Proceedings of the 45th IEEE Conference on Decision & Control
Manchester Grand Hyatt Hotel
San Diego, CA, USA, December 13-15, 2006

WelP13.8

Results Towards Identifiability Properties of Biochemical Reaction Networks

Marcello Farina, Rolf Findeisen, Eric Bullinger,
Sergio Bittanti, Frank Allgéwer, Peter Wellstead

Abstract— In this paper we consider the question of parame-
ter identifiability for biochemical reaction networks, as typically
encountered in systems biology. Specifically, we are interested
in deriving conditions on the biochemical reaction network and
on the measured outputs that guarantee identifiability of the
parameters. Taking the specific system structure of biochemical
reaction networks into account, we derive sufficient conditions
for local parameter identifiability based on a suitable system
expansion which does not anymore directly depend on the
parameters. Rather, as shown, the problem of identifiability
can be recast as the question of observability of the (parameter
free) expanded system. The conditions derived are exemplified
considering a simple example.

Index Terms— Chemical reaction networks, identifiability,
parameter identification, systems biology.

I. INTRODUCTION

The last decades have seen rapid advancements in the
understanding of biological behaviour on a sub-cellular and
cellular level. These advancements are part-wise driven by
developments in proteomics, genomics, and measurement
technologies. This rapid advancement has lead to a signifi-
cant increase in knowledge, data, and information available
on the sub-cellular and cellular level. However, by now it has
become clear that the identification of single components,
such as genes or proteins does not lead to a complete
picture and understanding of the biological processes in-
volved. Instead, a holistic understanding requires a systems
approach including mathematical modelling and analysis.
This awareness has lead to the research direction of systems
biology [12], [24].

One of the central themes in systems biology is the
mathematical modelling, dynamic simulation, and analysis
of metabolic and signal transduction pathways. Typically, the
modelling based on biochemical reaction networks leads to
a high number of states and differential equations, with a
large number of parameters describing the reaction kinetics.
Examples are models of signalling cascades which have up
to several hundred states and even more parameters, see for
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example [21] for a specific example with about 120 states,
or [27] for an overview.

Often, the parameters are either completely unknown,
or only rough estimates for them are available. Since the
behaviour and dynamics of the network strongly depend on
these parameters, estimating them from experimental data is
a significant bottleneck in systems biology. Theoretically as
well as practically, there are many open questions concern-
ing the parameter identification for biochemical networks,
spanning from the rather large measurement errors typically
encountered in systems biology, the typical lack of reliable
dynamical measurement data, up to the question of parameter
identification of continuous time systems.

We consider the problem of parameter identification from
a systems perspective. Taking the specific system structure of
biochemical reaction networks into account, we derive suffi-
cient conditions for local parameter identifiability based on
a suitable system expansion. The presented results should be
seen as preliminary results, laying a theoretically sound basis
for the development of new identification methodologies for
biochemical reaction networks.

The paper is structured as follows. In Section II we outline
the problem of parameter identification for chemical reaction
networks and review the current state of the art. In Section III
we state the main result, giving sufficient conditions for local
parameter identifiability for chemical reaction networks. As
shown, the results are based on a suitable system expansion
and considering the problem of identifiability as the question
of local observability of the expanded system. Section IV
shows the application of the results to the question of
parameter identifiability in the case of a simple example
system, before we conclude in Section V.

II. PARAMETER IDENTIFICATION FOR CHEMICAL
REACTION NETWORKS: STATE OF THE ART

We are interested in the question of parameter identifi-
cation and identifiability for biochemical reaction networks.
Typically, biochemical reaction networks are described in
terms of the n dimensional state vector ¢ € R™ of con-
centrations of the species taking part in the reactions:

¢ = Nuv(c,0). (H

Here N € R™ " is the so called stoichiometric matrix,
where 7 is the number of reactions taking place. For each
reaction, v : R™ x RP — R" describes the reaction rate. Here
0 € RP are the (unknown) reaction parameters. Typically, the
reaction rate is a nonlinear function of the concentrations and
of the parameters. Classical examples are the well known
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Michaelis-Menten kinetics, the Hill kinetics, and simple
expressions in terms of the so-called mass action law, see
e.g. [5] for an introduction. In the following we will focus
on kinetics described by the mass action law. One of the
reasons for this is that many kinetics, such as the Michaelis-
Menten kinetics, can be derived from the mass action law
by limit considerations. Additionally, as will become clear,
considering the special structure of kinetics described by the
mass action law allows us to reformulate the system in a way
which makes it especially suitable for identification purposes.
Especially it allows considering the identification problem as
an observation problem of an expanded state vector.

Kinetics following the law of mass action actually assume
that each reaction rate vy appearing in the chemical pathway
is given by a term proportional to the concentrations of the
reacting species and a rate constant y, i.e.:

vk =0k [ e )
=1

Here the constants 7;; are integers representing the stoi-
chiometric amount of the species ¢ taking part in the k-th
reacting complex. For instance, 1, = 0, if species 4 is not
a substrate of reaction k. For an overview on mass action
reaction networks and their properties see for example [10],
[4].

Remark 1: In Section III we need a special “factorisation”
of the stoichiometric matrix N similar to the one used in [9],
which is, as will become clear, particularly useful to stress
the linear dependency of the system on the parameters.
Specifically, the entries in V are split in positive and negative
entries, i.e. entries which are positive are placed into the
output stoichiometric matrix Ny € R™*", whereas negative
entries are collected in the input stoichiometric matrix N, €
R™*" such that

N:Nout*]vin- (3)
Note that for mass action law kinetics the input stoichiomet-
ric matrix is given by

NIF =i, 4)

where 7y ; corresponds to those of (2). A non-zero entry at
(i,7) in Ny, thus corresponds to the fact that species ¢ is
consumed by reaction j.

The main objective of this paper is to derive conditions
under which the parameters 6 of (1) can be identified from
measurements as typically available in systems biology. In
the paper we assume that the outputs used for the parameter
estimation are of the form:

y = h(c,v).

Typically, linear functions of the concentrations and the
reaction rates as outputs are consistent with biological ex-
periments. This is also good for theoretical considerations,
since it simplifies the identification problem, avoiding, for
example, output multiplicities. Thus we restrict the class of
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outputs to linear combinations of the concentrations or of the
reaction rates:

Al

Remark 2: In general, the matrices H, and H, can have
an arbitrary structure. However, in experiments often single
concentration, or reaction rates are measured. Thus, the rows
of the matrices H, and H, are normally vectors having only
one non-zero element.

As outlined in the following, identifying the parameter from
the available data is a challenging problem, theoretically as
well as practically.

(5a)

A. Challenges and review of existing approaches for param-
eter identification of chemical reaction networks

In biological system modelling, parameter estimation is
commonly achieved using global search algorithms, see
e.g. [15], [7].

Beside the high demand on computation power, global
approaches give usually neither a guarantee of convergence
nor a measure of how close their solution is to the optimal
approximation. Partial solutions are local identifiability anal-
yses [28] or algebraic approaches [1], which only work in
very low state dimensions.

There is therefor a need of developing identification algo-
rithms that take into account the specificities of biochemical
reaction network models to provide estimates with error
bounds and that can be applied to the typical size of several
hundred concentration and reaction rates.

The problem of parameter identification in systems de-
scribing the behaviour of chemical reactions networks is
a very peculiar and challenging problem. The problem of
identification of nonlinear continuous time systems is, in fact,
an issue which has not commonly been explored (see, for
example, [26] and [22]), as well as for nonlinear systems
with fixed non canonical structure, see [17], [11], [18], [19].
For example, when dealing with systems that are not in an
observer normal form, or which are not in some kind of
an external representation, there exists no general solution
to the problem by now. In addition, the data available are
generally sampled, and there are (experimental) big con-
straints on which specific variables can be measured. Last,
one condition we generally need to satisfy in order to achieve
the property of practical identifiability is the possibility to
excite the system with a given input signal. In the biological
framework, the possibility offered of exciting the system with
sufficiently rich inputs is typically very limited.

Several efforts have addressed the posed problem. The
most common approach used in literature makes use of the
Prediction Error Minimisation method (PEM). This approach
has been adopted both in more practical-oriented works (see
[3], [25]) and in a more theoretical framework. In fact, the
problem of experimental design have been deeply treated
(see, for example [13], [2], [6], and others) and several
conditions based on optimisation related to the Fisher matrix
(arising from the Cramer-Rao inequality theory (see [14]))
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have been proposed. Solutions of the experimental design
problem are normally given through numerical calculation,
and are not closely related to the structure of the system.

Furthermore, the solution of the global optimisation prob-
lem arising from posing the PEM problem is also given
by numerical optimisation algorithms. Several different op-
timisation methods have been compared [16], obtaining the
results that global gradient-based methods, deterministic and
stochastic strategies can in general not guarantee optimality
of their solution. Furthermore such methods do not give any
condition to assess existence of a unique minimum of the
cost function.

An approach based on assumptions of optimality of bi-
ological systems has been recently proposed [8], which
provides a powerful and biologically consistent method.
From a mathematical point of view, this approach, however,
does not guarantee the solution to be equal to the "ideal"
parametrisation of the real system model, and it does not
provide structural conditions assessing identifiability.

In the frame of this paper, we set out to provide at least
partial answers to the appearing problems. Especially, we
focus on the problem of deriving identifiability conditions
for biochemical reaction networks.

III. LOCAL IDENTIFIABILITY OF CHEMICAL REACTION
NETWORKS

In this section we derive conditions that guarantee local
identifiability of biochemical reaction networks based on a
time-varying linearisation along system trajectories. The idea
is based on a suitable system expansion, allowing to refor-
mulate the problem in terms of the fluxes and concentrations
solely. The results obtained should be seen as preliminary in
nature.

We assume for simplicity that

Assumption 1: Concentrations and parameters are strictly
positive.

Remark 3: This assumption is common in modelling and
analysing biochemical reaction networks. We do not go
into details under which conditions positivity of (1) can be
guaranteed starting in the positive state space.

Assuming that Assumption 1 holds, we can derive for the
class of biochemical reaction networks modelled by mass
action laws as described in Section II the following result.

Theorem 1: Under Assumption 1 the system (1) is equiv-
alent to the expanded system

d lc| | fe(v)
i lo] = i) (o
with
fe(v) = N, (6b)
fule,v) = diag(v) NI (diag(c)) " No. (6¢)

Furthermore, identification of the parameters 6 of (1) based
on the outputs (5) is equivalent to observability of (6).
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Proof: (of Theorem 1)
We first expand (1) with a trivial differential equation for the
parameters
¢ = Nv(c; 0)
. (7
0=0.
Combining the mass action law with the definition of the
input stoichiometry leads to:

v = diag(0) exp (Njf log (¢)), (®)

where log(-) and exp(-) are element-wise operators. Apply-
ing the logarithm operator to (8) yields

log (v) = log (8) + N;. log (c). )

Finally, taking the derivative with respect to time leads to

(diag(v)) "o = NI (diag(c)) ¢,
as the parameters ¢ are constant. This allows to transform (7)
into the equivalent system description (6). ]

Remark 4: The expanded system (6) has n + r states
and is formulated in terms of the concentrations and flows.
Furthermore, the parameters # do not appear explicitly any-
more. They are rather “hidden” in the initial condition of the
reaction rate v. One advantage of the description (6) is that
usually biological experiments measure certain concentra-
tion, the sum of different species concentration and/or certain
reaction rates. Then, the output is simply a linear mapping
of the states. Classically, the measurement of reaction rates
leads to output nonlinearities. Here, the corresponding out-
puts are also linear functions of the states.

The main advantage of using this approach is that the
problem of identification can be cast as a pure observation
problem, i.e. the question of identifiability is transfered to the
question of observability of (6). Thus, a suitable observer for
the expanded system would estimate both the initial species
concentration ¢ and thus the parameters 6.

This observation is captured by the following result:

Theorem 2: If along a trajectory (¢,v) = (¢(t), v(t)), the
linearisation of (6) with the output (5) is observable, then the
parameters 6 of (1) can be locally identified from the output
measurements (5).

Proof: (of Theorem 2)
According to Theorem 1, the question of parameter iden-
tifiability of (1) via the output (5) is equivalent to the
observability of (6) via the output (5). Following [23], [20]
local observability of (6) is equivalent to observability of the
(time varying) around a trajectory linearised system. [ ]

The following result states the importance of excitation of
the system.

Corollary 1: A necessary condition for observability is
that H. has full rank.

Proof: The linearisation of the system (6) around a
steady-state (¢, D) is given, using

N ER il
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by

fe(Av) | ., | |Ac 0
[fU(Aqu) =T Ay Ho@E o] 1O
where the Jacobian matrix J of the linearised extended
system is given by

0 N ] (11a)

J(e,0) = [Jm(C, v)  Jaa(c,0)
with

o, ..
Jo1(¢,0) = Je (d1ag(v)Nif

1

~diag(Nv)(diag(c))_1 D
1 (e,v)=(¢,v)

= diag(v)N;: diag(Nv)(diag(c)) -

(c,v)=(¢,v)
— diag(?) N} diag(Nv) (diag(e))

=0 (11b)

and

Joa(2,0) = % (diag(v)zvif (diag(c))*lzvu)

— diag(v) N (ding(c) " N

(e,v)=(c,v)
+ diag (N{;’; (diag(c)) ™" Nv)

(e,v)=(e,v)
= diag(0) N, (diag(c))”' N (11c)

= Jao.

The linearisation of (6) around (¢, o) is therefore given by

. _ .\ |Ac 0 N||Ac
& =J(c,0) [Av] = {O J—22} [Av} , (12a)
Ac
=H |:AU:| . (12b)

Clearly, a necessary condition for observability is that H.
has full rank. [ ]

The last result states the importance of knowledge of
dynamical data (and of excitation of the system) for the
observation (and thus for identification) purposes.

IV. EXAMPLE

In order to clarify the results obtained and the extended
system structure, we consider a simple example, for which
we will especially verify the derived identifiability condi-
tions.

We consider a very simple system of two concentrations
and two reaction rates of the form:

U1:A—>B
vy : B — A.

WelP13.8
This system can be described by
d C1 (%
el - N 13
dt [62} |:U2:| ’ (132)
where
-1 1
N = { 1 _1] , (13b)
v = 9101 (13C)
vy = Oacs. (13d)

We first derive the expanded system description (13). For

this, note that
1 0 0 1
Ni - |:O 1:| ) Nout - |:1 0:| )

and

N = Nout - Nin-

The new description of the system is given by

d |e _ Nuv (14a)
dt |[v|  |diag(v)N]T (diag(c))lev ’ :
Using N, as defined above, this simplifies to
[ Nv
d e v
—_ = =L 0
il =[5 9w (40

C2

At an arbitrary state (¢, v), the Jacobi-matrix is given by

_ 0 N
J(69) = | J21(¢,0)  Jao(e, U)] ()
where
=B 0
J21(¢,0) = (U2 — 1) 0o | (16)
c3
nog o
J22(6717) = |:c01 1_)_2:| N + |: 66 1711_)2:| . (17)
C2 C2

By Assumption 1, J; has full rank if ©; # o5. This is
satisfied whenever the system is not in steady-state.

We first check the Hautus test in steady-state, where v; =
5. Then

J21=0

and
—-u 0
Jog = |: 621 _1—,_2:|N
Co

and the observability is equivalent to full rank of the follow-
ing matrix

N —N
0 M —Jy|VreC. (18)
H. H,
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From A\ = 0 follows that full rank of H. is necessary for full
rank of (18). Note that [1,1]7 is in the kernel of IV, and thus
[0,0,1,1]7 is n the kernel of J. Thus, is in steady-state, the
matrix (18) has full rank for A = 0 only if [1,1]7 is not in
the kernel of H,,.

The non-zero Eigenvalues of J are the non-zero Eigenval-
ues of Joo. For the given stoichiometry N, we can calculate
these analytically:

,]—910_11 -6 6
2700 6| |1 -1 T 6y =6y
Thus, Jy2 has as Eigenvalues Ay = 0 and Ay = —6; — 6s.

The Eigenvector to A, vg is

==
2 = 92 .
Thus, the steady-state (¢, v) is observable if and only if H.
has full rank and v is not in the kernel of H,.
We now analyse observability along a (non-constant) tra-
jectory (¢,v) for H, = 0 and H = I. The observability
map of the nonlinear system can be explicitly calculated.

The output together with the output derivatives 37 and ¥
results in

Y1 C1

Y2 C2

“ = T 19
Y1 ( 2—7{1) - (19)
(1 —(v2 —v1) (B +2)

which can be analytically inverted in a straight-forward way
whenever vy # vg, i.e. for non-steady-state (¢, v). Thus, the
system is locally uniformly observable. As a third derivative
of y; is a function of ; and §; and yél) = —ygl), clearly
both concentrations need to be measured for observability to
hold. Since eq. (19) can be analytically inverted, the system
results to be globally uniformly observable. As mentioned,
since state variables ¢ and v can be recovered, through a
least square procedure the values of parameters 6 can be
estimated.

A Hautus-test of this example along a trajectory is a nice
illustration of the necessity of calculation it for a time-
varying system, see e.g. [20]: While the matrix

H
HJ
HJ?
HJ?
has full rank,
H H
HJ HJ
HJ?>+HJ HJ? .
HJ3+HJJ+HJJ HJ3+HJJ

has not, consistently with the result of the nonlinear observ-
ability map.
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V. CONCLUSIONS

In the present work the problem of developing criteria
to assess parametric identifiability of biochemical reaction
network has been explored.

This problem, as well as the problem of developing
theoretically sound algorithms for identification, is crucial
in systems biology, since the parameters appearing in the
models are in general difficult to obtain and are only ap-
proximately known. However, the qualitative behaviour of
the system can depend significantly on these parameters, and
thus obtaining good estimates of them is of crucial interest
for future developments.

The present work states new conditions to guarantee
identifiability of models. It might provide paths for the
exploration of new methodologies and might suggests new
directions, which can lead to practical solutions of the
identification problem.
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