Delay-based AIMD congestion control

D. Leith!, R.Shorteh, G.McCullagh, J.Heffne?, L.Dunr’, F.Bake?

Abstract— Our interest in the paper is investigating whether it

is feasible to make modifications to the TCP congestion cordf o 2users |
algorithm to achieve greater decoupling between the perfanance %5’ l
of TCP and the level of buffer provisioning in the network. In O:

this paper we propose a new family of delay-based congestion o ; ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
control algorithms that we refer to as delay-based AIMD. e

8users| |

I. INTRODUCTION

The performance of the standard TCP congestion cont ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
algorithm is intimately coupled to the level of buffer previ L
sioning along a path. For example, when buffer provisionir 50
is too low, throughput efficiency falls due to the buffel
emptying when TCP flows backoff their congestion window:
Conversely, when buffer provisioning is large, the probin ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
action of the TCP congestion control algorithm seeks to f R
the queue thus leading to large queueing delays. Our ititerc.

in this paper is investigating whether it is feasible to ma 1. Queue occupancy for 2, 8, and 16 flows using TCP Vegas.

modifications to the TCP congestion control algorithm temulation, dumbbell topology, RTT 30ms, link rate 5Mbp8Q packet queue.
achieve greater decoupling between the performance of TCP

and the level of buffer provisioning in the network. Note
that this objective complements the recent discussion én tientially, allocation of network bandwidth between conipgt
literature relating to buffer sizing for TCP flows. That iaflrer sources can be achieved while maintaining low queueing/dela
than considering how buffers can be sized to accommodéen when network buffers are large, unlike with loss-dase
TCP flows we consider whether TCP can be modified ®&gorithms), and with almost full utilisation of networlaks.
accommodate network buffers. High utilisation with low queuing delay is termed “operain

In previous work[9], we proposed an approach for effe@t the knee of the curve” and is evidently a desirable prgpert
tively decoupling TCP throughput from network buffer size. Delay-based congestion control algorithms have of course
This was achieved by adapting the congestion window backbffen widely studied, with Vegas[2] and FASTI[8], [10] re-
factor in TCP to accommodate the level of buffer provisigninceiving particular attention. However, it is important tote
within the network. In this paper we substantially extenthat while Vegas, FAST and related algorithms use delay as a
this work to consider decoupling of TCP delay from buffeeongestion signal, they make no attempt minimize aggregate
size. Loss-based congestion control algorithms seek to filleuing delay. This is easy to see by considering that thas/eg
the network buffers and so can induce large queueing dela@jgorithm seeks to maintain some per flow target number of
if buffers are large. Note that large buffers are ubiquitoysackets queued in the network. Thus, the number of packets
in modern access networks e.g. queueing delays of severagued scales with the number of flows in the network.
seconds are common in DSL links. Large buffers, for exampléiis behaviour is illustrated for example in Figure 1. Con-
with 250ms or more of buffering, are also still commonplacgequently such protocols do not result in networks opegatin
in high-speed networks. Although the use of smaller buffersat the “knee of the curve” in general. TThis observation
currently the subject of much discussion within the redearapplies to all Vegas-type and related schemes including-TCP
community, e.g. see [1], [5], the issue remains controefr§i FAST, e.g. seétt p: // www. cubi nl ab. ee. nu. oz. au/
and it is likely to be some years before such changes coumd2f astt cp/ for results illustrating this feature of FAST.
be widely rolled out. As noted above the present work is In this paper we propose a new family of delay-based
complementary to this work on buffer sizing, considering encongestion control algorithms that we refer todeday-based
host changes that seek to enhance the flexibility of dessgn&MD. We demonstrate that the delay-based AIMD approach

Queue (pkts)

16 users

Queue (pkts)

when choosing network buffer sizes. allows algorithms to be realised with the following propest
Consideration of queueing delay inevitably leads to con-1. Networks in which only delay-based flows are deployed
sideration of delay-based congestion control algorithRts. operate at the “knee of the curve”; namely; in a low delay,

: N _ . high utilisation regime with zero packet loss.
1 Hamilton Institute? Pittsburgh Supercomputing CentéiCisco Systems. 2 0 . he “k . iall hi d el
This work was supported by Cisco Systems and by Science Etiondreland . Operation at the "knee” Is essentially achieved regasdle

grants 00/P1.1/C067 and 04/IN3/1460. of the number of network flows and is largely decoupled



from network buffers sizes. It is also robust to perturba- Congestion X‘ggdow (packets) Congestion elprh duration (3)
tions in queue occupancy; in other words, the delay-based 1000 31
flows will co-operate to drain the network queues to a 2000 4.3
pre-specified threshold whenever only delay-based flows 155’5’5’0 g:g
are present in the network. 20000 12.8
3. In mixed environments, delay-based and loss-based flows 50000 19.4
may coexist in a well-defined manner. TABLE |
CONGESTION EPOCH DURATION VERSUS BANDWIDTHDELAY PRODUCT.
Il. DELAY-BASED AIMD: BASIC ALGORITHM VALUES TAKEN FROM H-TCPINTERNET DRAFT[7].

To illustrate the basic rationale and features of the delay-
based AIMD approach in this section we begin by consider-
ing the case of homogeneous networks, i.e. networks wh
all flows operate the same congestion control algorithm.
Section sec:non we extend consideration to networks with®
mix of delay and loss-based flows and propose extensions”t'g'
the basic delay-based AIMD algorithm to ensure robust co-

Té%tor appropriately — this is illustrated in subsequertkio#f
yents in Figure 2 and is discussed in detail in the Section

existence with loss-based flows. B. Scalability to high bandwidth-delay product paths
It is important to emphasise that the choice of additive
A. Ensuring low queueing delay increase functiona used in the delay-based algorithm is

Our staring point is to develop an AIMD algorithmﬂeXible — any add.itive increase algorithm can be extended
that uses delay rather than loss (or ECN) to control nétS shown here to include backoff on queueing delay as well

work congestion. Standard TCP employséxditive-Increase 25 10SS. In the rest of this paper we adopt the increase

Multiplicative-DecreaseAIMD) [3] strategy during its con- function used _in the H-TCP loss-based algorithm[6], [7]isTh
gestion avoidance mode. AIMD congestion control can BRCrease function ensures that performance scales weigjto h

implemented using signals other than packet loss as a cBandwidth-delay product paths while maintaining backward

gestion indicator. The basic idea here is that by backing &pmPpatibility in low-speed environments and has alreadgnbe
when queueing delay exceeds some threshold, we can aJdfg Subject of extensive experimental testing, see for plam
filling the queue (maintain low queueing delay) while stajyin[ll] and references therein. The H-TCP increase function is
within the well-established AIMD framework. Specificallye o =min[1,1+ 10(A — 1) + 0.5(A — 1)?] )

consider the following delay-based AIMD algorithm:
That is, the AIMD increase ratex is a function of A,

cwnd + o/ cwnd, on each ACK the elapsed time since the last backoff event. This yields a
cwnd — fewnd, if 270 & cwnd > wo congestion epoch duration that scales as shown in Table |
fewnd, if packet loss ) while leaving other properties (fairness, convergence e#t)

where 7 is the observed queueing delay, > 0 is a delay of TCP essentially unchanged6], [11].

threshold that triggers delay-based backoff, andspecifies

a cwnd threshold above which the delay-based action is 600
activated (this may be helpful, for example, to ensure thextet /
are sufficient packets in flight to provide a reliable estenat 500
of queueing delay). The queueing delayis estimated as
sRTT(t)— RTTynin WhereRTT,,;,, is the minimum observed
packet round-trip time andRT'T'(¢t) is a smoothed estimate
of the current round-trip time. Loss induced backoffs are

cwnd (packets)
queue occupancy (packets)|

400 -

300

retained as part of the algorithm to accommodate situations so0l

where, for example, the buffers are sized such that maximum

qgueueing delay is less thap or where the bandwidth-delay 100}

product is less thany. Since it continues to employ an AIMD

strategy, the delay-based algorithm inherits the usuahdas 0 LWL Ll

time (s)

and convergence properties of AIMD.

The impact of this change on the AIMD operation is
illustrated in Figure 2. It can be seen that although thedsusf Fig. 2. lllustrating adjusting backoff factor to maintaifgh link utlisation.
sized at 400 packets, the flaswnd now backs off before the (ns simulation, delay 120ms, link rate 50Mbps, 400 packet quesgi0ms).
gueue is full. In this example we can also see that following
the first backoff whereewnd is reduced by half, the queue ) _ o
empties for a significant period of time — this is to be expecté&: Ensuring high utilisation
as the delay-based algorithm backs afind before the queue Low queueing delay requires that we selegtto be small.
is full. High utilisation be maintained by adjusting the kaff However, this can lead to low link utilisation if the flows



respond too aggressively to congestion. Fortunatelypwoflg window until the estimated queueing delay= RTT(t) —
[9] it is straightforward to maintain a high level of utilisan RTT,,;, exceeds threshold,, and then backoff. The actual
by adjusting the AIMD backoff factor to reflect the queuingjueueing delay at backoff will bey + RT Trmin — Tinin.is
delay when a backoff occurs. Namely, we set where RT'Tin — Tmin 1S the estimation error in propagation
delay. The backoff factor (3) decreases the number of packet
B = RTTmin/RTT (1) ®) in flight so as just empty estimated queue i.e. such that the

We can understand the effect of this choice of backdfpund-trip time falls toRTT;,;,.. If we now modify the backoff
factor in more detail as follows. Consider a single botttne factor to be
link with n flows (the following argument also extends
directly to multiple bottleneck situations). Before a baftk

of the congestion window, the data throughput through the _ o
n JRTT,(1) = B with 0 < 6§ < 1, then in effect we can use the multiplicative

bottleneck link is given byR~ = > " | w; _ )
7 decrease action to probe the network to discover whether an

where B is the link rate in packets per second; is the ) ; A o
congestion window of flowi immediately before backoff RTT below RT'T,,;, is possible. This is illustrated in Figure

and RTT; is the RTT of flowi. Following a backoff the 3 for the case of a single flow. Figure 4 gives an example of
data throughput is given byr™ = ™. Biw;/RT Tmin.i the convergence aRT'T,,;, in a network with multiple flows.

- i=1 MW min,iy
where 3; is the backoff factor of flowi and RTT;,;, is the
propagation delay . Selecting according to (3), it follows
immediately thatR* = R~ = B and link utilisation is 100%.

B = 6RTTynin/ RTT(t) @

220

T
_ _ _estimated T
min
—— RTT (ms)

200

The effect of this AIMD moadification is illustrated in Figure
2. In this example the queue empties for a substantial period 180]
following backoff by a factor of 0.5 (the first backoff event
in the figure) with an associated reduction in link utilisati
Once the flow adjusts its backoff factor to the effective lofe
buffer provisioning at backoff we can see that the queue now Leop
just empties following a backoff event and the link contigiue
to operate close to capacity as desired.

delay (ms)
5
3

120

100

D. Draining the queue — robust delay-based operation ime (9

Like other delay-based algorithms that have been proposed, ) ) -
the delay-based AIMD algorithm requires an estimate of tii%’u'aslé tﬁ:a;gﬂ;o;rggge;;gg %%ﬁr;_ofrgzsz;g Lfgggﬁ%:’j’; L
queueing delayr. However, unlike the majority of thesewnile RTT,,;. is manually configured to an initial value of 200ms for
algorithms, the delay-based AIMD algorithm can be designéigistrative purposes.r{s simulation, propagation delay 120ms, bandwidth
so that flows will always act in a collaborative manner to dra?®MPPs: 400 packet queue; 20ms).
the network buffer irrespective of the initial level of beif
occupancy. This latter feature is important for a number of
reasons. Firstly, loss-based flows, or in some circumsgance
non-elastic traffic, will act to fill network buffers. A retarto
operation at the “knee” requires that there is some mechmanis fow T
for network buffers to drain after such traffic has switched 200 -~ fows )]
off. Secondly, draining the buffer allows the propagatieteg ‘ flow s
RTT,.:» to be observed by senders, which is key to accurate o | 1
estimation of queueing delay. fow 10

Fortunately, this basic property can be easily realised by
ensuring that each flow responds in a way that seeks to
reduce the minimum RTT that it has seen up to this point.

Specifically, we consider estimating the queueing delaggusi
7 = sRTT(t) — RTT,,,. Evidently, if the queues never
empty, the flow never observes the path propagation delay and ‘ ‘ ‘ ‘ ‘ ‘
RTT,,:» will be an overestimate of the true propagation delay. woowe e am e
When RT'T,,:,, is larger than the true propagation delay, the

queueing delay is consistently underestimated by a flow agg. 4. Example of ratchetting down of base RTT eStim&&T} ;. in

this may lead to operation with a standing queue (operati@rrr]nfetwork with ]}0 dela%/-liglased fIOWS-”The path pr0p§gatioalydiﬂ 12]9msl
while RT'T,,;» for each flow is initially set to a random value uniformly
away from th_e knee O_f th_e Curve)'_ distributed between 120ms-240ms for illustrative purgoges simulation,
To help gain some insight, consider for the moment a nej fiows, propagation delay 120ms, bandwidth 50Mbps, 40&qiagueue,

work with a single flow. The flow will increase its congestiorro 20ms,s = 0.75).

220

(ms)

min

Estimated T

W¥OF T T T T T T T T s s s e




I1l. CO-EXISTENCE WITH LEGACY LOSSBASED TCP

Delay-based flows compete poorly with loss based flows as
they experience an excessive number of backoffs as logsibas
flows fill the network queues. This problem can be addressed
as follows.

First, we note that we have some freedom in the selection
of the delay thresholdy. We exploit this and chooss, to
be proportional to the recent level of queue occupancy.im th Quejieing delay :
way, the threshold automatically adjusts upwards when- loss '
based flows are present that fill the queue, thus enabling-dela
based flows to increase their congestion window. Speciﬁcalhg 5
we choosery according to algorithm.

T0 = (1 - 7)77-0 + V(RTTmaw - RTTmzn) (5)

with 0 < v < 1 and WhereRT Ty.. is & quantity that tracks The impact of these changes on fairness is illustrated iareig
the maximum observed RTT and decays towaftlET,,;,

during periods when the current RTT is belo®T'T,, ...

RTT,0: — RTT,,;, is an estimate of the recent queue 150
occupancy andy is selected to be a convex combination of
the baseline valu€, and RTT,,4. — RTTnin- Wheny =0 loss-based flow 3
we recover the previous delay-based AIMD algorithm. When
~v > 0, delay-based flows are able to increase their conges-
tion window even when the network queues are persistently
backlogged due to the action of loss-based flows. ,

Second, we modify the delay-based AIMD algorithm to (i) i ‘3 ‘ it
perform additive increase of the congestion window only mhe i (0 / /
the queueing delay is below threshotgl — the effect is to ‘ i
disable the AIMD probing action once the queueing delaysrise
abovery, and (ii) to multiplicatively decrease the congestion o e e oo
window when the queueing delay is at or abayeand the fme )
time since the last backoff is greater than a threshjd—
the effect is to limit the number of delay induced (as oppos&}l- 6. Example of heterogeneous network with a mix of detzy lass-based

. . . . . flows illustrating the impact on the delay-based flow's perfance of the
to loss 'nduced) backoffs in a given time interval. modified AIMD algorithm. (s simulation, 1 delay-based flow, 3 loss-based

An illustrative congestion window time history is showrflows, propagation delay 100ms, bandwidth 10Mbps, 100 pagkeue).
in Figure 5. It can be seen that these modifications amount
to inserting a flat section, where the congestion window is
constant, into the usual sawtooth waveform. The time batwee IV. DELAY-BASED SLOW-START

backoffs, and so the length of this flat section, is deterthine ;s 1o goal of minimizing queuing delay and loss, slow-

by _the value ofAA. The flat section IS essentially an IOIIIngstart poses a significant problem. Its exponential increase
period that does not alter the dynamics of a network of ﬂOVWherecwnd is doubled each RTT, can create large bursts of

other than to extend the duration of the cong.estlon ePOCHIckets that in turn cause large delay spikes and many losses
When delay-based flows are competing against loss-ba n cwnd eventually overshoots the botteneck queue. We

ones, however, this idle period constrains the rate at Whig n apply the same delay backoff threshejdas used in the

ge:ay-bazed ﬂOV\;]S ba:cckoffbm res%onse g? ther:evelbof %ugée'&elay—based AIMD algorithm to trigger an exit from slow+sta

d_e%y c?n Ean t eredorle € lésle toba Jl:jsltcl ow bandwi tr\/\}ﬁen gueueing delay rises. This will keep the queue from
lvided up between delay and loss-based flows. filling. However, due to the bursty nature of slow-start, hwit

Combinin_g these changes yields the following mOdiﬁegssociated spikes in queueing delay, it causes slow-staxit
AIMD algorithm: on each ACK,

time (s)

Example congestion window time history using modifielMD

delay-based flow
loss-based flow 1
loss-based flow 2

W / /A/

cwnd (pkts)

sooner than it should.

cwnd + a/cwnd, if cwnd < wy or T < 79 In order to continue a fast increase rate, but avoid the
Bewnd, if cund > wo & T > 19 gueuing spikes of slow-start, we propose a mechanism based
cwnd — & A > Ay on Limited Slow-Start [RFC3742]. This uses a parame-
Bcwnd, if packet loss ter, max_ssthresh, which controls the maximum bottleneck

(6) queue occupancy the flow will contribute due to congestion
whereA is the elapsed time since the last backoff. One optiamindow increase. To acheive this it bounds the increase of
is to takeA to be proportional taRT'T,,, 4. — RTTynin SO that cwnd to no more thanmax_ssthresh/2 per round-trip time.
we recover the original delay-based AIMD algorithm when the This algorithm meshes nicely with the delay-based AIMD
gueue backlog remains low am1'7,,,. — RTT,.;, small. algorithm described above, as they both seek to keep queue



occupancy below a set point. A difficulty in using limitedwsto Algorithm 1 : Pseudo code of complete delay-based AIMD
start is selecting an appropriatezz_ssthresh. When used in algorithm with limited slow-start
conjunction with delay-based AIMDpaz_ssthresh should — 1: On each ACK:
be set so that a bottleneck queue occupaney@f_ssthresh g gg;:m'; Ziﬂgggﬁzﬁ;ai — a % RTT/cwnd)
corresponds to a queue delayqf 4: 7 = RTT — RTTy,;n I/ estimate queueing delay
To find this conversion factor, we use the initial slow-start5: 8 = min(6RT Timin /RTT, 0.9)

phase to estimate the bottleneck rate. An ack-clocked S|OV\2—: i ﬁ}”?gésjtfs’;ﬁgze&en

start sends at twice the rate of the ack clock, up to twice the: if 7= "Tmaz then

bottleneck rate. This results in transient queue increases 181 g@:}wsthmsh: (cwnd/4) x 70/(RTTinaz — RTTinin)
. . . . . ena |l

size cwnd(t)/2 wherecwnd(t) is the congestion window at 3 if cwnd < maz_ssthresh then

time ¢. The drain time of this queue can be observed by the: cwnd+ = MSS
returning ACKs. WhenRTT > RT'T,,.., the queue’s drain 135 else
time can be estimated a7T'T},,. — RTTnin. The queue’s ig; englﬁnﬂ = maz.ssthresh/(2 x cwnd)
size iscwnd(t — RT'T)/2, since the ACKs are received onei6: end if

RTT after the data is sent, etwnd(t)/4, since the window 17: else B
doubles each RTT. This estimation of both queue length ovéf " Cgfvzddf 202((){ T_%)S(g)v/)gi;z(RTTm” — RTTomin) then
drain time gives us bottleneck rate we need to conved 20 end if

mazx_ssthresh. Specifically, whenRTT > RT Ty, q0: 21: end if _
22: if cwnd > wo & T > 79 & now — time_of_lastbackoff > A then
cwnd 70 23: cwnd =B X cwnd
mazx_ssthresh «— 1 RTT RTT.. (7) 24: ssthresh = cwnd
maz min 25: time.of_last backoff = now

Comment : A significant advantage of using the parameteg®: end if
7o (units of time) overmaxz_ssthresh (units of bytes) is that

the behavior becomes scale independent of data rate. dimite | l Description |
slow-start takesO(cwnd/mazx_ssthresh) RTTs to reach a M(e:r';gry intel Xeon ﬁ’;;’tezs-g()GHz
given window, but this delay-based version tak&stT1T"/ 7o) Motherboard Dell PowerEdge 1600SC
RTTs. Kernel Linux 2.6.6

This approach is substantially different from the experi- rgﬁg‘&'ﬁ% 1é%%0
mental slow-start (Vegas*) proposed in [2], which measures NIC Intel 82540EM
dispersion of the initial four-segment window to estimdie t NIC Driver €1000 5.2.39-k2
bottleneck rate, then uses a pacing mechanism to smooth out L TX & RX Descriptors 4096
the slow-start. Both methods effectively limit delay spikbut TABLE Il
we found the limited slow-start approach simpler as it dags n HARDWARE AND SOFTWARE CONFIGURATION.

require an additional timer mechanism.

V. COMPLETE ALGORITHM

While the foregoing discussion is quite complex, the conf- Operation at the “knee”
plete delay-based algorithm is itself very simple. The new Figure 7 shows the measured link utilisation and mean
delay-based AIMD algorithm is shown in its entirety inink delay (measured using pings) versus number of flows for
Algorithm 1. the delay-based AIMD algorithm using the H-TCP increase
function. It can be seen that the link utilisation is close to
VI. EXPERIMENTAL RESULTS the link capacity regardless of the number of flows. With the

We have implemented the delay-based AIMD algorithm ifelay-based algorithm .the link delay remains consistdotly
Linux 2.6.17 and in this section we present initial experitag (close to the propagation delay of 250ms) regardless of the

gueueing delay remaining less than 30ms at all times. Irethes

tests we observed a packet loss rate of zero i.e. no losses

A. Test §etup ) ) ] whatsoever, even with 128 flows sharing the link.
Experiments were carried out using a high-speed testbed.

The testbed consists of commodity PCs connected to gigabit
switches to form the branches of a dumbbell topology. Aff- Fairmess and Convergence

sender and receiver machines used in the tests have identic&ince the delay-based algorithm remains within the AIMD
hardware and software configurations as shown in Tablepéradigm, it inherits many of the properties of standard . TCP
and are connected to the switches at 1Gb/sec. The routerparticular, the unfairness between flows with differemiR
running the FreeBSD dummynet software, can be configurisd similar to that for standard TCP although we do not
with various bottleneck queue-sizes, capacities and raipd present measurements demonstrating this here due to space
propagation delays to emulate a range network conditiomsstrictions. The delay-based algorithm also inheritsilaim

Flows are injected into the testbed usinger f . convergence properties as other AIMD algorithms. Conver-



14000

T
Flow 1
Flow 2

Delay-Based<AIMD

500 - 12000 4

10000 —

8000 [ —

Avg. Throughput (Mbs)
@
8
8
T
L

Cwnd (packets)

6000 [

4000 4

2000 | —

L L L L L L
[ 20 40 60 80 100 120 140
Num Flows
T T

T T ok
Delay-Based AIMD 0 50 100 150 200 250 300 350 400
Propagation Delay + Max Queueing Delay
Link Propagation Delay --------- Time (secs)

Fig. 8. Convergence of delay-based algorithm followingtefaof a second
500 - 1 flow. 500Mbps link rate, 250ms RTT, 250ms of buffering.

single bottleneck links and do not present results showing
operation over multiple bottleneck links (including quige

Avg. Ping RTT (msecs)
N
8
8
T
.

1 on reverse path links). Also, due to space restrictions we do

w0l T not discuss signal processing issues relating to the e#ima

‘ ‘ ‘ ‘ ‘ ‘ of delay. That is not to say that these issues are not imgortan
° * “© * miows e = e but analysis and results on these topics will be the subject o

Fig. 7. Measured link utilisation and delay with loss-base@CP and the future publications.
new delay-based algorithm (usirg=50ms). 500Mbps link rate, 250ms RTT,

bandwidth-delay product of buffering. VIIl. CONCLUSIONS

_ ~In this paper we propose a new family of delay-based
gence rate refers to the rate at which the mean congestigghgestion control algorithms that we refer to as delayethas
windows of the ne_twork flows converge to their equilibriunp|MD. This class of algorithms supports low-delay, high-
values, e.g. following start up of a new flow. In the case qhroughput operation essentially regardless of buffevigion-
synchronised flows, the convergence rate of the flow congesg within the network and of the number of flows sharing a
tion windows is bounded by the largest backoff fagips.. in  link. We have implemented in Linux a delay-based AIMD
the network, with the 90% rise time measured in congesti@iyorithm based on the loss-based H-TCP algorithm and
epochs bounded lyg 0.1/ log Bma. (yielding a rise time of 3 present initial experimental results illustrating theseffveness
congestion epochs for a backoff factor of 0.5 and 7 congestief the proposed approach.
epochs for a backoff factor of 0.75). Note that the adaptatio
the AIMD backoff factor to main high throughput in the delay- REFERENCES
based AIMD algorithm, which will generally lead to a backoff .
factor areater than 0.5. can therefore be expected to im a[%{ G. Appenzeller, I. Keslassy, and N. McKeown. Sizing esupuffers. In
actor g - heret P PACT proc. ACM SIGCOMM 20042004,
on the convergence rate. This is illustrated, for exampile, i[2] L. S. Brakmo and L. L. Peterson. TCP Vegas: End to end cstige
Figure 8. In this example we have disabled slow-start so as avoidance on a global internetlEEE Journal on Selected Areas in

highlight the congestion avoidance convergence behavio 5 <o nr-nications13(8):1465-1480, October 1995. ;
to highlig g g h [3] D. Chiu and R. Jain. Analysis of the increase/decreagmrithms
Here, the backoff factor adapts to a value of approximately for congestion avoidance in computer networkeurnal of Computer
0.75 and it can be seen that following startup of the second Networks 17:pp. 1-14, 1989. . . .
flow at 100s the network converges close to equilibrium iﬁ A Dhamdhere and C. Dovrolis. Open issues in router busieing.

. h 9 q T Computer Communications Revie86:pp. 87-92, 2006.
approximately 7 congestion epoch as expected. It is impbrtals] A. Dhamdhere, H. Jiang, and C. Dovrolis. Buffer sizing tmngested
to note that while the number of congestion epochs for the_ internet links. inProc. INFOCOM Miami, FL, 20052004.

k to converge is higher when the backoff factor iéﬁ] D_.J.Lelth and R.N.Shorten. H-TCP protocol for high-sgelong-
networ g ) ) distance networks. liProc. 2nd Workshop on Protocols for Fast Long
greater than the standard TCP value of 0.5, the duration of Distance Networks. Argonne, Canada, 20@804.
each epoch is shorter with the delay-based scheme sincel7 D-J.Leith and R.N.Shorten. H-TCP protocol for high-egelong-

. . . . distance networks. linternet draft draft-leith-tcp-htcp-02.tx2006.
avoids filling the queue. Overall, the impact of the adjustme g ¢"jin . X. Wei, and S. H. Low. FAST TCP: Motivation, aitéeture,

of backoff factor in the AIMD algorithm is therefore quite algorithms, performance. IEEEE INFOCOM 2004 2004.
small. [9] R. Shorten and D. Leith. On queue provisioning, netwofficiency
and the delay-bandwidth product. IEEE Transactions on biédwg, to
appear, 2006.
VIl. SCOPE OF THE PAPER [10] J. Wang, D. X. Wei, and S. H. Low. Modelling and stability FAST
: TCP. InProceedings of INFOCOMMarch 2005.
. In this pape_r V\_Ie present t_he new delay'based AIMD alg 1] Y.Li, R. Shorten, and D. Leith. Experimental evaluatiof tcp protocols
rithm and preliminary experimental measurements of perfor ~ for high-speed networks. IEEE Transactions on Networkingappear,

mance. Space restrictions naturally limit the number afiltes 2006.
that we can show. As a result, we restrict consideration to



