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LOGARITHMIC ASYMPTOTICS FOR THE SUPREMUM
OF A STOCHASTIC PROCESS1

BY KEN DUFFY,2 JOHN T. LEWIS AND WAYNE G. SULLIVAN

Dublin Institute of Technology

Logarithmic asymptotics are proved for the tail of the supremum of a
stochastic process, under the assumption that the process satisfies a restricted
large deviation principle on regularly varying scales. The formula for the rate
of decay of the tail of the supremum, in terms of the underlying rate function,
agrees with that stated by Duffield and O’Connell [Math. Proc. Cambridge
Philos. Soc. (1995) 118 363–374]. The rate function of the process is not
assumed to be convex. A number of queueing examples are presented which
include applications to Gaussian processes and Weibull sojourn sources.

1. Introduction. Let {Wt} be a stochastic process. Define Q := supt≥0 Wt .
We investigate the tail asymptotics of P[Q > q] as q becomes large. Assume that
the process {Wt} satisfies a restricted form of the large deviation principle (LDP):
for some scaling functions a, v regularly varying with indices A > 0,V > 0,
respectively, the limit

lim
t→∞ v(t)−1 log P[a(t)−1Wt > c] = −J (c)(1)

exists for all c ≥ 0. Under additional technical assumptions on {Wt}, we prove that

lim
q→∞h(q)−1 log P[Q > q] = − inf

c>0
cV J (c−A)(2)

with h = v ◦ a−1.
It is conceivable that the tail asymptotics of P[a(t)−1Wt > c] for a single t value

could dominate those of P[Q > q]. We show by example that this can happen.
Without an additional assumption, (1) can hold while (2) fails. To exclude this
possibility, we introduce a uniform individual decay-rate hypothesis: There exist
constants F > V/A, K > 0, such that for all t and all c > K ,

1

v(t)
log P[Wt > ca(t)] ≤ −cF .
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The novel aspects of our treatment of the tail asymptotics of P[Q > q] are

• the use of a weakened form of the LDP in which a nonconvex rate function J is
allowed;

• introduction of the uniform individual decay-rate hypothesis.

Our main results are proved in Section 2. Examples are given in Section 3. The
connections with the existing literature are discussed in Section 4. We conclude
this section with a brief description of our strategy:

We assume that a restricted LDP of the form (1) is satisfied by the pair
(Wt/a(t), v(t)) but do not make assumptions about how it has been deduced; in
particular, we admit nonconvex rate functions. We base our estimates directly on
the probabilities, clarifying their interpretation, and we provide a simple form for
the resulting asymptotic rate of decay. With these assumptions, it is not difficult to
prove the lower bound

lim inf
q→∞

1

h(q)
log P[Q > q] ≥ − inf

c>0
cV J

(
1

cA

)
=: −δ;(3)

details are provided in Section 2.
More work is required, however, to prove the corresponding upper bound. This

begins by splitting the set {Q > q} into the union of three, not necessarily disjoint,
subsets,

{Q > q} =
{

sup
t : a(t)<qc

Wt > q

}
∪

{
sup

t : qc≤a(t)≤qc

Wt > q

}

∪
{

sup
t : a(t)>qc

Wt > q

}
,

(4)

where 0 < c < c < ∞. The principle of the largest term ensures that the rate
of decay of the probability of {Q > q} is less than or equal to the slowest rate of
decay of these three sets. It will be shown in Proposition 2.3 that the rate of decay
of the probability of the middle term in (4), for any 0 < c < c < ∞, is bounded
above by −δ. It is shown in Proposition 2.2 that there exists a c < ∞ such that the
rate of decay of the probability of the final term in (4) is bounded above by −δ.

The restricted LDP hypothesis refers to the limiting behavior of logP[Wt >

ca(t)]. The asymptotics of a single Wt could dominate those of Q. We need to
impose an additional condition which excludes this possibility, ensuring that there
exists a c > 0 such that the rate of decay of the probability of the first term in (4)
is as fast as −δ. We then have that

lim
q→∞

1

h(q)
logP[Q > q] = − inf

c>0
cV J

(
1

cA

)
.(5)
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2. Main results. We consider a family of random variables {Wt : t ∈ T },
where T is an unbounded subset of R+. In this work we shall be interested
primarily in T = Z+, but do provide an additional hypothesis under which the
work extends to T = R+. We define Q := supt≥0 Wt .

Recall from Bingham, Goldie and Teugels [2] the definition of a regularly
varying function:

DEFINITION 1. A strictly positive measurable function f : R+ → R+ is
regularly varying of index ρ �= 0 if, for all c > 0,

lim
t→∞

f (ct)

f (t)
= cρ.

SCALING HYPOTHESIS. The function a is continuous, strictly increasing,
regularly varying with index A > 0 and limt→∞ a(t) = ∞. The measurable
function v is regularly varying with index V > 0 and limt→∞ v(t) = ∞.

Note that, although we have assumed that a(t) is both strictly increasing and
continuous, given any function a(t) which is regularly varying with index A > 0,
it is possible to construct a function a′(t) which is both strictly increasing and
continuous, so that

lim
t→∞

a(ct)

a(t)
= lim

t→∞
a′(ct)
a′(t)

= lim
t→∞

a′(ct)
a(t)

= cA

for all c > 0.
Also note that in Loynes’ original work [11], where the distribution Q :=

supt≥0 Wt was introduced in the queueing context, {Wt : t ∈ Z+} is defined to be
a process with stationary increments {Zt }; that is, Wt := ∑−1

i=−t Zi and W0 := 0.
In this setting, if Z1 is integrable, the individual ergodic theorem (see page 18 of
Halmos [9]) holds, so that

lim
t→∞

1

t

t∑
i=1

Z−i = lim
t→∞

Wt

t
= E[Z1|F ],

where F is the invariant σ algebra. Hence, in this situation, it seems likely that
a(t) would be set to be t ; if a′(t) is any other scale such that lima′(t)/t ∈ {0,∞},
then the information about the mean behavior of the arrivals less service is lost on
the scale a′(t).

If a(t) is regularly varying with constant A, then Theorem 1.5.12 of [2] proves
that a−1(t) is regularly varying with constant 1/A.

DEFINITION 2. We define the scaling function h : R+ → R+ by

h(q) := v
(
a−1(q)

)
.(6)
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From Chapter 1 of [2], in particular Theorems 1.4.1 and 1.5.6, we deduce the
following:

LEMMA 2.1. Under the scaling hypothesis the function h defined by (6)
satisfies, for each c > 0,

lim
t→∞

h(ct)

h(t)
= cV/A.

As t → ∞ the ratio h(ct)/h(t) converges to cV/A uniformly as a function of c on
compact subsets of R+. Similarly, the ratios v(ct)/v(t) and a(ct)/a(t) converge
uniformly to cV and cA as functions of c on compact subsets of R+. For each δ > 0
and C > 1, there exists bδ,C so that q, t ≥ bδ,C implies

h(t)/h(q) ≤ C max
{
(t/q)V/A+δ, (t/q)V/A−δ

}
.

Analogous inequalities hold for v(t)/v(q) and a(t)/a(q).

For each x ∈ R, define 
x� to be the least integer greater than x. The proof of
the next lemma is elementary and we omit it:

LEMMA 2.2. Under the scaling hypothesis, for all c > 0,

lim
t→∞

v(
a−1(ct)�)
v(a−1(t))

= cV/A.

LEMMA 2.3. Under the scaling hypothesis, for each γ > 0,

lim
n→∞

1

−γ v(n)
log

∞∑
k=n

e−γ v(k) = 1.(7)

PROOF. We need only show that the left-hand side in (7) is not less than 1.
Fix α satisfying 0 < α < V . By Lemma 2.1, for C > 1 there exists bC so that for
n ≥ bC , v(k) ≥ v(n)(k/n)α/C when k > n. By considering Riemann sums, we
deduce

∞∑
k=n+1

exp−γ v(k) ≤
∞∑

k=n+1

exp−γ v(n)(k/n)α

C

≤ n

∫ ∞
1

exp−γ v(n) xα

C
dx.
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For all sufficiently large n, γ v(n)/C > 1, so

∞∑
k=n

exp−γ v(k) ≤ exp−γ v(n) + n

(∫ ∞
1

exp−(xα − 1) dx

)
exp−γ v(n)

C
.

Since (logn)/v(n) → 0, the desired inequality follows by taking C ↓ 1. �

RESTRICTED LDP HYPOTHESIS. The pair (Wt/a(t), v(t)) satisfies a re-
stricted LDP, in the sense that there exists a function J : R+ → [0,∞] such that,
for each c ≥ 0,

lim
t→∞

−1

v(t)
logP

[
Wt

a(t)
> c

]
= J (c).(8)

If (Wt/a(t), v(t)) satisfies a large deviation principle with rate function I (x)

which is continuous where it is finite, then it satisfies the restricted LDP hypothesis
with J (x) := infy≥x I (y), for x ≥ 0.

STABILITY AND CONTINUITY HYPOTHESIS. J (0) > 0 and there is some
c > 0 such that J (c) < ∞. Moreover, J (x) is assumed to be continuous on the
interior of the set upon which it is finite, which we denote J.

In the queueing context, J (0) > 0 is the usual stability condition. If J (x) = ∞
for all x > 0, then P[Q > q] will be asymptotically zero with rate ∞.

Standard monotonicity arguments show the following:

LEMMA 2.4. Under the restricted LDP, stability and continuity hypotheses,
the limit

lim
t→∞

−1

v(t)
logP

[
Wt

a(t)
> c

]
= J (c)

exists uniformly in c on compact intervals contained in J, the interior of the set
upon which J (c) is finite.

The restricted LDP hypothesis refers to limiting behavior of logP[Wt > ca(t)],
not values for specific t . The asymptotics of a single Wt could dominate those
of Q. The condition below excludes this possibility.

UNIFORM INDIVIDUAL DECAY RATE HYPOTHESIS. There exist constants
F > V/A, K > 0, so that for all t and all c > K ,

1

v(t)
log P[Wt > ca(t)] ≤ −cF .(9)
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The results which follow apply for the parameter space T = Z+. If the following
hypothesis obtains, they extend to T = R+.

EXTENSION HYPOTHESIS.

lim
q→∞ sup

k∈Z+

logP[supk<t≤k+1 Wt > q]
h(q)

= lim
q→∞ sup

k∈Z+

logP[Wk > q]
h(q)

.

This hypothesis is trivially satisfied when T = Z+. For T = R+, additional
information about {Wt} is needed to assure that the supremum over k < t ≤ k + 1
does not differ significantly from Wk+1. Although this hypothesis may be difficult
to prove for specific models, in the queueing context it should be quite clear
whether there is a significant difference between the maximum over all t and the
maximum over t ∈ Z+.

The asymptotic lower bound for Q is a direct consequence of the restricted LDP
for (Wt/a(t), v(t)).

PROPOSITION 2.1. Under the scaling and restricted LDP hypotheses, we
have

lim inf
q→∞

1

h(q)
logP[Q > q] ≥ − inf

c>0
cV J

(
1

cA

)
.(10)

PROOF. Fix c > 0. Where as Q = supt≥0 Wt , we know that

1

h(q)
log P[Q > q] ≥ 1

h(q)
logP

[
W
a−1(cq)� > q

]
.(11)

Elementary estimates yield

1

v(
a−1(cq)�) logP
[
W
a−1(cq)� > q

] = 1

v(
b�) logP

[
W
b� >

a(b)

c

]
,

with b = a−1(cq). The restricted LDP hypothesis and Lemma 2.2 ensure that

lim inf
q→∞

1

h(q)
log P[Q > q] ≥ −cV/AJ

(
1

c

)
.

As this is true for all c > 0,

lim inf
q→∞

1

h(q)
logP[Q > q] ≥ − inf

c>0
cV/AJ

(
1

c

)
.

Substituting c′ = c1/A for c, we get the result (10). �

The upper bound is treated by splitting the event {Q > q} into three parts, each
of which is dealt with separately.



436 K. DUFFY, J. T. LEWIS AND W. G. SULLIVAN

THEOREM 2.1. For all c > c > 0, we have

lim sup
q→∞

1

h(q)
logP[Q > q] = max{�1,�2,�3},

where

�1 := lim sup
q→∞

1

h(q)
log P

[
sup

t : a(t)<qc

Wt > q

]
,

�2 := lim sup
q→∞

1

h(q)
log P

[
sup

t : qc≤a(t)≤qc

Wt > q

]
,

�3 := lim sup
q→∞

1

h(q)
log P

[
sup

t : a(t)>qc

Wt > q

]
.

PROOF. Using (4), a direct application of the principle of the largest term (see
Lemma 1.2.15 of [3]) suffices. �

First we treat �3 defined in Lemma 2.1:

PROPOSITION 2.2. Under the scaling, restricted LDP, stability and continuity
hypotheses, there exists ∞ > c > 0 such that

�3 := lim sup
q→∞

1

h(q)
logP

[
sup

t : a(t)>qc

Wt > q

]
< − inf

c>0
cV J

(
1

cA

)
.(12)

PROOF. For c > 0 we have

P

[
sup

k : a(k)>qc

Wk > q

]
= P

[ ⋃
k : a(k)>qc

Wk > q

]
≤ ∑

k : a(k)>qc

P[Wk > q].

The restricted LDP and stability hypotheses imply

lim
t→∞

−1

v(t)
log P

[
Wt

a(t)
> 0

]
= J (0) > 0.

Select γ , 0 < γ < J(0). Then for all sufficiently large k,

P[Wk > q] ≤ P[Wk > 0] ≤ e−γ v(k),

and for all sufficiently large q ,∑
k : a(k)>qc

P[Wk > q] ≤ ∑
k : a(k)>qc

e−γ v(k).

By Lemma 2.3, there exists δ > 0 so that − log
∑∞

k=n e−γ v(k) > δγ v(n) for all
sufficiently large n. Then

lim sup
q→∞

1

h(q)
log

∑
k : a(k)>qc

P[Wk > q] ≤ lim sup
q→∞

−δγ
h(qc)

h(q)
= −δγ cV/A.
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Since cV/A → ∞ as c → ∞, we may choose c > 0 so that

−δ γ cV/A < − inf
c>0

cV J

(
1

cA

)
. �

Now we treat �2 defined in Lemma 2.1.

PROPOSITION 2.3. Under the scaling, restricted LDP, stability and continuity
hypotheses, for all 0 < c < c < ∞,

�2 := lim sup
q→∞

1

h(q)
logP

[
sup

t : qc≤a(t)≤qc

Wt > q

]
≤ − inf

c>0
cV J

(
1

cA

)
.(13)

PROOF. We have that

P

[
sup

k : qc≤a(k)≤qc

Wk > q

]
≤ a−1(qc) max

k : qc≤a(k)≤qc
P[Wk > q].(14)

As V > 0,

lim sup
q→∞

1

h(q)
loga−1(qc) = 0.

Thus, using (14) and the fact that log is order-preserving, we have that the left-hand
side of (13) is less than or equal to

lim sup
q→∞

max
k : qc≤a(k)≤qc

1

h(q)
logP[Wk > q].(15)

Let

Jk(c) := − logP[Wk > c a(k)]
v(k)

.(16)

Select ε > 0, ε < 1/c. If J (1/c ) < ∞, let c∗ := 1/c. Otherwise select c∗ so that
J (c∗) < ∞, c∗ + ε ≤ 1/c and J (c∗ + ε) = +∞. Now limk Jk(c) = J (c) for each
c ∈ [0, c∗] by the restricted LDP hypothesis. By Lemma 2.4 we have uniform
convergence on [0, c∗]. Note J (c) ≥ J (0) > 0 for c > 0. Then there exists Nε

so that n ≥ Nε implies

Jn(c) > J(c)(1 − ε) for c ∈ [0, c∗] and

Jn(c
∗ + ε) >

1

ε
if J (1/c ) = +∞.

(17)

Note that Jn(c) ≥ Jn(c
∗) for c ∈ [c∗, c∗ + ε] and Jn(c) ≥ Jn(c

∗ + ε) for c ∈
[c∗ + ε,1/c ]. For q > a(Nεc ), define ck for each k, a−1(q/c ) ≤ k ≤ a−1(q/c ) by
ck := q/a(k), so that we have v(k) = h(q/ck) and from (16) and (17),

− logP[Wk > q] >




h(q/ck)J (ck)(1 − ε), if 0 < ck ≤ c∗,
h(q/ck)J (c∗)(1 − ε), if c∗ < ck < c∗ + ε,

h(q/ck)/ε, if c∗ + ε ≤ ck ≤ 1/c.

(18)
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The value of k at which the max in (15) occurs corresponds to the minimal term
in (18). For sufficiently small ε the minimum does not occur at the h(q/ck)/ε term.
Then this minimal term divided by h(q) is not less than

inf
c∈[1/c,1/c ]

h(q/c)

h(q)
J (c − ε)(1 − ε) ≥ inf

c>0

h(q/c)

h(q)
J (c − ε)(1 − ε).

Taking q → ∞ and then the limit ε → 0, and substituting c′ = c−A, yields (13).
�

Finally, we treat �1 defined in Lemma 2.1:

PROPOSITION 2.4. Let the sequence {Wt} satisfy the scaling, restricted
LDP, stability and continuity hypotheses, and the uniform individual decay rate
hypothesis. Then there exists c > 0 such that

�1 := lim sup
q→∞

1

h(q)
logP

[
sup

k : a(k)<qc

Wk > q

]
< inf

c>0
cV J

(
1

cA

)
.(19)

PROOF. Note that

P

[
sup

k : a(k)<qc

Wk > q

]
≤ qc max

k : a(k)<qc
P[Wk > q]

and, as V/A > 0,

lim sup
q→∞

1

h(q)
logqc = 0.

Therefore,

lim sup
q→∞

1

h(q)
logP

[
sup

k : a(k)<qc

Wk > q

]
(20)

= lim sup
q→∞

max
k : a(k)<qc

1

h(q)
log P[Wk > q].

Define ck for each integer k, 0 < k ≤ a−1(qc ), by ck := q/a(k), so that we have
v(k) = h(q/ck), and from (9) for each ck > K ,

1

h(q)
log P[Wk > cka(k)] ≤ −

(
h(q/ck)

h(q)

)
cF
k = −h(a(k))

h(q)

(
q

a(k)

)F

.(21)

Take C > 1 and δ, 0 < δ < F − V/A. Letting t = a(k), by Lemma 2.1 there
exists bδ,C so that for q > t > bδ,C ,

h(t)

h(q)
≥ 1

C

(
t

q

)V/A+δ
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and, by (21), for ck := q/a(k) > max{K,1} and a(k) > bδ,C ,

1

h(q)
logP[Wk > cka(k)] ≤ − 1

C
c
−V/A−δ
k cF

k .

Choose 1/c > max{K,1} so that

− 1

C

(
1

c

)(F−V/A−δ)

< − inf
c>0

cV J

(
1

cA

)
.

Then for each q > bδ,C and any k which satisfies bδ,C < a(k) ≤ qc , we have

1

h(q)
logP[Wk > ck a(k)] < − inf

c>0
cV J

(
1

cA

)
.(22)

Inequality (21) implies that for each fixed k, logP[Wk > cka(k)]/h(q) → −∞
as q → ∞. Since there are only finitely many k with a(k) ≤ bδ,C , (20) and (22)
together imply (19). �

From Proposition 2.1, Theorem 2.1 and Propositions 2.2–2.4, we deduce the
following:

THEOREM 2.2. If the sequence {Wt} satisfies the scaling, restricted LDP,
stability and continuity hypotheses, and the uniform individual decay rate
hypothesis, then

lim
q→∞

1

h(q)
logP[Q > q] = − inf

c>0
cV J

(
1

cA

)
.(23)

2.1. The scaled cumulant generating function. The scaled cumulant generat-
ing function (sCGF) of Wt , scaled by (a(t), v(t)), is defined by

λt (θ) := 1

v(t)
log E

[
exp

(
θv(t)Wt

a(t)

)]
.(24)

The analyses in [8] and [4] are based on the sCGF. The hypotheses of this paper
have simple expressions in terms of the sCGF, when it exists. The conditions we
specify here for the sCGF case are intended for easy applicability, rather than
maximum generality. Under these assumptions, the large deviation rate function
is convex. The sCGF technique is not applicable to models which have nonconvex
rate functions.

LDP HYPOTHESIS, SCGF CASE. For all θ ∈ R and all t , the scaled cumulant
generating function given by (24) exists as a finite real value. For each θ ∈ R, the
finite limit exists and is defined as

λ(θ) := lim
t→∞λt (θ).
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Furthermore, λ(θ) is assumed to be continuously differentiable.

These assumptions imply the following proposition (see [3]):

PROPOSITION 2.5. Under the above assumptions the pair (Wt/a(t), v(t))

satisfies a large deviation principle with rate function I (x) given by the Legendre–
Fenchel transform of λ(θ),

I (x) := sup
θ

{θx − λ(θ)}.(25)

This implies that I (x) is a convex function and is continuous on the interior of
the set where it is finite.

STABILITY HYPOTHESIS, SCGF CASE. There exists θ > 0 so that λ(θ) < 0.

The above implies that J (x) = I (x) for x ≥ 0 and J (0) ≥ −λ(θ).
The uniform individual decay-rate hypothesis can be readily expressed in terms

of the sCGF.

PROPOSITION 2.6. If there exist constants F ′ and M such that F ′ >

max{V/A,1} and

λt(θ) ≤ MθF ′/(F ′−1)

for all θ > 0 and all t , then for each F , 1 < F < F ′, there exists KF so that for all
c > KF and all t ,

1

v(t)
logP[Wt > c a(t)] ≤ −cF

and the uniform individual decay-rate hypothesis is satisfied.

PROOF. An elementary consequence of (24) is Chernoff’s inequality

logP[Wt > c a(t)] ≤ −v(t)
(
c θ − λt (θ)

)
.

It then follows that

log P[Wt > c a(t)] ≤ −v(t)
(
c θ − MθF ′/(F ′−1)

)
.

Choosing θ = (c(F ′ − 1)/(MF ′))F ′−1, we have

logP[Wt > c a(t)] ≤ −v(t)cF ′(
M1−F ′

F ′−F ′
(F ′ − 1)F

′−1)
.(26)

Since M and F ′ are constants, for each F , F ′ > F > max{V/A,1}, there
exists KF such that, for all c > KF , the right-hand side of (26) will be less than
−v(t)cF . �
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3. Examples.

3.1. Application to Gaussian processes. Perhaps the simplest examples to
which the theory can be applied are those in which

Wt := Xt − µt,

where µ > 0 is constant and {Xt } are mean zero Gaussian random variables with
covariance function


(s, t) := E[XsXt ], σ 2
t := 
(t, t).

Define

a(t) := t and v(t) ≡ h(t) := t2/σ 2
t

and take

λt (θ) = 1
2θ2 − µθ

for all t ≥ 0. Using (25), we get

I (x) = 1
2(x + µ)2.(27)

Given that I (x) is nondecreasing for x ≥ 0, hence J (c) = I (c) for all c ≥ 0.
Moreover, J (c) is continuous where it is finite. It suffices to assume that, for all
c > 0,

lim
t→∞

σ 2
ct

σ 2
t

= lim
t→∞


(ct, ct)


(t, t)
= c2H, 0 < H < 1.

Then v(t) is regularly varying with

lim
t→∞

v(ct)

v(t)
= cV , V = 2 − 2H.

Proposition 2.6 holds with M = 1 and F ′ = 2; hence, the uniform individual
decay-rate hypothesis is satisfied and

inf
c>0

cV J

(
1

c

)
= 2

V V

(
µ

2 − V

)2−V

.(28)

EXAMPLE 1. Let {Xt : t ∈ Z+} be an independent sequence with σ 2
t = t and

µ = 1. Then Wt has mean −t , variance t and the appropriate scale is h(q) := q .
The hypotheses of Theorem 2.2 are satisfied; hence,

lim
q→∞

1

q
log P[Q > q] = −2.(29)

Replace W1 with an exponential distribution which starts at −2α, so that

P[W1 > a] = exp−(
(a + 2α)/α

)
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for a > −2α. This distribution has mean −α and limq−1 logP[W1 > q] = −α−1.
The term (Wt/t, t) still satisfies an LDP with rate function given by (27), but if
α > 1/2, the uniform individual decay-rate hypothesis is not satisfied, (29) does
not hold and W1 determines the asymptotics of Q.

EXAMPLE 2. Fractional Brownian motion has

2
(s, t) = s2H + t2H − |s − t|2H , σ 2
t = t2H ,

where 0 < H < 1. Here a(t) := t , v(t) := h(t) := t2(1−H) and

lim
q→∞

1

h(q)
log P[Q > q] = 2

V V

(
µ

2 − V

)2−V

.

Similarly, the Ornstein–Uhlenbeck position process has

σ 2
t = 2

(
µ

ν

)2

(t + e−t − 1),

where µ and ν are positive constants. Clearly σ 2
t is regularly varying with 2H = 1.

See [4] for details.

3.2. Application to heavy tailed processes. Define the heavy tailed distribu-
tion Y by

P[Y ≥ x] := d(x)e−v(x),

where d(x) is slowly varying (see Bingham, Goldie and Teugels [2]) and v(x) is
regularly varying with constant 0 < V < 1. Define {Yt } to be a stationary sequence
of two state random variables taking the values 0 and 1 that have sojourn
times spent in the 0 and 1 states that are distributed by an i.i.d. sequence with
distribution Y . Note that the mean of Yt is 1/2 because its sojourn times spent in
the “on” and “off” states have finite, and equal, expectation. Define

Zt := Yt − µ,

where µ ∈ (1/2,1) so that the stability hypothesis is satisfied. Define the workload
process by

Wt :=
∫ t

0
Zs ds.

It is shown in [5] that (Wt/t, v(t)) satisfies a large deviation principle with rate
function I (x) given by

I (x) =



(
1 − 2(x + µ)

)V
, if x ∈ [−µ,1/2 − µ],(

2(x + µ) − 1
)V

, if x ∈ [1/2 − µ,1 − µ],
+∞, otherwise.



LOGARITHMIC ASYMPTOTICS 443

FIG. 1. I (x) versus x for heavy tailed sojourn times.

For example, with µ := 3/4, d(x) := 1 and V := 1/2, a graph of I (x) can
be plotted as in Figure 1. Note that I (x) is nondecreasing for x ≥ 0, hence
J (c) = I (c) for all c ≥ 0. Moreover, J (c) is continuous where it is finite. We
have

cV J

(
1

c

)
=




+∞, if c <
1

1 − µ
,

(
2 + c (2µ − 1)

)V
, if c ≥ 1

1 − µ
,

and

inf
c>0

cV J

(
1

c

)
=

(
2 + 2µ − 1

1 − µ

)V

.(30)

As Zt is bounded above by 1 − µ, the uniform individual decay-rate hypothesis is
satisfied. Hence, Theorem 2.2 and (30) give

lim
q→∞

1

h(q)
logP[Q > q] =

(
2 + 2µ − 1

1 − µ

)V

.

4. Connections with existing literature. The basic aim of tail asymptotics is
to compute

lim
q→∞

1

h(q)
logP[Q > q] = −δ,

where h(q) is an appropriately chosen scaling function. Glynn and Whitt [8]
treated the case where h(q) = q , which is appropriate when a large deviation
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principle is satisfied by the pair (Wt/t, t). Their result does not cover the case
of fractional Brownian motion (FBM), for example.

The introduction by Duffield and O’Connell [4] of a more general class of
scaling functions, wide enough to treat FBM, aroused a great deal of interest and
is widely cited. However, there is a gap in their arguments [their equation (36)
does not hold in general]; our Example 1 shows that it cannot be filled without
introducing a further hypothesis. For instance, if one assumes that λt (θ), the sCGF
defined in (24), is independent of t , then their equation (36) holds; this covers the
case of FBM. It should be noted that in the case of FBM the approach of Massoulie
and Simonian [12] yields the tail asymptotics immediately and, moreover, gives
precise (nonasymptotic) probability estimates. Glynn and Whitt [8] excluded the
possibility that the asymptotics of Q are dominated by those of a single Wt by
assuming that E[exp(δWt)] < ∞ for all t ≥ 0, where δ := infc>0 cJ (c−1). The
use of the Gärtner–Ellis theorem [7, 6] in the approaches adopted in [8] and [4]
excludes the possibility of the rate function being nonconvex.

None of the work cited above covers the case where the appropriate scale for
the large deviations of Wt/t is log(t). This occurs when Wt has independent
increments that have a common power-tail distribution. The asymptotics of Q

in this case have been discussed by Parulekar and Makowski [14], Mikosch and
Nagaev [13], Asmussen and Collamore [1] and Liu, Nain, Towsley and Zhang [10]
and references cited therein.
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