl. 24(1), 56–64.

Holovaty A. (2007). Chicago Crime. Project homepage: http://www.

chicagocrime.org.

Isard, M. and A. Blake (1998). Condensation - conditional density propa-

gation for visual tracking. In: Journal of Computer Vision. Vol. 29(1).

pp. 5–28.

Jagacinski, R. J. and J. M. Flach (2003). Control Theory For Humans -

Quantiative Approaches to Modeling Human Performance. Lawrence

Erlbaum Associates. London.

Jones, M. and S. Jones (2006). The music is the message. interactions

13(4), 24–27.

208



Bibliography

Jones, M., S. Jones, G. Bradley and G. Holmes (2006). Navigation by mu-

sic: an initial prototype and evaluation.. In: Proceedings of the Inter-

national Symposium on Intelligent Environments. Microsoft Research

(ISBN: 1-59971-529-5). pp. 1849–1852.

Jung, Y., P. Persson and J. Blom (2005). Dede: design and evaluation of a

context-enhanced mobile messaging system. In: CHI ’05: Proceedings

of the SIGCHI conference on Human factors in computing systems.

ACM Press. New York, NY, USA. pp. 351–360.

Kallio, S., J. Kela, J. Mäntyjärvi and J. Plomp (2006). Visualization of hand

gestures for pervasive computing environments. In: AVI ’06: Proceed-

ings of the working conference on Advanced visual interfaces. ACM

Press. New York, NY, USA. pp. 480–483.

Kela, J., P. Korpipaa, J. Mantyjarvi, S. Kallio, G. Savino, L. Jozzo and

Di Marca (2006). Accelerometer-based gesture control for a design en-

vironment. Personal Ubiquitous Comput. 10(5), 285–299.

Kelley, C. R. (1968). Manual and Automatic Control: A Theory of Manual

Control and Its Applications to Manual and to Automatic Systems.

Academic Press.

Kelly, J. (2004). Video of tilt-menu for mobile phone emulator. http://

www.dcs.gla.ac.uk/~rod/Videos/JamesMenu2.avi.

Kjeldsen, R. and J. Kender (1996). Toward the use of gesture in traditional

user interfaces. In: FG ’96: Proceedings of the 2nd International Con-

ference on Automatic Face and Gesture Recognition (FG ’96). IEEE

Computer Society. Washington, DC, USA. p. 151.
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Söderkvist, J. (1994). Micromachined gyroscopes. In: Sensors and Actua-

tors A. Vol. 43. pp. 65–71.

Spinellis, D. (2003). Position-annotated photographs: A geotemporal web.

IEEE Pervasive Computing 2(2), 72–79.

Starner, T., B. Leibe, B. Singletary and J. Pair (2000). MIND-WARPING:

towards creating a compelling collaborative augmented reality game.

In: Intelligent User Interfaces. pp. 256–259.

Steed, A. (2004). Supporting mobile applications with real-time visualisa-

tion of GPS availability.. In: Mobile HCI. pp. 373–377.

Strachan, S. and R. Murray-Smith (2004). Muscle tremor as an input mech-

anism. In: UIST 2004.

Strachan, S., P. Eslambolchilar, R. Murray-Smith, S. Hughes and

S. O’Modhrain (2005). GpsTunes: controlling navigation via audio

feedback. Proceedings of the 7th international conference on Human

computer interaction with mobile devices & services pp. 275–278.

Strachan, S., R. Murray-Smith, I. Oakley and J. Ängeslevä (September
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