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On the Dynamics of TCP’s Higher Moments

Robert N. Shorten, Christopher M. Kellett, and Douglas J. Leith

Abstract—In this paper we extend a recently derived positive
systems model for TCP to capture the dynamics of TCP’s higher
order moments in drop-tail environments. Experimental results
are given to illustrate the accuracy of our model.

Index Terms— Additive-increase
(AIMD), network congestion control.
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I. INTRODUCTION

HE TCP transport protocol is used to carry the great

majority of traffic in the Internet, including web, email,
file transfers, music and video downloads efc. However, while
the behavior of communication networks employing TCP has
been the subject of much study, the dynamics of interact-
ing/competing TCP flows remains relatively poorly under-
stood, particularly in environments where drop-tail queueing
is used. Recently, [7] presented a new positive systems model
of the dynamics of interacting TCP flows in drop-tail envi-
ronments. The analysis in [7] is confined to the first-moment
(or mean value) of the flow peak congestion windows. In this
paper we extend this analysis to encompass the dynamics of
the second-moments (related to the variance) of the flow peak
congestion windows.

Understanding the dynamics of the higher moments of the
network congestion windows is important for a number of
reasons. One fundamental reason is that the first moment
provides no information regarding the fluctuations in the peak
congestion window about its mean value. The fluctuations are,
however, of considerable interest in unsynchronized network
conditions i.e. where not every flow sees a packet loss at every
congestion event, which is perhaps the norm in real networks.
As has been observed by other authors, and as we shall see, in
unsynchronized conditions the flow congestion windows can
fluctuate in a complex manner, including exhibiting fractal
behavior (e.g. see Fig. 1). Modelling of higher moments is
essential for gaining a better understanding of such behavior.
In particular, the second moments are known to be important
for characterizing transient network unfairness and fluctuations
over short time scales [1], [2], [6]. It is important to stress
that interactions between flows as they compete for bandwidth
play a fundamental role here and capturing the dynamics of
interactions between flows is a prerequisite to understanding
how networks behaves over short time scales.

II. A DYNAMIC MODEL OF AIMD NETWORKS

Recently, in [7], a linear algebraic model of the AIMD
algorithm was proposed to model a set of NV AIMD sources,
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with multiplicative backoff factors 3; € [0,1), and additive
increase factor «; > 0, that compete for bandwidth at a single
bottleneck router. We denote the nonnegative integers by Zxg
and let w;(k), k € Z>( denote the value of the window size
for the i*" flow just before the k' network congestion event. It
was shown that the evolution of each flow between successive
congestion events can modeled as

willk 1) = Bk (k) + = 37 (1= Be(k) we(k) (1)
ZZ Qy ¢
for all k € Z>o where £ € {1,..., N} and §;(k) is a random
variable that equals 3; when the i*" flow sees packet loss at
the k" network congestion event and is 1 otherwise.
The network dynamics can be conveniently captured in
matrix form,

W(k+1)=Ak)W(k), A(k) € {41, .., An}, )

where W (k) = [wi(k)..wy(k)]T is the vector of flow
congestion windows, m = 2N _ 1 and each A; is a column
stochastic matrix. Each matrix captures the various ways in
which flows can be informed of congestion, and the prob-
ability! that A; is invoked at the k' event is denoted p;.
Note that this equation is a dynamic equation that models the
evolution of the network in terms of an infinite product of
random matrices.

This approach captures the evolution of the network by
modeling the network state at congestion events. Geometri-
cally, the state W (k) evolves in a stochastic manner on a
hyperplane that lies in the positive orthant in N dimensions.
From a mathematical perspective, W (k) is completely charac-
terized by a probability density, the support of which lies on
this hyperplane. An example of the support of such a density
(the set of W values that can be reached asymptotically) is
depicted in Figure 1. The complex nature of the support is
evident, and it is also clear that the mean of W (k) provides
only limited information.

The fidelity of this model has been verified in extensive
empirical studies (see [7]), and a number of mathematical
properties of the model have been established in [8], [9]. For
example, ergodicity (the existence of a limiting distribution)
has been established under general conditions; in particular,
under the assumption that the p; are constant, or under the
assumption that the p; are functions of W (as is normal in
networks with routers operating AQM’s). It is also empirically
shown in [7] that the assumption of constant p; in networks
employing drop-tail buffers appears to be valid. In this case,
the network first moments converge to the Perron eigenvector
of Z:’;l piA; (see [7, Theorem 2]) for which an explicit

'We note that the synchronization rate of flow j (the proportion of network
congestion events at which flow j sees a packet loss), denoted >\j, is related
to the matrix probabilities p; by A; = > p;, where the summation is taken
over all those matrices for which the j*" flow is notified of congestion.
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Fig. 1. Approximation of asymptotic image set for a network of three flows.
a; = 1,6; = 0.25 for all 4.

expression is available in terms of the drop probabilities and
the parameters «; and (3;. Furthermore, a bound on the rate
of convergence is given by the second largest eigenvalue of

Zy;l PiAi-

III. A DYNAMIC MODEL OF TCP’S SECOND MOMENT

To the best of our knowledge, a general model that captures
the dynamics of TCP’s higher moments has not been devel-
oped in the literature. Such a model follows from the evolution
of W(k) described in the previous section. Specifically, the
second moments are governed by

BE{W(E+1D)W(k+ 1T} = BE{ARW (E)W (k)T A(k)T},

where E{-} denotes the expectation operator. Writing Y (k) =
Vec[W (k)W (k)T], Z(k) = E{Y(k)}, and using the Kro-
necker product, we may write the above as Z(k + 1) =
E{Y(k+1)} = E{A(k)® A(k)Y (k)}. Basic properties
such as ergodicity of the random variable Z(k + 1) may be
established as in [8]. Here, we proceed by assuming that the
p; are constant, as has been found to be the case in networks
with drop-tail buffers. Then, we have that

E {A(kr) ®A(k:)} Z(k)
(ipi (AZ®AZ)> Z(k) = MZ(k).

since we have assumed A(k) to be independent of W (k). We
note that M is a positive, column stochastic matrix. Therefore,
the Perron eigenvector describes the asymptotic value of the
second moments of the network [5, Theorem 8.2.11], and the
second largest eigenvalue of M describes the rate at which
the moments converge. In the remainder of this section we
give explicit formulae for this asymptote, and for the rate of
convergence of the network second moment.

Z(k+1) =

A. Convergence rate of second moment

To obtain an explicit expression for the second moment
convergence rate we make use of the following linear algebraic
result for Kronecker products of stochastic matrices of our
form.

Theorem 1 ([3]): Consider the matrices M =
dSicipi(Ai@®A;) and M = 371, piA;. Then: (i) the
eigenvalues of M are eigenvalues of M; (ii) all eigenvalues
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of M and M that coincide, and which are different from 1,
have multiplicity at least two; and (iii) the second eigenvalue
of M matches the second eigenvalue of M.

In our context, the above theorem states that the first
and second moment of the network converge at exactly the
same rate. Since an explicit formula for the second largest
eigenvalue of M is given in [7], then this can be used to
quantify the second eigenvalue of M. More specifically, if
we denote F{f3;} as the expectation of the random variable
Bi(k), then the results given in [7] state that the second largest
eigenvalue of M is bounded above by the largest E{(;}, and
below by the second largest E{g;}, for i € {1,...,m}.

B. The asymptotic second moment

We now obtain an explicit formula for the Perron
eigenvector of M. To aid exposition we make the following
definitions: p;(k) denotes the value of E{w;(k)} and
pt = [w1,...,pn); 04 denotes the asymptotic value
of E{w;(k)w;(k)}, vT = [o11,...,00,] and 1 is the
vector of remaining E{w;(k)w;(k)}, ¢ # j, ordered
’l/)T = [0'12,...Uln,O'gl,UQg,...,CTn_Ln]. In the following
we also assume, without any loss of generality, that
wi(k)+ - +wp(k) =1.

First, observe that u; (k) = E{w;(k)} = E{w;(k)(w1 (k) +
-+ wy(k)} Vk € Zso. Then,

oit Y Oy = . 3)

=1, j#i

Consequently, it follows that the Perron vector of M must
satisfy Iv 4+ G = u, where I is the n X n identity matrix,
and G is an appropriately dimensioned matrix.

We now use the following fact. The identity

(1= E{Bi(k)B;(k)})oij =

(6% i
272(1 — B{; (k)}owi + 27]'(1 — E{B}(k)})os; 4
holds for all distinct pairs of network sources i and j, i # j.
Then, by considering all distinct pairs we obtain the matrix
equation 1 = F'v where F' is an appropriately dimensioned
matrix. By combining these observations it follows that
(I + GF)v = p. Note that all entries of these matrices can
be easily calculated from the network parameters and from
the p;, and consequently, the network second moments v can
be explicitly computed.

Example 1: The case where all flows share the same
AIMD parameters, drop probabilities, and round-trip times,
has been studied in [1], where an explicit expression for the
moments is given. We observe that the expression obtained
from our model is significantly simpler than that in [1,
Theorem 1].

Assume first that o; = o, §; = @ for all i € {1,..., N}
and that all flows are equally likely to experience a drop at
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Fig. 2. Dumbbell topology.

congestion. Then the asymptotic value of the second moments
are given by

1
NH;{@Q} , Vie{l,...,N}.

1-E{Bi(k)B; ()}

Oii =

1+(N-1)

This expression follows from the assumption that the win-
dow sizes sum to 1 (i.e., the link capacity is normalized to
1), that p; = & for all ¢ € {1,...,N} and that, with the
assumption that all parameters are the same, it follows that

9ij _

oy - B{BH)
i 1= E{Bi(k)3;(k)}

for all distinct sources ¢ and j. Using these basic observations
and equations (3) and (4), the result follows. |

IV. MODEL VALIDATION

The objective of this section is to present a brief empirical
study to validate some of the predictions of the previous
section.

We investigate the behavior of two TCP flows in the
dumbbell topology shown in Figure 2. We use the standard
AIMD parameters (i.e., « = 1 and g = %) and round-trip
times of 22ms and 122ms for flows 1 and 2 respectively. It is
well known that networks of TCP flows with drop-tail queues
can exhibit a wide range of deterministic drop behaviors [4].
However, most real networks carry at least a small amount of
web traffic and our simulations incorporate a small level of this
traffic to disrupt the coherent structure associated with phase
effects and other complex phenomena previously observed in
simulations of unsynchronized networks [4]. By performing
repeated packet-level simulations with different random seed
values for the web traffic generator, the ensemble average
congestion window can be estimated.

A comparison of the predictions of the model (2) against the
output of a packet-level NS simulation is depicted in Figure 3.
Similarly to [7], the synchronization rates used in the model
are measured from the simulations.

We make the following observations:

1) The predictions of [7, Theorem 2] for the ensemble aver-
age are in close agreement with the observed simulation
results. The disparity in expected window size for the
two flows arises from the difference in round-trip times.

2) The first and second moment converge at the same rate
as predicted by Theorem 1.

3) The predictions of the model for the evolution of the
second moment are in remarkable agreement with the
observed simulation results.
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Fig. 3.  First and second moments of window size by congestion epoch

for dumbbell topology of Figure 2. Key: +NS simulation result (average
over 200 runs); solid line - predictions of model. Network parameters:
B=50Mb, ¢maz=50 packets, T=20ms, To=102ms, T7=2ms; approximately
0.5% bidirectional background web traffic.

V. CONCLUSIONS

We extend a recently derived positive systems model for
networks of interacting AIMD flows to include the higher
order moments of the flow peak congestion windows. A key
point to note is that our model accurately captures the dynamic
behavior of the higher moments. This is useful in evaluating
the short-term behavior of networks in which TCP is deployed,
e.g. evaluation of the short-term unfairness between network
flows. Furthermore, we derived a simple, explicit expression
for the asymptote of the second moments in terms of the
network parameters for a homogeneous network. An explicit
expression in the more general case of nonhomogeneous
networks is an open problem.
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