
On the ergodicity of AIMD networks

Robert Shorten, Chris King, Fabian Wirth, Douglas Leith

Abstract— In this paper we study communication networks that
employ drop-tail queueing and Additive-Increase Multiplicative-
Decrease (AIMD) congestion control algorithms. A basic as-
sumption in the study of such networks is that the underlying
stochastic process is ergodic. In this paper we present a proof of
ergodicity for such networks under very general assumptions.

I. INTRODUCTION

In this paper we study communication networks that employ
drop-tail queueing and Additive-Increase Multiplicative-
Decrease (AIMD) congestion control algorithms. A basic
assumption in the study of such networks is that the
underlying stochastic process is ergodic. In this paper
we present a proof of ergodicity under very general
assumptions. Fairness formulae for the average congestion
window size, and for throughput are also given. Our starting
point is a recently derived algebraic model that captures the
essential features of networks in which TCP is deployed.
For convenience, a brief derivation of this model is given
in the next section. We then show that it is possible to
relate important network properties to the characteristics of
the non-negative matrices that arise in the study of such
communication networks under very general conditions. In
particular, our approach allows us to prove that the network
is ergodic under very general assumptions. Full proofs of
our results are given in [1].

II. NONNEGATIVE MATRICES AND COMMUNICATION
NETWORKS

Our basic tool used in this paper is a recently derived
model of a bottleneck link servicing a fixed number of flows
employing AIMD congestion control [2]. Before proceeding,
we recall briefly the the notation adopted in this paper: k ∈ N
denotes the event corresponding to instant that the network
becomes congested for the k’th time; wi(k) is the value of
the i’th flows window at the k’th event; αi > 0 is the increase
factor of the i’th source; and βi, The constant βi ∈ (0, 1)
is the multiplicative decrease factor of the i’th flow. The
maximal round trip time of flow i is denoted by RTTmax,i

and we set γi := RTT−1
max,i. Then, assuming small network

buffers, and ignoring slow-start, it is shown in [2] that the
dynamics of such a network can be modelled in a stochastic
setting by studying products of matrices of a certain type. In
particular, the dynamics of the entire network of sources at
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the k’th congestion event are described by

W (k + 1) = A(k)W (k), A(k) ∈ {A1, ..., Am}. (1)

where A(k) = R(k) + st(k)T , where R(k) =
diag([β1(k), ..., βn(k)],

( ∑n
j=1 γjαj

)
sT = [α1, ..., αn],

and t(k)T = [γ1(1 − β1(k)), . . . , γn(1 − βn(k))], The
matrices in the switching set are constructed by setting some,
but not all, of the βi to 1. This gives rise to m = 2n − 1
matrices associated with the system (1) that correspond to
the different combinations of source drops that are possible.

III. MAIN RESULTS

It follows from (1) that W (k) = Π(k)W (0), where Π(k) =
A(k)A(k−1)....A(0). Consequently, the behaviour of W (k),
as well as the network fairness and convergence properties,
are governed by the properties of the infinite matrix product
Π(k). The objective of this section is to analyse the average
behaviour of Π(k) with a view to making concrete statements
about important network properties. We begin by considering
networks in which we assume that the manner in which
sources are informed of congestion is independent of W (k),
and for which the probability of source i experiencing a
drop is constant at each congestion event. We then develop
results for networks in which this assumption is relaxed
and for which the relevant probabilities depend on W (k);
namely, the probabilities are place dependent. Finally, under
the assumption of ergodicity, we develop a number of results
that apply to networks with general capacity constraints.

A. Constant drop-probabilities

Here, we make the following two assumptions that are
observed to be empirically true in a variety of networks [2].

Assumption 3.1: The probability that A(k) = Ai in (1) is
independent of k and equals ρi.

Given the probabilities ρi for i ∈ {1, ..., 2n − 1}, one may
then define the probability Λj that source j experiences a
backoff at the k’th congestion event as follows:

Λj =
∑

ρi ,

where the summation is taken over those i which correspond
to a matrix in which the j’th source sees a drop.

Assumption 3.2: We assume that Λj > 0 for all
j ∈ {1, ..., n}.
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Simply stated, Assumption 3.2 states that almost surely all
flows must see a drop at some time.

Under the foregoing assumptions we have the following key
result.

Theorem 3.1: Consider the stochastic system defined in the
above preamble. Let Π(k) be the random matrix product
arising from the evolution of the first k steps of this system:

Π(k) = A(k)A(k − 1)....A(0).

Then, the expectation of Π(k) is given by

E(Π(k)) = (
m∑

i=1

ρiAi)k; (2)

and the asymptotic behaviour of E(Π(k)) satisfies

lim
k→∞

E(Π(k)) = xpy
T
p , (3)

where the vector xp is given by xT
p =

Θ( α1
Λ1(1−β1)

, α2
Λ2(1−β2)

, ..., αn

Λn(1−βn) ), yT
p = (γ1, ...., γn).

Here Θ ∈ R is chosen such that the capacity constraint is
satisfied for all k.
Corollary 3.1: For given W (0) define random variable
W (k) with:

W (k) :=
1

k + 1

k∑

i=0

W (i).

Then expectation of W (k) is given by:

E(W (k)) =
1

k + 1
(I + E(A(1)) + · · ·+ E(A(1))k)W (0)

And since E(A(1))k → xpy
T as k →∞,

lim
k→∞

E(W (k)) = xpy
T W (0)

Note that the congestion window vector W (k) converges, on
average, to the unique value W̄ss = Θxp. Window fairness is
achieved, on average, when the vector xp is a scalar multiple
of the vector [1, ..., 1]; that is, when the ratio αi

Λi(1−βi)
does

not depend on i. Observe that fairness depends upon on the
relative drop probability of each flow.

B. Place dependent drop-probabilities

We now relax the assumption that flows are dropped with
constant probabilities at congestion events. Instead, we
allow the drop probabilities to depend on the current state
of the system, that is the set of current window sizes W (k)
at the kth congestion event.

Mathematically, our model is a discrete time
Markov chain whose state space is the simplex
S = {w = (w1, . . . , wN ) : wi ≥ 0,

∑
wi = C},

where C is the link capacity. The state of the system W (k)
evolves according to the rule W (k+1) = A(k)W (k), where
A(k) ∈ A is chosen randomly using a place-dependent

probability distribution on A. Specifically, for each w ∈ S
there is a probability distribution p1(w), p2(w), . . . , pm(w)
on A (m = |A| = 2n − 1), and A(k) is chosen randomly
with probability P (A(k) = Ai) = pi(W (k)). With some
mild assumptions on the drop probability functions we will
show that this model is ergodic. In particular:

Assumption 3.3: The distribution pi(w) is uniformly Lips-
chitz on S . That is, we assume there is a constant K such
that for all w, v ∈ S and all i = 1, . . . ,m,

|pi(w)− pi(v)| ≤ K ||w − v||1 = K

n∑

j=1

|wj − vj | (4)

Assumption 3.4: The probability that all flows are dropped at
a congestion event is non-zero in the interior of the simplex
S .
Assumption 3.5: The probability that the ith flow is dropped
at a congestion event is zero at any point in S where wi = 0.
The following theorem extends results in [3] and presents
and provides an alternative approach to results in [4]. Our
principal tools are taken from the exposition presented by
Stenflo [5]. These results rely on contractivity properties of
the matrices A ∈ A on the simplex S. This is guatanteed if
the matrices in A are column stochastic, see [3]. However, it
is easy to see that the matrices in the set A are not column
stochastic, unless the γi are all equal. To solve this problem
note that the matrices in this set are simultaneously similar to
a set of column stochastic matrices under the transformation
Γ = diag[γ1, ..., γn]. Applying this state transformation we
arrive at a situation in which the results in citeSten are
applicable. In the following we will assume without loss of
generality, that this transformation has been applied.

Theorem 3.2: Assume that the place-dependent drop proba-
bilities {pi(w)} satisfy the assumptions listed above. Then
(i) there is an attractive, unique stationary probability mea-
sure for the Markov process {W (k)}, (ii) for any con-
tinuous function f(w) on S , the conditional expectations
E[f(W (k)) |W (0) = w] converge uniformly to a constant
as k → ∞, For any continuous function f(w) on S , the
time average 1

K

∑K
k=1 f(W (k)) converges almost surely to

the ensemble average of f(W ) with respect to the stationary
measure.

Theorem 3.2 may be pproved using the results of Isaac
[6], Barnsley et al [7], and Stenflo [5], who established
general conditions for ergodicity of Markov chains with
place-dependent probabilities. Theorem 3.2 implies that the
process {W (k)} converges a.s. k → ∞, and that the
limiting distribution is independent of the initial conditions.
This ergodic property allows us to relate time averages to
ensemble averages, and hence to use pathwise calculations
to compute average quantities. Using this method we will
show that a version of the result (3) derived in the case of
constant drop-probabilities continues to hold for the place-
dependent model. Our result will involve the average window
size for the ith flow computed only at the congestion events
where it experiences a drop. To set up the notation, let
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D(k) ⊂ {1, . . . , m} denote the set of flows which experience
a drop at the kth congestion event, and define

θi(k) =
{

1 if i ∈ D(k)
0 if i /∈ D(k) (5)

Theorem 3.3: Under the conditions for Theorem 3.2, the fol-
lowing limits exist and are independent of initial conditions:

〈wi〉 = lim
k→∞

E[wi(k) | i ∈ D(k)], λi = lim
k→∞

E[θi(k)] (6)

Furthermore these quantities are related by

〈wi〉 =
αi

λi(1− βi)
E[T ] (7)

where E[T ] is the average time between congestion events.

Comment : The quantity 〈wi〉 is the average window size
for the ith flow computed at the congestion events where
this flow experiences a drop, and λi is the probability that
the ith flow experiences a drop at a randomly selected
congestion event. So (24) is directly related to Theorem
3.1 (3) obtained in the case of constant drop probabilities.
Furthermore the result is independent of the details of how
the flows are dropped at each event, and depends only on
the probability of a drop for the ith flow.

Proof: For any k ≥ 1

E[wi(k) | i ∈ D(k)] =
E[wi(k) θi(k)]

E[θi(k)]
(8)

Furthermore

E[wi(k) θi(k)] = E[wi(k)
∑

j∈∆i

pj(W (k))] (9)

where ∆i ⊂ {1, . . . ,m} is the list of all subsets for
which the ith flow experiences a drop. Applying Theorem
3.2 we conclude that (9) converges uniformly to a value
independent of initial conditions as k → ∞. The same
argument applies to the denominator in (8), hence the left
side of (8) converges to a limit which we define to be 〈wi〉.
Similar reasoning applies to define λi.

Considering a sample path of the process, we see that the
ith window sizes wi, w

′
i at two successive events where flow

i is dropped are related by

w′i = βiwi + αi Ti (10)

where Ti is the time between these events. Define the long-
run time averages

〈wi〉K =
∑K

k=1 wi(k)θi(k)∑K
k=1 θi(k)

, 〈Ti〉K =
∑K

k=1 T (k)∑K
k=1 θi(k)

(11)

where T (k) is the time between the kth and (k + 1)th

congestion events. Then (10) implies

〈wi〉K =
αi

1− βi
〈Ti〉K + O(

1
K

) (12)

where the error term O( 1
K ) takes care of the mismatches in

the sums at k = 1 and k = K (recall that wi and T (k) are
uniformly bounded, so this term is bounded by a constant
times 1

K ). Therefore (7) follows from part (iii) of Theorem
3.2, which states that time averages converge to ensemble
averages, and hence 〈wi〉K converges to 〈wi〉 and 〈Ti〉K
converges to E[T ]

λi
.

Our next result involves the throughput for the ith flow,
which is defined by the pathwise expression

δi = lim
T→∞

1
T

∫ T

0

wi(t) dt (13)

Theorem 3.4: Under the conditions for Theorem 3.2, with
probability one the expression (13) exists and is independent
of the sample path, and is given by

δi =
λi(1− β2

i )
2αi

E[T ] 〈w2
i 〉 (14)

where 〈w2
i 〉 = limk→∞ E[wi(k)2|i ∈ D(k)]. It satisfies the

bounds

〈wi〉 1 + βi

2
≤ δi ≤ 〈wi〉 1 + βi

2
(1 +

VAR[T ]
E[T ]2

) (15)

where VAR[T ] is the variance of the time between conges-
tion events.

Proof: We will write {τ1, τ2, . . . } to denote the times of
the congestion events where flow i experiences a reduction,
and {wi(1), wi(2), . . . } its window sizes at these events. The
evolution equation for w between congestion events is

wi(k + 1) = βiwi(k) + αi(τk+1 − τk) (16)

Elementary calculations along the sample path show that∫
wi(t) dt can be expressed as a sum of the squares of

window sizes at congestion events where the ith flow is
dropped. Ergodicity then relates this time average to the
ensemble average, and this gives (14).

We now use upper and lower bounds on 〈w2
i 〉 to derive (15).

For the lower bound we just use

〈w2
i 〉 ≥

(
〈wi〉

)2

(17)

For the upper bound we square (16) and take the expected
value to get

E[wi(k + 1)2] = βi2E[wi(k)2] + α2
i E[(τk+1 − τk)2]

+2αiβiE[wi(k)(τk+1 − τk)] (18)

We use the bound 2wi(k)(τk+1 − τk) ≤ xwi(k)2

+x−1(τk+1−τk)2, which holds for every x >> 0; inserting
into (18) gives

E[wi(k + 1)2] ≤ (β2
i + αiβix)E[wi(k)2]

+(α2
i + αiβix

−1)E[(τk+1 − τk)2] (19)

Taking k →∞ and using the ergodic property gives

〈w2
i 〉 ≤

α2
i + αiβix

−1

1− β2
i − αiβix

E[T 2] (20)
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where T is the time between congestion events. Using the
optimal value x = α−1

i (1− βi) we find

〈w2
i 〉 ≤

α2
i

(1− βi)2
E[T 2] (21)

Finally we use E[T 2] = VAR[T ]+
(
E[T ]

)2

to get the result.

IV. CONCLUSIONS

In this paper we have derived basic stability results for a
network of n AIMD flows that compete for shared bandwidth
via a bottleneck router employing drop-tail queuing.
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APPENDIX : PROOF OF MATHEMATICAL RESULTS

Proof of Theorem 3.2: Barnsley et al [7] have derived a
general condition for ergodicity of Markov chains with
place-dependent probabilities. The version we need (compact
state space, Lipschitz continuous transition functions) was
derived earlier by Isaac [6]. Elton [8] extended these results
by proving almost sure convergence of time averages
to ensemble averages under the same conditions. The
conditions which guarantee ergodicity in our case are
contained in the following lemma. These conditions state
that the two-step transition probabilities satisfy an average
contractivity property.

Lemma 4.1: Assume the drop probabilities satisfy the condi-
tions 3.3-3.5. Then there is r < 1 such that for all v, w ∈ S ,

m∑

i,j=1

pi(v) pj(Aiv)||AjAiv −AjAiw||1 ≤ r||v − w||1 (22)

and there is δ > 0 such that
∑

C

pi(v) pj(Aiv) pi(w) pj(Aiw) > δ (23)

where C denotes i, j : ||AjAiv −AjAiw||1 ≤ r||v − w||1.

Proof: Since each matrix Ai is column stochastic, it
is a contraction with respect to the l1 norm, that is for any
vector x we have

||Aix||1 ≤ ||x||1 (24)

Also, let Aall be the matrix corresponding to the case where
all flows are dropped. Then Aall is a strict contraction, so
there is r′ < 1 such that

||Aallx||1 ≤ r′||x||1 (25)

Define

Bε = {w ∈ S|min
i

wi < ε} (26)

By our assumptions on the pi(w), we can find q0 > 0 and
ε >> 0, such that for every w ∈ Bε there is some index i
such that pi(w) > q0 and Aiw /∈ Bε. Furthermore, since by
assumption the probability to select Aall is nonzero in the
interior, this probability is bounded away from zero in Bc

ε ,
that is there is q1 > 0 such that

P (A(k) = Aall|W (k) /∈ Bε) ≥ q1 (27)

To prove (22), suppose first that v /∈ Bε), then we obtain the
bound

m∑

i,j=1

pi(v) pj(Aiv)||AjAiv −AjAiw||1

≤
m∑

i=1

pi(v)||Aiv −Aiw||1

≤ (1− q1 + rq1)||v − w||1 (28)

where the second inequality follows by separately consider-
ing the cases Ai = Aall and Ai 6= Aall. Now consider the
case where v ∈ Bε, then at the first step there is probability
q0 to select a map that leads at the next step to the set Bc

ε .
Combining with the previous estimate gives the bound

m∑

i,j=1

pi(v) pj(Aiv)||AjAiv −AjAiw||1

≤ (1− q0)||v − w||1 + q0(1− q1 + rq1)||v − w||1 (29)

and together these two cases establish (22). The bound (23)
follows by again separating the cases where v ∈ Bε and
v /∈ Bε, and making the choices described above.

We now apply Theorem 2.1 of [7], which states that under
the conditions of Lemma 4.1 there is an attractive, unique
invariant probability measure for the Markov chain (note that
Barnsley et al assume average contractivity at each step of
the process, however average contractivity over two steps
as in Lemma 4.1 is also sufficient to derive the result). In
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fact as noted before the proof in our case is simpler, as we
have a compact state space and we assume uniform Lipschitz
regularity for the drop probability functions. This establishes
(i) and (ii). Property (iii) follows by Elton’s result [8], which
proves that time averages converge almost surely to ensemble
averages for this model.
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