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Summary

The nervous system integrates past information together with predictions

about the future in order to produce rewarding actions for the organism.

This dissertation focuses on the resources underlying these computations,

and the task-dependent allocation of these resources. We present evidence

that principles from optimal coding and optimal estimation account for

overt and covert orienting phenomena, as observed from both behavioral

experiments and neuronal recordings.

First, we review behavioral measurements related to selective attention

and discuss models that account for these data. We show that reallocation

of resources emerges as a natural property of systems that encode their in-

puts efficiently under non-uniform constraints. We continue by discussing

the attentional modulation of neuronal activity, and show that: (1) Modula-

tion of coding strategies does not require special mechanisms: it is possible

to obtain dramatic modulation even when signals informing the system

about fidelity requirements enter the system in a fashion indistinguishable

from sensory signals. (2) Optimal coding under non-uniform fidelity re-

quirements is sufficient to account for the firing rate modulation observed

during selective attention experiments. (3) The response of a single neuron

cannot be well characterized by measurements of attentional modulation of

only a single sensory stimulus. (4) The magnitude of the activity modula-

tion depends on the capacity of the neural circuit. A later chapter discusses

the neural mechanisms for resource allocation, and the relation between

attentional mechanisms and receptive field formation.

The remainder of the dissertation focuses on overt orienting phenom-

ena and active perception. We present a theoretical analysis of the alloca-

tion of resources during state estimation of multiple targets with different

uncertainties, together with eye-tracking experiments that confirm our pre-

dictions.

We finish by discussing the implications of these results to our current

understanding of orienting phenomena and the neural code.
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Chapter 1
Introduction

Summary

This chapter presents an outline of the contents of this disser-

tation, explains why orienting phenomena and resource allo-

cation were selected as research topics, and describes the ap-

proach followed to investigate them. A brief history of relevant

work is also included, highlighting landmarks that will be dis-

cussed in detail in subsequent chapters.

Understanding how the signals in the nervous system subserve behavior

is one of the main quests of 21st century science. The work presented in

this dissertation investigates various hypotheses concerning how the ner-

vous system encodes information about our perceptions and actions. This

exploration uses of a combination of theoretical, computational and exper-

imental approaches. Our interest is, for the most part, on questions related

to the human nervous system, but in our attempt to achieve a better under-

standing of neural processing animal models have proven to be of extreme

importance and will be used frequently in our discussion. We begin by de-

scribing the main concepts and terminology that will be used throughout

this dissertation.
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Chapter 1. Introduction

1.1 Resources and allocation

The term computational resources refers here to the ability of the nervous

system to transform signals. The concept resource is used to emphasize

that there is a certain amount of computation that can be done per unit of

time, and a certain amount of information that can flow through the system,

limited for example by the number of receptors and noise level. Energy,

time and the number of sensory receptors, connections and muscles are the

physical quantities underlying these resources. Computational resources

are to be found at all stages of processing, from sensory to motor systems,

including “intermediate” steps involved in performing mental calculations

or recalling memories. Allocation refers to the process of distributing these

resources in order to represent, transform and transmit different signals

involved in perception and action.

As an example of allocation of resources, let us focus on the optic nerve

of humans in the context of information transmission. Composed of ap-

proximately 1.2 million fibers per eye, its information capacity can be esti-

mated, assuming independence and given statistics of the firing rates and

noise characteristics, to be almost 10 Mbps (Koch et al., 2006). The signals

going through these axons depend on the position of the eyes, implying

that the nervous system is selecting the content that will be transmitted

to the next stage of processing, or equivalently, allocating transmission re-

sources to certain features of a visual stimulus. This process, when move-

ment of the sensors takes place, is called overt allocation. In contrast, covert

allocation does not require physical movement (except perhaps for ions

moving across membranes making the signal transmission possible), and

occurs for example when the retina adapts to different intensity levels and

contrasts so as to employ better the dynamic range of the retinal cells (Bac-

cus and Meister, 2002). In this dissertation, we will focus mainly in alloca-

tion phenomena related to orienting attention, both covertly and overtly.

Orienting phenomena can be voluntary or automatic. It is voluntary, for

example, when we try to find a friend in a crowd, or when we focus on one

conversation in a noisy environment filtering out other sounds that reach

our ears (usually known as the cocktail party effect). Orienting is automatic,

for instance, when our focus changes after hearing someone say our name.

These two types of phenomena are usually referred to as endogenous (task

2



Chapter 1. Introduction

driven) and exogenous (stimulus driven), respectively. In our discussion,

we will use the term orienting not only to indicate phenomena in which

we focus on a particular location, but also for those situations in which

we focus on particular features (e.g. , when we use the fact that our friend

in the crowd is wearing a red hat), or when focusing on one out of many

overlapping objects (like the effect we get when looking through a reflec-

tive window). These are commonly known as spatial attention, feature-based

attention and object-based attention, respectively.

The phenomena introduced above are usually presented under the name

of “attention”. It is therefore necessary to clarify that orienting is just one

type of attentional phenomenon, and to interchange the two terms would

be misleading. To explain the differences it is best to follow Michael Pos-

ner’s proposal of the three attentional systems (Raz and Buhle, 2006): The

first type is referred to as the alerting system and it is related to our readi-

ness in response. The second one, called executive, deals with conflict reso-

lution, like in the Stroop task (MacLeod, 1991). The third is called orienting

and involves the selective attention phenomena described above. This dis-

sertation focuses on topics related to the third attentional system and in

cases were the word “attention” is used, it will refer to either covert or

overt orienting.

The thesis supported by this dissertation states that principles of op-

timality account for orienting phenomena. Our investigation includes a

discussion of behavioral data as well as neuronal activity measurements,

an analysis of the underlying neural mechanisms, and principled attempts

to explain the raison d’être of orienting phenomena. In this discussion, the

nervous system is seen not as a straight channel from sensors to muscles,

but instead as a system that combines beliefs and current observations in

order to make decisions that eventually bring reward to the organism.

1.2 Motivation: the neural code

Researchers working in the multidisciplinary field of neuroscience are driven

by different motivations including philosophical questions in regard to what

we “are”, using this knowledge to create machines that behave as we do,

trying to cure the myriad of diseases related to the nervous system, or im-

proving human performance, among others. My personal motivation de-

3



Chapter 1. Introduction

rives from the believe that a deeper understanding of the nervous system

will allow the development of techniques that will revolutionize human-

to-human and human-machine communication.

Understanding the functioning of the nervous system requires the de-

velopment of a set of general principles that give rise to the behavior ob-

served in humans and other animals. These principles should be power-

ful so as to predict, accurately enough, the outcome of any experiment or

real world situation, given the state of the system (which includes influ-

ences from the past). These principles can be stated at different levels, from

molecular to cellular to whole brain. A level of particular interest in our

context is that one from which we can predict percepts, mental images, and

decisions, based on neuronal activity alone. In other words, we are look-

ing for the coding principles used by the nervous system to represent our

sensations, memories and actions, or as it is commonly called: the neural

code.

In our study of the neural code, we must keep in mind some ideas that

have challenged traditional views of neural processing. First, neuronal ac-

tivity may not represent only the value of physical quantities (or its es-

timated mean), but also the uncertainty associated with these values, or

even, the whole probability distribution of particular features (Knill and

Pouget, 2004). Secondly, the code may not be fixed with respect to a stim-

ulus or action, and adaptation at different scales may have different influ-

ences on it. Striking evidence for this idea comes from electrophysiological

recordings during selective attention tasks showing that even when stim-

uli remained fixed, neuronal activity, and therefore the code, change as a

function of attentional state (Reynolds and Chelazzi, 2004). If we intend to

understand the code, we must understand the adaptation phenomena that

influence it. Third, the stimulus best encoded by a neuron is not necessarily

the one corresponding to the peak of the neuron’s tuning curve, since two

nearby stimuli are most easily discriminated when they fall in the region of

highest slope of the tuning curve. The relative importance between these

two alternatives seems to depend on the experimental context and level of

variability of the neuronal response (Butts and Goldman, 2006). Fourth,

the precise time of action potentials has been shown to encode additional

information not represented by the firing rate alone (Rieke et al., 1996).

How will we know if we have found what we are after? The following

4



Chapter 1. Introduction

three conditions seem to be necessary: (1) Given a stimulus (or action or

mental “image”), we must be able to predict the neuronal activity at spe-

cific stages of processing. (2) Given neuronal activity, we must be able to

estimate the stimulus (or action or mental image) associated with it. (3) We

must be able to modify perception (or action or imagery) by directly stim-

ulating the neural circuit. Some examples of these conditions have already

been demonstrated. The book by Rieke et al. (1996) contains various ex-

amples of predicting spike trains and firing rates of the H1 neuron of the

blowfly for different visual stimuli with changing velocities. Stanley et al.

(1999) were able to reconstruct some features of natural images from the ac-

tivity of LGN neurons in the cat. Romo et al. (1998) showed that monkeys

could perform equally well tasks with vibrating stimuli on their fingertips,

and tasks in which the stimuli were replaced by microstimulation of the pri-

mary somatosensory cortex. These examples do not imply that our quest is

over, but show that these conditions are achievable to a certain extent, and

that they provide a better understanding of neural coding principles.

1.3 Historical context

Orienting phenomena have been discussed in the literature for millennia,

from Aristotle’s comments on simultaneous stimuli (Aristotle, 2004, Ch. 7)

to William James’ infamous chapter from “The principles of psychology”

(James, 1890, Ch. 11) to researchers publishing at least seven books on

attention in the last ten years (Styles, 1997; Pashler, 1998, 1999; Parasura-

man, 2000; Braun et al., 2001; Posner, 2004; Itti et al., 2005). Experimental

paradigms involving covert orienting date back to the late 1800s and the

studies of stereoscopy with instantaneous illumination. In the words of

Hermann von Helmholtz: “In this experiment the attention is entirely inde-

pendent of the position and accommodation of the eyes or, indeed, of any known

variations in or on the organ of vision. Thus it is possible, simply by a conscious

and voluntary effort, to focus the attention on some definite spot in an absolutely

dark featureless field. In the development of a theory of the attention, this is one

of the most striking experiments that can be made.” (Helmholtz, 1924, Vol 3,

p. 455).

Attention literature often mentions the arrival of behaviorism as partly

responsible for the absence of research about internal processes, including

5



Chapter 1. Introduction

covert selective attention, during the period from the 1920s to the 1950s. We

should however note that it was during this period that techniques such

as electroencephalography (in the 1920s) and nuclear magnetic resonance

(in the mid 1940s) were developed, together with the introduction of the

Stroop task in 1935.

The psychology of selective attention entered a new stage in the 1950s.

Significant work during this decade was conducted by Donald Broadbent

who, based on his studies on the auditory system, suggested an early-

selection theory in which filtering of unattended stimuli occurs before reach-

ing awareness (Broadbent, 1954). Later experiments showed that some “ig-

nored” information could actually reach consciousness or at least influence

behavior. Anne Treisman was one of the most influential researchers sug-

gesting alternative accounts (Treisman, 1969). These theories marked the

beginning of the early vs. late selection debate, which is discussed in depth

in Driver (2001). Current resolutions of the debate suggest that selection

occurs at many levels of processing depending on the capacity for trans-

mitting or transforming information at each stage (Lavie, 2001, 2005).

In parallel to psychological studies, two electrophysiological methods

were being used in the 1960’s and 1970’s to study the neural correlates of

selective attention. The first, single cell recordings in non-human mam-

mals, showed activity modulation in the auditory cortex (Hubel et al., 1959;

Hocherman et al., 1976), the superior colliculus (Goldberg and Wurtz, 1972),

the frontal eye fields (Wurtz and Mohler, 1976) and the parietal cortex

(Lynch et al., 1977). The second method, electroencephalography (EEG)

in humans, was performed mostly during auditory tasks, and helped char-

acterize changes in the components of event-related potentials as a function

of attentional state (Picton and Hillyard, 1974).

During the 1980s and until today, researchers continued to study covert

and overt orienting phenomena with techniques ranging from single cell

recordings to whole brain imaging and psychophysics, describing neural

correlates of selective attention in visual, auditory and other modalities in

humans, other mammals and even insects (van Swinderen, 2005).

6



Chapter 1. Introduction

1.4 Remaining questions

In an interview by Michael Gazzaniga (Gazzaniga, 1996, p.45), Michael

Posner stated the main questions an attention researcher should focus on:

What is the anatomy of the networks that subserve the operations of atten-

tion? What is their real-time activation? How do they develop? And what

goes wrong with them in brain injury and psychopathology? In addition,

Posner and other researchers have shown the importance of studies of at-

tention in the scientific understanding of consciousness (Posner, 1994). A

decade later, these questions remain as the main goals of attention research.

In the context of the neural code, more detailed questions can be posed

based on those above. In particular, we would like to know how the trans-

formations that sensory pathways produce on their inputs are modulated

by changes in the attentional state of the subject. We would like to char-

acterize the response of neurons and populations not just with respect to

stimuli but also with respect to context, given for example by the atten-

tional state. In addition, we would like to be able to infer the attentional

state of a subject from the neural activity. Preliminary results related to this

goal have already been reported (Crowe et al., 2005).

Researchers are also interested on finding those stimulus attributes that

capture attention, and characterizing how we explore changing environ-

ments. The exact features that draw attention for each modality are still

under debate (see for instance Franconeri et al., 2005), but principled mod-

els, applied to visual saliency, are starting to provide interesting predictions

(Itti and Baldi, 2006).

The ultimate question is probably why have attention at all? Or in other

words, why did orienting mechanisms evolve? What are the advantages

of having them? And, is it actually possible to separate sensory and action

processing from attentional mechanisms, or are they so dependent on each

other that it does not make sense to think of one without the other? The

next chapters will evaluate some of the possible answers to these questions.

1.5 The modeling approach

Most of the contributions presented in this dissertation are derived from

modeling work. Models can be of different types as defined by Dayan and

7
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Abbott (2001, Preface): Descriptive models summarize large amounts of ex-

perimental data, but their primary purpose is to describe phenomena, not

to explain them. Mechanistic models, on the other hand, address the question

of how nervous systems operate on the basis of known anatomy, physiol-

ogy and circuitry. Such models often form a bridge between descriptive

models at different levels. Interpretive models use general principles to ex-

plore the behavioral and cognitive significance of various aspects of the

nervous system functioning, addressing the question of why nervous sys-

tems operate as they do. We can think of the different modeling approaches

as follows: descriptive models tell what happens, mechanistic models de-

scribe how it happens, and interpretive models explain why it happens.

This dissertation is concerned mostly with interpretive and high-level

mechanistic models, but models of all types are presented as background.

Ad-hoc methods in which quick “hacks” are added to previous models to

account for extra features are avoided. We favor instead principled ap-

proaches where some cost function is optimized to account for receptive

field formation, coding strategies and orienting phenomena in a unified

fashion.

Models are by no means proof of the validity of a hypotheses, but help

reassure the relevance of the general principles suggested. One advantage

of the modeling approach, as opposed to just theorizing with words, is

that it forces you to state the assumptions explicitly and to be clear about

how the relevant processes actually work (O’Reilly and Munakata, 2000).

Theoretical approaches complement experimentation by suggesting new

measurements and predicting their outcomes. By developing new theories

consistent with our observations, we refine at each step our understanding

of nature.

1.6 Dissertation outline

The dissertation is organized as follows: First, evidence for limitations in

perceptual and computational resources in the nervous system is presented

in Chapter 2. This chapter describes performance measurements during at-

tention tasks and presents models that account for these observations. The

third chapter describes the model used throughout the first part of the dis-

sertation, focusing on its input-output behavior. The model demonstrates

8



Chapter 1. Introduction

that allocation of resources emerges as a natural property of systems that

implement principles of optimal coding under non-uniform relevance of

the input features. The next two chapters discuss the effects of attention

on neuronal activity. Chapter 4 reviews the literature concerning measure-

ments of attentional modulation of neuronal activity, from whole brain to

single cell. This chapter also includes a description of models that account

for these phenomena. In the following chapter we use the model intro-

duced earlier to show that, in addition to resource allocation effects, many

phenomena related to the attentional modulation of neuronal activity can

be accounted for by principles of optimal coding. Predictions with regard

to this modulation are derived from simulations. Chapter 6 investigates

the neural mechanisms underlying attentional phenomena, describes ex-

perimental observations that shed light into the origin of attentional con-

trol signals, and explores the relation between attentional mechanisms and

the development of receptive fields.

The remainder of the manuscript explores overt mechanisms in rela-

tion to the resource allocation hypothesis. In Chapter 7 we introduce the

concept of active perception, and derive optimal strategies for the case of si-

multaneous tracking of two targets. Predictions from this model are tested

in Chapter 8, where we discuss results from experiments in which eye-

positions are measured while subjects simultaneously track multiple dy-

namic targets.

In the concluding chapter we summarize the contributions presented

in this dissertation, evaluate their implications, and suggest future work in

relation to orienting systems and the neural code.
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Chapter 2
Behavioral measurements of

orienting systems

Summary

This chapter introduces traditional experimental paradigms em-

ployed in the study of the psychology of attention. In addition,

it discusses the relation between covert and overt orienting, and

presents computational models that account for phenomena ob-

served during selective attention tasks.

2.1 Covert attention improves performance

It is not difficult to realize that directing our senses towards an object of

interest increases our ability to detect it and identify it. A more intriguing

phenomenon is the change in performance associated with covert orient-

ing. In this case, it is not our body but our “mind” which turns its focus

to a particular location or stimulus attribute. Researchers have shown that

this orienting-without-movement also improves our perception of the at-

tended features.

Attending to something does not always imply physically orienting our

senses towards it. For instance, we are able to focus on different instru-
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Chapter 2. Behavioral measurements of orienting systems

ments of an orchestral piece without having to move our head or body.

Playing team sports provide another example. In this case we visually track

the movement of multiple objects simultaneously, and without having to

follow a single player we can keep track of their locations as they move

around and cross their paths.

Improvements in performance when attending to a stimulus can be ei-

ther in the speed or the accuracy of its detection or discrimination. In exper-

iments by Downing (1988), subjects were cued to expect a target at a partic-

ular location away from the fixation point, and then asked to perform tasks

at this and other locations. The tasks consisted of luminance detection,

brightness discrimination, orientation discrimination and form discrimina-

tion. Results from these experiments showed that perceptual sensitivity

(measured by the area under the R.O.C. or the d′ statistic) was higher for

regions closer to the cue location, indicating that visual performance can

indeed improve without having to move the eyes (Fig. 2.1A). Other exper-

iments showed that spatial attention manipulated either by cueing or by

removing concurrent tasks improves visual thresholds differently for dif-

ferent tasks: from improvements in contrast detection thresholds of about

20%, to improvements of up to 70% in orientation and spatial frequency

discrimination thresholds (Lee et al., 1999). In addition to changes in sen-

sitivity, researcher have shown that detection latencies are reduced when

subjects receive a cue that indicates where in the visual field the signal will

occur (Fig. 2.1B) (Posner et al., 1980; Corbetta et al., 1993).

Analogous phenomena have been observed in non-visual modalities.

In the auditory system, for instance, knowing what frequency to listen for

improves detection and discrimination, but does not seem to reduce reac-

tion time. In contrast when information is available about the spatial locus

of a sound, reaction times are shorter although detection and discrimina-

tion may not be any better (Scharf, 1998). Johansen-Berg and Lloyd (2000)

provide a review of the psychology of attention in the somatosensory sys-

tem.

2.2 Divided attention

Once it was shown that we could allocate processing resources to particular

attributes and spatial locations, researchers started examining the ability of

11
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Figure 2.1: Covert attention improves performance. (A) Peripheral cueing im-
proves detection of targets close to cued position. An arrow was displayed indi-
cating that a target was likely to occur in that location. Subjects had to maintain
fixation in the center of the display and report the content of the cued box and 3
other boxes after they had been masked. The plot shows the sensitivity at different
distances from the cued location. The dashed line indicates sensitivity in neutral
(no cue) trials. Reproduced from Downing (1988). (B) The validity of the cue has
an effect on the detection time of visual targets. First, a cue was presented indi-
cating that a target was likely to occur at that location. Reaction times are plotted
comparing valid, invalid and neutral trials. Reproduced from Posner et al. (1980).

attending to multiple modalities at the same time, or similarly, the possi-

bility of splitting resources between non-contiguous regions of the feature

space.

Pashler (1994) reviews the literature on concurrent tasks, focusing on

simple experiments in which performing one task interferes with the per-

formance of another. In particular, he evaluates the slowing effect that oc-

curs when a subject tries to perform two speeded tasks at the same time,

the so-called “psychological refractory period”.

When the tasks are not completely separate but instead subjects moni-

tor two different channels for the presence of a signal requiring a speeded

response, an interesting effect occurs: when signals are presented simul-

taneously in both channels detection is faster, on average, than when pre-

sented on either channel alone. This effect is known as the “redundant

signals effect” (Miller, 1982).

In spatial attention studies there is a common analogy relating the focus

of attention with a spotlight. This analogy suggests asking if this beam can

12
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be split or has to be continuous in space. Recent experiments suggest that

the spotlight may indeed be divided between spatially separated locations

excluding regions in between (Awh and Pashler, 2000; Müller et al., 2003).

2.3 Why have covert orienting if we can move our bod-

ies?

One of the most common paradigms in attention research is visual search

(Wolfe, 1998). In these experiments, subjects have to look for the presence

of a target immersed in distractors. Usually, reaction time and accuracy

are measured and compared against those for displays where no target is

present. In the laboratory, visual search tasks usually require the subject

to fixate on a center point and perform the search by covertly attending to

the stimuli. Interestingly, when comparing the same task with and without

eye movements, reaction times did not differ significantly (Klein and Far-

rell, 1989). This observation motivates questions concerning the relation

between saccadic eye-movements and covert attention.

The premotor theory of attention is the traditional explanation relating

eye-movements and covert allocation, and it states that subjects use spatial

attention in the programming and execution of saccadic eye movements.

It is supported by experiments showing a deviation on saccade trajectories

when covertly attending to a different location than the saccade target (She-

liga et al., 1994), and experiments in which detection accuracy was shown

to be highest when the location of the target coincided with the location

of the saccade (Hoffman and Subramaniam, 1995). Visuospatial attention

is then regarded as an important mechanism in generating voluntary sac-

cadic eye movements. Some of these ideas may need to be reevaluated to

take into account experiments in which dissociation between covert and

overt attention in both pop-out and voluntary conditions has been shown

to be possible (Hunt and Kingstone, 2003a,b).

Studies of the dynamics of attention have shown the high control sub-

jects have over the covert allocation of resources, with the ability of reliably

improving performance by attending to particular moments in time (No-

bre, 2001). Other studies have shown that the dwell time, i.e. , the time

spent at each item in a display, can be as short as 50 ms in visual search

tasks as well as tasks in which targets are presented sequentially without
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masks (Egeth and Yantis, 1997), even if sequential presentation with mask-

ing gives times as long as several hundred milliseconds per item (Duncan

et al., 1994). Furthermore, measurements of reaction times for two-target

comparisons at different distances while fixating, have shown that it does

not take longer for attention to move greater distances (Egeth and Yantis,

1997).

In other modalities, for example during auditory tasks, attentional ef-

fects are less dependent on the position of the body and sensors and still

provide spatial and feature selectivity (Scharf, 1998). All the evidence sug-

gests that covert visual attention is a fast mechanism for allocating resources

and it allows for selective phenomena where movements of the sensors are

irrelevant, like pre-attending to a particular color, or looking through a win-

dow while ignoring the reflection that it produces. It seems intuitive that

these “action without movement” mechanisms, which are advantageous

for perception, evolved together with the sensory systems.

2.4 Saliency

A phenomenon that has played an important role in attention research is

that of saliency. It refers to those properties of the incoming sensory sig-

nals that draw attention more strongly than others. This phenomenon is

not necessarily dependent on overt orienting. Salient features can draw

resources without producing movements of the body, and in some cases

strongly salient features or stimuli can be automatically detected without

the need of a serial search, and effect called “pop-out”.

The traditional characterization of pop-out effects has been derived from

the slopes of the curves that result from plotting reaction time vs. the num-

ber of items in the display in visual search tasks. The modern view in visual

search research uses the terms efficient and inefficient search, as opposed to

serial and parallel, to indicate that there is a continuum of these slopes de-

pending on the properties of targets and distractors (Wolfe, 1998).

2.5 Measurements of overt orienting

As shown in previous sections, measurements of covert attention require

indirect indexes from reaction times and accuracy of detection and discrim-
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ination. In contrast, in the study of overt orienting we can directly measure

resource allocation by recording eye and body positions. Researchers look-

ing at overt orienting would like to characterize those stimulus features that

guide eye-movements during given tasks in addition to achieving good

predictions on these movements (Liversedge and Findlay, 2000).

In this dissertation, we focus mainly on saccadic eye-movements, with-

out exploring in detail other movements and compensatory mechanisms

like the vestibular-ocular reflex (to compensate for head movements), smooth

pursuit (to smoothly track moving targets) or vergence (to maintain an im-

age of an object at a given depth in the same position in both retinae).

Advances in virtual environments and eye-tracking technologies allow

for measurements of eye movements during natural behavior while sub-

jects freely explore complex environments (Hayhoe and Ballard, 2005). Stud-

ies making use of these technologies have found further evidence about the

importance of the task in eye-movements, and the relation between the task

and learning where and when to fixate. In addition, these studies suggest

that internal rewards guide eye and body movements and that these phe-

nomena can be appropriately modelled by principles from reinforcement

learning theory (Sprague and Ballard, 2004).

Chapter 8 presents experiments in which eye-movements are recorded

during simultaneous tracking of multiple targets, in order to test hypothe-

ses related to active perception.

2.6 Modeling orienting phenomena

In an attempt to understand orienting phenomena, models at many levels

of detail have been developed. These models are expected to reproduced

observed phenomena, and to provide a starting point for the design of new

experiments, generating predictions on the outcome of new measurements.

This section reviews models of selective attention and orienting, focusing

on their input-output behavior. Some of these models generate further pre-

dictions regarding the neuronal activity associated with orienting phenom-

ena; these aspects will be presented in later chapters of this dissertation.

Visual search has been one of the phenomena that has received most

interest when deriving models of attention. In this respect, two influen-

tial proposals are worth mentioning. First, the Feature-Integration Theory
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Figure 2.2: Schematic representation of the different modules of traditional models
of attention. Feature maps represent orientations, simple motion, colors, intensi-
ties and other basic features of the input image. These features compete for rep-
resentation in the saliency map. This competition is biased by top-down signals
depending on the requirements of the task. The saliency map gates the flow of
information between basic features and higher level modules for recognition and
storage.

(Treisman and Gelade, 1980) was introduced to account for many phenom-

ena observed when comparing detection and discrimination of features

against conjunction of these features. According to this theory, features

like color, orientation and brightness are registered early, automatically,

and in parallel across the visual field, while objects are identified sepa-

rately and only at a later stage, which requires focused attention. This the-

ory predicted the differences in slope observed in feature vs. conjunction

search paradigms. It also predicted phenomena related to texture segre-

gation, illusory conjunction, identity and location, and interference from

unattended stimuli. Later studies revealed that some conjunction searches

were too efficient to be described as “serial” searches, requiring a reevalu-

ation of the theory (Wolfe, 1998).

The second theory, the Guided-Search model, argued that attention could

be guided to likely conjunctions by combining information from more than

one pre-attentive processes. For instance, two sources of information (cod-

ing for “red” and “vertical”) could combined into a saliency map, so that

objects having both features will be doubly activated. These conjunction

will be then efficiently found if attention is directed to the locus of greatest

activation (Wolfe, 1998).

Connectionist models of attention, consisting of networks of simple

neuron-like processing elements, have implemented these ideas, provid-
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ing a concrete description of the assumptions involved and accounting for

an increasing number of phenomena. Mozer and Sitton (1998) review the

main features of these models. Most of these models have detailed archi-

tectures inspired in the visual system, with topographic organization and

defined receptive and projective field sizes. The main model of attentional

selection presented in this review can recognize letters in parallel, or se-

quentially select locations to control the flow of information preventing the

recognition system from being overloaded. The model is composed of an

object recognition network with primitive feature maps together with an

attentional (saliency) map that gate the flow of information in the recogni-

tion network. This modeling approach contains many of the features that

have been traditionally used in mechanistic models of attention (Fig. 2.2):

feature maps, saliency maps, mechanisms for inhibition of return and ex-

plicit gating of information flow (Koch and Ullman, 1985).

This type of model reproduces cue-validity effects observed in psy-

chophysical experiments in humans (Posner et al., 1980). First, the stimu-

lus is presented to the network by activating the primitive feature maps. If

the network is started from an inactive attentional state, locations contain-

ing the stimuli will activate until one of them becomes preferred through

competition, and the primitive feature units representing this location are

allowed to pass their activity through the recognition network. To model

validity effects, the network is started with a cued location represented by

activity in the attentional map prior to the stimulus presentation. This will

generate faster responses to stimuli in cued locations. For the invalid cue

condition, the dynamics of the attentional network and in particular the

winner-takes-all mechanism for selecting a region, will take longer in get-

ting activated, generating a slower response in the detection/recognition of

the stimulus. The model also reproduced other phenomena like changes in

reaction time when the presentation interval between the cue and the target

are reduced, and the slowing effects of distractors on reaction times. The

results from this and other models suggest that spatial attention should be

regarded as the result of competition among locations.

With small modifications, the model presented above can also repro-

duce phenomena observed during visual search tasks. In particular, it pro-

duces a flat curve of reaction time vs. the number of items in the display for

single feature search, while giving a higher slope curve when the search is
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performed for conjunction of features such as a red vertical target among

red horizontal and blue and red vertical distractors.

Another proposal that includes some of the ideas described above has

been called biased competition (Desimone and Duncan, 1995). This type of

model proposes that first, the relevance of particular input features is de-

fined according to the task; then, a short-term description of relevant fea-

tures, called the attentional template, is used to control competitive bias

between inputs, favoring those that match the description.

Abstract mathematical approaches like the Theory of Visual Attention

(TVA) (Bundesen, 1990) use these principles to account for attentional phe-

nomena, and have been shown to have a neural interpretation (Bundesen

et al., 2005). The equations in TVA jointly describe two mechanisms of at-

tentional selection: filtering, for the selection of objects, affecting the num-

ber of cells in which an object is represented, and pigeonholing for the selec-

tion of features, which implements a multiplicative scaling of the level of

activation in cells coding for particular features.

v(x, i) = η(x, i)βi
wx

∑z wz
(2.1)

wx = ∑
j

η(x, j)πj (2.2)

In this model, a module representing visual short term memory encodes

categorizations of the form “object x belongs to category i”. The rate equa-

tion or filtering (2.1) defines a value v(x, i) representing this categorization,

which depends on the attentional weight wx of object x and a perceptual

decision bias βi associated with a particular category i. Each category has

also a corresponding measure of importance of attending to objects that be-

long to that category, named pertinence and denoted by πj. In the weight

equation or pigeonholing (2.2), weights are calculated from pertinence val-

ues together with the evidence η(x, i) that the particular object belongs to

each category. The operation of these equations is better described with the

following example (Bundesen et al., 2005): Consider the task of reporting

red digits from a mixture of red and black digits. To select the red objects,

the pertinence value πred of the visual category red is set high, keeping

other values low. This speeds up the processing of all types of categoriza-

tions of red objects. To perceive the identity of red digits, one perceptual
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decision-bias parameter βi per digit is set high, keeping other parameters

low. This speeds up the processing of categorizations with respect to digit

types. This combined effect of pertinence and decision-bias parameters is

what makes the processing of red digits faster with respect to any other

characterization. This model and its extensions has been shown to repro-

duce a wide variety of psychological effects on visual discriminability and

bias, selection from multi-object displays, effects of divided attention, joint

effects of numbers of targets and distractors in partial report, and consistent

practice in search, among others.

A review of computational models of visual attention by Itti and Koch

(2001) focuses on bottom-up phenomena and complements the list of mod-

eling principles by highlighting the importance of five features: the depen-

dence of perceptual saliency on context, the existence of an explicit and

unique topological saliency map, inhibition of return (and allowing atten-

tion to be released from the current location) , the tight interplay between

covert attention and eye movement, and how scene analysis and object

recognition constrain the selection of locations.

Other approaches to attention modeling have been derived from statis-

tical theories of estimation and inference, which conceptualize top-down

modulations as changes in priors. For example, Yu and Dayan (2005) present

a network that performs inference on a visual orientation variable while an

attentional signal sets a prior for a location variable. This model display

changes in reaction times depending attentional state, consistent with the

cue-validity effects presented above.

Computational modeling of eye-movements have used ideas from sta-

tistical inference and reinforcement learning, and suggest that eye move-

ments serve to reduce uncertainty about the environmental variables that

are task relevant (Sprague and Ballard, 2004; Jaramillo and Pearlmutter,

2006d). A good example is presented by Najemnik and Geisler (2005) who

derived the ideal Bayesian observer that defines the optimal way of making

saccades in order to find a target in a scene. They observed that humans

performed close to optimal leading them to hypothesize that humans com-

pute the analogous of a posterior probability map and use it to determine

the next fixation. This way, subjects can reach near-optimal performance,

despite poor memory for visual details and poor integration across fixa-

tions. Along similar lines of thought, a mathematical formulation of sur-
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prise has shown to be useful at predicting eye-movements (Baldi, 2005; Itti

and Baldi, 2006).
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Chapter 3
Resource allocation in

multi-layer perceptron networks

Summary

This chapter extends the discussion on computational models

started in the previous section. Here, we describe a family of

models that are based on principles of optimal coding under

non-uniform feature relevance.

Main contribution

We show that resource allocation emerges naturally in models

that implement principles of optimal coding under non-uniform

relevance. These model are shown to account not only for spatial-

based phenomena of selective attention, but also for phenom-

ena in which features are attended independent of their loca-

tion.

3.1 Optimal coding under non-uniform relevance

Because of limitations in the “hardware” that encode and transmit sensory

stimuli in the nervous system, the neural representation of physical quan-

tities is in general lossy. In other words, when a stimulus contains more

21



Chapter 3. Resource allocation in multi-layer perceptron networks

information than the neural hardware and code can handle, some of this

information has to be discarded. There is therefore a tradeoff in the fidelity

of the representation of different features of a stimulus, with some of these

features being more relevant than others depending on the task at hand.

This uneven relevance implies that the strategy for allocating representa-

tional resources that maximizes performance may differ for each task.

Following these ideas, we developed a model in which the encoding

of a stimulus could have different quality requirements for each feature of

the input, and these requirements may change depending on context. In

order to test the performance of the encoding procedure, a decoder that

reconstructed the input after it has been encoded in a lossy fashion, was

also modelled (Fig. 3.1). An error measure between the input and output

defined the quality requirements of the reconstruction, with a different er-

ror measure representing each one of the possible states of the system. The

particular error used at each instant depended on an additional modula-

tory signal, denoted as A in Fig. 3.1, which informed the system about the

current state. The encoder-decoder system was trained to minimize the er-

ror function for different inputs and states. We show that once the model

has found the optimal codes given its resources, it reproduces orienting

phenomena by allocating resources according to the task, as well as pro-

ducing, when implemented in a neural fashion, emergent modulation of

the activity of its units that is consistent with electrophysiological record-

ings (Chapters 4 and 5).

The following sections present a auto-encoder multi-layer perceptron

network that serves as an implementation of the principles described above.

The cost function is chosen so that the error for each input unit is weighted

non-uniformly depending on the task. Each error function was associated

with a value of an additional signal that informed all layers about the cur-

rent attentional state. The stimulus is presented as a monochromatic image

for illustration purposes only, since the ideas presented here apply to differ-

ent modalities and do not attempt to simulate a particular stage in the pro-

cessing pathway. Once the error minimization procedure optimized and

fixed all the connection strengths between units in the network, allocation

of resources resulted only from the non-linearities of the system according

to the modulatory signal, given that the error function was not explicitly

represented anywhere in the network.
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3.2 Feedforward network with modulatory input

Network structure. An auto-associative network was constructed con-

sisting of five layers connected in a feedforward fashion (Fig. 3.2B). The

number of units in each layer was 256–20–10–20–256, respectively. Each

unit received inputs from all units in the previous layer, in addition to two

attentional signals (displayed as a single arrow per layer in Fig. 3.2B). This

attentional input was the same for all layers. There were no lateral connec-

tions within units in a layer. The activity in the input and output layers was

represented as an image of 16×16 pixels.

Unit model. A firing rate model was used in which the output of each

unit was calculated as the weighted sum of the inputs passed through a

saturating nonlinearity, as follows:

ri = S
(

∑
j

wij rj + bi

)

= S
(

∑
j′

wij′ rj′ + ∑
j′′

wij′′ rj′′ + bi

) (3.1)

where the sum is over all units from the previous layer (indexed by j′) and

the attentional inputs (indexed by j′′). The saturating function was:

S(x) = a tanh(bx) with a = 1.716, b = 0.667 (3.2)

as suggested by Haykin (1999, p.179). The activity of unit i is denoted ri

and the parameters wij correspond to the strength of the connection from

unit j to unit i. Note that each unit i also included a bias term bi; this term

can be replaced for a constant input for which its weight is also optimized.

The connection strength wij from unit j to unit i was real valued and un-

bounded.

Optimization. The optimization process consisted on finding the set of

weights and bias parameters that minimize the cost function E = 〈Ep〉

where

Ep = ∑
k

ck(p) (yk(p) − dk(p))2 (3.3)
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and k indexes locations in the 16×16 grids holding the stimulus and its re-

construction, ck(p) defines the importance of that particular location (anal-

ogous to the intensity of an attentional spotlight), yk(p) is the output of the

network, dk(p) is the desired output, which is in our case the same as the

input, and p represents the complete pattern of information coming into

the system at one point in time, i.e. the input image as well as the top-down

attentional signal. The expectation (angle brackets) is taken over the input

patterns p.

The gradient was calculated using backpropagation (Rumelhart et al.,

1986) of the weighted error defined in Equation 3.3, and optimization used

online gradient descent with a weight decay term of 10−6. All weights were

plastic during learning. See Appendix A.2 for the derivation of the learning

rule.

To limit the capacity of the system, which is theoretically unbounded

for real-valued units (except for effects of numerical precision), zero-mean

Gaussian noise with standard deviation of 0.1 was added to each bottleneck

unit’s total input during optimization.

3.3 Spatially-driven allocation

3.3.1 Simulation parameters

Stimulus statistics. The set of patterns used during optimization con-

sisted of 20,000 16×16 pixel monochromatic images. Pixel intensity values

had zero mean and standard deviation σ = 1/3. The images were created

by convolving (filtering) white Gaussian noise images with a rotationally

symmetric 2D Gaussian with σfilter = 2. Edge effects were avoided by ex-

tracting only the 16×16 center of the resulting image. These images were

then scaled to have the desired variance. See Appendix A.1 for examples.

Attentional input. The attentional signal consisted of a two-element vec-

tor with values in the range [−1, 1]. For each optimization step, this input

was randomly drawn from a uniform distribution over the possible range.

Optimization parameters. In our simulations the learning rate was set to

η = 0.005 and the attention coefficients in the penalty function formed a
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Figure 3.1: Inputs during optimization of the connection strengths. The auto-
encoder network received, at each step, a random input image (left) together with
a random attentional input (right) associated with a particular error weighting
soft-mask.

simple soft mask:

ck(p) =
1

1 + m2 ‖~k −~a(p)‖2
(3.4)

with~a(p) being the attentional input (in our case, a two-dimensional vector

representing the center of attention) and~k being a location in the plane. The

width of the attentional spotlight was set by m, which was held constant at

m = 12 in our simulations. Fig. 3.1 shows some examples of input values

and corresponding attentional masks.

3.3.2 Results

Performance of the system at encoding and decoding the input was mea-

sured using random patterns independently generated from those in the

training set. For performance comparison, a network that used a flat penalty

function ck(p) = 1 was also trained (Fig. 3.2C). The results presented here

correspond to measurements on the system after the optimization proce-

dure has found the appropriate connection strengths, thus, any modula-

tion is due only to changes in activity and not to changes in the structure

or connection strengths of the network.

Fig. 3.2A shows an example of the reconstruction of one test pattern.

Here, the input image remained fixed as the attentional input changed. The

dashed circles indicate those regions for which preferential reconstruction

was requested. The reader must be reminded that the attentional input

consisted only of two additional values (which the network will interpret

as the center of attention), and that these signals entered each layer the
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Figure 3.2: Reallocation of resources was observed when attentional signal
changed. (A) Example of reconstruction of a single input pattern and four differ-
ent attentional states as indicated by the dashed circles. The error was calculated
as the absolute intensity difference between input and output. Error is lower for
attended locations. (B) Structure of the feedforward network used in the simula-
tions. For each unit, attentional inputs are indistinguishable from sensory inputs.
(C) Average error for one attentional state compared against a system with no at-
tentional signal. The white region in the image on the right indicates lower error
when the system makes use of the attentional signal.

same way as feedforward (sensory) inputs. The regions represented by the

dashed circles were not explicitly represented by any signal in the network

during this simulation (only during optimization, see Section 3.2). This

example shows that the quality of the output is not the same for all regions,

and that it depends on the value of the attentional signal, achieving a lower

error for those regions closer to the center of attention.

In addition, we tested how these results compared to those from a clas-

sical model in which there is no informing signal. Fig. 3.2C compares the

average reconstruction performance of a system that ignores the inform-

ing signal with a system attending to the bottom-left corner of the input

image. The difference shows that reconstruction was better for attended

regions but worse for unattended ones, suggesting that coding resources

were indeed reallocated.

3.3.3 Discussion and limitations

The key result from these simulations is that uneven allocation of resources

emerges as a natural property of a system when designed to encode its

inputs so as to achieve minimal error under non-uniform fidelity require-

ments. This approach contrasts modeling studies in which explicit gat-

ing of information flow is implemented in order to obtain selective perfor-
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mance in higher stages of processing (Mozer and Sitton, 1998). We must

note in addition that selective performance could be achieved by a system

that uniformly encodes all features and later throws away those that are

irrelevant, wasting the resources assigned to them. Instead in the model

presented here, resources that were in other conditions assigned to some

input features are now used to improve representation of relevant inputs.

Other emergent properties of this model concerning the modulation of ac-

tivity of its units will be presented in Chapter 5. Details on the mechanisms,

including the fact that after optimization of the connection strengths top-

down signals are indistinguishable from sensory inputs, will be discussed

in depth in Chapter 6

Our simulations incorporated a number of simplifications, most of which

were made for ease of exposition or computational efficiency:

• During optimization, the penalty function was set to a single atten-

tional spotlight. This is not a requirement of the general model, and

other functions could be used to define performance demands. For

example, non-spatial goals can be incorporated requiring higher fi-

delity in the reconstruction of a feature that occurs in the input re-

gardless of its location (Section 3.4).

• For display purposes, simulated stimuli represented visual patterns.

Efficient representation of stimuli and attentional modulation phe-

nomena are present in many (if not all) modalities and the model ex-

plored here applies to these non-visual scenarios.

• The data displayed were collected after the optimization procedure

had been run and the connection strengths had been fixed at their

optimal values. In nature, we would expect this type of adaptation to

continue as the system performs the task.

• The goal of the network in the simulations was to find an efficient

representation for the stimulus. Biological networks likely transform

stimuli not to merely compressed representations, but to representa-

tions that serve to inform future actions.

• As noted by Arbib (2003, p.21), backpropagation of error “is an exam-

ple of ’neurally inspired’ modeling, not modeling of actual brain structures;
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and there is no evidence that backpropagation represents actual brain mech-

anisms”. We are not suggesting that the optimization procedure cho-

sen for these simulations is the one used by the nervous system. The

only requirement is that the system associates an additional signal

with different cost functions. Evaluating the biological plausibility of

optimization procedures is outside the scope of this chapter, but it is

important to note that biologically plausible learning rules that could

achieve the same results as backpropagation of errors have been sug-

gested in the literature (Mazzoni et al., 1991).

The limitations presented above are specific to the current simulation and

not to the general model proposed here, or to the predictions it makes. The

model has focused on endogenous phenomena, in which covert orienting is

defined by the task, but the model does not require the additional input to

be a top-down, and could as well be a bottom-up signal (e.g. , according to

saliency) in order to produce stimulus driven attentional phenomena. The

undefined origin of the attentional signal will not be explored further in this

chapter, but it plays an important role in the remaining of the dissertation.

The resource allocation hypothesis implies that improving performance

on one task can occur only at the cost of reducing the amount of resources

available for other concurrent tasks. An alternative idea is that attention re-

duces uncertainty about the location of targets improving performance by

decreasing the number of noise sources. Luck et al. (1996) evaluated these

hypotheses using spatial cueing experiments in which the uncertainty of

the target location was eliminated. They concluded that resource alloca-

tion still occurs when enough time is allowed for this mechanism to take

place.

The next section extends the results presented above by introducing a

different cost function, which makes allocation to be driven by particular

features of the stimulus instead of a region of interest.

3.4 Non-spatially driven allocation (feature-based)

3.4.1 Simulation parameters

Following the network architecture described in Section 3.2, we designed

cost functions that could account for feature-based phenomena. In this case
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Input

Mask horizontal

Mask vertical

Inputs
Common locationsA B

ERROR H V

Att H 0.33 0.38

Att V 0.42 0.35

Flat 0.37 0.38

Figure 3.3: Feature-based allocation. (A) Example of input pattern and associated
attentional masks. (B) Performance was tested by generating many patterns for
which one vertical and one horizontal bars were fixed while other bars were ran-
domly positioned for each pattern. The table on the right shows the average errors
over these common locations (H and V) for different attentional states (AttH and
AttV). Results for a system that ignores the attentional input are also included for
comparison (bottom row).

the attentional signal does not inform the system about the location of in-

terest but about particular features of interest. We simulated a system that

learns to focus on either horizontal or vertical lines. This system differs

from that one presented in previous sections in the following:

• The attentional input is now unidimensional and takes only two val-

ues, −1 or +1.

• The training set is now composed of patterns containing only hor-

izontal and vertical bars (sometimes overlapping) with 3 pixels of

length. In the monochromatic scale we use to visualize stimuli, bars

are always white with a dark surrounding, and the background is

always gray (corresponding to a value of zero).

• The mask used during optimization is a sharp mask around the bar

stimuli and its surrounding (Fig. 3.3A).

• The attentional value −1 is associated to a mask favoring vertical

bars. Similarly, a value of +1 favors horizontal bars.

The number of units per layer was kept the same as in previous simula-

tions: 256–20–10–20–256. Twenty thousand random patterns and their cor-

responding masks were used for training, using the algorithm described in

Appendix A.2. The learning rate was set at η = 5 × 10−4.

3.4.2 Results

Fig. 3.3A shows an example of input patterns and corresponding atten-

tional masks. To test the performance of the system for different attentional

states, we created a set of patterns in which a particular location always
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had a vertical bar, and another location always had a horizontal bar. The

rest of the image contained bars located randomly for each pattern in the

training set, as shown in Fig. 3.3B. The table in Fig. 3.3 presents the aver-

age error of reconstruction at the locations containing the horizontal and

vertical stimuli for the two attentional states (attend horizontal or attend

vertical). The table also compares these error with those obtained when the

system is optimized with a flat mask, i.e. , ignoring the attentional signal.

As expected, reconstruction error is lower when the particular feature is

attended. If we take the average error for a horizontal bar when attending

to horizontal bars, we note that it is lower than the error to vertical bars in

this condition, and to the error of horizontal bars when attending to ver-

tical bars. The dual is also true. When comparing against a flat mask, we

expect the error to fall between the error values for the two attention condi-

tions. Results for the flat mask indicated lower or equal error compared to

the unattended condition, and higher error when compared to the attended

condition, suggesting that resources are being reallocated.

3.4.3 Discussion

Results from the feature-based selection simulations show that a simple

principle of associating an additional signal to different error functions can

reproduce not only spatial selection effects but also location-independent

feature selection phenomena.

Traditional models of feature-based attention have required maps that

explicitly code for each feature of interest. These maps subsequently influ-

ence the processing system by enhancing activity corresponding to partic-

ular features (Mozer and Sitton, 1998; Itti and Koch, 2001). Here we have

shown it is not necessary to explicitly define such maps, yet the optimiza-

tion procedure can still find the appropriate codes and produce differential

fidelity between features.

The same limitations presented for the case of spatial-based selection

apply here. These are again specific to the simple implementation pre-

sented here, and not to the general ideas that these principles encompass.

Further simulations are required to evaluate the performance of this sys-

tem in tasks in which either simple features or conjunction of features must

be identified (Chapter 2).

In summary, these results are further evidence that allocation of re-
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sources emerges naturally in neural systems optimized to perform tasks

with non-uniform relevance on the input features.

3.5 Concluding remarks

This chapter described models in which principles of optimal coding un-

der non-uniform fidelity requirements are implemented by a multi-layer

perceptron network performing various tasks. We introduced the mod-

els, focusing only on their input-output behavior and flexibility. Further

evaluation of the activity of the units in the model networks, together with

predictions with regard to the modulation of this activity, will be presented

in Chapter 5.

The most important result at this level of analysis is that resource al-

location emerges naturally from the coding principles implemented here.

A system could also obtain differential performance by simply encoding

all features uniformly, and later selecting out irrelevant stimuli, discard-

ing some resources. Instead, better performance can be obtained if those

resources are used for representing, transmitting or transforming relevant

signals. This new take on the debate between early vs. late selection sug-

gests that whenever the hardware allows it, it is advantageous to allocate

resources early to features of interest.
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Chapter 4
Attentional modulation of

neuronal activity

Summary

Neuronal activity in response to a fixed stimulus has been shown

to change as a function of attentional state. This chapter sum-

marizes results from these experiments and describes models

that account for these observations.

4.1 BOLD/fMRI and PET measurements

Functional brain imaging techniques based on metabolic activity have been

used since the early 1990s to describe neural correlates of selective atten-

tion phenomena in humans. These correlates correspond to changes in the

activation of particular brain regions as inferred from positron emission to-

mography (PET) or from blood oxygenation level dependent (BOLD) sig-

nals measured by a magnetic resonance scanner. The tasks contrasted in

these studies differed either on the attended modality or on the attended

attribute of the stimulus within a single modality. For example, early PET

experiments by Corbetta et al. (1990, 1991) showed modulation of activity
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as a function of the attended visual stimulus feature: shape, color or speed.

These changes in activity occurred in regions of the extrastriate cortex that

appear to be specialized for processing the feature of interest. Their mea-

surements also showed differences in activation between selective attention

(attending to only one feature) and divided attention (attending to multiple

features) tasks.

By the late 1990s, functional MRI was the technique of choice of cogni-

tive neuroscientists and many fMRI selective attention studies have been

published since. Early studies showed differential activation in the human

homologous of area MT when subjects were paying attention to stationary

versus moving dots (O’Craven et al., 1997) or to different features (color

and speed) of moving dots (Beauchamp et al., 1997).

Imaging studies allowed researchers to test the topographical effects of

selective attention (Tootell et al., 1998; Brefczynski and DeYoe, 1999) and to

map the network of regions involved in attentional functions (Corbetta and

Shulman, 2002). As an example, Fig. 4.1 presents results from the retino-

topy study by Brefczynski and DeYoe (1999). The figure shows the mod-

ulation of coherence between the BOLD signals and modelled responses

during visual selective attention tasks.

Using these imaging techniques, researchers have found attentional mod-

ulation of activity in a great variety of cortical and subcortical areas in-

volved in sensory processing, including structures as early as the LGN of

the thalamus (O’Connor et al., 2002). More details on the functional imag-

ing of visual selective attention and the relation of these findings to those

from other techniques can be found in review papers by Kanwisher and

Wojciulik (2000); Kastner and Ungerleider (2000) and Pessoa et al. (2003).

4.2 Modulation of brain rhythms and synchrony

Using electro- and magnetoencephalography (EEG/MEG) measurements,

which provide higher temporal resolution than the techniques introduced

in the last section, researchers have reported changes in brain rhythms as-

sociated with attention and cognition. For instance, Gruber et al. (1999)

used EEG measurements to show that the power of signals between 31

and 51 Hz (a subset of the gamma band) increased when subjects were

covertly attending to a rotating pattern in one half of the screen as opposed

33



Chapter 4. Attentional modulation of neuronal activity

Figure 4.1: Retinotopy of visual attention. Response amplitude for each voxel was
estimated as the covariance between the fMRI response and the idealized response
waveform. Maps show correlation coefficient. Higher correlation (indicated by
the arrows) on areas in V1 corresponded retinotopically to attended locations. The
stimulus consisted of a circle divided in segments at different angles and eccen-
tricities, each one containing colored oriented stripes that changed randomly. The
subject’s task was to monitor changes on a cued segment while fixating in the
center of the display. High coherence areas during the cued experiment (left) cor-
responded to those areas with high coherence when the segment was presented in
isolation (right). Reproduced from Brefczynski and DeYoe (1999).

to attending to a static pattern in the other half. These changes were more

prominent in parieto-occipital regions contralateral to the attended loca-

tion, and interestingly, they were higher when rotation on the left hemifield

was attended. Another study from the same group showed that the steady-

state visual evoked potential can also be modulated by selective attention

(Müller et al., 1998).

Modulation has also been shown to occur in non-visual modalities. For

instance, using MEG during somatosensory stimulation, Bauer et al. (2006)

observed an increase in induced activity in the range 60-95 Hz, mostly in

somatosensory cortex contralateral to the attended hand. Furthermore, the

measurements showed an increased suppression of alpha (7.5-12.5 Hz) and
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beta (14-26 Hz) rhythms in occipital sensors contralateral to the attended

side.

Researchers have hypothesized that the synchronization of oscillatory

responses of spatially distributed, feature selective cells might be a way

to establish relations between features in different parts of the visual field

(Gray et al., 1989; Engel et al., 2001). Extending this hypothesis, it has been

suggested that localized changes in synchronization may also serve to am-

plify behaviorally relevant signals. Some studies have started to provide

neural correlates of attention based on changes of the level of synchroniza-

tion between neurons activated by the attended features. In experiments

by Fries et al. (2001), multi-unit activity (MUA) and local field potentials

(LFPs) were recorded from multiple V4 sites in monkeys. They measured

the power spectra of the spike-triggered averages of the LFPs in two con-

ditions: one in which the monkey was attending inside the receptive field

(RF) of the recorded neuron, and one attending outside the RF. The spec-

tra showed an increase of synchronization in the range 35-60 Hz (gamma

band) and a reduced synchronization in lower frequencies (below 20 Hz)

during the attended condition.

Changes in the synchrony of action potentials between neurons have

also been observed in the somatosensory system. In this case, different lev-

els of synchrony were observed for pair of neurons when comparing tasks

that require monkeys to attend to either tactile or visual stimuli (Steinmetz

et al., 2000).

4.3 Modulation of evoked potentials and evoked fields

Steven Hillyard from the University of California in San Diego has studied

the effects of selective attention on the electromagnetic evoked responses

in humans for over 30 years. An early study (Picton and Hillyard, 1974)

measured the attentional modulation of the different components of the

event related potential (ERP) during an experiment in which subjects ei-

ther attend or ignore an auditory stimulus. This study concluded that the

amplitude of the N1 (90 ms) and P2 (170 ms) components was modulated

by attention but there was no clear modulation of earlier components, indi-

cating that human auditory attention is not mediated by a peripheral gating

mechanism.
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With the advent of high spatial resolution imaging techniques like PET

and fMRI, researchers were able to characterize the location together with

the dynamics of the attentional effects. Heinze et al. (1994) combined PET

with ERP recordings and showed that visual inputs from attended loca-

tions receive enhanced processing in the extrastriate cortex (fusiform gyrus)

at 80-130 ms after stimulus onset. Hillyard and Anllo-Vento (1998) provide

a review of this and later studies evaluating the modulation of ERP com-

ponents during spatial and non-spatial attentional tasks.

During the last decade, researchers have continued to take advantage

of the fast temporal resolution of EEG and MEG to test hypotheses regard-

ing the dynamics of selective attention and orienting processes. A review

paper by Luck et al. (2000) discusses some of these studies, and notes the

discrepancy between estimates for the duration of attentional shifts that

has been measured in the visual system (from 50 ms to 500 ms).

4.4 Firing rate modulation

Electrophysiological recordings of single cells was one of the first tech-

niques that allowed researchers to measure neural correlates of attentional

effects. These experiments are of most relevance for our discussion since

they allow exploring the effects of attention at the level of small circuits

and provide the main method for characterizing the response of individual

neurons. Early studies using these techniques focused on the modulation

of firing rates when the modality of interest was either attended or ignored.

For instance, Hubel et al. (1959) recorded from the auditory cortex of cats

and found cells that responded to noises only when the animal was looking

at the sound source.

With the development of better stimulation and recording techniques,

researchers started dissociating areas presumably responsible for direct-

ing attention from those receiving the influence of these attentional sig-

nals. Lynch et al. (1977) presented measurements from the parietal cortex

of monkeys during visual tasks supporting the hypothesis that there exists

within the parietal lobe a neuronal mechanism for directing visual atten-

tion, for the fixation of gaze on objects of interest, for maintaining visual

grasp of the object if it moves slowly, and for loosening fixation and initi-

ating rapid saccadic movements towards new objects of interest presented
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within the visual field. Earlier studies had also shown the involvement

of the superior colliculus (Goldberg and Wurtz, 1972) and the frontal eye

fields (Wurtz and Mohler, 1976) in the generation and execution of sac-

cades.

These, together with later studies suggested that neurons in posterior

parietal cortex and the pulvinar in the thalamus were involved in covert

attention, whereas the frontal eye fields, prefrontal cortex, caudate nucleus,

and superior colliculus showed selective enhancement of a visual response

only before the execution of an eye movement to the stimulus location (Cor-

betta et al., 1993). This “limited involvement” ideas are continuously being

challenged by experiments showing that some of these areas, e.g. , the su-

perior colliculus, also contribute to the control of covert spatial attention

(Müller et al., 2005).

To further dissociate the effects of saccades from attention itself, Moran

and Desimone (1985) designed an experiment in which monkeys had to

maintain fixation while performing a task away from the fixation point.

This paradigm for measuring the effects of covert attention on neuronal

activity has been used extensively, as summarized below. In these exper-

iments the same stimulus is presented while attention is directed either

inside or outside the receptive field (RF) of the cell(s) being measured. In

addition, and more relevant for our discussion, some experiments test the

effects of directing spatial attention to one of many locations inside the re-

ceptive field. The following sections describe and compare measurements

from different regions of the visual system of monkeys when performing

covert attention tasks.

4.4.1 Primary visual cortex: V1

Moran and Desimone (1985) reported that when presenting one stimulus

inside and one outside the receptive field of cells in V1, attention did not

have a significant effect on the response of these cells. Because of the size

of the RFs in V1 they could not test the effects of having multiple stim-

uli inside. In contrast, Motter (1993) reported that activity in area V1 (as

well as V2) could be modulated by directing attention inside or outside the

receptive field of the cells, and argue that the presence of competing stim-

uli is necessary to observe these effects. McAdams and Maunsell (1999)

supported these findings showing that 31% of their recorded neurons in
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primary visual cortex displayed attentional effects.

Further evidence of attentional modulation of firing rates in V1 comes

from studies of curve tracking (Roelfsema et al., 1998; Khayat et al., 2006).

In these experiments, a monkey was presented with two curves, one of

which was connected to the fixation point. The animal had to maintain

fixation for an initial period and then make a saccade to the end of the tar-

get curve. The response of V1 neurons before the saccade was stronger

when their receptive fields covered the target curve compared to the ig-

nored curve.

4.4.2 V2 and the ventral stream: V4 and IT

Moran and Desimone (1985) also measured changes in activity of cells in

areas V4 and IT when attention was directed to a preferred stimulus versus

a non-preferred stimulus, with both presented inside the receptive field of

the cells. Responses were attenuated when attention was directed to the

non-preferred stimulus compared to those when attending the preferred

stimulus. They observed a stronger effect for cells in V4 than for those in

IT. With their particular stimulation protocol, they did not observe signif-

icant effects when comparing attention directed inside vs. outside the RF

of cells in these areas. Motter (1993), in contrast, showed that the activity

of 45% of the recorded cells in V4 and 39% in V2 was modulated depend-

ing on whether attention was directed inside or outside the receptive field.

These modulatory effects were dependent on having multiple competing

stimuli in the display, and most cells did not display attentional modula-

tion when a single stimulus was presented. This may explain the appar-

ent contradiction with the observations from Moran and Desimone (1985).

These experiments also showed that while the firing rate was higher when

attention was directed inside vs. outside the receptive field, these changes

occurred from either an increase or a decrease of activity with respect to

baseline.

In a later study, Motter (1994) evaluated the effects of non-spatial atten-

tion on the modulation of activity in V4. In this case a cue of a particular

color was presented before an orientation discrimination task. Only a bar

that matched the cue color was relevant for the task. The activity of V4

cells was higher when the target matched the color of the cue compared to

a control condition in which the monkey performed a discrimination task
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at the fixation point. In contrast, activity was lower when the stimulus in

the receptive field was the ignored object.

Luck et al. (1997) tested if the modulatory effects in areas V2 and V4

were different between sequential vs. simultaneous presentation of the com-

peting stimuli. The measurements indicated a reduced effect (in magnitude

and number of cells modulated) when stimuli were presented sequentially.

These experiments confirmed that most cells had larger responses when

attending to the preferred stimulus when multiple stimuli were presented

inside the RF, but not when the other stimuli were presented outside the

RF. In addition, they observed an increase in the baseline firing of cells in

V4 (from 10.1 to 14.4 spikes/sec on average) when attention was directed

inside the RF before any stimulus was presented.

With the interest of exploring if attention has an effect only in the pro-

cessing of an attended target or also in the region of space it occupies, Con-

nor et al. (1997) designed experiments in which attention was directed to

different positions outside but close to the receptive field of cells in V4,

while a bar stimulus was presented at different locations inside the RF.

These experiments showed that changes in attention not only enhanced the

responses to behaviorally relevant targets but also produce a complex mod-

ulation of the responses to other stimuli in the surrounding space. These

results are discussed in more detail in the next chapter when we compare

them to predictions from our models.

In order to test the biased competition hypothesis (Desimone and Dun-

can, 1995), which predicts smaller attentional effects in the absence of com-

peting stimuli, Reynolds et al. (1999) presented further measurements from

cells in V2 and V4 when two stimuli (of different preference) were pre-

sented inside the receptive field. They observed that with attention outside

the RF, the level of activity of the cells for the pair of stimuli was between

the activity generated by each stimulus alone. Once attention was directed

to one stimulus, the activity changed as if this stimulus was presented in

isolation.

Spitzer et al. (1988) compared the modulation of activity in V4 cells by

changing the difficulty of the task. They observed that 81% of the cells re-

sponded stronger during the difficult task and that 77% of the cells showed

a narrowing of their orientation tuning curve during this condition, con-

cluding that increasing the amount of attention directed towards a stimulus
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enhances the responsiveness and selectivity of those neurons that process

it. Later experiments by McAdams and Maunsell (1999) showed that while

most neurons with significant attention effects had higher rates in the at-

tended conditions, the tuning curves did not change shape during different

attentional states. They clarify that the discrepancy with previous studies

may lie in how width is measured. From their measurements they inferred

that attention was producing a multiplicative scaling of the tuning curves

similar to the effect of changing contrast of the visual stimulus.

4.4.3 The dorsal stream: MT and MST

Attentional modulation of firing rates has also been observed in the dorsal

stream of the visual system. Treue and Maunsell (1996, 1999) recorded from

cells in the middle temporal (MT) and medial superior temporal (MST)

areas of monkeys while presenting patterns of moving dots. Neurons in

these areas, traditionally associated with the processing of motion, showed

consistent modulation in their firing rates when attention was directed to

preferred or non-preferred stimuli inside their receptive field. They also

found modulation in responses when one stimulus was presented inside

and another outside the receptive field, as attention was shifted between

them. Treue and Martinez Trujillo (1999) further characterized this mod-

ulation by measuring changes in the tuning curve of cells in area MT, and

showed that attention increases the gain of these neurons without changing

the tuning width.

4.4.4 Other areas selective to visual stimuli

Higher areas where neurons have been shown to be selective to visual stim-

uli also display modulation of activity by attention. In the posterior pari-

etal cortex (PPC) for instance, researchers have found neurons that code for

the saliency of visual stimuli (Constantinidis and Steinmetz, 2005; Gottlieb

et al., 1998), and neurons for which activity changed as a monkey followed

an imaginary path without moving the eyes (Crowe et al., 2005). In ad-

dition, cells in the prefrontal cortex (PFC) show differential activation be-

tween targets and non-targets, even if they rarely show different response

between non-targets (Everling et al., 2002, 2006).
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4.4.5 Non-visual modalities

Modulation of firing rate has been observed likewise in other modalities.

Hsiao et al. (1993) recorded from neurons in primary and secondary so-

matosensory cortex (SI and SII) of monkeys while they performed either a

tactile or a visual task. Most neurons showed a significant modulation of

their response when tactile stimuli presented to the fingers of the monkeys

were relevant for the task. This modulation included both a increase or a

decrease in firing rate for neurons in SII, but only an increase in rate for

neurons in SI. Additional studies in the somatosensory system have shown

that the modulation of firing rates in SII is multiplicative, without affect-

ing the ratio between the variance and the mean rate (Sripati and Johnson,

2006).

In the auditory system, modulation of firing rates depending on the rel-

evance of sound stimuli has been observed (Hocherman et al., 1976). In

these experiments, the response of single units to identical stimuli were

compared between conditions in which either a sound or a light was the

relevant cue. The measurements indicated that response magnitude dif-

fered between the two conditions. Additionally, researchers have shown

rapid changes in the spectrotemporal response field (STRF) of neurons in

the auditory system of ferrets when comparing task vs. non-task conditions

(Fritz et al., 2003).

4.5 Microstimulation studies

Researchers have used microstimulation techniques to study the causal re-

lation between activity in different brain areas during selective attention

and orienting tasks. Moore and Armstrong (2003) stimulated the frontal-

eye fields (FEF) and recorded responses of neurons in area V4 when pre-

senting preferred or non-preferred stimuli. They noticed that activity in

V4 was enhanced after brief stimulation of corresponding sites in the FEF,

even if the magnitude of the stimulation was not enough to evoke a sac-

cade. Sub-threshold stimulation of the FEF also produced changes in per-

formance during visual detection of peripheral targets (Moore and Fallah,

2001, 2004). In order to test the contributions of the superior colliculus (SC)

to the control of covert spatial attention, Müller et al. (2005) evaluated vi-
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sual performance while stimulating the SC. They found that microstimu-

lation improved performance in a spatially selective fashion, even if mon-

keys maintained their gaze fixed. Using similar techniques, Cavanaugh

and Wurtz (2004) had found that microstimulation of the cells in SC could

produce improvements in change detection and reaction times in monkeys.

In addition to these studies in the visual system, Winkowski and Knudsen

(2006) showed microstimulation of gaze control circuits in the forebrain

of the barn owl enhanced responses to auditory stimuli in neurons of the

midbrain. This enhancement was space-specific and stimulation could also

suppress responses at locations that did not correspond to those encoded

by the stimulated forebrain sites.

4.6 Computational models

Early computational studies of attention focused on modeling behavioral

data rather than modeling neuronal activity (Section 2.6). As the character-

ization of attentional modulation of neuronal activity was detailed further,

and models increased their biological realism, predictions on the effects of

attention on the activity of neurons at different stages were developed.

Olshausen et al. (1993) published a model that allowed for position-

and scale-invariant representation of visual objects. A key element of the

model was an attentional mechanism that dynamically routed information

throughout the neural circuit. The model predicted changes in position and

size of the receptive fields in higher areas of the visual ventral pathway

as attention was shifted or rescaled. In addition, the model qualitatively

matched modulation effects observed for cells in area V4 when attention is

directed to effective or ineffective stimuli (Moran and Desimone, 1985).

Reynolds et al. (1999) suggested a simple model to account for changes

in activity of cells in areas V2 and V4 when competing visual stimuli where

presented inside or outside their receptive field. The model is defined by

the following equations:

E = x1w+
1 + x2w+

2 Total excitatory input (4.1)

I = x1w−
1 + x2w−

2 Total inhibitory input (4.2)

dy

dt
= (B − y)E − yI − Ay y

t→∞

=
B E

E + I + A
(4.3)
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Chapter 4. Attentional modulation of neuronal activity

where y represents the activity of the modulated cell, and the variables xi

represent activity from neurons that code for the features to discriminate,

e.g. , orientation. The strength of the connections is define by w+
i and w−

i ,

for excitatory and inhibitory synapses, respectively. Additional constant

parameters that determine the passive decay (A) and the cell’s maximum

response (B) are included. In this model, attention is assumed to increase

the efficacy of the synapses wi from the cell(s) activated by the attended

stimuli projecting to the cell of interest. The model was evaluated for dif-

ferent sets of randomly selected weights, by measuring in each case a sen-

sory interaction index (activity of a stimulus pair minus activity of a refer-

ence stimulus) and a selectivity index (activity of a probe minus activity of a

reference stimulus). Simulation results reproduced the effects observed in

neurons from areas V2 and V4 under different attentional conditions.

The Theory of Visual Attention presented in Section 2.6 was extended

by Bundesen et al. (2005), giving the equations a neural interpretation. This

interpretation allowed for the reproduction of activity modulation effects

when presenting single vs. multiple stimuli in the receptive field, effects of

luminance contrast, multiplicative modulation of firing rates, and baseline

shifts.

Other researchers have used information-theoretic approaches to pre-

dict changes in tuning curves that optimize some coding criterion like the

Fisher information (Dayan and Abbott, 2001, Section 3.3). Nakahara et al.

(2001) explored, from the perspective of population coding, the effects of

height and base rate of the tuning curves on the encoding accuracy as mea-

sured by the Fisher information. They observed that when curves have

experimentally observed parameters, only an increase in base and height

produced an increase in information, even though relaxing this constraint

allowed for cases in which decreasing tuning height and base rate in some

of the neurons improved encoding accuracy. Similarly, Schwabe and Ober-

mayer (2005) implemented a model of a cortical microcircuit and evaluated

the changes in parameters that would maximize Fisher information. They

concluded that changing the gain of the excitatory neurons was the mech-

anism that produce results most consistent with attentional modulation of

activity.

The effects of attention have also been modelled by circuits that imple-

ment statistical inference. A model presented by Yu and Dayan (2005) re-

43



Chapter 4. Attentional modulation of neuronal activity

produced, in addition to the cue-validity effects discussed in Section 2.6,

the multiplicative modulation of orientation tuning curves observed for

cells in V4 (McAdams and Maunsell, 1999). Another network that performs

statistical inference and accounts for various attentional phenomena is pre-

sented by Rao (2005). In his model, neurons combine prior knowledge with

sensory information in a probabilistic fashion according to Bayes’ rule. A

first set of neurons represent the probabilities on location, while another

set represents the probabilities on feature identity, and one last layer (inter-

mediate representation) combines all these together with image informa-

tion. Spatial attention is simulated by increasing the prior probability P(L)

for a desired location. Results from the model are consistent with three

phenomena in visual cortex: (1) a multiplicative modulation of orientation

tuning curves in V4 when the subject attends to a stimulus inside the re-

ceptive field of the cell (McAdams and Maunsell, 1999); (2) the restoration

of response in V2 and V4 when attending to a target in the presence of dis-

tractors, closely approximating the response when the target is presented

alone (Reynolds et al., 1999); and (3) the influence of attention on neigh-

boring unattended locations as measured by the response of V4 neurons

(Connor et al., 1997).

In the next chapter, we describe how attentional modulation of neu-

ronal activity emerges naturally from models that implement principles of

optimal coding under non-uniform relevance of the input features.
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Activity modulation emerges

from optimal coding principles

Summary

In this chapter we evaluate the effects of attention over the ac-

tivity of the encoding units in the model introduced in Chapter

3. We compare the results from these simulations to single cell

measurements from the dorsal and ventral pathways of the vi-

sual system of monkeys.

Main contribution

We show that the type of activity modulation found in single

cell measurements in monkeys during visual attention tasks can

be accounted for by a simple feedforward model that imple-

ments principles of optimal coding.

In 1988, David Zipser and Richard Andersen showed that an artificial neu-

ral network could be trained to perform the coordinate transformation re-

quired to read a target independently of eye position (Zipser and Andersen,

1988). Interestingly, when they measured the properties of hidden units in

the network, they discovered responses and effects similar to those from

neurons in the posterior parietal cortex, including gain-modulated recep-

tive fields (Salinas and Thier, 2000).
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Figure 5.1: Preferred stimuli were dependent on attentional state. Color-coded
images represent the preferred stimulus for each unit in the bottleneck layer
(columns) for three attentional states (rows) as indicated by the dashed circles.
Higher contrast was observed on attended regions.

The work presented in this chapter uses a similar approach in the con-

text of covert spatial attention. Here, we investigate the attentional mod-

ulation of activity in the encoding units of the model described in Section

3.2, trained in the same fashion as it was done for the spatial attention sim-

ulations. All measurements evaluated here were taken after the connection

strengths had been optimized, thus any modulation in the activity of the

units emerges from the nonlinear interactions between the inputs to the

system, and not from changes in the weight parameters.

5.1 Attentional dependence of preferred stimuli

We start by evaluating the preferred stimuli for each unit in the bottleneck

layer. Here, “preferred” refers to the the stimulus that maximally drives

each unit, and it is calculated using a method analogous to reverse correla-

tion from spikes (de Boer and Kuyper, 1968). We first generated 106 random

white Gaussian images and found the activation of the unit of interest for

each of these patterns, keeping the attentional state fixed. The preferred

stimulus was calculated as the average of these random patterns weighted

by the activity produced in the unit of interest. The anti-preferred stimulus

was defined as the negative of the preferred stimulus.

Subsequently, we tested if preferred stimuli depend on attentional state.

Fig. 5.1 shows results from three conditions, as indicated by the dashed cir-

cles. These results suggest that preferred stimuli change slightly depending

on the attentional state. In particular, preferred stimulus for each unit ap-

pear to contains sharper edges in regions closer to the center of attention.
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Stimulus U1 U2 U3 U4 U5 U6 U7 U8 U9 U10
N
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Figure 5.2: Activity of model units was modulated by the attentional signal. Color-
coded images represent the activity of each bottleneck unit for a fixed stimulus as
the center of attention is directed to different regions of the input space. Two
different stimuli (top and bottom rows) are used for comparison. Maps are scaled
according to the range of activities observed for that particular stimulus. The bars
between the two rows display the range of activity for each of the two conditions
with respect to the absolute limits of the activity of the units.

5.2 Attention-dependent modulation of activity

In this section we investigate how the activity in the encoding neurons is af-

fected by the attentional signals. Fig. 5.2 shows maps of activity created by

fixing the stimulus and moving the center of attention around the image.

The intensity at each point in the map represents the activity of one unit

in the bottleneck (normalized in the range of activities observed for that

particular stimulus). The bars between the two rows of maps represent the

range of activities achieved in each condition, with respect to the minimum

and maximum possible value for model neurons. The pattern of activity

modulation was clearly different for each unit. Furthermore, the modula-

tion of a unit’s activity was dependent on the stimulus. For example, for

unit U1, higher changes in activity occurred when attention changed from

left to right or from top to bottom depending on the stimulus. This effect

occurred even when, in the case of U1, the activity ranges were very similar

for the two conditions.

We related these findings to experimentally observed modulation of

neuronal activity during selective attention tasks. First, we replicated the

analysis presented in Treue and Maunsell (1999), in which combinations

of preferred and anti-preferred stimuli were presented inside the recep-

tive field (RF) of a cell and activity was measured as attention changed

between these two regions. Fig. 5.3A shows the response from a neuron

in the medial superior temporal (MST) area. The preferred stimuli for this

neuron was a pattern of dots moving in one direction (indicated by the

arrow pointing up). The attended stimulus is indicated by the dashed el-
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Figure 5.3: Activity modulation matched experimental measurements from area
MST. (A) Neuronal response to two stimuli inside the receptive field of the cell,
one preferred (arrow up) and one anti-preferred (arrow down). Attentional focus
is indicated by a dashed ellipse. The histograms in gray show the firing rate of
the cell as a function of time. Mean responses are indicated by solid horizontal
lines (MST cell) and dotted lines (model unit) for each condition. (B) Scatter plot
showing the response to anti-preferred stimuli vs. the response to preferred stimuli
for each unit. Points above the diagonal indicate higher activity when attending
to the preferred stimulus. Based on figures from Treue and Maunsell (1999).

lipse. The histograms in gray show the firing rate of the cell as a function of

time, and average responses are indicated by solid horizontal lines for each

condition. Overlaid, we show the response of one neuron from our model

(dotted lines) under similar conditions. The stimuli consisted of combi-

nations of the left and right halves from the preferred and anti-preferred

stimuli, calculated with attention directed to the center of the input space.

The maximal firing rate for the model neuron was set to 50 spikes/sec to

obtain comparable magnitudes. The modulation of activity of the model

neuron matched that of the visual neuron. In particular, when attention

was shifted from preferred to non-preferred features of the same stimulus,

activity decreased dramatically.

The scatter plot in Fig. 5.3B shows the firing rates for neurons in areas

MT and MST when attention was directed towards the preferred stimulus

(y axis) versus the firing rates obtained while attending to the anti-preferred

stimulus (x axis). Points above the diagonal indicate higher activity when

attending to the preferred stimulus. Values for all model units, indicated

by stars, fall above the diagonal and within the range of experimentally

observed values. For this plot, the maximal firing rate of all model units

was set to 100 spikes/sec.

Further exploration of these effects is shown in Fig. 5.4. Responses to
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Figure 5.4: All model units showed similar activity modulation. (A) Combination
of preferred (+) and anti-preferred (–) stimuli for unit U2 (top) and attentional
modulation of activity in U2 for these inputs (bottom). (B) Comparison of activity
in U2 for two attentional states as indicated by the dashed ellipses. (C) Changes in
activity for each unit in the bottleneck as attention is shifted from right to left. The
bars correspond to the average across units.
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the four combinations of preferred and anti-preferred half-stimuli are pre-

sented, first for a single unit, and then for all units in the bottleneck layer.

Fig. 5.4A shows the stimuli and corresponding attention maps for unit U2.

The stimuli consisted of combinations of the left and right halves from

the preferred and anti-preferred stimuli. Attention maps showed a clear

change in the activity of the unit as attention moved from right to left. The

simulation also showed that changes in features far from the attended re-

gion have smaller effect on activity than changes presented at the attended

location (compare dark bars of Fig. 5.4B). As shown in Fig. 5.3, when at-

tention was shifted from preferred to non-preferred features (of the same

stimulus) activity decreased dramatically. In contrast, the effect of attention

when both halves were preferred or anti-preferred was very small. These

observations were consistent for all units as shown by Fig. 5.4C.

The model was also compared to experiments in which the response

of cells in area V4 were measured for four attentional conditions, while

a bar of fixed orientation was displaced inside the receptive field of the

cell (Connor et al., 1996, 1997). Fig. 5.5A shows the response of one V4

cell. These plots contain various features that are common in attentional

modulation:

(1) The response of the cell for a fixed stimulus depends on the attended

location.

(2) The stimulus that elicits the strongest response depends on attention.

(3) The cell’s response when attention is fixed depends on the stimulus;

here the position of the bar.

(4) This dependence on stimulus position differs between attentional states;

for instance, the left and right panels in Fig. 5.5A display different trends

as the stimulus position is changed.

Fig. 5.5B shows the results from a model neuron under similar conditions.

In this case, the input image is composed of a non-preferred stimulus with

a small region belonging to the preferred stimulus at different positions,

indicated by the numbers 1–5. Attention is directed to the borders of the

image, as indicated by the circles. The model exhibited all features ob-

served in the experimental data. Two shift indexes were also calculated

for each neuron, after Connor et al. (1997). The fractional shift measures

the proportion of total response that shifted from one side of the RF to the

other when attention is shifted. This index is bounded between −1 and 1,
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Figure 5.5: Activity modulation matched experimental measurements from area
V4. (A) Response of one V4 neuron to a bar stimulus placed at five different po-
sitions inside the receptive field, as indicated by a dashed circle. Attention was
directed to one of the four circles outside the receptive field. Reproduced from
Connor et al. (1996). (B) Response of one model neuron as a region of a non-
preferred stimulus is replaced by the preferred stimulus in five different locations.
Attention is directed to the border of the input space as indicated by the circles.

with a positive value indicating shifts in the direction of attention. Connor

et al. (1997) reported mean values of 0.16 or 0.26 depending on whether 5

or 7 bar positions were in use. All our model neurons had a positive frac-

tional shift, with a mean value of 0.22. The second index, the peak shift,

measures the distance between positions generating maximum responses.

Mean experimental reported values were 10% or 25% of the RF size, de-

pending on whether 5 or 7 bar positions were in use. Our model neurons

had non-negative peak shifts with a mean value of 25% of the total position

variation.

5.3 The magnitude of the attentional modulation de-

pends on the system’s capacity

The average modulation of activity of bottleneck units in the model as at-

tention was shifted from left to right is shown in Fig. 5.6, with panel A

showing how this varies with the number of bottleneck units, and panel

C showing how this varies with the amount of injected noise. Gray open

circles correspond to the absolute value of the modulation averaged over

1000 random test patterns, for each unit in the bottleneck. The solid circles
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show the mean across units, with error bars indicating the standard error.

Panels B and D show the corresponding reconstruction error for each set

of parameters, plotting the mean errors for the attended versus unattended

halves of the sensory input. Note that noise was added to the bottleneck

units only during optimization, and for this reason changes in the modula-

tion magnitude cannot be attributed to noise in the measurements.

The magnitude of the modulation decreased as the number of bottle-

neck units increased. As expected, errors in the ignored region were higher

than those in the attended region, but decreased as the number of bottle-

neck units was increased, gradually closing the gap. As the noise level in

the bottleneck units was increased, the magnitude of the modulation and of

the reconstruction error both increased. The error for the attended region

increased faster than for the unattended region. These two plots display

an abrupt transition as the noise level becomes very high: the trend of the

activity modulation, as well as the error values, changes, with the error

values for the attended and unattended regions becoming equal.

5.4 Modulation of orientation tuning curves

Simulations represent only a small patch of the visual field, with each cell’s

receptive field filling the entire patch. Therefore, attention could not be

directed outside the receptive field. Despite this restriction, it was still pos-

sible to analyze orientation tuning curves of the encoding cells (Ferster and

Miller, 2000) and compare these effects to experimental results on the atten-

tional modulation of these features (McAdams and Maunsell, 1999). For

some units in the middle layer, the preferred stimulus could be approxi-

mated by a two-dimensional Gabor image (Dayan and Abbott, 2001, p.62).

For these units, orientation curves were created by rotating a Gabor pattern

and plotting the activity of the selected neuron as a function of rotation an-

gle. Fig. 5.7 shows the resulting curve for units U6 and U3. These curves

displayed attentional dependency. The plots in each panel of Fig. 5.7 corre-

spond to the orientation tuning when attention is directed to the center of

the rotating pattern (filled squares) or to a corner of the image away from

the pattern (open circles). The observed changes for unit U6 were consis-

tent with a multiplicative effect of the attentional signal on the unit’s activ-

ity, e.g., changes in activity were higher when activity was high. The model
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Figure 5.6: Magnitude of attentional modulation was dependent on the system’s
capacity. (A) Modulation of activity when attention was shifted from left to right
of random stimuli, for networks with different number of units in the bottleneck.
The noise level was fixed at σNB = 0.1. Open gray circles represent the average
modulation for each unit. Solid circles show the average over all units with the
corresponding standard error. (B) Average reconstruction error for the attended
and unattended halves. Error was calculated as the average absolute difference
between input and output pixel values. (C,D) Same as (A,B) but using a fixed
number of bottleneck units, 10, and varying the noise level.
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Figure 5.7: Attentional modulation of tuning curves. A Gabor pattern that resem-
bled the preferred stimuli for units U6 (panel A) and U3 (panel B) was found and
used to create orientation tuning curves. Each plot shows tuning curves for two at-
tentional states, one centered at the rotating pattern (solid squares) and one away
from the pattern (open circles). Activity in unit U6 was consistent with a multi-
plicative modulation, whereas modulation of activity in unit U3 was stronger for
low firing rates.
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did not include any multiplicative interaction, so any effect appeared as the

result of activity from previous layers and the non-linear saturating func-

tion at each unit. Changes in activity for unit U3 resembled an inverted

multiplicative effect in which modulation is stronger for lower firing rates

(anti-preferred pattern). Because of the symmetry in the activity of the units

in out model, a change in the sign of connection strengths in U3 would pro-

duce an effect analogous to that of U6.

5.5 Discussion and limitations of the model

The results obtained above support the idea that many phenomena related

to the attentional modulation of neuronal activity can be accounted for by

optimal coding principles under resource constraints and nonuniform re-

quirements on representation fidelity. In addition, the simulations predict a

complex interaction between attentional processes and neuronal responses,

in that the characterization of the response of single neurons will greatly

depend on attentional state. Lastly, the model predicts an increase in the

magnitude of the modulation as the complexity of the stimulus increases

with respect to the capacity of the system.

All the effects presented in this chapter were measured once the synap-

tic strengths had been fixed after optimization. Changes in the inputs were

sufficient to obtain modulatory effects. The limitations presented in Sec-

tion 3.3.3 for the particular implementation of the coding principles in a

feedforward network, apply here likewise. Nevertheless, the model in its

simplicity is still powerful enough to account for attentional modulation

of activity in the ventral and dorsal pathways of the visual system, and to

generate testable predictions. The simulation are limited to explorations

inside the receptive field (RF) of a cell, and cannot therefore make detailed

predictions about the form of RFs. Extended models would be necessary to

predict attentional modulation of realistic RFs. For instance, incorporating

sparsity constraints into the optimization procedure should give rise to lo-

calized RFs (Olshausen and Field, 1996), allowing prediction of attentional

modulation and spatial shifts.

The simulation allowed synapses from a single neuron to be both ex-

citatory and inhibitory. This is not a common feature in biological neural

systems, where a combination of excitatory and inhibitory neurons could
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achieve the same functionality. In addition, in order to allow standard ef-

fective learning algorithms to be applied, the simulation was at the level

of firing rates rather than spikes and no short-term plasticity of any sort

was included. It is sensible to assume that the effects obtained here with a

simple model will be observed as well in more complex models that follow

similar principles.

Some researchers have stated that changes in RFs reflect mechanisms

for encoding position and that attention-centered coordinates are probably

used at some stages of processing (Connor et al., 1997). Our results suggest

that for each attentional state, the population code varies significantly, but

further explorations are necessary to test if the changes correspond actually

to a change into attention-centered coordinates.

The modulation of tuning curves observed from the model is not strong,

possibly due to attention being shifted only between regions nearby inside

the RF. Nevertheless, the results suggest that a multiplicative effect can be

achieve without the need of explicit multiplicative interactions in the cir-

cuit. Fig. 5.7 compared only two attentional conditions, center vs. corner;

when attention was directed to different regions of the image (not shown),

effects of attending away were complex and sometimes in different direc-

tions depending on the attended location. Complex modulation of this type

has been observed in experiments with multiple stimuli inside the recep-

tive field (Connor et al., 1997).

An influential modeling study that made concrete predictions regard-

ing attentional changes of neuronal activity was developed by Olshausen

et al. (1993). In that study, control neurons dynamically modified the synap-

tic strengths of the connections in a model network of the visual ventral

pathway. The network selectively routed information into higher corti-

cal areas producing invariant representation of visual objects. This model

predicted changes in position and size of receptive fields as attention was

shifted or rescaled. These phenomena are partially supported by results

from Connor et al. (1997). Their model also qualitatively matches modu-

lation effects observed by Moran and Desimone (1985) with stimuli inside

and outside the classical receptive field of V4 neurons. In comparison to

their model, in which modulatory effects were obtained by explicitly mod-

ulating the synaptic strengths of the connections, attentional modulation in

our model emerges from the nonlinearity of the units and general objective
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of the network without requiring changes in the synaptic strengths.

More recent studies incorporate principles of statistical inference into

models of attention. For instance, Yu and Dayan (2005) and Rao (2005)

present networks that implement Bayesian integration of sensory inputs

and priors, and which replicate behavioral as well as electrophysiological

measurements. In these studies, spatial attention is equated to prior infor-

mation on the location of the features of interest. The Bayesian inference

approach to modeling attention should be regarded as complementary to

that taken here. The transformations performed by the model units in the

present work are defined by the solution to an optimal coding problem; and

under certain conditions, these computations would be equivalent to those

in inference-based networks. In fact coding, statistical modeling of distri-

butions, and inference from partial data are, mathematically speaking, very

closely related.

5.6 Concluding remarks

The model presented here accounts for attentional modulation of neuronal

responses in a framework that includes both attention and receptive field

formation, and as a consequence of an underlying normative principle (op-

timal coding) rather than by tuning a complex special-purpose architecture.

The model shows that reallocation of resources can emerge even in a sim-

ple feedforward network, and challenges the traditional characterization

of neuronal activity. These results are consistent with the notion that at-

tentional modulation is not, at its root, due to specific local architectural

features, but is rather a ubiquitous phenomenon to be expected in any sys-

tem with shifting fidelity requirements.

The fact that our simulation shows modulation effects consistent with

physiological recordings suggests that we should not necessarily expect ex-

plicit gating circuitry in neural systems responsible for attentional phenom-

ena. Furthermore, the informing signals do not have to explicitly represent

the “attentional space”, i.e., a spatial attention effect is not necessarily me-

diated by a topographic input.

Our model strongly predicts that the stimulus that maximally drives

a neuron depends on attentional state. Moreover, the behavior of a sin-

gle neuron in this model cannot be well characterized by measurements of
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attentional modulation of only a single sensory stimulus. This prediction

is consistent with the experimental observations discussed above, and it

should be possible to test it more explicitly using currently available exper-

imental techniques. The model also suggests that stronger modulations are

expected when the complexity of the input increases, relative to the capac-

ity of the system.
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Chapter 6
Neural mechanisms for resource

allocation

Summary

Attentional modulation of neuronal activity may arise from dif-

ferent mechanisms. Here we evaluate the different hypotheses

and supporting evidence for each one.

Main contribution

A model in which no special architectural requirements are needed

for resource redistribution is presented. In this model, atten-

tional control signals enter the system the same way as sensory

signals.

In previous chapters we presented evidence that neuronal activity can change

depending on the attentional state of the subject even when stimulation

stays constant. In addition, we suggested that this modulation subserves

a resource allocation that allows for efficient use of the neural hardware

available. We focused on cortical areas known to process sensory informa-

tion; these regions presumably receive contextual information from higher-

level areas about the relevance of different features of the stimuli. These

phenomena raise several question concerning the interaction between mod-
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Figure 6.1: Neural mechanisms underlying the modulation of neuronal responses.
(A) Modulatory signals M1 and M2 modify the synaptic efficacy for inputs S1 and
S2. (B) The nonlinearities of the dendritic tree produces different effects according
to the relative location between modulatory and sensory inputs. (C) All inputs
enter neurons in a similar fashion, and the nonlinearity of the network produces a
modulatory effect.

ulatory signals and sensory processing circuits, and about the origin of

these signals. This chapter provides a discussion of these topics.

6.1 How do attentional signals enter sensory process-

ing circuits?

There are different ways in which signals that code for feature relevance

and attentional state could interact with sensory processing pathways. The

following sections describe three possibilities that have been proposed in

the literature (Fig. 6.1). These are supported by anatomical and physiologi-

cal studies as well as models that evaluate their computational capabilities.

6.1.1 Changes in synaptic strengths

A common hypothesis that explains how attentional signals interact with

sensory processing circuits argues that modulatory signals change the synap-

tic strengths of particular connections in the system. These ideas were em-

ployed by Olshausen et al. (1993) to create shifter circuits in which atten-

tional signals define the routes that sensory signals can follow in a hier-

archical model of the ventral visual pathway. Control signals that modify

synaptic efficacy were also used in a model by Reynolds et al. (1999) to ac-

count for observations from areas V2 and V4. A schematic representation

of this model is presented in Fig. 6.1A.

The biophysical mechanism that could allow for gating as suggested

by these models is still under debate. Presynaptic inhibition and (post-
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synaptic) shunting inhibition have been suggested as possible mechanisms

(Olshausen et al., 1993). Neuromodulators like acetylcholine provide an-

other alternative for changes in synaptic efficacy but it remains to be tested

if their effects are fast enough to account for the rapid changes observed in

attentional tasks. Nevertheless, neuromodulators seem to play an impor-

tant role in attention systems (Voytko et al., 1994; Yu and Dayan, 2005).

6.1.2 Dendritic computation

It has been suggested that the computational capabilities of single neu-

rons are enough to produce the modulation necessary to account for at-

tentional phenomena. These proposals are based on two ideas: first, that

dendritic trees of cortical pyramidal neurons introduce nonlinear interac-

tions between the inputs depending on the site of the synapse (London and

Häusser, 2005); and second, that top-down signals project to a different cor-

tical layer, and therefore a different part of the dendritic arbor of cortical

neurons, compared to bottom-up signals (Kandel et al., 2000, Chap. 17).

Experiments in which signals are injected at different locations of the

dendritic tree of a cell have shown a great variety of nonlinear effects in

the potential at the cell soma and the initiation of axonal action potentials

(Larkum et al., 1999, 2001; Polsky et al., 2004). Based on these observations,

researchers suggest that pyramidal cortical neurons are better modelled by

a three-layer network of sigmoidal units with additive and multiplicative

interactions between them (Hausser and Mel, 2003).

To further demonstrate the importance of the effects of multiple sites of

integration, Körding and König (2001) showed that models including two

integration sites allow for biologically realistic implementation of super-

vised and unsupervised learning rules.

6.1.3 Modulatory and sensory signals are indistinguishable

A third alternative for how top-down signals could influence the process-

ing of bottom-up information is presented in Fig. 6.1C. Here, it is the global

effect of the nonlinear units that allows for complex interactions between

the different inputs that enter the system indistinguishable from each other.

This is the type of interaction implemented by the model presented in

Chapters 3 and 5.
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Fig. 6.2 shows an example of preferential representation of variables in a

feedforward network or sigmoidal units, where a attentional signal defines

which channel should be represented with higher fidelity.

Other models of attention, based on oscillations (Niebur et al., 1993)

or temporal correlations among neurons (Niebur and Koch, 1994; Tiesinga,

2005), are also consistent with this architecture. The model introduced by

Yu and Dayan (2005) provides further supports for these ideas. In their

network, a top-down signal represents prior information about location

of the stimulus, modulating additively the activity coming from neurons

that code for the log likelihood of spatial and orientation variables. Multi-

plicative effects are then achieved in further layers that represent marginal

probabilities of the variable to estimate.

Relevant to our discussion is the work by Schwabe and Obermayer

(2005) in which different mechanisms are evaluated in the context of at-

tention and perceptual learning. In this study, a biologically realistic re-

current neural model was designed to encode a visual feature (stimulus

orientation in this case) by the activity of its output units. An ideal esti-

mator was used to measure the quality of this representation, by means

of maximizing the Fisher information so that the variance of the estimate

was minimal. Different parameters of the model were varied. Optimal

values of afferent synapses, recurrent synapses, additive feedback inputs,

and gain of excitatory neurons required uniform changes over all synapses.

Only for the last mechanism the modulation of the population response to

a particular orientation was strictly multiplicative, consistent with studies

of selective attention. This suggests that changes in gain may be used by

the nervous system in order to improve representation of stimuli, and that

these changes produce a multiplicative effect in the response of neurons

involved.

6.2 The origin of attentional control signals

Where do attentional control signals come from? Without having to recur

to the idea of a homunculus sitting inside the brain and controlling every

actions, one can still determine areas involved in the control of attention.

These areas receive signals about the current stimulus as well as signals
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Figure 6.2: Allocation mechanisms in a noisy feedforward network. The output
of the second layer (L2) provides an encoded representation of the input signals.
The plots on the right panels represent the activity of each unit as a function of
time. Changes in the attentional signal produce changes in the quality of the re-
construction given by the estimator. The lower panels show how the sigmoidal
nonlinearity of the units in the first layer (L1) can produce a multiplicative effect.

representing previous stimuli, fed back from other brain regions. Some of

these control areas seem to be primarily involved in overt orienting and

saccadic control, while others represent relevant features as if implement-

ing a saliency map. Here we review experimental evidence relating these

areas to attentional processes.

The superior colliculus (SC) of the midbrain has been shown to play an

important role in the control the saccadic movements, containing cells that

code for both the destination of saccades and their timing (Liversedge and

Findlay, 2000). Descending projections into the SC come from the frontal

eye field (FEF) region and the posterior parietal cortex (PPC). Neurons in

the lateral intra-parietal (LIP) region of the parietal cortex show higher re-

sponses to behaviorally significant visual stimuli in their receptive field

compared to task-irrelevant stimuli. In comparison to neurons in FEF or

SC in which this effect depends on the execution of a saccade, the increase

in firing rate in LIP neurons does not change whether the behavioral re-
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sponse is a saccade or a bar release (Colby and Goldberg, 1999). These

observations suggest that neurons in LIP represent a saliency map, i.e. , a

topographically organized representation of the relevance of the stimuli in

the display (Gottlieb et al., 1998). Projections from area LIP to lower areas

of the visual pathway like V4, could therefore be responsible for some of

the attentional effects presented in Chapter 4.

The pulvinar, a sub-structure of the thalamus, has also been suggested

to be involved in the control of attention. Studies showed that unilateral

deactivation of the Pdm portion of the pulvinar, which projects to the PPC,

reduced the saliency of contra-lesional stimuli. Analogous results were

obtained from the lateral pulvinar (PL), which projects to areas V4 and

IT. Desimone and Duncan (1995) suggested that deactivation of the pul-

vinar may just be depriving cortex from excitatory inputs reducing visual

saliency. They argue that together with evidence that bilateral pulvinar le-

sions have no effect on the ability of monkeys to find a target embedded in

distractors, these findings indicate that the pulvinar may not have a neces-

sary role in the gating of attention.

6.3 Attention and receptive field formation

6.3.1 Receptive field formation

The classical receptive field of a neuron in the visual system is defined as the

region in which a single stimulus can evoke a response, usually measured

as a spike count. By definition, stimuli in the surrounding regions cannot

generate a response, but they can greatly modulate the response of a stimu-

lus inside the classical receptive field (Allman et al., 1985). Analogous def-

initions are also given for other sensory modalities, using the correspond-

ing feature space; for example, the space of sound frequencies for auditory

neurons. A more detailed characterization of neuronal responses requires

specifying not just the region of influence but the magnitude of the influ-

ence at each point in this region and its temporal dynamics (Dayan and

Abbott, 2001, Chap. 2).

In the primary visual cortex of primates, the receptive fields of simple

cells (cells in which contributions from different locations within the visual
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field sum linearly) can be characterized as being spatially localized, oriented

and bandpass (selective to different spatial scales), similar to the basis func-

tions of certain wavelets transforms (Field, 1994). How and when this selec-

tivity appears is still debated among researchers. In addition to genetically

determined factors, some of these properties depend on activity during de-

velopment, as has been concluded from visual deprivation experiments,

and from studies in which animals are raised with limited visual features,

for example with visual stimuli of fixed orientation (Price and Willshaw,

2000, Chap 7).

Modeling studies showed that some of the properties of simple cells

in primary visual cortex can emerge from networks trained with unsuper-

vised learning algorithms(Hancock et al., 1992; Law and Cooper, 1994), but

these early attempts failed to produce a set of receptive fields that spanned

the whole image space and contains the three properties mentioned above.

6.3.2 Sparsity constraints and redundancy reduction

Olshausen and Field (1996) showed that two global objectives together are

sufficient for receptive fields with the right properties (in this case for cells

in primary visual cortex) to emerge. The first one states that information

must be preserved, and the second one that the representation must be

sparse. They formulated the problem of searching for a sparse code as an

optimization problem where the cost function to be minimized is

E = ∑
x,y

[

I(x, y) −∑
i

ai φi(x, y)

]2

+ λ ∑
i

S(ai) (6.1)

The first term represents the error in the reconstruction of an image

I(x, y), using the basis functions φi(x, y) and the coefficients ai. The second

term represents a measure of how non-sparse the representation is. These

two terms are balanced through the parameter λ, and S(a) is a nonlinear

function like |a| or −e−a2
that gives a higher weight to coefficients with

larger magnitudes.

Similar results were obtained by Bell and Sejnowski (1997) applying

the Infomax algorithm for independent components analysis to natural im-

ages. This approach is in principle equivalent to Barlow’s redundancy re-

duction problem (Barlow, 2001).
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Figure 6.3: Non-uniform relevance produced localized preferred stimuli. The fig-
ure shows preferred stimuli for coding units in a network of 30 units in the bottle-
neck. (Top) Optimization using a sharp mask as described in Section 3.4. (Bottom)
Optimization using a flat attentional mask, i.e. , ignoring the attentional input.
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Evidence from electrophysiology confirm the predictions from these

models (Vinje and Gallant, 2000). These studies suggest that the nervous

system has the ability to adapt (either in an evolutionary long time scale, or

a developmental shorter time scale) so as to find the transformations that

allow for efficient coding of natural stimuli. These phenomena could occur

even at shorter scales, as suggested by findings of perceptual learning and

cortical plasticity in the adult brain (Gilbert et al., 2001).

6.3.3 Non-uniform relevance produces localized RFs

A feedforward multilayer network of sigmoidal units optimized to repre-

sent efficiently input patterns consisting of oriented bars, does not generate

localized receptive fields. In contrast, when information about the rele-

vance of features is added to the system, of the form described in Chapter

3, preferred stimuli for the encoding units display not only orientation se-

lectivity but also spatial preference.

Fig. 6.3 shows the resulting preferred stimuli when using a sharp atten-

tional mask compared to using a flat mask (equivalent to having no mod-

ulatory signal) for a network and stimuli analogous to those described in

Section 3.4. Only when the network makes use of the attentional signal,

localized preferred stimuli emerge in the encoding units.

These results suggest that mechanisms for selection of features may

play a role in the development of receptive fields of sensory neurons.
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Chapter 7
Allocation of resources during

active perception

Summary

With this chapter, we shift our focus to orienting phenomena

that require movement of the sensors. Here, we derive strate-

gies that a perceptual system must follow in order to perform

optimally, given particular constraints and goals. We analyze

in detail the case in which the state of multiple dynamic targets

must be estimated continuously.

Main contribution

The case of simultaneous tracking of two targets with Marko-

vian dynamics is analyzed in detail. Optimal strategies are de-

rived for different sets of parameters of the dynamics and noise

of the targets.

7.1 Perception is an active process

We don’t just see, we look. This process of actively exploring the world

around us is not limited to our sense of vision. We set our body and mind

67



Chapter 7. Allocation of resources during active perception

to listen, touch or sniff, not simply hear, feel or smell. The particulars of

this orienting process depend in great degree on the task at hand. During

these tasks, we allocate perceptual resources towards features of interest at

the expense of neglecting other features.

We can describe this perceptual actions as serving an inference process

in which we attempt to collect information about relevant variables from

a changing world. Consequently, we can argue that knowledge about the

dynamics of the stochastic process to be estimated, and the ability to as-

sign more resources to represent features of interest, can be both used to

improve statistical inference of the underlying process. The following ex-

ample relates these concepts to a real world scenario: Imagine a basket-

ball player who has to keep track of other players in the court. To do this,

he/she must decide where to look, how often to change gaze, and how to

track more than one player without having to look directly at any. Effective

gazing strategies presumably depend on the predictability and relevance

of each of the targets being tracked.

Studies of bottom-up attention, saliency and active perception (Bajcsy,

1988; Itti and Koch, 2001; Hayhoe and Ballard, 2005) have evaluated prob-

lems related to those described above, and have hypothesized that we ori-

ent our senses towards features of interest in order to maximize the gath-

ering of information relevant for a particular task. In this chapter we ap-

proach the modeling of these phenomena by evaluating different resource

allocation strategies for simultaneous estimation of two independent sig-

nals contaminated with noise.

In the simultaneous tracking task we have selected, the statistics of the

dynamics of the signals to be estimated are assumed to be known, but

the signals themselves are hidden and only noisy observations are avail-

able. Resources in our case refer to the quality of the observation, where

a constraint on the available resources sets a limit on the average quality

across channels. Results from this analysis allow for predictions of orient-

ing strategies in simple dynamic environments.

The ideas presented in this chapter also relate to the concept of bit al-

location for signal coding and compression, in which a limited number of

bits is distributed between different features (e.g. subbands) according to

their perceptual relevance and statistical characteristics (Gersho and Gray,

1992, Chapter 8).
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Figure 7.1: Two channel Markov
model. States s[k] are binary and in-
dependent between channels. The
probability distribution of the obser-
vations given the states p(x[k]|s[k]) is
Gaussian. The sum of the observa-
tion variances (noise) across chan-
nels is the same at each time k.

7.2 Optimal strategies for simultaneous tracking

Consider multiple independent noisy channels in parallel with a common

power constraint. The goal is to distribute the total power among the chan-

nels so as to minimize some error function between the original signals

and their estimates from the noisy observations. If the signals are known to

have partially predictable dynamics, an optimal strategy should presum-

ably combine prediction and power allocation.

In the following sections we describe the simple binary model for which

we evaluate the performance of an allocator/estimator over different sets of

parameters. Optimal strategies are found by exploring the parameter space

through computer simulations. We compare two different conditions for

allocation: one that requires fixing the signal-to-noise ratio (SNR) for each

channel and maintaining it during estimation, and a second one in which

SNR is dynamically reassigned at each time step according to the changing

uncertainties of the estimation for each channel. For the remainder of this

chapter we will keep the power of the signals fixed and vary instead the

noise level for each channel.

7.3 Analysis of a two-channel system

The goal in our particular setup is to estimate, at each time step, two in-

dependent binary signals each one contaminated by Gaussian noise. The

signals are generated by a Markov process with known transition probabil-

ities, and the only link between the two channels is a constraint on the total

noise of the system. The allocation problem consists of deciding how much

of the total noise should be assigned to each channel so that the average

number of errors in either channel is minimal.
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The system is illustrated in Fig 7.1. States variables si are binary and

change according to symmetric transition probability matrices Ti (a differ-

ent one for each channel). Because of this symmetry condition the system

dynamics can be described by one variable pi per channel.

si [k] ∈ {−1, 1}, i = A, B (7.1)

Ti =

[

pi 1 − pi

1 − pi pi

]

(7.2)

pi = P(si[k] = si [k−1]) (7.3)

The observations are drawn from a Gaussian distribution with mean

equal to the current state for each channel:

xi [k] ∼ N
(

si [k], σ2
i

)

(7.4)

The constraint on the noise level can be interpreted as having a common

power source, or a constant total signal-to-noise ratio, and it is given by:

σ2
total = σ2

A + σ2
B (7.5)

We will refer to the ratio between noise variances as θ:

θ =
σ2

A

σ2
B

(7.6)

Inference of the state (for each channel) at each time k is done by calcu-

lating the maximum a-posteriori (MAP) estimate for the individual state,

given the observation sequence:

ŝi [k] = arg max
q∈{−1,1}

P(si [k] = q | xi[0], . . . , xi[k]) (7.7)

= arg max
q∈{−1,1}

P(si [k] = q, x̃i [0], . . . , x̃i [k])

P(x̃i[0], . . . , x̃i [k])
(7.8)

Here we have used x̃i [k] instead of xi[k] so we can write down expres-

sions for the observations as probability mass functions. The variables x̃i [k]

can be interpreted as discretized versions of the observations, and are only

70



Chapter 7. Allocation of resources during active perception

used for describing the algorithm, which is unaffected by this approxima-

tion. Since the marginal of the observations does not affect the maximum,

the problem can be solved by finding the joint probability between the state

at time k and the observation sequence. This value corresponds to the for-

ward variable α[k] described by Rabiner (1989). In vector form we have:

αi [k] =

[

P(si [k] = −1, x̃i[0], . . . , x̃i[k])

P(si [k] = 1, x̃i [0], . . . , x̃i[k])

]

(7.9)

=
ᾰi [k]

∑q ᾰi[k](q)
, q = −1, 1 (7.10)

ᾰi [k] = Ti αi [k−1] ⊙ f (xi [k], si [k], σ2
i ) (7.11)

with ᾰi [0] = πi ⊙ f (xi [k], si [k], σ2
i ) (7.12)

Here, ⊙ denotes the element-by-element (or Hadamard) product, πi is a

2-element vector that represents the initial state probabilities, and f (x, s, σ2)

is a 2-element vector containing the likelihood (for each possible state) that

the sample x came from the Gaussian distribution defined in eq. (7.4).

The estimation method described here maximizes the expected number

of correct individual states by choosing the most likely state at each time

step for each channel. Other optimality criteria imply different methods,

e.g., the Viterbi algorithm (Forney, 1973) finds the single best state sequence

for a given observation sequence. In this study, we will focus only on the

individual state MAP estimate described above.

Our goal is to evaluate the performance of this estimation method for

different allocation strategies. Since we are interested on simultaneous

tracking of the two channels, we measure performance by calculating the

average number of time steps in which errors occur in either channel:

Ē = E {ŝA[k] 6= sA[k] ∨ ŝB[k] 6= sB[k]} (7.13)

where E{·} represents the expectation over time. A lower Ē indicates

better performance.
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Figure 7.2: Fixed allocation. Average error as a function of noise ratio θ. Each
panel presents results for a given SNR using one pA and many pB. The dotted line
corresponds to the performance of an estimator that ignores the dynamics of the
signals. Gray areas around the curves represent the standard error of the mean of
the measurements.

7.3.1 Fixed allocation

In the fixed case, we want to find the constant ratio θ that minimizes the

average error Ē , given the system parameters and total noise power:

θ∗ = arg min
θ=σ2

A/σ2
B

Ē (7.14)

One way to solve this problem is to derive an expression for the proba-

bility of making an error when estimating the states P(ŝi [k] 6= si [k]) at each

time step k for each channel i, calculate the expectation over time of errors

made in either channel, and then solve the minimization problem either an-

alytically or by numerical methods. We took instead an empirical approach

in which we simulated the system for fixed values of pi and σ2
total, and find

the value of θ that gives minimal error. Results for different noise ratios θ

were compared to the performance achieved by an estimator that assumed

the process to be white and ignored the dynamics of the system.

The system was simulated using the fixed allocation method for differ-

ent transition probabilities and three SNR scenarios (σ2
total = 0.5, 1, 2). The

average error was measured following eq. (7.13) as we varied the noise ra-

tio θ. Results for pA = 0.9 are shown in Fig. 7.2. This figure includes the

performance given by an estimator that assumes a white process, i.e., an es-

timator that ignores the dynamics of the system and simply sets a decision

boundary at xi[k] = 0.

For each total noise level we obtained a different behavior. In low SNR
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shows the value of θ that produced the minimal average error. The right panel
shows the difference between the optimal error and the error achieved when both
channels were assigned the same amount of noise.

(right column of Fig. 7.2) the best strategy was to assign most resources to

one of the channels and to guess (estimate with very high observation noise)

the other one. The curves confirm the intuition that more resources (lower

variance) should be assigned to the least predictable channel.

In contrast, when SNR is high, there is a non-extreme ratio at which the

error is minimum. This ratio depends on the relative values of the tran-

sition probabilities as shown in the left panel of Fig. 7.3. Results imply

that when both channels have identical dynamics it is optimal to split the

resources equally across the channels, which is not the case when SNR is

low. The right panel of Fig. 7.3 shows the difference between the error ob-

tained with θ = 1 and the minimal error. The improvement in performance

when using the optimal ratio is lower than 1% for the transition probabili-

ties shown here. This result implies that, when the SNR is high, it may not

be worth trying to find the optimal allocation ratio, but simply distributing

resources equally across channels.

7.3.2 Dynamic allocation

Many strategies for dynamic allocation could be considered. Here we ex-

plore one in which the ratio is changed at each step according to the relative

uncertainties of the two channels. In this case, we define the certainty of our

estimate as:

ci[k] =
∣

∣

∣
0.5 − αi [k]

(1)
∣

∣

∣
(7.15)
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Figure 7.4: Dynamic allocation. Average error as a function of exponent φ. Each
panel presents results for a given SNR using one pA and many pB.

where αi[k]
(1) corresponds to the first element of the joint probability vector

αi[k] for channel i at time k. The value of ci[k] represents how close to 1 is the

probability of being in one state, indicating a level of certainty about that

estimate. An alternative would be to use the inverse of the entropy of each

channel. Given these certainty values, we set the ratio at each time step as:

θ[k] =
σ2

A [k]

σ2
B [k]

=

(

cA[k−1]

cB[k−1]

)φ

(7.16)

And we want to find the optimal exponent:

φ∗ = arg min
φ

Ē (7.17)

The exponent φ enables a non-linear relation between the certainty ratio

and the noise ratio at the next time step . Note that this function includes

the case in which the noise ratio is always 1 (ignoring the certainties) and

the case in which resources are completely moved from one channel to the

other at each time step.

The dynamic allocation method was evaluated using similar parame-

ters to those for the fixed case but using instead the exponent φ as the ab-

scissa, and calculating the ratio θ[k] at each time step. Results for pA = 0.9

and three SNR scenarios are shown in Fig. 7.4.

For high SNR (σ2
total = 0.5), performance remained almost constant as

we varied the exponent φ, tending to be lower for high values of φ. For

low SNR, the curves indicate that a better performance was achieved as

we increased the exponent. This implies that even for very small differ-

ences between the certainties on state estimates, we should assign all re-
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Figure 7.5: Example of dynamic allocation. Top two panels show the states and
soft-estimates of channels A and B. Soft-estimates represent the probability of be-
ing in a particular state scaled to the range [−1, 1]. Bottom panel displays the
(normalized) amount of noise assigned to channel A at each time step.

sources to only one channel, that one with lower certainty. Thus, according

to eq. (7.16), a higher variance is assigned to the channel with higher cer-

tainty.

The extreme case as the exponent increases gives rise to a strategy in

which resources are completely shifted from one channel to the other at

each time step. This is illustrated in Fig. 7.5, which shows an example of

the dynamic estimation procedure for φ = 20, pA = 0.9, pB = 0.8 and

σ2
total = 2. Note the alternating behavior of the allocated variance σ2

A .

7.3.3 Comparing fixed vs. dynamic strategies

In addition, we compared the performance of fixed and dynamic strategies,

and find those condition in which one was more advantageous than the

other. For pA = 0.9, we calculated the minimal error achieved with each

method and plotted them as a function of pB in Fig. 7.6.
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Figure 7.6: Performance comparison between fixed and dynamic allocation meth-
ods. All curves are calculated for pA = 0.9. Error bars correspond to the standard
error of the mean.

For high SNR, performance for both methods is very high and relatively

similar. In this case the error is already low enough, leaving no space for

improvement. For low SNR, in contrast, there are significant differences

in performance from both methods and a clear region in which dynamic

allocation is better. This implies that in cases when the dynamics of both

channels is very similar, it is better to switch from one channel to the other

at each time step (best dynamic strategy) than giving all resources to only

one channel and guess the other (best fixed strategy). For this particular

case, the average error was lowered by 5%.

7.3.4 Discussion

The modeling results described above suggest that strategies for allocat-

ing resources in simultaneous tracking tasks depend on the uncertainties

of the targets to be estimated. These uncertainties are defined by the in-

trinsic dynamics of the targets and by the observation noise. These results

may depend on the particular cost function of the task, and further work is

necessary to determine if strategies for constraints different to those eval-

uated here differ significantly. The assumptions made when defining the

allocation and estimation algorithm, will be discussed in the remainder of

this section.

For the simulations presented above, we used an estimation procedure

that was not derived from the general optimization problem described ini-

tially, since a slightly different error measure was used. We limited our-
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selves to find the optimal noise ratio for a given estimator, but a more gen-

eral goal would be to devise a theory that encompasses both estimation and

allocation. The estimation method used here was selected for its simplicity

and low storage requirements and because the quantities it relies on relate

directly to concepts of uncertainty and confidence of the estimates.

One of the motivations for approaching the problem of resource allo-

cation is to derive theories that predict strategies for active perception. In

this context, the noise constraint of a common power source (total sum of

variances) may not be appropriate. In the case of vision, for example, there

may be a complex function that describes how the quality of the observa-

tion depends on gaze angle.

This study proposed a dynamic allocation method that uses a measure-

ment of certainty to derive the noise ratio at each time step. The method

was based on the idea that it is advantageous to give more resources to un-

certain targets since they are harder to predict. This is clearly not the only

dynamic method and further work is necessary in order to find a general

solution for the optimization problem over the space of possible dynamic

strategies. Furthermore, the dynamic solution described here does not take

into account the cost of reassigning resources. It could be the case that

switching back and forth between channels gives the lowest error, but it is

so expensive (in term of energy consumption or other constraints) that it

becomes a suboptimal solution.

We assumed perfect knowledge of the dynamics of the signals to be es-

timated. Further work is necessary to evaluate the robustness of the fixed

and dynamic allocation strategies when parameters are not known accu-

rately. Furthermore, the allocation problem should be stated in a learning

framework in which estimation of the parameters is done simultaneously

(perhaps at a slower time-scale) than estimation of the signals. Some re-

searchers have investigated similar ideas in the context of competitive allo-

cation of learning between stimuli according to their relative uncertainties

(Dayan et al., 2000).

Finally, an analytical solution for the optimal noise ratio may provide

further insight on the effects of the different system parameters (total sys-

tem noise and relative predictability of the signals) on performance. An

empirical approach, like the one used here, may miss some of these details

due to the limited sampling of the parameter space.
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7.4 Concluding remarks

This chapter described an empirical evaluation of different strategies for

distributing noise across parallel Gaussian channels in order to minimize

signal estimation error. Noise levels were constrained by a total minimum

system noise, and estimation of the transmitted signals was performed by

finding the most probable input given the history of noisy observations.

The allocation strategies benefited from the knowledge about the dynamic

properties of the signals to be estimated.

Optimal strategies with respect to the error measure defined here de-

pended on the total amount of system noise, giving qualitatively different

results for low and high SNR. For a fixed allocation case and low SNR, the

best strategy is to give most resources to the least predictable channel. For

high SNR, performance can be slightly improved by choosing a noise ratio

close to 1. When allowing dynamic allocation at each time step, the best

strategy was to rapidly switch between the channels. This strategy, com-

pared to the fixed allocation case, significantly increased performance for

low SNR cases when both channel had similar properties.
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Psychophysics of active

perception

Summary

Perception is an active process in which sensors are oriented in

a task-dependent fashion. This chapter presents experiments

that evaluate overt strategies used by humans when immersed

in dynamic environments.

Main contribution

We present original results from eye-movement measurements

during simultaneous tracking tasks. We show that selected strate-

gies depend on the relative uncertainty on the targets, consis-

tent with predictions from the previous chapter.

In this chapter we measure and compare allocation strategies used by hu-

man subjects under conditions analogous to those modelled in the previous

chapter. Strategies were inferred from eye-movement measurements taken

while subjects performed simultaneous-tracking tasks where targets had

different levels of uncertainties. The term “simultaneous” is used to em-

phasize that the task requires all targets to be estimated correctly, but the

display was designed in such a way that eye-movements were required,
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Figure 8.1: Head mounted eye-
tracking system and display. Two
noisy Gabor patterns were displayed
at the top and bottom of the screen
separated by a distance that pre-
cluded their simultaneous identifica-
tion, requiring eye-movements.

and changes in covert attention alone would not be sufficient for correct

identification of the targets. The uncertainty of such targets was varied by

changing both, their dynamics and their noise level.

8.1 Experimental methodology

Task. Six naı̈ve subjects, 21-31 yrs of age, with normal or corrected-to-

normal vision, were required to play a video-game in which they simulta-

neously tracked the state of two targets. The targets did not change posi-

tion during the experiment but their state, represented by their orientation,

changed randomly according to Markovian dynamics. In each trial, sub-

jects had to report the last state of both targets once they were occluded

by a mask at a random time at the end of the trial. Subjects were given

feedback on the correctness of their answers by scoring 20 points if both

targets were estimated correctly for that trial, 3 points if only one of them

was correct, and 0 points for errors in both targets. The total score was

also displayed at the end of all trials in one condition. Seven conditions

(Table 8.1), each one composed of 20 trials, were recorded for each subject.

Subjects were allowed to practice the task for one session composed of 20

trials. No recordings were made during this session.

Targets. The target patterns were two-dimensional Gabor images oriented

either vertically or horizontally, contaminated with uniformly distributed

noise (Fig. 8.1). Targets were positioned at the top and bottom of the screen

at a distance of 13.8 degrees of visual angle, which precluded their simul-

taneous identification and required the subject to make eye-movements.

Two different signal-to-noise ratios (SNR) were used throughout the exper-

iment. High SNR conditions had noise uniformly distributed in the range

±10% of the peak value of the Gabor image. The low SNR condition had

noise in the range ±60%. These correspond to SNR values of 10.6 dB and -5
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Cond 1 2 3 4 5 6 7

PA 0.9 0.6 0.6 0.9 0.9 0.9 0.6
PB 0.9 0.9 0.6 0.6 0.9 0.9 0.6

SNR 10.6 dB -5 dB

si [k] ∈ {Horiz, Vert}
i = A, B
Pi ≡ P(si [k+1] = si [k])

Table 8.1: Seven experimental conditions were evaluated. They differed either in
SNR, regulated by the amount of noise added to the target images; or in the dy-
namics of the targets, defined by the probability of each pattern to keep its current
orientation on the next time step.

dB respectively. The target states changed independently for each channel i

according to symmetric Markovian dynamics defined by the parameter Pi.

This value represents the probability that the state will stay the same on the

next time step (Table 8.1). Time steps had a duration of 200 ms. All subjects

were given exactly the same trials but in random order and with different

masking times. Before each condition, subjects were allowed to view the

targets changing as they would do for that condition, and the experiment

only started when subjects considered they had enough knowledge about

the target dynamics.

Measurements. Eyes position was measured throughout each trial using

a head-mounted EyeLink II eye-tracker system (SR Research Ltd., Ontario,

Canada). This system measured the position of the center of the pupil at

a sampling rate of 500Hz. Fig. 8.2 shows an example of the collected data.

Full-field calibration was performed before each condition. Center calibra-

tion was performed before each trial, forcing the subject to start the trial by

fixating in the middle of the display. Data were recorded for both eyes, but

only data from the dominant eye of each subject were used for analysis.

The display. Stimuli were displayed in a 19” standard computer monitor

with equal brightness and contrast conditions in all sessions. Targets had

a size of 1.2° and were separated (center-to-center) by 13.8°. Subjects were

sitting at a distance of 74 cm, measured from their eyes to the display.

8.2 Results

The first observation from the behavioral measurements is the effect of

training on the performance of the subjects. Average scores over all sub-
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Figure 8.2: Example of eye-movements for one subject. The left panel shows eye-
positions for one trial. The right panel shows the histogram of positions for all
trials of condition 1 pooled together.

jects are shown in Fig. 8.3. As expected, performance was lower for those

conditions in which targets had faster dynamics, e.g. , condition 3. When

more noise was added to the targets (low SNR condition), performance de-

creased with respect to the last high SNR conditions, but did not change

significantly when targets were made faster. This effect can be explained

by the particular strategies chosen by the subjects, as described below.

8.2.1 Changing strategies according to target dynamics

To test if subjects changed allocation strategies depending on the dynamics

of the targets, we compared conditions where both targets had the same

probability of changing state, against conditions in which one target was

more probable to change. Fig. 8.4 illustrates this analysis for conditions 1,

2, 3, and 4, 5, 6. Allocation of resources was measured as the difference

between times spent in each target during all trials in a particular condi-

tion. Positive or negative values indicate that the subject spent more time

looking at the top or bottom targets, respectively. The two top panels show

averages over all subjects for the high SNR conditions. Both targets had the

same dynamics parameters for conditions 1, 3, 5, and different for condi-

tions 2 and 4. From these plots, we observe a clear preference for looking

more often at the top target, independent of target dynamics. The first

comparison, centered around condition 2, shows no effects when changing
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Figure 8.3: Average scores across subjects. Mean and standard error are shown for
each condition. The maximum score possible was 400 points. Chance predicts an
average score of 130, while estimating one target perfectly and guessing the other
would give an average score of 230 points.

the dynamics of the targets. In contrast, the second comparison (around

condition 4) shows that subjects changed strategy when the bottom target

became more uncertain, giving more resources to this channels when com-

pared to previous conditions. The strategy changed back to the previous

level when both targets had again the same dynamics (condition 5). All

subjects reported being aware of the targets having different dynamics for

conditions 2 and 4.

8.2.2 Changing strategies according to noise level

In order to test changes in strategies depending on the level of noise added

to the target images, we compared conditions that had the same target dy-

namics for high and low SNR. Fig. 8.5 first compares conditions 5 and 6,

both of which have targets changing slowly and were performed one after

the other. The figure also shows a comparison for conditions 3 and 7 where

targets changed faster. The comparison differs from that in the previous

section in that the index measured is not a difference in time spent between

top and bottom targets, but a difference in time spent looking at one pre-

ferred target defined by the strategy on each trial. This way, if the subject

spends one whole trial looking at the top target and another trial looking

at the bottom target, the first index will give equal allocation whereas the

second index will indicate a bias for one target, independent of which one

it is. This new index was higher for lower SNR, indicating that in low SNR
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Figure 8.4: Strategies for different dynamics. The top panels show the average
difference in time spent looking at the top vs. the bottom target. Positive values in-
dicate that the subject spent more time on the top target. The bottom panels show
the differences between these indexes for consecutive conditions. Late conditions
(right panels) show an clear effect not observed in early conditions (left panels).

subjects tend to focus mostly on one target and briefly check the other one.

8.3 Discussion

A comparison of the allocation of resources under different conditions sug-

gest that: (1) Learning has a significant effect on the selected strategies and

performance for naı̈ve subjects. (2) Selected strategies depend on the rela-

tion between dynamics of the targets to track. (3) Selected strategies de-

pend on the level of noise of the targets.

The scores presented in Fig. 8.3 indicate that when targets are noisy, the

dynamics of targets does not have a strong influence on performance. This

can be attributed to a strategy in which the subjects has to spend most of

the time following closely one target, estimating its state correctly, while

assigning almost no time to the other target, and simply guessing its state.

Results also indicate that subjects achieved a higher score in condition 7

(low SNR) than condition 3 (high SNR). This counter-intuitive result is ex-

plained by the effect of training in subjects as can be verified by comparing

the performance in conditions 5 and 6, for which the effects of learning are

minimized since they are evaluated in succession.
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Figure 8.5: Strategies for different noise levels. The index plotted here measures
the time spent on the preferred target. This index is independent of which target
is preferred and was calculated for each trial before averaging. The bars indicate
mean and standard error across subjects comparing conditions with different noise
levels.

The comparison between allocation strategies from conditions 3, 4 and

5 show a clear change in the time allocated to each target. On average, sub-

jects did not give more resources to the fast-changing target as expected

from the model, but changed from a biased condition, preferring the top

target, to a balanced condition in which time was allocated also to the fast-

changing bottom target. When the same analysis was performed for condi-

tions 1, 2 and 3, no clear changes where observed. This results may be due

to the conditions being too early in the experiment. In addition, the bias

towards the top target makes assignment of more resources less likely.

Changes in strategy when comparing different SNR scenarios (Fig. 8.5)

are consistent with the results from the model, which suggested a tendency

to increasingly focus on only one target as the noise increased (Section

7.3.1).

8.4 Concluding remarks

Researchers have previously evaluated eye-movement strategies during vi-

sual search using static displays (Liversedge and Findlay, 2000; Najemnik

and Geisler, 2005). The task and measurement presented here extend these

approaches by providing a simple way of evaluating allocating strategies

in dynamic environments. This approach allows for the characterization of

overt orienting for different levels of uncertainty in the targets to be esti-

mated.
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Conclusions

Summary

In this chapter we summarize the contributions from previous

chapters and evaluate their implications to our current under-

standing of orienting phenomena, selective attention and the

neural code. In addition, we suggest future experiments in or-

der to test the predictions derived earlier, and we propose ex-

tensions of the models with the purpose of providing additional

predictions.

We have investigated orienting phenomena, not only of our peripheral sen-

sors, but also of what we could call the mind’s senses. The latter do not re-

quire physical movement, yet improve our performance at detecting and

discriminating features of interest entering the senses. Our exploration in-

cluded both a description of the phenomena at the behavioral level, and a

characterization of the changes in neuronal activity associated with covert

and overt orienting. We proposed general principles that can be imple-

mented by neural architectures and that both generate novel predictions

and account for experimentally observed phenomena. We went further

and tested some of these predictions by measuring eye positions during si-

multaneous tracking tasks. These principles, derived from optimal coding

and estimation from noisy observations, were presented in a framework
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of resource allocation. Under this framework, we argue that the nervous

system has the ability, at many levels, to reassign the function of its hard-

ware in order to improve performance on the task at hand, at the expense

of decreased processing of irrelevant features.

9.1 Contributions and implications

The work presented in this dissertation extends the characterization of ori-

enting phenomena and suggests a relation between selective attention and

the development of neuronal selectivity. This section summarizes the vari-

ous contributions derived from this work and evaluates their implications

on our current understanding of orienting systems.

(a) Uneven allocation of resources emerges as a natural property of a sys-

tem that encodes its input efficiently under non-uniform constraints.

In contrast to systems in which resources are fixed and encoding units

assigned to irrelevant features are simply ignored, a system that allows

for reallocation of its resources has the advantage of improving per-

formance by using these otherwise-neglected resources. These alter-

natives resemble early and late selection theories, both of which have

found supporting evidence. Our work suggests that if the neural hard-

ware allows for a reallocation of the resources, early selection is likely

to occur, with the amount of change in allocation being dependent on

the existing mechanisms and the task itself. For instance, it is not ex-

pected that the primary visual cortex suddenly starts processing audi-

tory stimuli when these become more relevant than their visual coun-

terpart, but studies suggest that neuronal selectivity to features like

color can change depending on relevance (Motter, 1994). In addition,

as tasks become more demanding, changes are observed in both be-

havioral measurements and neuronal activity (Spitzer et al., 1988). In

summary these results suggest that allocation of resources is a ubiq-

uitous phenomena to be expected in any neural system wherever the

mechanisms allow it, with performance improvement being a strong

evolutionary force demanding the existence of these mechanisms.

(b) In a neural circuit, a set of modulatory inputs that enter the system

in a fashion indistinguishable from other signals can generate an ef-
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fect analogous to allocation of resources. This is one of the alterna-

tive mechanisms the nervous system may use to implement contextual

modulation of sensory processing, and implies that, in some cases, local

anatomical information may not be sufficient to discriminate modula-

tory from sensory inputs. However, learning to associate modulatory

inputs to different cost functions depending on the task may require a

differentiation between sensory and contextual inputs. Presumably the

nervous system required both phenomena to evolve in parallel, sug-

gesting that a mechanism that allows for both modulation and learning

may be most advantageous.

(c) In a neural architecture, optimal coding under non-uniform fidelity

requirements is sufficient to generate the firing rate modulation ob-

served during selective attention experiments. This type of modula-

tion is therefore expected in most neural systems for which the evo-

lutionary pressure of improving performance has developed mecha-

nisms for finding efficient coding strategies. These changes in activity

can be interpreted as the signature of resource allocation at the neuronal

level, and play an important role in the characterization of neuronal re-

sponses.

(d) Optimal coding principles provide a unified framework for attention

and receptive field formation. Neuronal selectivity and orienting phe-

nomena are intricately related and probably evolved together. There-

fore, there must be common principles underlying their seemingly-

unrelated mechanisms.

(e) An investigation of the modulation of neuronal activity by selective

attention suggests that the traditional characterization of neuronal re-

sponses is incomplete and possibly inadequate. Our results suggest

that the stimulus that maximally drives a neuron depends on the atten-

tional state of the subject, and that the separability between neuronal

responses and attentional modulation needs to be reevaluated. In this

respect, we come to realize that characterizing a neuron for a particular

attentional state does not seem to be sufficient to predict the neuron’s

response for a different attentional state. The appropriate characteriza-

tion of neuronal responses that takes into account population coding

and contextual modulation remains as an important open issue.
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(f) The principles proposed above predict a clear relationship between

the magnitude of attentional modulation and the capacity of a sys-

tem. Simulation results suggest that stimuli of high complexity (with

respect to the available system’s resources) produce stronger modula-

tions. These phenomena resemble those from experiments in which

competing stimuli were necessary to observe attentional modulation

(Motter, 1993). At the behavioral level, an analogous relation between

perceptual load and the effect of distractors has already been demon-

strated (Lavie, 2001).

(g) Lastly, using similar principles for the analysis of overt orienting in

dynamic environments, we predicted that resource allocation strate-

gies would depend on the uncertainty of the stimuli of interest. These

predictions were confirmed by experiments in which humans were re-

quired to simultaneously estimate the state of multiple changing tar-

gets. The results of these experiments demonstrate that different track-

ing strategies are used depending on the dynamics of the targets and

noise levels. In particular, in an array of features with equal relevance,

those features that are less certain require more resources when the cost

of estimating them erroneously is very high. In comparison to the phe-

nomena evaluated in the first part of this dissertation, here the task

itself, and the selected strategy, set the relevance of different features of

the display. These examples of active perception are consistent with the

hypothesis that attention serves to reduce perceptual uncertainty, and

provide tools for predicting the behavior of orienting systems.

9.2 Future work

The introductory chapter presented some of the remaining questions re-

lated to orienting phenomena at both behavioral and neuronal levels. We

have chosen to focus, in the first part of this dissertation, on the relation

between selective attention and the neural code, suggesting various prin-

ciples and models. These principles and their implementations generated

a set of predictions that require experimental support. Here we propose

some of these experiments. In addition, we suggest extensions of the anal-

ysis that will provide further predictions.
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The resource allocation hypothesis predicts a reduced effect of distrac-

tors when attention is highly focused. The magnitude of this effect depends

on the complexity of the stimulus relative to the capacity of the system. Ev-

idence from behavioral and brain imaging studies (Lavie, 2005) exist, but

there is a lack of electrophysiological measurements of single cells or small

populations of cells that test this predictions (Section 5.3). Currently avail-

able techniques can be used to perform experiments in which the mag-

nitude of the attentional modulation of neuronal activity is measured as

perceptual load is varied.

Models that implement the coding principles discussed in this disserta-

tion in a more realistic fashion will provide further predictions regarding

the contextual modulation of neural processing and the characterization

of neuronal response. Examples of models that take advantage of more

detailed neurobiology are presented by Tiesinga (2005) and Schwabe and

Obermayer (2005) for particular stages of the visual pathway. While the

former study focuses on the particular mechanism of “gain modulation by

inhibitory interference”, the latter evaluates different mechanisms under

a general coding principle. Optimal coding under non-uniform relevance

could be evaluated in a similar fashion under more realistic neural archi-

tectures that include, for example, plasticity at short time scales and spike-

timing information.

Some experiments have found that the stimulus eliciting maximal re-

sponse in a neuron does not change with attention (McAdams and Maun-

sell, 1999), whereas other studies found changes in the preferred stimulus

(Motter, 1993; Connor et al., 1997). New experiments must be designed to

evaluate under which conditions and for which modalities these changes

are observed. Analysis of these experiments should explore the separabil-

ity of sensory processing and modulatory effects, by evaluating if atten-

tional modulation of activity under some stimuli can be predicted from

modulation under different stimuli. Emphasis must therefore be given not

only to new measurements, but to the fashion in which responses are char-

acterized. In visual neurons, for example, traditional methods that define

classical receptive fields and tuning curves may be insufficient. New char-

acterizations should place the activity of the neurons in a framework of

population coding, and take into account the separability (or not) between

modulatory effects and sensory processing.
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The experiments and models discussed in the last part of the disserta-

tion evaluated the relationship between orienting and the uncertainty of

the targets. This evaluation did not take into account situations in which

the task sets a different relevance to each feature, as it was assumed in

the first chapters of this dissertation. Further experiments should evalu-

ate changes in strategies when non-uniform relevance is required, and an-

alytical solutions for the optimal strategies when these requirements are

included should be derived.

9.3 Final remarks

The work presented in this dissertation demonstrates that principles of op-

timality account for behavioral as well as neuronal phenomena related to

orienting systems and selective attention.

With the use of theoretical and computational methods to complement

experimental measurements, we are approaching comprehensive answers

to longstanding questions concerning the neurobiology of attention. These

new explanations take us one step further towards the understanding of

the neural code and how the nervous system guides behavior.
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APPENDIX

A.1 Example of patterns used in simulations

The images above correspond to 24 example patterns with the same statis-

tics as those used for training and testing the model described in Chapters

3 and 5. Images are scaled between −1 (black) and 1 (white).
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A.2 Backpropagation of modified error

xk: input to network, unit k yk: output of network, unit k

zj: output of unit j wji: weight from unit i to unit j

Neuron model: zj = g(aj) = A tanh(B aj) (1)

aj = ∑
i

wji zi (2)

Error function: Ep =
1

2 ∑
k

ck(yk − xk)
2 (3)

Etotal = ∑
p

Ep (4)

Error gradient:
∂Ep

∂wji
=

∂Ep

∂aj

∂aj

∂wji
=

∂Ep

∂aj
zi (5)

Output units: δk ≡
∂Ep

∂ak
= g′(ak)

∂Ep

∂yk
(6)

g′(ak) =
B

A
[A − g(ak)][A + g(ak)] (7)

∂Ep

∂yk
= ck(yk − xk) (8)

Hidden units: δj ≡
∂Ep

∂aj
=

∂Ep

∂zj

∂zj

∂aj
=

∂Ep

∂zj
g′(aj) (9)

∂Ep

∂zj
= ∑

k

δkwjk (10)

Learning rule: ∆wji = −η δjzi (11)
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A.3 Additional studies

The work included in this dissertation covers a selection of studies related

to resource allocation in the nervous system, developed at the Brain &

Computation Lab. Parts of this research project have been published in dif-

ferent forms, including conference and journal papers (Jaramillo and Pearl-

mutter, 2004b,a, 2006b,c,d).

During my time as a PhD candidate, I was involved in various other

studies which, while not directly related to orienting systems or selective

attention, represent a significant portion of my research background. In

order to maintain a smooth flow in the topics covered in this manuscript,

these additional studies have not been included in detail, and they are in-

stead briefly summarize below.

A.3.1 Brightness Illusions as Optimal Percepts

This study showed that Mach bands and a number of other low-level bright-

ness illusions can be accounted for by assuming that our perceptual sys-

tem performs simple Bayesian inference using a Gaussian image prior with

noisy retinal gangion cells (Pearlmutter and Jaramillo, 2003a; Jaramillo and

Pearlmutter, 2006a).

A.3.2 Blind Source Separation of MEG data

In an early study, we evaluated the apparent modulation of the visual

evoked response by oscillations in the alpha band. A blind source sep-

aration algorithm was applied to magnetoencephalographic signals, and

resulting components that localized to the occipital lobe were analyzed. A

model composed of independently generated background oscillations and

evoked responses replicated the modulation observed in the latency of the

responses (Pearlmutter et al., 2001).

In a later review study, we described the application of a Second-Order

Blind Identification (SOBI) algorithm to magnetoencephalographic data.

The manuscript focused on the advantages of this method for extracting

artifacts and improving the localization of brain activity (Pearlmutter and

Jaramillo, 2003b).
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A.3.3 Time-frequency analysis of MEG data

The Center for Neuromagnetism (CNM) at New York University School of

Medicine is a research facility dedicated to the study of cognitive processes

through the use of noninvasive functional brain imaging techniques like

magnetoencephalography (MEG). While working at CNM, I was involved

in various projects in which Independent Component Analysis algorithms

were applied to magnetoencephalographic data, and the resulting compo-

nents were further localized and analyzed in the time, frequency and time-

frequency domains.

One of these studies characterized the dynamics of sources associated

with an audio-motor reaction-time task. Motor components showed (1)

early increases in theta power in response to onset of auditory stimulus

and (2) a stimulus induced suppression of alpha and beta power followed

by a resychronization in alpha, beta and gamma bands. In addition, phase

locking to stimulus at theta and gamma frequency bands was observed

(Moran et al., 2004).

In a different study, we evaluated the location and dynamics of sources

related to somotasensory and motor processes. By comparing three tasks:

one mostly motor, one mostly tactile, and one involving both, we were able

to distinguish features that corresponded to each of these processes. With

this information, we were able to segregate single trials into motor or so-

matosensory given the MEG signals alone (Jaramillo et al., 2004).
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