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Log-Convexity of Rate Region in 802.11e WLANs
Douglas J. Leith, Vijay G. Subramanian, and Ken R. Duffy

Abstract—In this paper we establish the log-convexity of
the rate region in 802.11 WLANs. This generalises previous
results for Aloha networks and has immediate implications for
optimisation based approaches to the analysis and design of
802.11 wireless networks.

Index Terms—802.11, log-convexity, rate region, convex opti-
misation, utility fairness.

I. INTRODUCTION

IN this paper we consider the log-convexity of the rate
region in 802.11 WLANs. The rate region is defined as

the set of achievable throughputs and we begin by noting
that the 802.11 rate region is well known to be non-convex.
This is illustrated, for example, in Figure 1 for a simple two-
station WLAN (where 𝜎, 𝑇𝑐, 𝑇𝑠 are described in Section II).
The shaded region indicates the set of achievable rate pairs
(𝑠1, 𝑠2) where 𝑠𝑖 is the throughput of station 𝑖, 𝑖 ∈ {1, 2}.
It can be seen from this figure that the maximum throughput
achievable by the network when only a single station transmits
(the extreme point along the x- or y-axes) is greater than
that when both stations are active (e.g. the extreme point
along the 𝑦 = 𝑥 line). This non-convex behaviour occurs
because in 802.11 there is a positive probability of colliding
transmissions when multiple stations are active, leading to
lost transmission opportunities. In Figure 2 the same data
is shown but now replotted as the log rate region, i.e. the
set of pairs (log 𝑠1, log 𝑠2). Evidently, the log rate region
is convex. Our main result in this paper is to establish that
this behaviour is true in general, not just in this particular
example. That is, although the 802.11 rate region is non-
convex, it is nevertheless log-convex. The implications of this
for optimisation-based approaches to the design and analysis
of fair throughput allocation schemes are discussed after the
result.

In a WLAN context, rate region properties have mainly
been studied for Aloha networks. The log-convexity of the
Aloha rate region in general mesh network settings has been
established by several authors [7], [2], [3], [1], [8] in the
context of utility optimisation. All of these results make
the standard Aloha assumption of equal idle and busy slot
durations, whereas in 802.11 WLANs highly unequal slot
durations are the norm e.g. it is not uncommon to have busy
slot durations that are 100 times larger than the PHY idle slot
duration. This is key to improving throughput efficiency but
also fundamentally alters other throughput properties since the
mean MAC slot duration and achieved rate are now strongly
coupled. We note that a number of recent papers have con-
sidered algorithms that seek to achieve certain fair solutions
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Fig. 1. Illustrating non-convexity of 802.11 rate region. Plot shows
throughput normalised by PHY rate for 𝑛 = 2 stations and 𝜎/𝑇𝑐 = 1/10
and 𝑇𝑠 = 𝑇𝑐 (i.e. for packet sizes where the packet transmission duration is
10 times larger than the PHY idle slot duration).
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Fig. 2. Log rate region corresponding to data shown in Figure 1.

(proportionally fair, max-min fair) in 802.11 networks, e.g see
[6] and references therein. For the WLAN scenario in this
paper we show how existence and uniqueness of fair solutions
follows from log-convexity.

II. NETWORK MODEL

The 802.11e standard extends and subsumes the standard
802.11 DCF (Distributed Coordinated Function) contention
mechanism by allowing the adjustment of MAC parameters
that were previously fixed. With 802.11, on detecting the
wireless medium to be idle for a period 𝐷𝐼𝐹𝑆, each station
initializes a counter to a random number selected uniformly
in the set {0, ...,CW-1} where CW is the contention window.
Time is slotted and this counter is decremented once for each
slot that the medium is idle. An important feature is that
the countdown halts when the medium becomes busy and
only resumes after the medium is idle again for a period
𝐷𝐼𝐹𝑆. On the counter reaching zero, the station transmits
a packet. If a collision occurs (two or more stations transmit
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simultaneously), CW is set to min(2 × 𝐶𝑊,𝐶𝑊𝑚𝑎𝑥) and
the process repeated. On a successful transmission, CW is
reset to the value 𝐶𝑊𝑚𝑖𝑛 and a new countdown starts for
the next packet. Again, each packet transmission in this phase
includes the time spent waiting for an acknowledgement from
the receiver. The 802.11e MAC enables the values of 𝐷𝐼𝐹𝑆
(called 𝐴𝐼𝐹𝑆 in 802.11e), 𝐶𝑊𝑚𝑖𝑛 and 𝐶𝑊𝑚𝑎𝑥 to be set
on a per class basis for each station. Throughout this paper
we restrict attention to situations where 𝐴𝐼𝐹𝑆 has the legacy
value 𝐷𝐼𝐹𝑆. In addition, 802.11e adds a TXOP mechanism
that specifies the duration during which a station can keep
transmitting without releasing the channel once it wins a
transmission opportunity. In order not to release the channel,
a SIFS interval is inserted between each packet-ACK pair.
A successful transmission round consists of multiple packets
and ACKs. By adjusting this time, the number of packets
that may be transmitted by a station at each transmission
opportunity can be controlled. A salient feature of the TXOP
operation is that, if a large TXOP is assigned and there are not
enough packets to be transmitted, the TXOP period is ended
immediately to avoid wasting bandwidth.

We consider an 802.11e WLAN with 𝑛 stations. As de-
scribed in [4], [5], we divide time into MAC slots, where each
MAC slot may consist either of a PHY idle slot, a successful
transmission or a colliding transmission (where more than one
station attempts to transmit simultaneously). Let 𝜏𝑖 denote the
probability that station 𝑖 attempts a transmission. The mean
throughput of station 𝑖 is then shown in [4] to be

𝑠𝑖(𝒯 ) =
𝜏𝑖
∏

𝑘∈𝑁∖{𝑖}(1− 𝜏𝑘)𝐿𝑖

𝜎𝑃𝑖𝑑𝑙𝑒 + 𝑇𝑠𝑃𝑠𝑢𝑐𝑐 + 𝑇𝑐(1− 𝑃𝑖𝑑𝑙𝑒 − 𝑃𝑠𝑢𝑐𝑐)
(1)

where 𝑃𝑖𝑑𝑙𝑒 =
∏

𝑘∈𝑁 (1 − 𝜏𝑘) and 𝑃𝑠𝑢𝑐𝑐 =∑
𝑖∈𝑁 𝜏𝑖

∏
𝑘∈𝑁∖{𝑖}(1− 𝜏𝑘), 𝒯 = [𝜏1 ... 𝜏𝑛]

𝑇 , 𝐿𝑖 is the mean
frame payload size at station 𝑖 in bits and 𝑁 = {1, .., 𝑛},
𝜎 is the PHY idle slot duration, 𝑇𝑠 is the duration of a
successful transmission (including time to transmit the data
frame, receive the MAC ACK and wait for DIFS) and 𝑇𝑐

the duration of a collision. In this paper we prove useful
analytical properties of the throughput expression (1).

It will prove useful to work in terms of the quantity 𝑥𝑖 =
𝜏𝑖/(1−𝜏𝑖) rather than 𝜏𝑖. With this transformation we have that
𝑃𝑖𝑑𝑙𝑒 = 1/

∏
𝑘∈𝑁 (1+𝑥𝑘) and 𝑃𝑠𝑢𝑐𝑐 =

∑
𝑖∈𝑁 𝑥𝑖/

∏
𝑘∈𝑁 (1+

𝑥𝑘) and so

𝑠𝑖(𝒯 ) =
𝑥𝑖𝐿𝑖/𝑇𝑐

𝜎/𝑇𝑐 − 1 + (𝑇𝑠/𝑇𝑐 − 1)
∑

𝑖∈𝑁 𝑥𝑖 +
∏

𝑘∈𝑁 (1 + 𝑥𝑘)

Definition 1: Rate Region. The rate region is the set 𝑅(𝜏)
of achievable throughput vectors 𝑆(𝒯 ) = [𝑠1 ... 𝑠𝑛]

𝑇 as the
vector 𝒯 of attempt probabilities ranges over domain 𝐷(𝜏 ) =
[0, 𝜏1] × ⋅ ⋅ ⋅ × [0, 𝜏𝑛], where 𝜏𝑖 denotes the 𝑖’th element of
vector 𝜏 and 0 ≤ 𝜏𝑖 ≤ 1, ∀𝑖 ∈ {1, ..., 𝑛}.

In this paper we assume that the value of 𝜏𝑖 can be freely
selected in the interval [0, 𝜏𝑖]. This is a mild assumption. For
example, suppose 𝐶𝑊𝑚𝑎𝑥 is set equal to 𝐶𝑊𝑚𝑖𝑛. Then1

𝜏 = 2𝑞/𝐶𝑊𝑚𝑖𝑛 where 𝑞 is the probability that there is
a packet available for transmission when the station wins
a transmission opportunity and so is related to the packet
arrival rate. When a station is saturated we have 𝑞 = 1. We

1Ignoring post backoff for simplicity

note that the value 𝑞 here is similar to the quantity in [4]
also referred to as 𝑞. By adjusting 𝑞 (via the packet arrival
process) and/or 𝐶𝑊𝑚𝑖𝑛, it can be seen that the value of 𝜏𝑖
can be controlled as required.

Definition 2: Log-convexity. Recall that a set 𝐶 ∈ ℝ
𝑛 is

convex if for any 𝑠1, 𝑠2 ∈ 𝐶 and 0 ≤ 𝛼 ≤ 1, there exists an
𝑠∗ ∈ 𝐶 such that 𝑠∗ = 𝛼𝑠1+(1−𝛼)𝑠2. A set 𝐶 is log-convex
if the set log𝐶 := {log 𝑠 : 𝑠 ∈ 𝐶} is convex.

III. LOG-CONVEXITY

A. Log-Convexity

We begin in this section by assuming that 𝜏 = 1, where
1 denotes the all 1’s vector. This assumption is relaxed later
on. For convenience we set 𝑎 := 𝜎/𝑇𝑐 with 𝑎 ∈ [0, 1] and
𝐾 := 𝑇𝑠/𝑇𝑐 − 1 with 𝐾 ≥ 0. The throughput expression can
now be written as

𝑠𝑖(𝒯 ) =
𝑥𝑖𝐿𝑖/𝑇𝑐

𝑋(𝒯 )
(2)

where

𝑋(𝒯 ) := 𝑎+𝐾
∑
𝑖∈𝑁

𝑥𝑖 +
∏
𝑖∈𝑁

(1 + 𝑥𝑖)− 1

= 𝑎+ (𝐾 + 1)
∑
𝑖∈𝑁

𝑥𝑖 +

𝑛∑
𝑘=2

∑
𝐴⊆𝑁 :∣𝐴∣=𝑘

∏
𝑗∈𝐴

𝑥𝑗 .
(3)

We know that the rate region 𝑅(1) may be non-
convex, but ask whether it is log-convex. Let log𝑆(𝒯 ) =
[log 𝑠1 ... log 𝑠𝑛]

𝑇 . The rate region 𝑅(1) is log-convex if
∀ 𝒯 1, 𝒯 2 ∈ (0, 1)𝑛 and ∀ 𝛼 ∈ [0, 1], ∃𝒯 ∗ ∈ (0, 1)𝑛 such
that

𝛼 log𝑆(𝒯 1) + (1 − 𝛼) log𝑆(𝒯 2) = log𝑆(𝒯 ∗). (4)

Rearranging terms we get for every 𝑖 = 1, . . . , 𝑛,

𝑥∗
𝑖

𝑋(𝒯 ∗)
=

(
𝑥1
𝑖

𝑋(𝒯 1)

)𝛼(
𝑥2
𝑖

𝑋(𝒯 2)

)(1−𝛼)

, or

(𝑥1
𝑖 )

𝛼(𝑥2
𝑖 )

(1−𝛼)

𝑥∗
𝑖

=
𝑋(𝒯 1)𝛼𝑋(𝒯 2)(1−𝛼)

𝑋(𝒯 ∗)
. (5)

Note that here we restrict 𝒯 to (0, 1)𝑛 rather than [0, 1]𝑛.
This involves no loss of generality since 𝑆(𝒯 ) is a continuous
function of 𝒯 . Note that the 𝐿𝑖/𝑇𝑐 term in (2) cancels on both
sides of (4) so the log-convexity result is independent of this
term.

We proceed by postulating that 𝑥∗ is of the form

𝑥∗
𝑖 =

(𝑥1
𝑖 )

𝛼(𝑥2
𝑖 )

(1−𝛼)

𝛿
(6)

as the right side of (5) does not depend on any particular
𝑖. The log-convexity question is whether we can find 𝛿 > 0
satisfying

𝛿 =
𝑋(𝒯 1)𝛼𝑋(𝒯 2)(1−𝛼)

𝑋(𝒯 ∗)
(7)

Substituting from (6) into (7), then using the first expression
in (3), and defining 𝑦𝑘 = (𝑥1

𝑘)
𝛼(𝑥2

𝑘)
(1−𝛼), we will need to

Authorized licensed use limited to: The Library  NUI Maynooth. Downloaded on January 27, 2010 at 07:05 from IEEE Xplore.  Restrictions apply. 



LEITH et al.: LOG-CONVEXITY OF RATE REGION IN 802.11E WLANS 59

solve for a 𝛿 > 0 such that

𝛿 =
𝑋(𝒯 1)𝛼𝑋(𝒯 2)(1−𝛼)

𝑎+𝐾
∑

𝑖∈𝑁
𝑦𝑖

𝛿 +
∏

𝑖∈𝑁

(
1 + 𝑦𝑖

𝛿

)− 1
, i.e.

𝛿

(
𝑎+𝐾

∑
𝑖∈𝑁

𝑦𝑖
𝛿
+
∏
𝑖∈𝑁

(
1 +

𝑦𝑖
𝛿

)
− 1

)

= 𝑋(𝒯 1)𝛼𝑋(𝒯 2)(1−𝛼).

(8)

Recalling Hölders inequality for two non-negative vectors 𝑢
and 𝑣,(∑

𝑘

𝑢𝑘

)𝛼(∑
𝑘

𝑣𝑘

)(1−𝛼)

≥
∑
𝑘

𝑢𝛼
𝑘𝑣

(1−𝛼)
𝑘 ∀𝛼 ∈ [0, 1],

we have using the second expression in (3) that the right-hand
side of (8) is positive and lower bounded by

𝑎+𝐾
∑
𝑖∈𝑁

𝑦𝑖 +
∏
𝑖∈𝑁

(1 + 𝑦𝑖)− 1.

Choosing 𝛿 = 1 it can be seen that this lower bound lies
within the range of the left-hand side of (8). Considering the
left-hand side of (8) in more detail, its second derivative is
given by

1

𝛿3

∑
𝑖,𝑗∈𝑁 :𝑗 ∕=𝑖

𝑦𝑖𝑦𝑗
∏

𝑘∈𝑁 :𝑘 ∕=𝑖,𝑗

(
1 +

𝑦𝑘
𝛿

)

where product over an empty set is defined to be 1. Since
the second-derivative is positive for 𝛿 ≥ 0, it implies the
(strict) convexity of the left-hand side of (8). This quantity
is unbounded and has range that includes [𝑎+𝐾

∑
𝑖∈𝑁 𝑦𝑖 +∏

𝑖∈𝑁 (1 + 𝑦𝑖)−1,∞). It follows that there exists a positive 𝛿
satisfying (8), as required. Indeed, in general there may exist
two values of 𝛿 solving (8). To see this observe that the left
-hand side is unbounded both as 𝛿 → 0 and as 𝛿 → ∞. The
first-derivative is negative as 𝛿 → 0 and positive as 𝛿 → ∞,
so we have a turning point 𝛿∗, which due to the convexity of
the function is unique. This turning point partitions the real
line and two solutions to (8) then exist, one lying in (0, 𝛿∗)
and the other in (𝛿∗,∞). Additionally, this argument also says
that there exists at least one solution of (8) where 𝛿 ≥ 1.

We have therefore established the following theorem.
Theorem 1: The rate region 𝑅(1) is log-convex.

B. Constraints on 𝜏

We can extend the foregoing analysis to situations where the
station attempt probability is constrained, i.e. the vector 𝒯 of
attempt probabilities ranges over 𝐷(𝜏 ) = [0, 𝜏1]×⋅ ⋅ ⋅× [0, 𝜏𝑛],
where 0 ≤ 𝜏𝑖 ≤ 1, ∀𝑖 ∈ {1, ..., 𝑛}. Note that an upper bound
on 𝜏𝑖 of 𝜏𝑖 results in an upper bound 𝑥̄𝑖 = 𝜏𝑖/(1− 𝜏𝑖) on 𝑥𝑖.
Therefore if 𝒯 1, 𝒯 2 ∈ 𝜏 , then 𝑥1, 𝑥2 ∈ 𝐷(𝑥̄) = [0, 𝜏1/(1 −
𝜏 )1]× ⋅ ⋅ ⋅ × [0, 𝜏𝑛/(1− 𝜏 )1] and for every 𝛼 ∈ [0, 1] we also
have 𝑦 ∈ 𝐷(𝑥̄). From the proof of Theorem 1 we know that
there exists at least one 𝛿 ≥ 1 that solves (8). Using that
solution we find that 𝑥∗ = 𝑦/𝛿 ≤ 𝑦 so that 𝑥∗ ∈ 𝐷(𝑥̄). Note
that we can have different values of 𝜏𝑖 for every 𝑖. Therefore
we have the following corollary to Theorem 1.

Corollary 1: The rate region 𝑅(𝜏 ) is log-convex for every
𝜏 ∈ [0, 1]𝑛.

IV. DISCUSSION

These log-convexity results allow us to immediately apply
powerful optimisation results to the analysis and design of
fair throughput allocations for 802.11 WLANs. First, using
[9, Theorem 1], the existence of a max-min fair solution
immediately follows. We also have that any optimisation of
the form

max
𝑆

𝑓(𝑆) s.t. 𝑆 ∈ 𝑅(𝜏 ), ℎ𝑖(𝑆) ≤ 0, 𝑖 = 1, ..,𝑚

can be converted into an optimisation

max
𝑆

𝑓(log 𝑆) s.t. log𝑆 ∈ log𝑅(𝜏), ℎ̃𝑖(log𝑆) ≤ 0, 𝑖 = 1, ..,𝑚

where 𝑓(𝑧) = 𝑓(exp(𝑧)) (so, in particular, 𝑓(log𝑆) = 𝑓(𝑆)),
log𝑆(𝒯 ) = [log 𝑠1 ... log 𝑠𝑛]

𝑇 , log𝑅 = {log 𝑠 : 𝑠 ∈ 𝑅} and
ℎ̃𝑖(𝑧) = ℎ(exp(𝑧)). Provided −𝑓(⋅) and the ℎ̃𝑖(⋅) are convex
functions, the optimisation is a convex problem to which
standard tools can then be applied. From this point of view it
now follows that we can naturally extend the congestion and
contention control ideas of [3] to the more general scenario
considered in [4], [5].

In particular, for the standard family of utility fairness
functions given for 𝑤 > 0, 𝛼 ≥ 1 and 𝑧 > 0 by

𝑓𝑤,𝛼(𝑧) =

{
𝑤𝑧1−𝛼/(1− 𝛼) if 𝛼 ∕= 1,

𝑤 log(𝑧) if 𝛼 = 1,

we have 𝑓𝑤,𝛼(𝑧) = 𝑓𝑤,𝛼(exp(𝑧)) is concave for all 𝛼 ≥ 1.
In the 𝛼 > 1 case we also get strict concavity of 𝑓 , and the
existence and uniqueness of utility fair solutions immediately
follows from our log-convexity result. For 𝜏 = 1 an analysis
of the boundary of the log rate-region also allows one to show
uniqueness of the solution in the case of 𝛼 = 1.

V. CONCLUSIONS

In this paper we establish the log-convexity of the rate
region in 802.11 WLANs. This generalises previous results
for Aloha networks and has immediate implications for opti-
misation based approaches to the analysis and design of fair
throughput allocation schemes in 802.11 wireless networks.
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