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Abstract

We present a unified approach for linear and non-linear sensitivity analy-
sis for models of reaction kinetics that are stated in terms of systems of
ordinary differential equations (ODEs). The approach is based on the re-
formulation of the ODE problem as a density transport problem described
by a Fokker–Planck equation. The resulting multidimensional partial dif-
ferential equation is herein solved by extending the TRAIL algorithm
originally introduced by Horenko and Weiser in the context of molecular
dynamics (J. Comp. Chem. 2003, 24, 1921) and discuss it in comparison
with Monte Carlo techniques. The extended TRAIL approach is fully
adaptive and easily allows to study the influence of non-linear dynamical
effects. We illustrate the scheme in application to an enzyme-substrate
model problem for sensitivity analysis w.r.t. to initial concentrations and
parameter values.

keywords: non-linear sensitivity analysis, parameter uncertainty, adaptive
particle methods, multidimensional PDEs, Fokker–Planck equation

1 Introduction

In computational chemistry and biotechnology, the construction of predictive
models has become an essential step in process design and product optimiza-
tion. Modelling the temporal behavior often leads to systems of ordinary dif-
ferential equations (ODEs), the numerical solution of which allows to predict
the temporal behavior of the system, to optimize parameters, or to study the
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sensitivity of the dynamical process w.r.t. its initial values and/or parameters.
The latter task, sensitivity analysis, is most of the time either considered in a
linearized setting [7], neglecting effects due to the non-linearity of the ODE, or
by studying the influence of an initial value or parameter uncertainty on the
dynamics via Monte Carlo methods [5, 19, 20]. From a conceptual as well as
a practical point of view, this, however, is not satisfactory. Rather, one would
like to study the joint influence of all uncertainties based on the fully non-linear
dynamics. Mathematically this can be modelled by uncertainty distributions
of initial values and/or parameter values that are propagated in time via the
underlying ODE.

There are available theoretical and numerical tools for investigating ODEs with
initial values and/or parameter uncertainty distributions. One class of ap-
proaches is represented by Monte Carlo methods based on a sampling of the
parameter space and subsequent solution of the ODE for each of the sampling
points (f.e. [19]). While this is the method of choice for problems with many
parameters and degrees of freedom in order to avoid the ”curse of dimensional-
ity”, the questions of numerical accuracy, reliability, and adaptivity still remain
partially unclear. A second class of methods is known as the stochastic finite
elements (SFEMs) approach [13, 14, 15]. This method represents the overall
statistical response of the system by a linear combination of orthogonal basis
functions. However, in the available form, this approach cannot be applied to
higher dimensional problems with different time and length scales as it is typical
for reaction kinetics models.

In this article, we present a theoretical framework and an adaptive numerical
approach for systems of ODEs with uncertainty distributions. The approach is
based on the reformulation of the problem in terms of a Fokker–Planck partial
different equation (PDE). In order to solve the resulting PDE numerically, we
adopt and extend the adaptive Gaussian-based particle method TRAIL [11, 12]
that has originally been developed in the context of molecular dynamics. The
TRAIL approach is based on two ingredients: (i) a linear prediction of the
evolving density by means of a particle method using Gaussian ansatz func-
tions, and (ii) a correction of the linear prediction by adaptive approximation of
non-linear effects. In this article, we show how the TRAIL algorithm can be ex-
tended to allow for non-linear sensitivity analysis and illustrate the performance
of the method for the case of a sensitivity analysis of enzyme-substrate reaction
kinetics. Moreover, due to the prediction-correction scheme, it is possible to
analyze the effects of non-linearity on the overall dynamics by comparing the
fully non-linear system to the linearized system.
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2 Sensitivity analysis reformulated in terms of
partial differential equations

Let us consider the following system of ODEs of the form

ż = F (z, t), z(t0) = z0, (1)

where z denotes the state vector of the system, z0 its initial value at time
t0, and F the right hand side (RHS) of the ODE. In the context of sensitivity
analysis we are interested in the influence of uncertainties in initial values and/or
parameters on the dynamical behavior. These uncertainties are modelled in
terms of some distribution function u = u(z, t) representing the ”spread” of
the values. Analyzing the impact of uncertainties corresponds to propagating
the initial uncertainty distribution u(·, t0) under the dynamics of the ODE (1)
in time, hence solving for u(·, t) for all t > t0. The time propagation of u is
described by the Fokker–Planck or Liouville equation [10, 17]

∂

∂t
u(z, t) = −

∑

i

∂

∂zi

(
F (z, t) · u(z, t)

)
, (2)

with initial density u = u(·, t0). In the following we will distinguish two cases:
(i) z = x for the sensitivity analysis w.r.t. initial conditions (concentrations),
and (ii) z = (x, θ) in the case of the sensitivity analysis w.r.t. initial conditions
and parameters (concentrations and rate constants in the language of chemical
reaction kinetics).

Sensitivity analysis w.r.t. initial values. Here, we consider the system of
ODEs

ẋ = f(x, t), x(0) = x0, (3)

where x denotes the d-dimensional state vector of the system, x0 its initial value,
and f the RHS. In this case, we consider some density u = u(x, t) depending
only on state and time, whose propagation in time is given by the Fokker-Planck
equation (2) with F = f :

∂

∂t
u(x, t) = −

d∑

i=1

(
∂

∂xi
fi(x, t; θ) · u(x, t) + fi(x, t; θ)

∂

∂xi
u(x, t)

)
, (4)

and initial density u(·, t0).

Sensitivity analysis w.r.t. initial values and parameters. Due to limited
experimental precision, in many applications one is interested in the impact of
parameter uncertainties. By explicitly considering parameters as state variables,
the ODE (3) can be extended to a (d + p) dimensional system of ODEs

ẋ = f(x, θ, t), x(t0) = x0 (5)
θ̇ = 0, θ(t0) = θ. (6)
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As a consequence, when analyzing the impact of uncertainty on the dynamical
behavior, we have to consider some density u = u(x, θ, t) depending on space,
parameters and time. The corresponding Fokker-Planck equation (2) with F =
(f, 0) takes the form:

∂

∂t
u(x, θ, t) = −

d∑

i=1

(
∂

∂xi
fi(x, θ, t) · u(x, θ, t) + fi(x, θ, t)

∂

∂xi
u(x, θ, t)

)

−
p∑

i=1

(
∂

∂θi
fi(x, θ, t) · u(x, θ, t)

)
(7)

and initial density u = u(·, ·, t0). The RHS of eqnation (7) consists of the
operator acting only on the x coordinate of the overall density u and the whole
equation can be understood as a Liouville transport of the density in the phase
space of x. Due to this fact it is tempting to use some sort of separation
ansatz, i.e., u(x, θ, t) = u1(x, t)u2(θ, t) and utilize the fact that u2 is stationary
and so far is time independent. However, as it will be seen in the section 3
and demonstrated in the section 5, the solution of (7) develops non-negligible
correlations between the space and parameter coordinates. Such effects cannot
be reproduced by the separation ansatz.

3 Linear sensitivity analysis

In its simplest version, linear sensitivity analysis models uncertainties related
to some state z0 in the form of some range δz0 [7], i.e., we have to consider all
possible values z ∈ [z0 − δz0, z0 + δz0], each being equally likely. Alternatively,
a Gaussian or normal distribution centered around z0 with variance–covariance
matrix related to δz0 is specified, reflecting the fact that the value z0 is thought
to be the most likely one, while the neighboring values become less likely with
increasing distance.

We here consider the case of uncertainty specified in terms of some Gaussian
distribution

g(z, t) = A(t) · exp
(
(z − z0(t))

T G(t) (z − z0(t))
)

, (8)

with amplitude A(t), center z0(t) and shape matrix G(t) (equal to the inverse
of the covariance matrix). For abbreviation, we define

T (z, t) = (z − z0(t))
T G(t) (z − z0(t)) (9)

and obtain g(z, t) = A(t) exp
(
T (z, t)

)
. In the setting of linear sensitivity anal-

ysis, we are interested in the solution of the Fokker-Planck PDE (2) w.r.t. the
linearized RHS DF (z0(t)) and density u = g. As it will turn out, this can easily
be achieved by simply inserting the Gaussian function (8) into the Fokker-Planck
equation and propagating the derived ODEs for amplitude, center and shape
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matrix of the Gaussian. This way, the solution of PDE (4) corresponding to
the linearized ODE ẏ = DF (z0(t))y drastically simplifies. Computing the spa-
tial and temporal partial derivatives for g, inserting into (4) and dividing by
exp

(
T (z, t)

)
yields

∂

∂t
A(t) + A(t)

∂

∂t
T (z, t) = −A(t)

∑

i

( ∂

∂zi
Fi(z, t) + Fi(z, t)

∂

∂zi
T (z, t)

)
. (10)

As mentioned above, we linearize the underlying dynamics, i.e., we linearize the
RHS in (1) around the center z0(t) of the Gaussian,

F (z, t) ≈ F (z0(t), t) + Jz

(
z − z0(t)

)
,

with Jz = DF (z) being the Jacobian of F at z0. Inserting into (10) yields terms
that are constant, linear, and quadratic in (z − z0(t)). Separating the different
contributions results in

Ȧ = −A · trace(Jz) (11)
ż0 = F (z0, t) (12)

Ġ(t) = −JzG(t)−G(t)JT
z . (13)

Whenever the shape matrix is symmetric for some time t0, i.e., G(t0) = G(t0)T ,
eq. (13) yields Ġ(t0) = Ġ(t0)T . As a consequence, symmetry is preserved for all
times t ≥ t0, such that G indeed defines a shape matrix of a Gaussian. Looking
at the analytical solution of (13), the analytical solution

G(t) = exp (−Jzt) ·G(0) · exp (−Jzt)
T
. (14)

one easily see that G remains positive semi–definite, too. Therefore, our solution
for G fulfills the requirements of a shape matrix.

Summarizing, instead of solving the Fokker-Planck PDE (2) for the linearized
ODE ẏ = Jzy and with u = g to determine g(·, t), we simply have to solve the
system of ODEs (11)-(13) that describe the time evolution of the corresponding
parameters. Then, g(·, t) is obtained via relation (8).

Sensitivity analysis w.r.t. initial values. Simply set z = x, z0 = x0, F = f
and Jz = Df(x0) to obtain the required evolution equations for the parameters
of the Gaussian distribution.

Sensitivity analysis w.r.t. initial values and parameters. Set z = (x, θ),
z0 = (x0, θ0), F = (f, 0) and Jz = D(f, 0)(x0, θ0) in order to obtain the required
evolution equations for the parameters of the Gaussian distribution. Due to
the special structure of the RHS, the evolution equation for the shape matrix
can be further simplified: The general shape matrix of the Gaussian density
g = g(x, θ, t) in state and parameter space has the structure

G =
(

Gx Gm

GT
m Gθ

)
. (15)
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The matrices Gx and Gθ describe the statistic interdependencies within the
state and parameter space, respectively, while the matrix Gm describes the ones
between the state and parameter space. Denote by Jx and Jθ the Jacobians
of f in (5) w.r.t. the spatial coordinates x and the parameters θ, respectively.
Then, the Jacobian J(x,θ) of the RHS of (5) and (6) has the special form

J(x,θ) =
(
Jx Jθ

0 0

)
. (16)

This allows to establish evolution equations for the sub-matrices of G:

Ġx = −JxGx − JθGT
m − (

JxGx + JθGT
m

)T
(17)

Ġm = −JxGm − JθGθ (18)
Ġθ = 0. (19)

The analytical solution for the entire shape matrix is then given by

G(t) = exp
{
−

(
Jx Jθ

0 0

)
t

} (
Gx 0
0 Gθ

)∣∣∣∣
t=0

exp
{
−

(
Jx Jθ

0 0

)
t

}T

.

Extension to non-Gaussian densities. Due to linearity of the Fokker-
Planck PDE, the linear sensitivity analysis can easily be extended to the case
of some initial density u = u(z, t0) being represented as a sum of Gaussian
distributions gj , i.e.,

u(z, t0) =
M∑

j=1

gj(z, t0).

The above derivation allows for the computation of the density at time t

u(z, t) =
M∑

j=1

Aj(t) exp
(
Tj(z, t)

)
.

However, still u(·, t) is based on a linearized dynamics only and thus will only
be an approximation of the solution of (4) based on the fully non-linear system.
This will be accounted for in the non-linear sensitivity analysis.

4 Non–linear sensitivity analysis

For the density propagation of Liouville type problems, Horenko and Weiser
developed a multidimensional, fully adaptive particle method to describe the
propagation of distributions in non-linear dynamical systems, called TRAIL
(Trapezoid Rule for Adaptive Integration of Liouville dynamics) [11, 12]. The
adaptive discretization scheme is based on the Rothe method [6, 8, 18]. The key
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idea is to approximate the distribution u as a superposition of Gaussian distri-
butions that are adapted in time corresponding to the non-linear dynamics. In
each time step t → t + ∆τ , the scheme comprises two steps: In the first step,
the Fokker-Planck PDE problem for the corresponding linearized ODE is solved.
This transport along the characteristics of the linearized dynamics results in an
approximation—a so-called prediction—of the solution. In the second step, the
prediction is then refined in order to account for non-linear effects and to meet
the accuracy requirements. This step is called correction.

The propagation of the density w.r.t. the linearized ODE is one of the key ingre-
dients of the TRAIL scheme. As it turns out, for the type of ODE considered
herein, this prediction is identical to the solution of the linear sensitivity anal-
ysis presented above. Thus, the TRAIL approach, in one of its key steps, is
based on linear sensitivity analysis. However, the corresponding solution, here
denoted by upred, is in the subsequent correction step further refined to account
for non-linear effects. This is done in an adaptive manner such that the final
approximation ucorr satisfies the used-prescribed accuracy requirement

‖u(·, t + τ)− ucorr(·, t + τ)‖ < tol (20)

for some suitable norm ‖·‖. We now sketch the algorithmic flow of the extended
TRAIL approach; for details we refer to [11, 12]. Assume, we are given some
initial uncertainty density u = u(z, t0). In a first step, u(·, t0) is approximated
by a finite sum of Gaussian distributions

u(z, t0) =
M∑

j=1

Aj(t0) exp
(
Tj(z, t0)

)
+ εt0

such that ‖εt0‖ < tol. In the second step, the Gaussian distributions are prop-
agated for some adaptively chosen time step τ > 0 resulting in the prediction

upred(z, t0 + τ) =
M∑

j=1

Aj(t0 + τ) exp
(
Tj(z, t0 + τ)

)
.

In a third step, this prediction is then refined. Two types of refinements are
considered: adaption of the amplitudes Aj and adaption of the number M of
Gaussians. For the adaption of the amplitude, the optimization problem

‖ū(·, t + τ)− ucorr(·, t + τ)‖ = min
(Aj)j=1,...,M

, (21)

is solved. Here the distribution ū is defined exploiting the implicit Trapezoid
rule for semi-discretization in time

(
1− τ

2
L

)
ū(·, t + τ) =

(
1 +

τ

2
L

)
u(·, t) (22)

with infinitesimal generator Lu = −div
(
F · u)

corresponding to the Fokker-
Planck equation (2). Since the centers z(t + τ) and the shape matrices G(t +
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τ) are considered to be fixed, the problem (21) is only optimizing over the
amplitudes At(t+ τ). This optimization problem can be reformulated as a least
squares problem, whose solution require the use of the QR-algorithm [7]. If the
user-prescribed accuracy requirement in (21) cannot be fulfilled, the number of
Gaussian ansatz functions is increased (spawn), and the optimization problem
is redone. Moreover, it might also be necessary to decrease (prune) the number
of Gaussian, whenever the distribution starts to show a simpler structure or, for
reasons of numerical stability, whenever two Gaussians are too close together.
In the spawning case, the local error estimator of the implicit Trapezoid rule
is employed to spot the particles in the vicinity of which new Gaussians are to
be created. Compared to the purely heuristical spawning techniques presented
e.g. in [2, 4, 3], the spawning within trail in controlled by the global tolerance.
In the pruning case, an analysis of the problem’s sub-condition number is used
to spot the particles that ought to be removed. Both of these steps can be
done adaptively and simultaneously with the solution of (21) in terms of the
QR-decomposition. Details may again be found in [11]. In the final step, the
estimation error resulting from the Trapezoid rule is also employed to compute
the next time step τ ; this is done by standard methods of time step control [7].

5 Numerical examples

We now apply and compare the extended TRAIL algorithm with other numer-
ical methods for some simple non-linear model of reaction kinetics. In 1913,
Michaelis and Menten introduced a model for the conversion of a substrate S to
a product P catalyzed by some enzyme E [1, 9, 16]. The reaction is assumed to
take part in two steps. First, the substrate S and enzyme E form an enzyme-
substrate complex ES, which is subsequently irreversibly transformed into the
product P .

E + S
k+
1−→←−

k−1

ES
k+
2−→ P + E (23)

k−1 , k+
1 and k+

2 denote here the corresponding reaction rates. The total con-
centration of the enzyme [E]T and the substrate [S]T satisfy the conservation
conditions

[E]T = [E] + [ES] (24)
[S]T = [S] + [ES] + [P ] . (25)

Since the reaction involving k+
2 is irreversible, we may completely characterize

the catalytic reaction by the system of two ODEs

d
dt

[S] = −k+
1 [E]T [S] +

(
k−1 + k+

1 [S]
)
[ES] (26)

d
dt

[ES] = k+
1 [E]T [S]− (

k−1 + k+
2 + k+

1 [S]
)
[ES]. (27)
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The above ODEs can further be simplified, if [E]T ¿ [S], resulting in the well-
known Michaelis-Menten or Monod approximation [9]. However, in the following
we will analyze the full model.

5.1 Sensitivity analysis w.r.t. initial values

The above model is now used to illustrate and compare the extended TRAIL
approach with alternative methods. In the first example, we analyze the effect of
initial value uncertainties; hence we regard the initial concentrations [S](0) and
[ES](0) as being distribution functions. In order to keep the example simple,
we assume that the uncertainties are normally distributed according to

[S](0) ∼ N
(

0.7,
1√
10

)
, [ES](0) ∼ N

(
1,

1√
10

)
(28)

and specify the reaction constants as k+
1 = 1, k−1 = 1, k+

2 = 1, [E]T = 1. Four
numerical methods have been applied to analyze the sensitivity of the system
of ODEs (26) and (27) w.r.t. the initial value uncertainty:

1. Finite element method (FEM) with a uniform 200× 200 grid

2. Monte Carlo sampling (MC) of the initial value distributions and subse-
quent trajectory propagation

3. Extended TRAIL approach

4. Linear sensitivity analysis

Due to the low-dimensional (2d) character of the problem, the FEM can be
used to numerically compute a reference solutions with high accuracy. Figure 1
shows the FEM reference solution in comparison to the solutions obtained by
the remaining three approaches. We observe that the extended TRAIL ap-
proach (with tol = 0.01 yielding a representation with only 20 Gaussian ansatz
functions) as well as the MC method (with 20.000 sampling points) produce
very good results. The linear sensitivity analysis yields a misleading result; this
clearly indicates that already for this simple model system, non-linear effects
play an important role.

5.2 Sensitivity analysis w.r.t. initial values and parame-
ters

We now illustrate the sensitivity analysis for uncertain initial values and param-
eters. The initial values for [S] and [ES] as well as the four parameters k−1 , k+

1 ,
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Figure 1: Propagated densities at times t = 0.2 and t = 0.8 for the model system
(26)-(27) with uncertainty in initial conditions given by (28). Comparison of
solutions generated by means of the four schemes introduced in the text. The
solutions of FEM, extended TRAIL and MC are very close together, while the
linearized propagation results in wrong densities. Note that in contrast to FEM
or extended TRAIL, the solution obtained with MC shows some considerable
roughness.

k+
2 and [E]T are assumed to be normally distributed according to

[S](0) ∼ N
(

8,
1√
40

)
, [ES](0) ∼ N

(
2,

1√
40

)
,

k−1 ∼ N
(

0.5,
1√
20

)
, k+

1 ∼ N
(

0.3,
1√
20

)
,

k+
2 ∼ N

(
2,

1√
20

)
and [E]T ∼ N

(
2,

1√
20

)
. (29)

By considering the initial concentrations and the parameters as uncertain, the
PDE problem now becomes six dimensional. Due to the immense computational
effort, the finite element method has to be rejected as a suitable method, such
that only the Monte Carlo simulation remains for comparison. Figure 2 demon-
strates the convergence of the MC method with increasing number of sampling
points (10.000 vs. 100.000) and the extended TRAIL approach. It can be seen
that the quality of the MC approximation deteriorates with time (increasing
roughness) which is due to the non–conservative structure of the underlying dy-
namics. In Figure 3 we compare the results of the extended TRAIL approach
(with tol = 0.06) to a high precision Monte Carlo simulation (650.000 trajecto-
ries). The results of the extended TRAIL approach almost perfectly correspond
to the Monte Carlo results. When decreasing the user-prescribed tolerance to
tol = 0.03, the approximation quality increases considerably, as can be seen.
Figure 4 illustrates how the time step τ and the number M of Gaussians used
to approximate the distribution change during the course of the propagation
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for the two chosen tolerances. Particularly one observes that (as always) higher
accuracy requires higher computational effort. Generally speaking, the compu-
tation time difference between TRAIL and Monte Carlo for acceptable tolerance
cover 1− 2 order of magnitude.
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Figure 2: MC solutions for instances t = 0.0 s and 0.5 s and different numbers
of sampling trajectories: 10.000 (top) 100.000 (middle) and 300.000 (bottom,
right). At the bottom left, the TRAIL solution for tol = 0.03 is shown.
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Figure 3: Propagated densities at t = 0.2 and 0.5. Note that the distribution
develops asymmetry and that the approximation quality improves when the
user-prescribed tolerance tol is decreased (tol = 0.06 vs. tol = 0.03).
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Figure 4: Adaptivity in time and space. Left: Behavior of the time step τ versus
time for two different tolerances. Right: Number of Gaussian ansatz functions
generated within the adaptive control versus time for two different tolerances.
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6 Conclusion

In this article we analyze the problem of non-linear sensitivity analysis for mod-
els of reaction kinetics. We show how the problem can be reformulated in the
context of Fokker-Planck equations, i.e., PDEs that describes the evolution of
densities w.r.t. the dynamics specified by the underlying ODE. This allows us
to apply different methods for solving such time dependent PDEs, like FEM, or
MC methods.

As a promising alternative approach, we derive an extension of the TRAIL
approach that allows to reliably tackle problems of non-linear sensitivity anal-
ysis. The extended TRAIL scheme is implemented as a fully adaptive particle
method, where the number of particles is controlled by a user-prescribed toler-
ance. It is worth noticing that the numerical effort scales with the number of
particles used and is independent of the problem’s dimension. We show that
the linear and non-linear sensitivity analysis can be considered in a unified way
within the framework of TRAIL.

We demonstrate that the FEM, MC and the extended TRAIL approach yield
comparable results in application to the sensitivity analysis for initial concen-
trations of an enzyme-substrate model problem. When also taking the uncer-
tainty of parameters into account, only MC and TRAIL obtain results with
reasonable computational effort. In comparison, these two approaches are con-
ceptually quite different: The MC approach yields as a result an ensemble
of sampling points. In contrast to molecular dynamics, where the ODE is of
Hamiltonian structure and we thus get conservation of the phase volume and
u
(
x(t), t

)
= u

(
x(t0), t0

)
, in the field of reaction kinetics, this property does in

general not hold. Thus, a single sampling point is of limited use and only via
the formation of expectations the information contained in the entire ensemble
is accessible. For example, in order to determine the value u(x, t) at a spe-
cific point x, we have to introduce some discretization box B(x) containing x
and then compute the ensemble average over B(x). The extended TRAIL al-
gorithm yields as a result a continuous approximation of the density in time.
As a consequence, point information like u(x, t) are easily accessible. However,
problems involving distribution functions with large degree of spatio-temporal
details tend to increase the number of needed Gaussian distributions signifi-
cantly and consequently increase the numerical effort. Alternative approaches
are currently under investigation. The scheme underlying the TRAIL approach
is not restricted to Gaussian particles as ansatz functions and can be based on
any set of distribution functions, assuming the existence of a reliable analogy
to the linear predictor (c.f. (11), (12) and (13)) for this functions.
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