PERVASIVE ALGEBRAS OF ANALYTIC FUNCTIONS

I. NETUKA, A.G. O'FARRELL, AND M.A. SANABRIA-GARCIAt

1. INTRODUCTION

Let X be a compact Hausdorff topological space and C(X,C) (respectively,
C(X,R)) the Banach algebra of all continuous complex-valued (respectively, real-
valued) functions on X endowed with the uniform norm. A function space S on X
is a closed subspace of C'(X,C). We denote by closc(g,c) S the closure in C(E, C)
of the function space S, where E is a closed subset of X. Similarly, we denote by
closg(pr) S the closure in C(E,R) of the real subspace S of C(X,R).

A function space S of C'(X,C) is said to be complex pervasive if closg(p,cy S =
C(E,C) whenever E is a proper non-empty closed subset of X. Similarly, a real
subspace S of C(X,R) is said to be real pervasive if closc(gr) S = C(E,R).

Let U be an open subset of the Riemann sphere C and denote by bdy U its
topological boundary. In this paper we consider the case when X = bdy U and
S coincides with the algebra A(U) of all complex-valued functions continuous on C
and analytic on U, or with Re A(U), the space of real parts of elements of A(U).

Obviously, if A(U) is complex pervasive on bdy U then Re A(U) is real pervasive
on bdy U. Easy examples such as a pair of disjoint discs show that the converse is
false.

A uniform algebra A, A ¢ C(X,R) is said to be Dirichlet on X if Re A is
dense in C(X,R) [G]. Thus Re A(U) is real pervasive on bdy U if and only if
closg(pr) A(U) is Dirichlet on E whenever E is a proper closed subset of bdy U.

The term pervasive was introduced by Hoffman and Singer in 1960 [HS]. They
studied (complex) pervasive uniform algebras, motivated by the relationship with
maximal uniform algebras. For the algebras A(U), they established that A(U) is
complex pervasive on bdy U if U is connected and N \ U has positive area whenever
N is a neighbourhood of a boundary point of U. This condition is, as we shall see,
far from necessary.

In 1971, Gamelin and Garnett characterized those U for which A(U) is Dirichlet
on bdy U [GG]. This result is deep. It is necessary that each component of U
be simply-connected. Given that, the condition that A(U) be Dirichlet is rather
abstractly characterized by the pointwise bounded density of A(U) in H*(U), and
more concretely by a condition involving continuous analytic capacity, «. This

tSupported by a grant of the Gobierno de Canarias.
1



2 I. NETUKA, A.G. O’FARRELL, AND M.A. SANABRIA-GARCIA

condition may be expressed as follows. Let us say that the point a € C is a GG-

point for U if
lim inf 2@ A D)
rl0 r
where U(a,r) denote the open disc with center a and radius r.

=0,

The Gamelin-Garnett Theorem. Let U € C be open, and suppose each com-
ponent of U is simply-connected. Then A(U) is Dirichlet on bdy U if and only if
there are no GG-points for U on bdy U.

Remark 1.1. Each GG-point on bdy U for U is an inner boundary point of U, i.e.
it is not on the boundary of the complement of clos U.

Since real pervasiveness may be re-expressed in terms of Dirichlicity of the alge-
bras Ap = clos¢(gr) A(U), it is tempting to suppose that the Gamelin-Garnett
Theorem settles the matter. This is not so, since Ag is not an A(U) (nor is it one
of the other algebras considered by Gamelin and Garnett in their paper). However,
it is probable that the result of Gamelin and Garnett can be extended to all the so-
called T-invariant algebras (see below), with suitable modification, and the algebras
Apg are T-invariant, so that one expects that real pervasiveness may be expressed
in term of capacities associated to the Ag’s. In fact, however, we shall see that
a more direct approach may be used, employing the Gamelin-Garnett Theorem as
it stands, and yielding a relatively simple and readily checked condition for real
pervasiveness.

The real pervasiveness of spaces of harmonic functions on Euclidean spaces was
studied by Netuka in [N]. He showed that if the open set U € R? is bounded
and connected, and bdy U = bdy clos U, then the space of functions continuous on
clos U and harmonic on U is real pervasive on bdy U. The present investigation was
prompted by the question, whether, when d = 2, the space of harmonic functions
could be replaced by the space Re A(U) in this result. Realizing that the answer was
yes, we proceeded to investigate the necessity of the conditions on U, and eventually
were led to a complete characterization of the real pervasiveness of Re A(U) and of
the complex pervasiveness of A(U).

In Section 2, we consider the case when U has inessential boundary points, i.e.
points that are removable singularities for all elements of A(U) (cf. Definition 2.1).
This case reduces rather easily to classical facts.

In Section 3, we consider the case of connected U with essential boundary. This
is perhaps the most natural situation, and we show that in it A(U) is always complex
pervasive on bdy U.

In Section 4, we consider general U. We give a complete characterization of com-
plex pervasiveness in topological terms. This is not possible for real pervasiveness.
We give a complete characterization involving continuous analytic capacity. This
section is rather more technical and deeper than the rest of the paper relying as
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it does not only on the result of Gamelin and Garnett, but on Davie’s deep result
that characterizes the equality of two closed T-invariant algebras in term of the
respective capacities associated to the algebras.

2. INESSENTIAL BOUNDARY POINTS

Given a compact Hausdorff topological space X, the dual space C(X,C)* of
C(X,C) will be identified with the space of complex Borel regular measures on X
and it will be denoted by M(X,C). Similarly C(X,R)* will be identified with the
space of real Borel regular measures on X and denoted by M(X,R). We regard
M(X,R) as a subset of M(X,C). The (closed) support of a measure y € M(X, C)
will be denoted by spt pu.

For a set S C C(X,C) and a measure u € M(X,C) we write p L S, and say p
annihilates S, if [ f dp = 0 whenever f € S.

As remarked in [Ce], one readily sees that a subspace S C C(X,C) is complex
pervasive (respectively a subspace S C C(X,R) is real pervasive) if and only if
each nontrivial measure p € M(X,C) (respectively M(X,R)) which annihilates S
has spt p = X. Putting it in another way, S is complex pervasive (respectively,
real pervasive) if and only if the conditions, u € M(X,C) (respectively, M(X, R)),
i L S and spt u g X imply that p = 0.

Definition 2.1. Let a be a point in bdy U. We say that a is an A(U)-inessential

boundary point if there exists r > 0 such that the inclusion map
AU UU(a,r)) — AU)

is surjective (and hence bijective), that is all function in A(U) extends analytically
to U(a, r).

The A(U)-essential boundary of U is the set of points in bdy U which are not
A(U)-inessential boundary points. For the purposes of this paper, we abbreviate

A(U)-essential to essential.

If the essential boundary of U is empty, then A(U) consists only of constant
functions, and it is immediate that A(U) is complex pervasive on bdy U if and only
if Re A(U) is real pervasive on bdy U. Clearly this happens if and only if bdy U
has at most two different points.

Let us define the regularization of U to be the set

U=U U {p € bdy U : p is an inessential boundary point of U} .

We observe that if U # o (i.e. if the essential boundary of U is nonempty) then
bdy U has positive continuous analytic capacity and hence has positive logarithmic
capacity, so harmonic measures exist [G], [Ca].
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Proposition 2.2. LetU C C be open and suppose that the essential boundary of U
is nonempty. Let n be the number (possibly infinite) of inessential boundary points
of U.

i) If n > 1 then A(U) is not complex pervasive on bdy U.
ii) If n > 1 then Re A(U) is not real pervasive on bdy U.
iii) If n =1 then Re A(U) is real pervasive on bdy U if and only if
a) A(U) is Dirichlet on the essential boundary of U, and
b) the component in U of the inessential boundary point of U has bound-

ary equal to the essential boundary of U.

Proof. (i) Suppose a is an inessential boundary point. Since A(U) # C(bdy U, C),
there is an annihilating measure on bdy U \ {a}, so A(U) is not complex pervasive.

(ii) Suppose that U has more than one inessential boundary point, and let a
and b two different inessential boundary points of U. Consider for a the harmonic
measure A, on bdy U. Then 0a —Aa € M(bdy U, R), where ¢, is the Dirac measure
concentrated at a.

It is clear that d, — Ay L Re A(U) and b ¢ spt (d, — Ag) s0 Re A(U) is not
pervasive, as required.

(iii) Suppose U has only one inessential boundary point, say a.

Suppose Re A(U) is pervasive on bdy U but A(U) is not Dirichlet on bdy U.
Then we can choose a nonzero measure p € M(U,R), u L Re A(U) with spt p C U,
contradicting the assumption that Re A(U) is pervasive.

If the boundary of the component in U of a does not coincide with bdy [7, then
do — Aa L Re A(U) but spt (0, — Ag) ; bdy U contradicting the fact that Re A(U)

is real pervasive on bdy U.

Conversely, suppose A(U) is Dirichlet on bdy U and the component in U of a
has boundary equal to bdy U.

Consider a~nontrivia1 real measure y L Re il(U) with spt u g bdy U. Clearly
spt u ¢ bdy U since A(U) is Dirichlet on bdy U. So

p=ad, +v

where 0 # o € R and v € M(bdy U, R). Then
/fd(a/\aJrr/):/fd,u, ¥ f e AD),

s0 & Ag + v L A(U) and therefore v = —a A,, since A(U) is Dirichlet on bdy U.
The support of A, is the whole boundary of the component of a in U , SO is

the whole essential boundary. Hence spt p© = bdy U, which is impossible. Thus

Re A(U) is real pervasive. O



PERVASIVE ALGEBRAS OF ANALYTIC FUNCTIONS 5

In view of Proposition 2.2 and the Gamelin-Garnett Theorem, we understand
pervasiveness when there are no inessential boundary points. So it remains to
consider the case when the entire boundary of U is essential.

3. THE CONNECTED, ESSENTIAL CASE.

Let m be the Lebesgue measure on C. Let u be a complex measure with compact
support. The Cauchy transform of u is defined by
X 1 [ du(2)
ae) = — s
We denote by R(K) the uniform closure on C of the algebra of all continuous
functions on C that are analytic near K. This coincides, by Runge’s Theorem, with
the closure of the algebra of all functions continuous on C that coindide near K
with some rational function.

The following theorem summarizes well-known results and we state it without
proof ([B], [G]).

Theorem 3.1. Let y be a complexr measure with compact support in C. Then

i) fi is defined m-almost everywhere, i.e. |fi(z)| < oo for almost all z € C.
ii) fi is holomorphic on C\ spt p.
iii) If i =0 m-almost everywhere, then p = 0.
iv) Let K C C be a compact set. Then ji vanishes off K if and only if p L R(K).
v) If K C C is compact and pn = m|g, where m|g stands for the restriction of

the Lebesgue measure to K, then [i is continuous.

Theorem 3.2. Let U be a connected open subset of @, and let bdy U be nonempty
and essential. Then A(U) is complex pervasive on bdy U. A fortiori, Re A(U) is

real pervasive on bdy U.

Proof. Let € M(bdy U,C), u L A(U) and suppose that spt u # bdy U. We shall
prove that u = 0.

As p L A(U), it follows that u L R(clos U) so by (iv) of Theorem 3.1, ji = 0 in
C\ clos U.

Suppose now that a € bdy U \ spt u, a # oo. Choose r > 0 sufficiently small
so that B(a,r) Nspt u = &, where B(a,r) denotes the closed ball with centre
a and radius r. By hypothesis, given a compact set K C bdy U N B(a,r), the
continuous analytic capacity a(K) of K is positive, so there exists f,, € A(@ \ K),
frn nonconstant and ||f,|| = 1. After a rotation of the Riemann sphere, f,(p,) =1
for some p,, € K and ||f,]| < 1 off B(a, r) by the maximum modulus principle. Note
that [i is analytic near B(a,r).

Next, fi(pn) = 0 because otherwise

1 1%
fi(Pn) z = Pn

V=
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is a complex representing measure for p,, on A(U) and

lzfrlf(pn):/f;: dv — 0 ask?T+o0

which is a contradiction.

Consequently, a is an accumulation point of zeros of i. By (ii) of Theorem 3.1
we can conclude that i = 0 on B(a,r), and therefore, since U is connected, fi = 0
on U. Hence i =0 on C \ spt .

Finally, let E C bdy U be compact. Let A = m|g. By (v) of Theorem 3.1, A is
continuous and therefore A € A(U), so by Fubini’s Theorem

oz/Xdu:—/ﬂdA:/ﬂdm,
E

so ft = 0 m-almost everywhere on bdy U.
As spt o C bdy U it follow then that i = 0 m-almost everywhere on @, so by
(iii) of Theorem 3.1, u = 0. O

4. MuLTiPLE COMPONENTS
We deal first with complex pervasiveness.

Theorem 4.1. Suppose U is a (possibly disconnected) proper open subset of ¢
without inessential boundary points. Then A(U) is complex pervasive on bdy U if
and only if bdy U; = bdy U for each component U; of U.

Proof. The “if” direction is proved by essentially the same argument as that for
Theorem 3.2.

To see the “only if” direction, suppose U has a component U; with bdy U; #
bdy U. We may choose a nonzero annihilating measure p for A(U;) supported on
bdy U;, which is a proper subset of bdy U. Then p annihilates A(U), and this
shows that A(U) is not complex pervasive on bdy U. O

Remark 4.2. The vagaries of plane topology allow up to an infinite number of con-
nected open sets to share a common boundary.

Moving on to real pervasiveness, we note first:

Theorem 4.3. Suppose U C C is open and proper, with no inessential boundary
points. Suppose U is not connected, and Re A(U) is real pervasive on bdy U. Then
U has at most one component that is not simply-connected. Furthermore, if U has
such a component Uy, then bdy U = bdy U.

Remark 4.4. T U C Cis open, not connected, and several components of U have
boundary equal to bdy U, then all components of U are simply-connected.

For suppose U; and Uy, are components of U, and bdy Uy = bdy U. Then U; is
one of the components of C \ clos U}, which is the complement of a continuum, and
hence U; is simply-connected.
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Proof of Theorem 4.3. Suppose that Re A(U) is real pervasive and let U; be a
component of U so that bdy U; # bdy U.

Clearly, Re A(U) C Re A(U;). Therefore the restriction of Re A(U) to bdy U;,
Re A(U)pay 1;» is dense in C(bdy U;, R). Hence A(U;) is a Dirichlet algebra on
bdy U;, so we can conclude that U; is simply-connected [GG].

Suppose next that U has at least two different components Uy, U; that are not
simply-connected. Then from the foregoing bdy U = bdy U; = bdy U. Hence Uy
and U, are both components of C \ bdy U and by Remark 4.4, both are simply-
connected, a contradiction. O

In the other direction we have

Theorem 4.5. Suppose U C C is open and proper, with no inessential boundary
points. Suppose U has at least one component Uy so that bdy Uy, = bdy U. Then
Re A(U) is real pervasive.

The proof of this theorem involves the theory of T-invariant algebras. We review
the basic notation and ideas.
For a continuous function f € C(C,C), having compact support, we define the
Cauchy transform
Cf=fm,
where m, as before, denotes the Lebesgue measure on C. We have
0
—(CF) =
—(CH=1
in the sense of distributions, so that (by Weyl’s Lemma), Cf is holomorphic off
spt f.

For ¢ € CZ(C,C) (the space of infinitely differentiable functions having compact
support) and f € C(C,C), we define

wa=<pf—C< g—‘f) .

The linear operator T, (the Vitushkin localization operator) is continuous from
C(C,C) into itself.
A subalgebra A C C(C,C) is said to be T-invariant if

T,feA, VfeA, VyoeC2(CC).

We note that
0 of
T f=p =L
0z of = 0z
in the sense of distributions, so that T, f is holomorphic whenever f is holomorphic
and off spt ¢. This is the basis for the utility of T, in localizing singularites of
analytic functions. It is obvious from this observation that A(U) is a T-invariant

algebra, whenever U C C is open. So also is O(K), the algebra of all functions
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continuous on C and holomorphic near K, whenever K C C. Since T, is continuous
on C(C,C) it follows that closq ¢ O(K) is also T-invariant. But this closure is,
by Runge’s Theorem, equal to R(K), whenever K is compact.

Lemma 4.6. Let U € C be open and K € C compact. Then
B = closq¢ ¢ (A(U) + R(K))
s a T-invariant algebra.

Proof. Tt is obvious that A(U) + R(K) is T-invariant, and hence so is B.
Also

B = closg ¢ g (A(U)+ 0(K)) ,

so it suffices to show that A(U) + O(K) is an algebra, i.e. to show that if fi, fo €
A(U) + O(K), then fif2 € A(U) + O(K).

Fix f1,f» € A(U) + O(K), and choose g; € A(U), h; € O(K) such that f; =
gi + h; , for i =1,2. Then

fifo = g192 + g1ha + g2h1 + hihso

so it suffices to show that g1 hs and g2hy belong to A(U) + O(K).

So let g € A(U) and h € O(K). We need to show that gh € A(U) + O(K).
Choose an open set W D K such that h is holomorphic on W.

Pick ¢ € CZ(C,C) so that ¢ = 1 near K and ¢ = 0 off W. Then 1 —p =0
near K and 1 — ¢ =1 off W.

Let u = T,gh and v = gh — T,gh. Then

ou oh g
FE N =
ov oh dg
- 1= +td-9)ho.
Thus v € A(U) and v € O(K), and gh = u + v, so we are done. O

It is possible to associate a capacity y4 to each T-invariant algebra A [D], gen-
eralizing the association of E — «(E \ U) to A(U). Davie showed that closed
T-invariant algebras are uniquely determined by their corresponding capacities.

Davie’s Theorem. [D, Theorem 2.3, p. 414] Let Ao denote the algebra of all
bounded borel functions on C which are analytic outside some compact set, and let
p € C2(C,C). Let Ay and As be Ty,-invariant subalgebras of Ag, and suppose all
functions in Ay are continuous on C. Suppose also that for all z € C we can find
m, r, 0p > 0 with y4,(U(2,0)) < m v4,(U(z,76)) and 0 < § < dp. Let f € A;.
Then f is in the uniform closure of As. O

We now use his result to establish an approximation lemma.
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Lemma 4.7. Let U C C be open and proper, and suppose bdy U is essential. Let
{U; : i € I} be the set of connected components of U. Let a € bdy U and r > 0.
Let

V =U(a,r) UU {U;: U;NU(a,r) # 2}
i€l
K=C\V
W= |J{Ui: U;nU(a,r) = o},
i€l

and

B=AU)+R(K) .
Then B is dense in A(W).
Proof. By Davie’s Theorem, it suffices to show that there exists m > 1, ¢t > 1, §p >
0 such that:
a(U(z,0) \U) <m ap(Ul(z,1d))

whenever z € C, 0 < § < dp.

We will show that m =4, t =2, g = r work.

First we note

v(U(z,0)) > max{a(U(z,0) \ U), a(U(z,0) \ K)} .

Fix z € C and §, with 0 < § < r. There are two cases.
i) dist(z,V) < 6. Then U(z,20) \ K contains an arc 8 C V of diameter at least

d, so

a(U(z,0) \ W)

IN

a(U(z,6)) (=)
14(U(2,26) \ K) < 495(U(z, 26)) -
ii) § < dist(z,V). Then U(z,d) C K, so
a(U(z,0) \ W) = a(U(z,6) \ U) < v5(U(z,9)) < 4y5(U(z,29)) .

So the result follows. O

IN

Proof of Theorem 4.5. In view of Theorem 3.2, we may assume that U has multiple
components.

Let Uy be one component having bdy Uy = bdy U.

Let p € M(bdy U,R), u L A(U), and spt u ; bdy U. We wish to show that
u=0.

Choose a € bdy U, r > 0 such that B(a,r) Nspt u = 2.

Let V, K, W and B be constructed as in the statement of Lemma 4.7. We note
that U, C V. Also each component of W is simply-connected.

The argument of Theorem 3.2 tells us that g = 0 on U(a,r), and hence on V', so
that 4 L R(K). Thus 4 L B, hence u L A(W), by Lemma 4.7.
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The facts that U, N W = &, and that each boundary point of W is also a
boundary point of Uy, tells us that there are no inner boundary points for W and
hence no GG-points for W on bdy W. Thus, by the Gamelin-Garnett Theorem,
A(W) is Dirichlet on bdy W. But u is a real measure, so u = 0. O

Thus we have completely solved the question of when A(U) is real pervasive ex-
cept in the case when all components of U are simply-connected, and no component
U; of U has bdy U; = bdy U. To deal with this, we introduce some terminology.

Definition 4.8. We say that a point p € bdy U influences ¢ € bdy U (with respect
to U) if for all s > 0 and r > 0 there exists U;, a component of U, such that

Ulp,r)NU; #2 and U(q,r)NU; #2 .

Remark 4.9. Note that the relation {(p,q) € bdy U x bdy U : p influences ¢} is
reflexive and symmetric.

Theorem 4.10. Let U C C be open and proper, with no inessential boundary
points. Suppose all components of U are simply-connected and no component has

bdy U; = bdy U. Then the following statements are equivalent.

i) Re A(U) is real pervasive on bdy U.
ii) For every p € bdy U, and for every GG-point q for U on bdy U, p influences

q.

Lemma 4.11. Suppose U, a, r, V, K and W are as in Lemma 4.7. Suppose that
all components of W are simply-connected. Then there are no GG-points for U on
bdy W\ bdy V if and only if A(W) is Dirichlet on bdy W.

Proof. To prove the “only if” direction, by the Gamelin-Garnett Theorem it suffices
to show that there are no GG-points for W on bdy W.

Let z be a boundary point of W.

If z € bdy W\bdy V, then there exists § > 0 such that U(z,0)NW = U(z, §)NU,
so z is not a GG-point for W.

If z € bdy V, then for 0 < 6 < 7, U(z,0) NV contains an arc of diameter 6/2,
hence a(U(z,0) \ W) > §/8. Thus z is not a GG-point for W.

The “if” direction is clear from the fact that if A(W) is Dirichlet on bdy W then
there are no GG-points for W on bdy W, so neither are there any for U.

O

Proof of Theorem 4.10. An argument similar to the proof of Theorem 4.5 shows
that (ii) implies (i).

To see that (i) implies (ii), suppose (ii) fails.

Pick p € bdy U, q € bdy U, r > 0, s > 0 such that ¢ is a GG-point for U and
U(p,r) NU; # @ implies U(q,r) NU; = &, whenever U; is a connected component
of U.
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Let V, K, and W be constructed as in Lemma 4.7, with a replaced by p. Then
by Lemma 4.11, A(W) is not Dirichlet on bdy W, so there exists a real measure
i, supported on bdy W, annihilating A(W). Since bdy W ; bdy U and A(U) C
A(W), this shows that Re A(U) is not real pervasive on bdy U. O

We close with some examples, and a question.

Ezxample 4.12. Let ay, € R and r,, > 0 such that the intervals [a,, — rp, an + ry] are
pairwise-disjoint and U2 [ay, — T, an + 7y is dense in R. Let

(oo}
T=RU | Blan,r)
n=1

U=C\T.

Then U is open and has two components, U; and U,. We can arrange that the r,
are so small that R has GG-points for U. For instance, 0 will be a GG-point for U
if
Z T < T2, Vr>0.
lan|<r

In that case, A(U) is not Dirichlet on bdy U, but Re A(U) is real pervasive on
bdy U, by Theorem 4.10, since all GG-points lie on R and are influenced by each
boundary point of U. Theorem 4.1 tells us that A(U) is not complex pervasive on
bdy U.

Ezample 4.13. If we modify Example 4.12 so that U2, [a,, — 7y, @, + 7,,] has for its
closure [—2, —1] U [1,2] and take
T =[-2,-1JU[L,2]U | B(an,r)
n=1

U=C\T.

Then U is connected, so A(U) is complex pervasive on bdy U by Theorem 3.2, but
U is not simply-connected, so A(U) is not Dirichlet on bdy U.

Ezample 4.14. If, instead, we take T as in Example 4.13 and let
[ee]
U = ((C\T) U U U(anarn) )
n=1

we obtain U with components C\ T, U(ay,ry,) (n=1, 2,3, ... ). In that case A(U)
is not Dirichlet on bdy U, Re A(U) is real pervasive by Theorem 4.5, but A(U) is
not complex pervasive on bdy U by Theorem 4.1.

Example 4.15. Let T be as in Example 4.12 and let
S=TU{iz: z€T}.

Then U = C\ S has four components. We can arrange that there are GG-points
for U on the positive and negative real and imaginary axes. In that case, for each
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point p € bdy U there exists a GG-point ¢ not influenced by p. Thus A(U) is not

real pervasive on bdy U.

Question. It is possible to find an open set U C C such that each connected compo-
nent is simply-connected, no component U; has bdy U; = bdy U, but each boundary
point influences all the others. We do not know whether there is such U having
GG-points, i.e. for which A(U) is not Dirichlet. Is this possible?.
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