
Fairness and Convergence Results for Additive-Increase
Multiplicative-Decrease Multiple-Bottleneck Networks

Richard H. Middleton, Christopher M. Kellett, and Robert N. Shorten

Abstract— We examine the behavior of the Additive-Increase
Multiplicative-Decrease (AIMD) congestion control algorithm.
We present a variant of a recently proposed matrix model
that allows us to obtain previous results for competition via
a single bottleneck link. We then extend these results to the
case of multiple bottleneck links paying particular attention
to some aspects of fairness and convergence properties for
multiple bottleneck systems. We examine both the synchronous
(deterministic) and asynchronous (stochastic) cases. A simple
simulation example illustrates the results.

I. INTRODUCTION

Traffic generated by the Transmission Control Protocol
(TCP) accounts for 85% to 95% of all traffic in today’s Inter-

net [1]. TCP, in congestion avoidance mode, is based primar-

ily on Chiu and Jain’s [2] Additive-Increase Multiplicative-
Decrease (AIMD) paradigm for decentralized allocation of

a shared resource (e.g., bandwidth) among competing users.

The AIMD paradigm is based upon a network of users

who independently compete for the available resource by

using two basic strategies; each user probes for its share

of the available resource by gradually utilizing more and

more of the resource (the additive increase stage), and then

instantaneously down-scales its utilization-rate in a multi-

plicative fashion when notified that capacity has been reached

(the multiplicative decrease stage). With some minor mod-

ifications, the AIMD algorithm has served the networking

community well over the past two decades and it continues to

provide the basic building block upon which today’s internet

communication is built.

The dynamics of communication networks in which the

AIMD algorithm is deployed have been studied extensively

from an empirical viewpoint in the networking and computer

science community, and more recently from a mathematical

perspective in the mathematics literature; for example, see

[3], [4], [5], [6], [7], [8], [9], [10] and references therein.

In these papers, some fundamental properties of networks

that utilize the AIMD algorithm have been established. For

networks where the resource constraint is a bound on the

sum of the resource shares of the users, basic stability

and convergence properties have been determined, both in

a deterministic and in a stochastic setting. In particular,

it has been shown that (with a fixed number of users)

R.H. Middleton is with the ARC Centre for Complex Dynamic Systems
and Control, The University of Newcastle, Callaghan NSW, 2308, Australia.
E-mail: Rick.Middleton@newcastle.edu.au.

C. M. Kellett and R. N. Shorten are with the Hamilton Institute,
National University of Ireland, Maynooth, Co. Kildare, Ireland, and are
supported by Science Foundation Ireland Grant 04/IN3/I460. E-mails:
chris.kellett@nuim.ie and robert.shorten@nuim.ie.

such networks possess unique stable equilibria to which the

system converges geometrically from all starting points.

However, the original AIMD algorithm, as proposed by

Chiu and Jain, was based upon a number of assumptions

that are generally not valid in real network scenarios. In

particular, these include the notion that all sources compete

for bandwidth in a single bottleneck scenario. Recently, a

number of authors have reported that in such circumstances,

AIMD dynamics can lead to network oscillations. In this con-

text our primary interest here is to derive results that describe

the behavior of AIMD networks in a quantifiable manner

in multiple-bottleneck networks. We note that a number of

network models have already been proposed in the literature

that purport to capture the essential dynamics of AIMD

networks. Roughly speaking, two modeling approaches can

be discerned; (i) models based upon fluid approximations of

network behavior [8], [11]; and (ii) linear algebraic models

that take into account the multi-modal behavior of AIMD

networks [9], [12]. While both of these approaches success-

fully accommodate single bottleneck scenarios, extensions

to networks with multiple congested routers have not been

straightforward. In particular, the linear algebraic models

proposed in the literature have failed to deliver results in

multiple-bottleneck scenarios. The main contribution of this

note is to present a variant of a recently proposed matrix

model that allows us to derive results which predict a degree

of fairness in resource allocation between flows that compete

directly with each other; even in the presence of network

oscillations.

II. MATHEMATICAL FRAMEWORK

The general problem setup that we consider follows that

of [9]. Throughout this paper, we consider a set of ns

AIMD sources, flowing through a network with multiple

bottlenecks. We assume that each AIMD source has (ef-

fectively) an infinite amount of data, and therefore will

always alternate between an additive increase, followed by

the source detecting congestion, resulting in a multiplicative

decrease phase. Let Z≥0 denote the nonnegative integers. We

denote the (ordered) set of times at which congestion occurs

at any node by tk, k ∈ Z≥0. We assume that the sequence

tk does not contain any accumulation points1. We shall

return to this assumption later to give conditions sufficient

to guarantee that this is the case.

We denote by xi(k) ∈ R
+ the flow rate of the ith source

at the kth congestion event. Denote the additive increase

1In other words, we wish to rule out the possibility that an infinite number
of congestion events occur in an arbitrarily short time.

Proceedings of the 45th IEEE Conference on Decision & Control
Manchester Grand Hyatt Hotel
San Diego, CA, USA, December 13-15, 2006

WeIP10.2

1-4244-0171-2/06/$20.00 ©2006 IEEE. 1864

Authorized licensed use limited to: The Library NUI Maynooth. Downloaded on January 11, 2010 at 05:05 from IEEE Xplore. Restrictions apply.

and multiplicative decrease parameters of the ith source by

αi ∈ (0,∞) and βi ∈ (0, 1) respectively. We assume that

the additive increase parameter is small enough compared to

the total number of packets in the network that the additive

increase phase is effectively continuous. We ignore network

and queueing delays in this model framework.

We assume that the network consists of nn nodes, labeled

j = 1, 2, . . . , nn, and that each flow originates with a source,

i ∈ {1, 2, . . . , ns} and passes through a set of nodes Ni ⊂
{1, 2, . . . , nn}. Also, denote by Ωj ⊂ {1, 2, . . . , ns} the set

of flows that pass through node j. We assume that each node

has a total capacity, Bj > 0, and that the node capacity

constraints can be expressed as:

Bj ≥
∑
i∈Ωj

xi(k);∀j ∈ {1, 2, . . . , nn}, k ∈ Z≥0. (1)

Suppose that (1) is satisfied at the kth congestion event.

Then for all times after the previous congestion event,

leading up to the current event (that is for t ∈ (tk−1, tk)),
all flows will be in their additive increase phase. It therefore

follows that their maximum over this time interval is at tk,

and therefore if the constraints are satisfied at all congestion

events, then they must also be satisfied at all intervening

times.

To simplify the notation, we denote the

stacked vector of source flows by XT (k) :=[
x1(k) x2(k) · · · xns

(k)
]

then note that the

constraints (1) can be expressed in vector form as:

Bj ≥ LT
j X(k);∀j ∈ {1, 2, . . . , nn}, k ∈ Z≥0 (2)

where Lj is a vector with ith element unity if the ith flow

includes node j, and zero otherwise; that is, (Lj)i = Ij∈Ni .

We make the following assumption on the flows:

Assumption 1: All flows include at least one node. That

is:

Ni �= ∅ : ∀i ∈ {1, 2, . . . , ns}. (3)

Note that Assumption 1 implies that the constraints (2)

form a compact set. More specifically, under Assumption 1

there exists2 an Xmax ∈ (0,∞) such that for all X(k) in

the positive orthant satisfying (2), we have:

‖X(k)‖2 ≤ Xmax. (4)

At the kth congestion event, we assume that at least one

node is congested. We denote by J(k) ⊂ {1, 2, . . . , nn} the

set of nodes congested at tk, that is; J(k) = {j : Bj =
LT

j X(k)}.

A. Synchronous Traffic

In the synchronous traffic case, we assume that all flows

that include a congested node experience congestion. In

practice, this would mean that all flows through a congested

link would have a packet dropped. This may be a reasonable

assumption in some cases such as: where the flows are at

least somewhat fair (that is, no flows experience a much

smaller share of the available bandwidth than the average);

2For example, it suffices to take Xmax =
√

ns maxj{Bj}.

or, the total number of packets dropped by routers at each

congestion event is large compared to the number of flows

through the router (for example, if the product of the packet

data rate and round trip time is large compared to the number

of flows).

Note that in this case, using our model framework, it

is straightforward to show that a congestion event at time

tk in node j causes a drop in flow in node j from

Bj =
∑

i∈Ωj
xi(k) to

∑
i∈Ωj

βixi(k). Thus the total

decrease in flow in node j is
∑

i∈Ωj
(1 − βi)xi(k) ≥(

1 − maxi∈Ωj{βi}
)
Bj . Since the rate of increase of flow

through node j is at most3
∑

i∈Ωj
αi, it follows that the

minimum time between congestion events for node j is at

least Bj

(
1−maxi∈Ωj

{βi}
P

i∈Ωj
{αi}

)
. Furthermore, since there are a

finite number of nodes (each of which has a nontrivial lower

bound on the time between successive congestion events),

there cannot be any accumulation points in congestion times.

For the case of synchronous traffic, the model we adopt

for the recursion is given by:

X(k + 1) = Aj(k)X(k) + UT (k) (5)

where U is a stacked vector of the additive increase param-

eters U =
[

α1 α2 · · · αns

]T
; T (k) = tk+1 − tk is

the time between congestion events given by:

T (k) = max
T :Bm≥Lm(Aj(k)X(k)+UT);m=1,2,...nn

{T}; (6)

and Aj denotes a diagonal matrix with ith element given by:

(Aj)ii =
{

βi : i ∈ Ωj

1 : otherwise

}
. (7)

In other words, when node j experiences congestion, all

flows which transit node j (i.e., all flows in Ωj) reduce their

flow rate as βixi(k), while flows not crossing node j are

unaffected and continue to increase their rates.

Note that in this case, it is straightforward to show that the

time between congestion events is bounded. In particular, if

we let α = mini{αi} and take any X̄ > Xmax, then using

(5), T (k) > X̄/α implies ‖X(k+1)‖ > X̄ which contradicts

(4).

B. Asynchronous Flows

In this case, we no longer assume that when a node is

congested, that all flows experience congestion (i.e., not all

flows are notified that the node is congested). Rather, at

random, one or more flows will experience congestion. In

this case the model of (5) becomes more complex, since the

appropriate A matrix is no longer a deterministic function

of the congested node, j(k). For simplicity, we follow the

model framework of [9] wherein the probabilities associated

with whether or not source i experiences congestion is

independent4 of other sources and is given by λi. More

3Since a congestion event at a node other than node j may cause some
flows through node j to decrease.

4Here the independence is both serially in time and between different
flows.

45th IEEE CDC, San Diego, USA, Dec. 13-15, 2006 WeIP10.2

1865

Authorized licensed use limited to: The Library NUI Maynooth. Downloaded on January 11, 2010 at 05:05 from IEEE Xplore. Restrictions apply.

complex models that take into account the dependence of the

probability of detecting congestion on the relative fraction of

the total flow can be developed. A detailed analysis of such

models is substantially more complex due to the nonlinear

nature of the models. However, in the case of independent

drop probabilities, the equivalent model to (5) becomes:

X(k + 1) = AkX(k) + UT (k) (8)

where Ak is a diagonal random matrix with elements given

by

Ak(ii) =
{

βi w.p. λi for i ∈ Ωj(k)

1 otherwise

}
.

Under the assumption above on independence of the prob-

abilities in the elements of Ak, from (8) we can show that

the expected value of X(k) (denoted E{X(k)}) satisfies the

recursion:

E{X(k + 1)} = A′
kE{X(k)} + UE{T (k)} (9)

where A′
k is a constant diagonal matrix with elements β′

i =
1 − λi + λiβi for i ∈ Ωj(k).

III. SINGLE BOTTLENECK ANALYSIS

Before addressing the multiple bottleneck case, we first

review some existing results (see for example [9]) on the

single bottleneck case. If there is a single bottleneck, it

must restrict all flows, that is, L is a vector of all unity

elements. Otherwise, any flows not restricted would grow

without bound.

A. Synchronous Single Bottleneck

For synchronous flows with a single bottleneck, the model

(5) simplifies to:

X(k + 1) = AX(k) + UT (k) (10)

where A is diagonal with ith element Aii = βi. T (k) can

be computed as the duration required to achieve the capacity

constraint LT X(k + 1) = B, that is, T (k) := B−LT AX(k)
LT U

.

Define5

T ∗ :=
B

LT (I − A)−1U
and X∗ := (I − A)−1UT ∗.

Further, define error coordinates E(k) := X(k) − X∗ and

∆(k) := T (k) − T ∗. Then we can re-write (10) as:

E(k + 1) = AE(k) + U∆(k) (11)

Now ∆(k) = −LT A
LT U

E(k) and therefore, we can re-write

(11) as:

E(k + 1) =
(

A − ULT A

LT U

)
E(k) (12)

We now perform a diagonal state transformation, with

D = diag{√αi/βi}. Then if we define V T :=[√
α1

√
α2 . . .

√
αn

]
, it can be shown that we have

D−1U = A
1
2 V ; LT AD = V T A

1
2 and LT U = V T V .

Therefore, with F (k) := DE(k) we have:

5X∗ here is closely related with the Perron eigenvector given in [13,
Theorem 2.1].

F (k + 1) = A
1
2

(
I − V V T

V T V

)
A

1
2 F (k) (13)

It then follows from (13) that6

‖F (k + 1)‖ ≤ ‖A‖‖F (k)‖ = max{βi}‖F (k)‖.
As βi ∈ (0, 1) for all i, this implies that F (k) converges

exponentially to the origin. Consequently, X(k) converges

to X∗.

B. Asynchronous Single Bottleneck

Similarly, if we consider the asynchronous flows case, then

A′
k in (9) becomes the constant matrix A′ = diag{β′

i}, and

(9) becomes:

E{X(k + 1)} = A′E{X(k)} + UE{T (k)}. (14)

Then by direct extension of the analysis in Section III-A

(or from [9]), if we define

T ∗′ =
B

LT (I − A′)−1U
and X∗′ = (I − A′)−1UT ∗′,

then E{T (k)} converges exponentially fast to T ∗′ and

E{X(k)} converges exponentially fast to X∗′.

IV. PARALLEL FLOWS

In this section, we wish to consider aspects of the behav-

ior of more general network configurations. One particular

aspect of more general, multiple bottleneck networks, is to

consider the behavior of ‘parallel’ flows. Here we define

parallel flows as flows that pass through an identical set

of congested nodes. In other words, flows i1, i2, . . . , ip are

parallel if and only if:

Ni1 = Ni2 = · · · = Nip
=: Np (15)

Recall that Ni is the set of nodes through which flow i
passes.

We would argue that some measure of fairness between

parallel flows is necessary (though not sufficient) for overall

network ‘fairness’. In particular, users might at least expect

relative fairness with other users who share identical routes,

even if it is not possible to simply quantify or ensure

‘fairness’ in relation to users having different paths and

destinations.

A. Synchronous Parallel Flows: Time Averages

Consider first the simple case where we have synchronous

flows modeled by (5) and (6), where some of the flows

i1, i2, . . . , ip are parallel in the sense of (15). In this case,

define a selection vector Ep ∈ R
p×ns as:

Ep =

⎡
⎢⎢⎢⎣

eT
i1

eT
i2
...

eT
ip

⎤
⎥⎥⎥⎦ (16)

6This is slightly weaker than is possible, but suffices for the main
properties we wish to show.

45th IEEE CDC, San Diego, USA, Dec. 13-15, 2006 WeIP10.2

1866

Authorized licensed use limited to: The Library NUI Maynooth. Downloaded on January 11, 2010 at 05:05 from IEEE Xplore. Restrictions apply.

where ei denotes the ith elementary vector. Define Xp(k) =
EpX(k) as the subflows at the kth congestion event. We now

consider the evolution of Xp(k). For this subsection, without

loss of generality, we assume that for all k, congestion occurs

on one of the nodes in the parallel flow7. In this case, using

(5) and (16), the recursion for the subflows becomes:

Xp(k + 1) = ApXp(k) + UpT (k) (17)

where Up := EpU and Ap := EpAip
ET

p are independent of

which node within Np is congested.

Note that we cannot apply the same analysis as in the

previous section since, due to the presence of flows outside

the parallel grouping, we cannot calculate the time between

congestion events. However, we can make the following

claim:

Claim 2: Consider any set of parallel flows. Take any U⊥
p

orthogonal to Up; that is, U⊥
p Up = 0. Suppose that either of

the following conditions hold:

βi1 = βi2 = · · · = βip
=: βp (18)

or

lim
k→∞

T (k) = T∞ (19)

then

lim
k→∞

(
U⊥

p (I − Ap)Xp(k)
)

= 0. (20)

Proof: Note that in either case, from (17) that:

Xp(k) = Ak
pXp(0) +

k−1∑
�=0

Ak−1−�
p UpT (�). (21)

The first term in (21) decays exponentially fast to zero, so

it remains to evaluate properties of the remaining term.

First, suppose that (18) holds. Then it follows that Ap =
βpI , A�

p = β�
pI , and U⊥

p (I − Ap)−1 = 1
(1−βp)U

⊥
p . Using

these facts along with (21) and ignoring initial conditions

gives:(
U⊥

p (I − Ap)Xp(k)
)

= (1 − βp)U⊥
p Xp(k)

= (1 − βp)U⊥
p Up

k−1∑
�=0

βk−1−�
p T (�)

= 0 (22)

Alternatively, suppose that (18) is not assumed to hold,

but that instead (19) holds. In this case we note first that as

k → ∞, again ignoring initial conditions:

Xp(k) =
k−1∑
�=0

Ak−1−�
p UpT (�)

=
k−1∑
�=0

Ak−1−�
p UpT∞ +

k−1∑
�=0

Ak−1−�
p Up(T (�) − T∞)

→ (I − Ap)−1UpT∞

7Note that if this is not the case, then none of the subflows are congested,
and as far as the subflows are concerned, we simply ignore this congestion
event. This cannot happen indefinitely since otherwise the subflows would
become unbounded.

and the result follows immediately.

In other words, under the conditions stated in Claim 2,

the states converge to a one dimensional subspace aligned

with (I − Ap)−1Up (the Perron eigenvector in [9, Theorem

2.1]) which has ith element (1−βi)−1αi. Note however, that

this does not apply in general (i.e., in the absence of (18) or

(19)). However, the following is true:

Claim 3: Consider any set of parallel synchronized flows,

(17), subject to Assumption 1, then

lim
K→∞

(
1
K

k0+K∑
k=k0

U⊥
p (I − Ap)Xp(k)

)
= 0. (23)

Proof: First, take summations of (17) to give:

1
K

k0+K∑
k=k0

Xp(k + 1) =

Ap
1
K

k0+K∑
k=k0

Xp(k) + Up
1
K

k0+K∑
k=k0

T (k). (24)

Then we can rearrange (24) to the form:

(I − Ap)
1
K

k0+K∑
k=k0

Xp(k) =

1
K

(Xp(k0) − Xp(k0 + K + 1)) + Up
1
K

k0+K∑
k=k0

T (k). (25)

Multiplying (25) from the left by U⊥
p and taking the

limit as K → ∞ gives the desired result in view of the

boundedness of Xp(k).
Remark 4: By operating in terms of expected values, the

extension to stochastic networks defined in Section II-B is

immediate. We defer detailed discussion of this to Section

IV-C after we have given some interpretations of Claim 3.

We first note that in the case where the states do converge,

Claim 3 immediately gives the following corollary.

Corollary 5: Consider any set of parallel synchronized

flows, (17), subject to Assumption 1 and suppose that Xp(k)
converges to a limit denoted by Xp(∞). Then

U⊥
p (I − Ap)−1Xp(∞) = 0. (26)

Remark 6: Since Claim 3 holds for any set of synchro-

nized flows, including any pair of flows, it represents a kind

of average inter-flow fairness. The time average of the peak

flows represented in Xp(k) lies on a given ray from the

origin. Moreover, for any flows � and m that are parallel,

take U⊥
p as a vector with all elements zero, except the �th

element 1/α� and the mth element −1/αm. We then have the

long term time average (which we denote with an overbar;

i.e., fk := limK→∞ 1
K

∑K
k=0 fk):

(
1 − β�

α�

)
(X(k))� −

(
1 − βm

αm

)
(X(k))m = 0 (27)

and therefore, provided the appropriate time averages exist,

(27) implies(
1 − β�

α�

)
(X(k))� =

(
1 − βm

αm

)
(X(k))m. (28)

45th IEEE CDC, San Diego, USA, Dec. 13-15, 2006 WeIP10.2

1867

Authorized licensed use limited to: The Library NUI Maynooth. Downloaded on January 11, 2010 at 05:05 from IEEE Xplore. Restrictions apply.

As an aside, we note that the basic result of Claim 3 can

be generalized to models that allow for a nonlinear decrease

but maintain an additive increase as follows:

Corollary 7: Consider an Additive Increase, Nonlinear

Decrease (AIND) process with parallel flows that obey the

recursion:

Xp(k + 1) = f(Xp(k)) + UpT (k) (29)

where Xp(k) satisfies (4). Then for any U⊥
p orthogonal to

Up:

lim
K→∞

(
1
K

k0+K∑
k=k0

U⊥
p (Xp(k) − f(Xp(k)))

)
= 0. (30)

Proof: (29) can be rewritten as:

Xp(k)− f(Xp(k)) = Xp(k)−Xp(k + 1) + UpT (k). (31)

Summing (31) gives:

k0+K∑
k=k0

(Xp(k) − f(Xp(k))) =

Xp(k0) − Xp(k0 + K + 1) + Up

k0+K∑
k=k0

T (k). (32)

Multiplying (32) from the left by U⊥
p , dividing by K, and

taking limits gives the desired result.

B. Synchronous Parallel Flows: Ensemble Averages

Because the rest of the network can influence the detailed

behavior of a set of parallel flows, even in the synchronous

case, it is not possible to guarantee that the parallel flows

converge. The results in Section IV-A give time average

results that apply in this case. Here we give some results for

ensemble averages for the synchronous parallel flow case.

To facilitate this analysis, we note that in the previous

approach, the capacity constraint (1) can be thought of as

a “router view” of congestion. An alternate approach is to

consider what bandwidth constraint a group of parallel flows

will see at congestion. We observe that this bandwidth will

vary depending on both which node is congested as well

as how much capacity is being used by other flow groups.

As such, the capacity constraint seen by any individual

flow group will be random and time-varying. Using Ip to

denote the pth parallel flow group, we can write the capacity

constraint at congestion as

Bp(k) =
∑
i∈Ip

xi(k); ∀k ∈ Z≥0. (33)

Note that Bp(k) is necessarily bounded by the minimum

capacity link traversed by the flow group Ip.

We make the following assumption:

Assumption 8: The process Bp(k) is a stationary random

process; i.e., there exists a finite real number B̄p > 0 such

that E{Bp(k)} = B̄p.

Using the previous vector notation, at congestion we have

LT
p Xp(k + 1) = Bp(k + 1), (34)

where Lp is a vector of dimension |Ip| consisting of all ones.

Taking expectations on both sides, and using the evolution

equation (17) we obtain

LT
p (ApE{Xp(k)} + UpE{T (k)}) = B̄p. (35)

Similar to the analysis in the single bottleneck case (Sec-

tion III), we can compute the expected time between con-

gestion events as E{T (k)} = T̄ ∗ = B̄p

LT
p (I−Ap)−1Up

and the

expected flow rate E{Xp(k)} converges exponentially (via

the same arguments in Section III-A) to:

X̄∗
p = (I − Ap)−1UpT̄

∗. (36)

Remark 9: It is important to note here that we not only

characterize the asymptote but also the dynamics of the

process. Convergence to the equilibrium state is exponential

and bounds on the rate of convergence can be derived. It

is also important to note that the dynamics of the second

moment can be expressed in a similar manner to the above

analysis.

From a practical viewpoint, it may well be that we do

not know the expected value of the bandwidth; i.e., we will

not know B̄p. However, the above analysis does indicate

how parallel flows will share available bandwidth within the

parallel group. For example, if all flows in the group have

the same increase and decrease parameters, the (unknown)

bandwidth will be shared equally on average.

C. Asynchronous Parallel Flows: Ensemble Averages

We now consider the more general model framework of

Section II-B, that allows randomness in determining which

flows experience lost packets at a congestion event. In this

case, by the same arguments as in Claim 3, applied to (9),

we obtain:

lim
K→∞

1
K

k0+K∑
k=k0

U⊥
p (I − Ap)E {Xp(k)} = 0. (37)

Furthermore, if the process is ergodic, then (37) simplifies

to:

U⊥
p (I − Ap)E {Xp(k)} = 0. (38)

V. EXAMPLES

Example 1: Consider the network topology depicted in

Figure 1. Here, C1 = 2.5 units and C2 = 5 units.

This arrangement gives rise to a constraint surface that is

polyhedral in nature. Drops at congestion are generated so

that all nodes contributing to congestion are informed of

congestion; namely, x1 and x2 are informed every time

a node is congested, whereas x3 is informed only when

node N2 is congested. The network was simulated for 2000

seconds.

Here α1 = α2 = α3 = 1 and β1 = 0.5, β2 = 0.75, and

β3 = 0.9. It follows from Claim 3 that X̄(k)1 = 2 X̄(k)2.

This is immediately confirmed from the simulation results

depicted in Figure 2.

Example 2: Consider again the network topology depicted

in Figure 1. Drops at congestion are generated at each node

45th IEEE CDC, San Diego, USA, Dec. 13-15, 2006 WeIP10.2

1868

Authorized licensed use limited to: The Library NUI Maynooth. Downloaded on January 11, 2010 at 05:05 from IEEE Xplore. Restrictions apply.

1x

3x2x

1C
2C

1N 2N

Fig. 1. Two node, thee flow scenario

0 100 200 300 400 500 600 700 800
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

k [events]

tim
e

av
er

ag
ed

 s
ta

te

Fig. 2. Predictions of Claim 3: Synchronized network

according to fixed probabilities (uniform for every source

utilizing the constraint). Again, the flows x1(k) and x2(k)
are parallel flows in this scenario. In this simulation we

observe limK→∞ 1
K

∑K
k=0 Xi(k), i ∈ 1, 2 over the first 1600

congestion events.

0 200 400 600 800 1000 1200 1400 1600
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

k [events]

tim
e

av
er

ag
ed

 s
ta

te

Fig. 3. Predictions of Claim 3: Stochastic network

We see from Figure 3 that

lim
K→∞

1
K

K∑
k=0

X1(k) ≈ 2

(
lim

K→∞
1
K

K∑
k=0

X2(k)

)
,

which is in complete agreement with Claim 3 and the

associated remarks.

VI. CONCLUSIONS

In this paper we have extended work on the analysis of

some AIMD multiple bottleneck systems, based on fairness

and convergence analysis such as in [9] for the single

bottleneck case. For the multiple bottleneck case, it is known

that convergence does not hold in general. However, by

introducing the concept of parallel flows for flows that

experience an identical set of bottleneck nodes, we are able

to establish results for average fairness amongst parallel

flows. These results imply directly that when the flows do

converge, parallel flows must satisfy a form of fairness

directly analogous to those of [9]. The results have been

pursued in both the synchronous and asynchronous cases,

and are illustrated by a simple simulation study.

REFERENCES

[1] Z. Hhoa, S. Darbha, and A. Reddy, “A method for estimating
the proportion of nonresponsive traffic at a router”, IEEE/ACM
Transactions on Networking, v. 12, pp. 708-718, 2004.

[2] D. Chiu and R. Jain, “Analysis of the Increase/Decrease Algorithms
for Congestion Avoidance in Computer Networks”, Journal of Com-
puter Networks v. 17, pp. 1-14, 1989.

[3] A. Berman, R.N. Shorten, and D.J. Leith, “Positive matrices asso-
ciated with synchronised communication networks”, Linear Algebra
and its Applications, v. 393, pp. 47-54, 2004.

[4] F. Kelly, A. Maulloo, and D. Tan, “Rate control in communication
networks: shadow prices, proportional fairness and stability”, Journal
of the Operational Research Society, v. 49, pp. 237-252, 1998.

[5] J. Hespanha, S. Bohacek, K. Obrarzka, and J. Lee, “Hybrid modeling
of TCP congestion control”, Hybrid Systems: Computation and
Control, pp. 291-304, 2001.

[6] A. Leizarowitz, R. Stanojevic and R.N. Shorten, “Towards an analysis
and design framework for communication networks with Markovian
dynamics”, IEE Proceedings on Control Theory, Accepted for pub-
lication, 2006.

[7] U.G. Rothblum and R.N. Shorten, “Convergence results for high-
speed TCP”, Submitted to SIAM Journal of Control and Optimiza-
tion, 2005.

[8] R. Srikant, “The Mathematics of Internet Congestion Control”,
Birkhauser, 2003.

[9] R.N. Shorten, F. Wirth and D.J. Leith, “A Positive Systems Model
of TCP-like congestion control: asymptotic results”, IEEE/ACM
Transactions on Networking, v. 14, pp. 616-629, 2006

[10] F. Wirth, R. Stanojevic, R.N. Shorten, and D.J. Leith, “Stochastic
equilibria of AIMD communication networks”, SIAM Journal of
Matrix Analysis, Accepted for publication, 2006.

[11] S.H. Low, F. Paganini, and J.C. Doyle, “Internet Congestion Control”,
IEEE Control Systems Magazine, pp. 28-43, February 2002

[12] F. Baccelli and D. Hong, “Interaction of TCP flows as billiards”, in
Proceedings of INFOCOM, 2003.

[13] R.N. Shorten, D.J. Leith, J. Foy, and R. Kilduff, “Analysis and design
of AIMD congestion control algorithms in communication networks”,
Automatica, v. 41, pp. 725–730, 2005.

45th IEEE CDC, San Diego, USA, Dec. 13-15, 2006 WeIP10.2

1869

Authorized licensed use limited to: The Library NUI Maynooth. Downloaded on January 11, 2010 at 05:05 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

