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Abstract—1In this paper we establish the convergence to
an optimal non-interfering channel allocation of a class of
distributed stochastic algorithms. We illustrate the applica-
tion of this result via (i) a communication-free distributed
learning strategy for wireless channel allocation and (ii) a
distributed learning strategy that can opportunistically exploit
communication between nodes to improve convergence speed
while retaining guaranteed convergence in the absence of
communication.

I. INTRODUCTION

In this paper we consider the problem of allocating radio
channels in a wireless network. The channel allocation task
has been the subject of a considerable literature, spanning
cellular networks (e.g. see the survey paper [1] and [2],
[31, [4], [5]), wireless LANs (e.g. see [6], [7], [8], [9],
[10], [11] and references therein) and graph theory (our
channel allocation task is equivalent to the classical graph-
colouring problem [12], [13]). Almost all of this work has,
however, been concerned either with centralised schemes or
with distributed schemes that rely upon extensive message-
passing. In this paper we consider distributed channel allo-
cation strategies that do not require any communication or
message-passing.

Figure 1 shows an example of interfering wireless net-
works (WLANSs). Transmissions within the AP1 and AP2
WLANSs can interfere, with the interference range of each
WLAN indicated by the dashed circles (the use of circles
is purely indicative — interference domains may be much
more complex depending upon the distribution of client
nodes, physical obstacles, etc). The level of interference
between any particular pair of transmissions depends on
the physical locations of the communicating stations. The
channel selection problem considered here is equivalent to
graph colouring. To see this, define the interference graph
by associating a node with each WLAN (e.g. with each BSS
in an 802.11 network) and inserting an edge between nodes
that interfere. For example, Figure 2 shows the interference
graph corresponding to the wireless network in Figure 1.
A colouring of the graph assigns colours to each node,
and a proper colouring is an assignment of colours to each
node such that no adjacent nodes share the same colour.
A non-interfering channel allocation is thus equivalent to a
proper colouring of the interference graph associated with a
wireless network. In this simple example the optimal channel
selection itself is straightforward to see, but this need not
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Fig. 1. Example of interfering 802.11 WLANSs. Dashed circles indicate
interference radius, shaded circles indicate communication radius.
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Fig. 2. Interference graph of Figure 1.

be the case in more complex topologies. Indeed, since the
underlying channel selection problem considered here is
equivalent to graph colouring it is thus known to be NP-
hard.

Our main result in this paper is to establish the conver-
gence to an optimal non-interfering channel allocation of a
class of distributed stochastic algorithms. The result is quite
general and creates a broad framework within which the
design of efficient algorithms with guaranteed convergence
can be studied. We illustrate the application of this result
via (i) a communication-free distributed learning strategy for
wireless channel allocation and (ii) a distributed learning
strategy that can opportunistically exploit communication
between nodes to improve convergence speed while retaining

2980

Authorized licensed use limited to: The Library NUI Maynooth. Downloaded on January 12, 2010 at 05:57 from IEEE Xplore. Restrictions apply.



45th IEEE CDC, San Diego, USA, Dec. 13-15, 2006

guaranteed convergence in the absence of communication.

II. MAIN RESULT

We are interested in establishing a class of distributed
algorithms with guaranteed convergence to an optimal non-
interfering channel allocation. Let G = (V, E') denote the
interference graph associated with a wireless network. V'
denotes the set of graph nodes and E the edges. The nodes
do not know the interference graph. Let C'(V;) € {1,2,...,c}
denote the channel used by node V; and N(V;) denote the
set of neighbours. We begin by defining “success” at node
V; to be when node V; selects a different channel from
all of its neighbours i.e. when C(V;) N {C(V;) : V; €
N(V;)} = 0, and have “failure” at node V; otherwise. We
allow determination of the “success” or “failure” of a channel
selection at node V; to take sensing time 7'(V;) > 0. For
example, in a wireless context this might reflect the time
to sense channel quality using a packet error rate measure
derived from multiple packet transmissions on the selected
channel. We require that there exists an upper bound 7'(V;) <
Tinaz YVi € V but otherwise place no restrictions on the
sensing times. In particular, we do not require sensing events
to be synchronised.

We consider distributed algorithms where each node up-
dates its channel selection after sensing “success” or “failure”
with the current choice of channel. Each node also maintains
and updates channel selection probabilities in order to allow
learning. We consider the class of algorithms with the
following two properties:

1) When a channel selection yields “success” at node V;,
that node continues to use the same channel. Note
that this guarantees that any channel allocation which
removes interference between all nodes is an absorbing
state.

2) When a channel selection yields “failure”, every other
channel has at least probability pr;, > 0 of being
chosen next.

We refer to such algorithms as Distributed Learning (DL)
algorithms.

Theorem 1 Suppose each node in a graph G operates a
DL algorithm. Assume that the channel allocation problem
is feasible (i.e. the number of available channels c is greater
than or equal to the chromatic number x of G). Then the
algorithm converges, with probability one, to an optimal
channel allocation.

We will show that in a determined finite amount of
steps the system has some minimum positive probability
of convergence. In the following we refer to the collection
of channel selections and channel selection probabilities as
the configuration of the system. We show that starting from
any configuration the system can reach some standard state
after two steps. From this standard state we show that the
system can then potentially reach a state where every node
experiences a failure simultaneously, allowing convergence
without issues of dependence between node states. Hence
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the network always has lower bounded probability of global
success and so will almost surely converge.

In the sequel we refer to two or more nodes choosing
the same channel as a “collision”. We say that the state
S consists of all possible unsuccessful configurations with
all colour selection probabilities of nodes which have just
collided strictly greater than pr;,. Note that being in state S
requires that any channel just collided on has probability at
least pry, of being chosen again, a stronger condition than
Property 2. Denote the maximum node degree by md and
the diameter of the graph (length of the longest shortest path
between two nodes) by D.

The system may avoid state S by some node undergoing
repeated same channel collisions. Property 2 of our DL
algorithm is required to prevent this happening. We show
in Lemma 1 that if the system has reached a configuration
with some colour selection probabilities very small there is a
positive lower bounded probability that it will return in two
steps to our standard state S. Thus (with some probability)
the initial colour selection probabilities will have no effect
on the probability of a given evolution.

Lemma 1. From any configuration of the system, if after
two steps the system has not converged, the system is in state
S with some probability prs > 0.

Proof of Lemma 1. After any step Ty there was either
global success (and convergence) or at least two nodes
suffered a collision. Starting at time 7y we allow the system
to evolve for 2 more steps and lower bound the probability of
the system not being in state S. We ignore nodes who succeed
and then collide as their colour selection probabilities are
clearly at least pr;,. Consider any just collided node; after
the collision on colour %1, it has probability pry > pry
of choosing some specific other colour i2 and probability
pra > (¢ — 1)pry of choosing any colour other than i;.
So the probability of two repeated collisions on the same
colour at a specific node is prs < 1 — pro. In the whole
system the probability of some node having two consecutive
same colour collisions is pry < nprs — (’QL) (pra)?+--- < 1.
Hence with some probability prs > 1 — pry > 0 the system
has no node with consecutive same colour collisions. Thus
after these two steps with probability prs all colour selection
probabilities of nodes which have just collided are strictly
greater than pry, and the system is in state S. |

Lemma 2. Suppose that the system is in state S. Assume
without loss of generality that the graph is connected. There
exists a specific evolution E of the system which results in
all nodes transmitting succesfully.

Proof of Lemma 2. In state S by definition we have not
converged and (at least) two nodes k; and ko, say, have just
experienced a collision. By way of notational convenience we
say these two nodes were visited at step 2. Suppose now that
k; collides with its first non visited neighbour k3 (if any) at
step 3. Suppose also that kg collides with its first non visited
neighbour (if any, potentially k3 also) at step 3 also. We say
that such nodes are visited at step 3. Inductively suppose
now that a node once visited collides with all its nonvisited
neighbours in consecutive steps. This is possible because a

2981

Authorized licensed use limited to: The Library NUI Maynooth. Downloaded on January 12, 2010 at 05:57 from IEEE Xplore. Restrictions apply.



45th IEEE CDC, San Diego, USA, Dec. 13-15, 2006

visited node having just collided can potentially choose any
colour. Note that a node being visited simultaneously (along
two different equal length paths from k; and ky say) is also
possible.

Suppose that once a node has collided with all its non-
visited neighbours it then repeatedly chooses colour 1 until
step 11 = Ty + 3 + md x D. We note that as a node ky is
colliding with its nonvisited neighbours some of them may
become visited from other nodes before they collide with k;
we suppose then that k4 does not visit such nodes. Note also
that md x D upper bounds the time needed for this visiting
procedure to visit every node.

By connectedness, at time 77 — 1 it is possible for every
node to have been visited and to be choosing colour 1. Hence
every node is colliding. Since every node is colliding, every
node can choose every colour, so we can finally suppose that
at step 73 every node selects a colour so that no collisions
occur. |

Lemma 3. There is a strictly positive lower bound prg
on the probability of the evolution E occurring from any
configuration in state S.

Proof of Lemma 3. Given the initial colour selection prob-
abilities and which nodes collided initially, the evolution E is
well defined and has some positive (computable) probability
pre of occurring since the system is finite.

By assumption the system begins in state S and so the
initial colour selection probabilites of just collided nodes are
lower bounded; therefore there is some probability pr7 > 0
such that prg > pry irrespective of the initial colour selection
probabilities.

The subset of nodes which collided initially is one of
finitely many possibilities and so again there is some prob-
ability prg > 0 such that pr; > prg irrespective of which
nodes collided initially. |

Proof of Theorem 1. Defining prg = prgprs gives the
probability that the system is in state S after the first two
steps and then follows evolution E. Hence every 2+md x D
steps the system will converge with probability at least prg.
Hence after j(2 + md x D) steps we have converged with
probability at least 1 — (1 — prg)? which converges to 1 as
j — oo. |

This proof actually provides a partial answer to a further
question, namely how quickly the algorithm converges to an
optimal allocation. We have the following property.

Corollary 1 Let 7 denote the stopping time of the DL
algorithm. Then prob[t > k| < ae™ 7%, for positive constants

Q, 7.

That is, the stopping time probability decays exponentially.
Our argument does not yield a tight estimate of the exponent
v, which determines the precise convergence rate of the
algorithm, but given that the underlying colouring problem
is NP-hard this is unsurprising.

ThA18.3

ITI. APPLICATIONS
A. Distributed Learning Automata

Our main result establishes the convergence of a class
of distributed channel allocation algorithms. We first note
that this class includes interconnected learning automata.
Specifically, let ¢ denote the number of available channels
and let each access point with responsibility for channel
selection maintain a ¢ element state vector p. Let p; denote
the sth element of p with Zf p; = 1. Consider the following
distributed learning algorithm for updating p at each node.

Communication Free Learning (CFL) Algorithm

1) Initialise p = [1/¢,1/¢,...,1/c]

2) Toss a weighted coin to select a channel, with p; the
probability of selecting channel . Sense the channel

quality/transmit.
3) On a successful choice of channel ¢, update p as
pi = Lpi=0 Vj#i (1)

i.e. on a successful choice we use the same channel
for the next round.
4) On failure on channel ¢, update p as

Vi #@)

i.e. on a failure multiplicatively decrease the probabil-
ity of using that channel, redistributing the probability
evenly across the other channels. b is a design param-
eter, 0 < b < 1.

5) Return to 2.

We observe that the CFL algorithm employs a linear
reward - penalty learning automata [14] at each node. These
automata are coupled via the interference graph but do
not otherwise communicate or use message-passing (hence
why we describe this as a communication-free learning
algorithm). It can be seen immediately that the CFL al-
gorithm satisfies Properties 1 and 2 (with pry = %). It
therefore follows from Theorem 1 that with probability one
the CFL algorithm converges exponentially to an optimal
non-interfering channel allocation. For further information
on this CFL algorithm such as optimal values for b see [15].

We note that previous work on learning automata has
largely focussed on individual automata rather than the
interconnection of a large number of automata, with few
previous results known about the properties of interconnected
learning automata. To our knowledge, Theorem 1 is one
of the first convergence results for interconnected learning
automata.

b
pi = (1=bpip;=01-bp;+—

B. Opportunistic Partial Communication

The foregoing CFL algorithm is unusual in that it requires
no communication or message-passing between nodes. As
noted previously, the wireless channel allocation task has
been the subject of a considerable literature, spanning cellu-
lar networks (e.g. see the survey paper [1]), wireless LANs
(e.g. see [7], [8], [9], [10], [11] and references therein) and
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graph theory. Almost all of this work has, however, been
concerned either with centralised schemes or with distributed
schemes that rely upon extensive message-passing.

The requirement for message passing means in such
schemes is clearly problematic in many realistic contexts
where interfering networks may belong to different admin-
istrative domains (e.g. interfering wireless networks may be
operated by different households or businesses), while packet
sniffing on the radio channel runs into the difficulties that
packets may be encrypted and/or the distance over which
packets are readable is typically much less than the distance
over which network transmissions interfere (thus interfering
access points may well not be able to sniff each others pack-
ets). Moreover, most of the proposed distributed schemes
are heuristic in nature and come with few performance
guarantees (partly due to the NP-hard nature of the channel
allocation problem, although NP-hardness only relates to
the computational complexity of the problem). A distributed
channel allocation strategy, such as the CFL algorithm,
with guaranteed convergence that does not depend upon
communication or message-passing is therefore potentially
very attractive from a practical viewpoint.

Of course, while we do not want to rely upon communi-
cation, when communication is possible we would like our
channel allocation algorithm to take advantage of this feature
as we would expect it to increase performance e.g. reduce
convergence time. We therefore consider extending the basic
CFL algorithm to allow it to opportunistically take advantage
of packet sniffing on the radio channel when this is possible.
We note that channel conditions can be expected to vary
stochastically and transmissions from neighbouring may be
intermittent. Moreover, the distance over which transmissions
interfere (which defines the neighbours of a node) is gener-
ally greater than the distance over which transmissions can
be decoded (which determines the maximum communicating
set of neighbours). Let N.(V;,t)} C N(V;) denote the set
of neighbours for which node V; is able to decode packet
transmissions at round ¢ of operation. We have a situation
where the membership of N.(V;,t) varies stochastically in
time and where allowable values of N.(V;,t) include the
empty set. It is important to emphasise that this opportunistic
partial communication scenario is fundamentally different
from the communication models assumed in most other work
on distributed algorithms for channel allocation. In previous
work, algorithms require local communication between all
nodes in an interference neighbourhood or perhaps all nodes
in a k-hop interference neighbourhood. That is, N.(V;,t)} C
N(V;) is inadmissible and it is strictly required that that
N.(Vi, 1)} 2 N(V;).

We consider the following opportunistic communication
extension to the basic CFL algorithm.

Opportunistic Learning Algorithm

1) Initialise p = [1/¢,1/¢,...,1/c]

2) Toss a weighted coin to select a channel, with p; the
probability of selecting channel i. Let C' denote the
outcome of the coin toss i.e. the channel selected.

3) Broadcast the channel selected in a small beacon
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packet. !

4) Receive any neighbouring broadcasts and opportunis-
tically record their planned channel selection. Let C;,
denote this set of planned channel selections.

5) If CNCy, = 0, then do nothing. Otherwise, we know
that our choice C' of channel will lead to a failure (a
neighbour will choose the same channel) and so we
revisit our channel selection. With probability 1 — §
we choose a channel uniformly randomly from the set
of channels not in Cy, and with probability § we stay
with the original channel selection C.

6) Sense the channel quality / transmit.

7) On a successful choice of channel ¢, update p as

Lopj=0 Vj#i

i.e. on a successful choice we use the same channel
for the next round.
8) On failure on channel i, update p as

pi =

b= (=B = (=D + — Vi i
i.e. on a failure multiplicatively decrease the probabil-
ity of using that channel, redistributing the probability
evenly across the other channels. b is a design param-
eter, 0 < b < 1.

9) Return to 2.

This algorithm is identical to the CFL algorithm apart from
the opportunistic communication steps 4 and 5. The modified
algorithm clearly satisfies the absorbing property 1. Since
there is always some probablity § of following the original
CFL algorithm, the channel selection probabilities are also
lower bounded i.e. property 2 is also satisfied. It follows
that convergence of the modified algorithm is guaranteed
with probability one by Theorem 1. Only small changes are
required to adapt this algorithm to the situation where the
stations are not synchronised; the adapted algorithm is of
course convergent also.

The benefit of opportunistically exploiting communication
is illustrated in Figure 3. In this example the network
interference graph is modeled as a random disk graph; that is,
nodes are uniformly randomly located in a unit square and
the WLANSs associated with two nodes interfere when the
nodes are located within a radius R of each other. A “failure”
or “collision” occurs when neighbouring nodes select the
same channel at a given iteration of the channel allocation
algorithm, and a “success” when a node selects a different
channel from all of its neighbours. For each interference
graph the chromatic number y gives the minimum possible
number of channels for a feasible solution. We model com-
munication between nodes as an embedded disk graph with
radius R, < R i.e. a node can decode packet transmissions
from neighbouring nodes that lie within communication
radius RR.. Figure 3 shows the mean number of iterations
for the network to convergence to an optimal non-interfering

I Any reasonable implementation suffices since communication with all
nodes in an interference neighbourhood is not required.
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Fig. 3. Mean number of iterations to converge to an optimal channel
allocation vs communication radius in interference graph (random disk
graphs with radius R=0.5, mean is taken over 1000 graphs, number of
channels ¢ = 1.2y, b=0.1, § =0.1)

channel allocation vs the communication radius and number
of nodes. Note that a log scale is used on the y-axis. It can
be seen that a significant improvement in provided by the
communication step (performance with no communication
at all is illustrated by the communication radius R, being
zero). The greatest gain in performance, roughly an order
of magnitude reduction in convergence time, is achieved
when R. = R ie. when a node can communicate with
all of its interfering neighbours. Interestingly, we can also
see that the performance gain is strongly dependent on the
level of communication. A significant proportion of node
neighbours must be able to communicate before the most
substantial performance gains are realised. In particular, we
note that a common guideline is that the communication
radius may be approximated as half the interference radius.
This corresponds to R, = 0.25 in Figure 3 since R = 0.5.
Hence, for example, with 25 nodes the mean convergence
time is 95 iterations when R. = 0, 40 iterations when
R. = 0.25 and 6.5 iterations when R, = R = 0.5.

We can gain some insight into the source of this im-
provement in convergence rate by considering an interference
graph with an optimal channel allocation and adding a
new node. For example, Figure 4 shows simulation results
for a network with a random disk interference graph. In
this example we take a network where nodes are located
randomly in the plane and nodes interfere if they are within
a distance R of one another. We then randomly? add a
single new node and record the probability of success and
the number of collisions that occur. We do this repeatedly
(always starting from the same network and randomly adding
one new node) to sample the distribution. We expect that
the convergence time will depend upon the number of free

2The network is located in the plane, making it straightforward to add a
new node. Specifically, we select uniformly random x and y co-ordinates
for the new node and then determine its neighbours using the interference
radius R.
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Fig. 4. Probability of failure (1- prob of success) vs iteration following
addition of a new node. Dashed lines are analytic predictions. “Solutions”
refer to the number of possible channels that the new node may select to
achieve a proper channel allocation without disturbing the allocations of
the original nodes. (20 node random disk interference graph with R=0.5,
number of channels ¢=12 (1.25x), b = 0.1.)

channels in the neighbourhood that the new node could
select to achieve a proper channel allocation. In Figure 4 we
therefore bin the simulation data according to the number of
local solutions.

Also shown in Figure 4 are the predictions corresponding
to the following simple analysis. Let I, denote the set of free
channels initially that the new node might select to achieve a
non-interfering channel allocation. Assume, for the moment,
that F. consists of only one channel. Let p(k) denote the
probability of the new node choosing this channel at iteration
k. Assume that the channel allocation of nodes in the original
network remains unchanged. Then on a collision p is updated
according to

p(k+1) = (1 =b)p(k) +b/(c = 1) A3)

We have that E[F(0)] = 1 — p(0) and E[F(k + 1)] =
E[F(K)](1 — p(k + 1)) with E[S(k)] = 1 — E[F(k)].
Evidently, this argument can be directly generalised to cases
when F, contains more than one channel. This analysis can
be applied provided there exists at least one local solution,
and it can be seen from Figure 4 that in such situations it
yields remarkably accurate predictions. This indicates that
the channel allocations of the nodes in the original network
possess sufficient “inertia” that they do indeed effectively
remain unchanged (this is also confirmed by direct measure-
ment of the network channel allocations before and after the
addition of a new node). It follows immediately from this in-
sight that partial communication with its neighbours enables
the new node to select a free channel with higher probability,
thereby accelerating convergence. Note that the convergence
rate depends geometrically on the probability of selecting a
free channel and thus very substantial performance gains are
possible.
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It can of course happen that there exist no local solutions,
i.e. all of the available channels are already used by the
neighbours of the new node. This situation is marked as the
“zero solutions” curve in Figure 4. In this case a non-local
re-allocation of channels is necessary in order to achieve a
non-interfering channel allocation and the previous analysis
cannot be applied. It can be seen from Figure 4 that the
convergence is this case is slower than when local solutions
exist. This is, of course, to be expected as non-local re-
allocation requires both at least one of the original nodes
to change channel and for the new node to then select one
of the resulting free channels.

We can carry out an approximate analysis of this case as
follows. Denote the set of nodes neighbouring the new node
by N. We know that these nodes make use of all available
channels. Our measurements on many hundreds of thousands
of disk graphs indicate that we almost never see adjacent
nodes such that the neighbourhoods of both nodes make use
of all available channels. We therefore assume that the neigh-
bours N do themselves have the freedom to change channel.
Consider the behaviour of the new node: because there is no
local solution it must choose the same channel as one of its
neighbours. By assumption, a neighbour will change channel
with probability at least b/(c — 1) and otherwise stay on the
same channel. Note that it can occur that more than one
neighbour shares the same channel, in which case we need
all such neighbours to change channel in order to free up that
colour. This possibility is neglected in our model because
simulations show it is a rare occurrence. Hence our model
predicts that independently at each timestep, the system will
reconverge approximately with probability at least b/(c—1).
The accuracy of this approximate analysis is illustrated in
Figure 4. Again, it follows immediately from this analysis
that the convergence rate can be made significantly faster
when even partial communication between nodes is possible.
Specifically, all nodes operate the opportunistic learning
algorithm, including the neighbours N. The new node will
necessarily induce failures at its neighbours N since no local
solutions exist. Communication facilitates these neighbours
selecting a channel that does not collide with the new node
or their own neighbours, thereby freeing up channels in
the neighbourhood of the new node and this accelerating
convergence.

IV. CONCLUSIONS

In this paper we establish the convergence to an opti-
mal non-interfering channel allocation of a class of dis-
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tributed stochastic algorithms. The result is quite general
and creates a broad framework within which the design
of efficient algorithms with guaranteed convergence can be
studied. We illustrate the application of this result via (i) a
communication-free distributed learning strategy for wireless
channel allocation and (ii) a distributed learning strategy that
can opportunistically exploit communication between nodes
to improve convergence speed while retaining guaranteed
convergence in the absence of communication.

V. ACKNOWLEDGEMENTS

This work was supported by Science Foundation Ireland
grant IN3/03/1346.

REFERENCES

[1] L. Narayanan, “Channel assignment and graph multicoloring,” Hand-
book of wireless networks and mobile computing, Wiley series on parallel
and distributed computing, 2002.

[2] P. Sparl, J. Zerovnik, “2-local 5/4-competitive algorithm for multicolor-
ing triangle-free hexagonal graphs”, Information Processing Letters 90,
2004.

[3] K.S. Sudeep, S. Vishwanathan, “A technique for multicoloring triangle-
free hexagonal graphs”,” Discrete Mathematics 2002.

[4] J. Janssen, D. Krizanc, L. Narayanan, S. M. Shende, “Distributed on-
line frequency assignment in cellular networks,” Proc. of the 15th annual
symposium on theoretical aspects of computer science, Lecture Notes in
Computer Science Vol. 1373, 1998.

[5] L. Narayanan, S. M. Shende, “Static frequency assignment in cellular
networks”, Algorithmica 29 (2001).

[6] B. Kauffmann, F. Baccelli, A. Chaintreau, K. Papagiannaki, C. Diot,
“Self Organization of Interfering 802.11 Wireless Access Networks,”,
INRIA Technical Report, August 2005.

[7] L. Tassiulas, A. Ephremides, “Stability properties of constrained queue-
ing systems and scheduling policies for maximum throughput in multihop
radio networks”, IEEE Trans Automatic Control, 37 (12), 1992.

[8] A. Raniwala, T. Chiueh. “Architecture and algorithms for an IEEE
802.11-based multi-channel wireless mesh network”. In Proc IEEE
International Conference on Computer Communications, 2005.

[9] H. Luo, P. Medvedev, J. Cheng, S. Lu, “A self coordinating approach
to distributed fair queuing in ad hoc wireless networks”, Proc. of IEEE
INFOCOM °01, 2001.

[10] B.J. Leung, K.K. Kim, “Frequency assignment for IEEE 802.11
wireless networks”. Proc. 58th IEEE Vehicular Technology Conference,
2003.

[11] Y. Bejerano, S.-J. Han and L. (Erran) Li, “Fairness and load balancing
in wireless LANs using association control”, MobiCom '04, 2004.

[12] 1. Finocchi, A. Panconesi, R. Silvestri, “Experimental analysis of
simple, distributed node coloring algorithms”, Algorithmica 41 (2005).

[13] M. Kubale, L. Kuszner, “A better practical algorithm for distributed
graph coloring,” Proc. of IEEE PARELEC’02, 2002.

[14] K. Narendra, M. A. L. Thathachar, “Learning Automata: An Introduc-
tion”, Prentice Hall, 1989.

[15] D. Leith, P. Clifford, “A Self-Managed Distributed Channel Selection
Algorithm for WLANSs”. In Proc IEEE RAWNET °06, 2006.

2985

Authorized licensed use limited to: The Library NUI Maynooth. Downloaded on January 12, 2010 at 05:57 from IEEE Xplore. Restrictions apply.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


