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Abstract

In this paper we study communication networks that employ drop-tail queueing and additive-increase multiplicative-decrease (AIMD)
congestion control algorithms. We show that the theory of non-negative matrices may be employed to model such networks and to derive basic
theorems concerning their behaviour.
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1. Introduction

In this paper we describe a modelling approach that captures
the essential features of communication networks of additive-
increase multiplicative-decrease (AIMD) sources that employ
drop-tail and other queuing disciplines. The novelty of our ap-
proach lies in the fact that we are able to use the theory of
non-negative matrices and hybrid systems to build mathemati-
cal models of unsynchronised communication networks by ex-
tending the approach first developed in Shorten, Leith, Foy, and
Kilduff (2005). In particular, we show that it is possible to re-
late important network properties to the characteristics of the
non-negative matrices that arise in the study of such commu-
nication networks under very general conditions.

While an extensive literature exists relating to the mod-
elling of transmission control protocol (TCP) traffic, the models
presented in this paper represent a departure from traditional
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network models. Many recent models are based on the so-called
fluid approaches and focus on active queueing disciplines, see
for example Srikant (2004) and the references therein. While
such models are powerful for design, the applicability of such
models for networks with drop-tail buffers, and for networks
with low numbers of flows, remain open questions. The well-
known square-root formula of Padhye, Firoiu, Towsley, and
Kurose (2000) provides an approximate expression for the con-
gestion window achieved by a TCP flow operating in a bath of
noise. The statistical independence assumptions in this model
however neglect interactions between competing flows, and
consequently the dynamics of networks in which TCP operates.
Recently several authors have developed new types of models
suited to drop-tail networks: most notably by Hespanha (2004)
and Baccelli and Hong (2002). We note that while the model
derived in Baccelli and Hong (2002) is similar to the model
presented in this paper, the work by Baccelli and Hong does not
exploit the non-negativity that is central to the work presented
here.

Our paper is structured as follows. In Section 2 we develop
a positive systems network model that captures the essential
features of communication networks employing AIMD conges-
tion control algorithms. This approach gives rise to a model of
AIMD networks in which the network dynamics are described
by a finite set of non-negative matrices. The main results of
this paper are then presented in Section 3. Our main proofs are
given in the Appendix.

http://www.elsevier.com/locate/automatica
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2. Non-negative matrices and communication networks

Communication networks: A communication network con-
sists of a number of sources and sinks connected together via
links and routers. We assume that these links can be modelled
as a constant propagation delay together with a queue, that the
queue is operating according to a drop-tail discipline, and that
all of the sources are operating a TCP-like congestion control
algorithm.

AIMD algorithm: In the original paper proposing the AIMD
algorithm, Chiu and Jain (1989) consider a system in which n

users compete for a resource having limited availability per unit
time, e.g., bandwidth in communication networks. The users’
actions consist of a continual gentle probing for the availability
of the resource by submitting requests for its use—these re-
quests are satisfied whenever global capacity is not exceeded.
Specifically, the probing action consists of additively increas-
ing the send rate according to some rule. The situation is de-
picted in Fig. 1, with wi(t) representing the number of units
of the resource that user i = 1, . . . , n tries to use at time t �0.
A key assumption in the model formulated by Chiu and Jain is
the assertion that the users do not communicate directly with
each other. Further, the only information about availability of
the resource that the users get is when the collective utilisa-
tion of the resource exceeds some capacity constraint. At such
time-instances, referred to as congestion events, some, or all
users are instantly and simultaneously informed through a bi-
nary feedback. The users then respond to these notifications of
congestion by decentralised down-scaling of their individual
utilisation-rates in a multiplicative fashion wi(t) → �iwi(t)

where �i ∈ (0, 1).
TCP: TCP operates a window-based congestion control al-

gorithm that uses the AIMD algorithm to allocate 11 bandwidth
between competing network users, the TCP standard defines a
variable cwnd called the congestion window. Each source uses
this variable to track the number of sent unacknowledged pack-
ets that can be in transit at any time. When the window size
is exhausted, the source must wait for an acknowledgement
before sending a new packet. Congestion control is achieved
by dynamically adapting the window size according to the
AIMD law.

w1

wn

w2

Fig. 1. n-player system.
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Fig. 2. Evolution of window size.

2.1. Synchronised communication networks employing AIMD

For convenience we recall the following discussion from
Shorten et al. (2005). The material in the present paper consti-
tutes an extension of Shorten et al. (2005) to unsynchronised
networks and it is useful to repeat the following discussion as
it will considerably aid the exposition in later sections.

Consider communication networks for which the following
assumptions are valid: (i) at congestion every source experi-
ences a packet drop; and (ii) each source has the same round-
trip-time (RTT).3 In this case an exact model of the network
dynamics may be found as follows (Shorten et al., 2005).

Let wi(k) denote the congestion window size of source i im-
mediately before the kth network congestion event is detected
by the source. Over the kth congestion epoch three important
events can be discerned: ta(k), tb(k) and tc(k); as depicted in
Fig. 2. The time ta(k) denotes the instant at which the number
of unacknowledged packets in flight equals �iwi(k) where �i

is the multiplicative factor of the ith flow (�i is the additive
increase factor of this flow); tb(k) is the time at which the bot-
tleneck queue is full; and tc(k) is the time at which packet drop
is detected by the sources, where time is measured in units of
RTT.4 It follows from the definition of the AIMD algorithm
that the window evolution is completely defined over all time
instants by knowledge of the wi(k) and the event times ta(k),
tb(k) and tc(k) of each congestion epoch. We therefore only
need to investigate the behaviour of these quantities.

We assume that each source is informed of congestion one
RTT after the queue at the bottleneck link becomes full; that
is tc(k) − tb(k) = 1. Also when the sources detect congestion,
the total window size has reached the capacity P of the pipe
and each source has increased its window size one more time

3 One RTT is the time between sending a packet and receiving the
corresponding acknowledgement when there are no packet drops.

4 Note that measuring time in units of RTT results in a linear rate of
increase for each of the congestion window variables between congestion
events.
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before packet loss is detected. That is

wi(k)�0 and
n∑

i=1

wi(k) = P +
n∑

i=1

�i ∀k > 0, (1)

where P is the maximum number of packets which can be
in transit in the network at any time; P is usually equal to
qmax + BTd where qmax is the maximum queue length of the
congested link, B is the service rate of the congested link in
packets per second and Td is the round-trip time when the queue
is empty. At the (k + 1)th congestion event

wi(k + 1) = �iwi(k) + �i[tc(k) − ta(k)], (2)

and summing over all sources yields

tc(k) − ta(k)

= 1∑n
i=1 �i

[
P −

n∑
i=1

�iwi(k)

]
+ 1. (3)

Hence, it follows that

wi(k + 1) = �iwi(k) + �i∑n
j=1 �j

⎡
⎣ n∑

j=1

(1 − �j )wj (k)

⎤
⎦ (4)

and so the dynamics of an entire network of such sources is
given by

W(k + 1) = AW(k), (5)

where WT(k) = [w1(k), . . . , wn(k)], and

A =

⎡
⎢⎢⎢⎢⎣

�1 0 · · · 0

0 �2 0 0
... 0

. . . 0

0 0 · · · �n

⎤
⎥⎥⎥⎥⎦+ 1∑n

j=1 �j

×

⎡
⎢⎢⎢⎣

�1

�2

· · ·
�n

⎤
⎥⎥⎥⎦ [1 − �1 1 − �2 · · · 1 − �n]. (6)

The matrix A is a positive matrix (all the entries are positive
real numbers) and it follows that the synchronised network
(5) is a positive linear system (Berman & Plemmons, 1979).
Many results are known for positive matrices and we exploit
some of these to characterise the properties of synchronised
communication networks. In particular, from the viewpoint of
designing communication networks the following properties
are important: (i) network fairness; (ii) network convergence
and responsiveness; and (iii) network throughput. It is shown
in Shorten et al. (2005) that these properties can be deduced
from the network matrix A. In particular:

Theorem 2.1 (Shorten et al., 2005). Let A be defined as in
Eq. (6). Then A is a column stochastic matrix with Perron
eigenvector xT

p = [�1/(1 − �), . . . , �n/(1 − �n)] and whose
eigenvalues are real and positive. Further, the network con-
verges to a unique stationary point Wss = �xp, where � is

a positive constant such that the constraint (1) is satisfied;
limk→∞ W(k) = Wss ; and the rate of convergence of the net-
work to Wss is bounded by the second largest eigenvalue of A.

2.2. Unsynchronised networks

To distinguish variables in this section, we denote the nom-
inal parameters of the sources used in the previous section by
�s
i , �

s
i , i = 1, . . . , n. Now consider the general case of a num-

ber of sources competing for shared bandwidth in a generic
dumbbell topology. As before, in our discussion k is still used
to enumerate congestion epochs. Note, however, that a conges-
tion epoch is the time elapsing between one instant when pack-
ets are lost by some source and the next instant when packets
are lost by the same or some other source. That is, congestion
epochs are now globally defined with respect to the bottleneck
router. As before a number of important events may be dis-
cerned, where we now measure time in seconds, rather than
units of RTT. Denote by tai(k) the time at which the number of
packets in flight belonging to source i is equal to �s

i wi(k); tq(k)

is the time at which the bottleneck queue begins to fill; tb(k)

is the time at which the bottleneck queue is full; and tci(k) is
the time at which the ith source is informed of congestion. In
this case the evolution of the ith congestion window variable
does not evolve linearly with time after tq seconds due to the
effect of the bottleneck queue filling and the resulting varia-
tion in RTT. Note also that we do not assume that every source
experiences a drop when congestion occurs.

Given these general features it is clear that the modelling task
is more involved than in the synchronised case. Nonetheless,
it is possible to relate wi(k) and wi(k + 1) using the same
approach as before.

Specifically, we now allow the ith source to experience con-
gestion at the end of the epoch whereas the j th source does
not. This corresponds to the ith source reducing its congestion
window by the factor �s

i after the k +1th congestion event, and
the j th source not adjusting its window size at the congestion
event. We therefore allow the back-off factor of the ith source
to take one of two values at the kth congestion event

�i (k) ∈ {�s
i , 1}, (7)

corresponding to whether the source experiences a packet loss
or not.

Due to the variation in round trip time, the congestion win-
dow of a flow does not evolve linearly with time over a conges-
tion epoch. Nevertheless, we may relate wi(k) and wi(k + 1)

linearly by defining an average rate �i (k) depending on the kth
congestion epoch

�i (k) := wi(k + 1) − �i (k)w(k)

T (k)
, (8)

where T (k) is the duration of the kth epoch measured in sec-
onds. Equivalently we have

wi(k + 1) = �i (k)wi(k) + �i (k)T (k). (9)

Recall, that Tdi
denotes the round trip time of source i, when

the queue is empty and Rdi
:= Tdi

+ qmax/B is the RTT,
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when the queue is full. The number of round trips of
source i during the time interval T (k) is in the interval
[T (k)/Rdi

, T (k)/Tdi
] and therefore

�i (k) ∈
[

�i

Rdi

,
�i

Tdi

]
.

In the case when qmax>BT di
, i =1, . . . , n, we have Tdi

≈ Rdi

and the average �i are (almost) independent of k and given by
�i (k) ≈ �s

i /Tdi
for all k ∈ N, i = 1, . . . , n.

The approximation

�i ≈ �s
i

Tdi

, i = 1, . . . , n (10)

is of considerable practical importance and corresponds to the
case of a network whose bottleneck buffer is small compared
with the delay-bandwidth product. In view of (7) and (9) a
convenient representation of the network dynamics is obtained
as follows. At congestion the bottleneck link is operating at its
capacity B, i.e.,

n∑
i=1

wi(k) − �i

RTTi,max
= B, (11)

where RTTi,max is the RTT experienced by the ith flow when
the bottleneck queue is full. Note, that RTTi,max is independent
of k. Setting �i := (RTTi,max)

−1 we have that

n∑
i=1

�iwi(k) = B +
n∑

i=1

�i�i . (12)

By interpreting (12) at k + 1 and inserting (9) for wi(k + 1) it
follows that
n∑

i=1

�i�i (k)wi(k) + �i�iT (k) = B +
n∑

i=1

�i�i . (13)

Using (12) again it follows that

T (k) = 1∑n
i=1 �i�i

(
n∑

i=1

�i (1 − �i (k))wi(k)

)
. (14)

Inserting this expression into (9) and considering all sources, the
dynamics of the entire network of sources at the kth congestion
event are described by

W(k + 1) = A(k)W(k), A(k) ∈ {A1, . . . , Am}, (15)

where

A(k) =

⎡
⎢⎢⎢⎢⎣

�1(k) 0 · · · 0

0 �2(k) 0 0
... 0

. . . 0

0 0 · · · �n(k)

⎤
⎥⎥⎥⎥⎦+ 1∑n

j=1 �j�j

×

⎡
⎢⎢⎢⎣

�1

�2

· · ·
�n

⎤
⎥⎥⎥⎦ [�1(1 − �1(k)), . . . , �n(1 − �n(k))]

and where �i (k) is either 1 or �s
i . The nonnegative matrices

A2, . . . , Am are constructed by taking the matrix A1,

A1 =

⎡
⎢⎢⎢⎢⎣

�s
1 0 · · · 0

0 �s
2 0 0

... 0
. . . 0

0 0 · · · �s
n

⎤
⎥⎥⎥⎥⎦+ 1∑n

j=1 �j�j

×

⎡
⎢⎢⎢⎣

�1

�2

· · ·
�n

⎤
⎥⎥⎥⎦ [�1(1 − �s

1), . . . , �n(1 − �s
n)]

and setting some, but not all, of the �i to 1. This gives rise
to m = 2n − 1 matrices associated with the system (15) that
correspond to the different combinations of source drops that
are possible. We denote the set of these matrices by A.

Comment 1: Note that another, sometimes very useful, rep-
resentation of the network dynamics can be obtained by con-
sidering the evolution of scaled window sizes at congestion;
namely, by considering the evolution of the vectors of network
states WT

� (k)=[�1w1(k), �2w2(k), . . . , �nwn(k)]. Here one ob-
tains the following description of the network dynamics:

W�(k + 1) = A(k)W�(k) (16)

with A(k) ∈ A= {A1, . . . , Am}, m = 2n − 1 and where the Ai

are obtained by the similarity transformation associated with
the change of variables. All of the matrices in the set A are
now column stochastic as in the synchronised case.

Comment 2: Our discussion extends the (exact) synchro-
nised model to the unsynchronised case. To do this, we have
effectively assumed linear probing action between congestion
events. This assumption allows us to develop nonnegative ma-
trix models of general AIMD networks with general linear ca-
pacity constraints C = �TW(k), where � defines the normal
to a linear hyperplane:

W(k + 1) = A(k)W(k), A(k) ∈ {A1, . . . , Am}, (17)

with A(k) = B(k) + ��T/�T�(I − B(k)), where �T =
[�1, . . . , �n] and where the matrix B(k) is given by

B(k) =

⎡
⎢⎢⎢⎢⎣

�1(k) 0 · · · 0

0 �2(k) 0 0
... 0

. . . 0

0 0 · · · �n(k)

⎤
⎥⎥⎥⎥⎦ .

3. Mathematical results

It follows from (15) that W(k) = �(k)W(0), where �(k) =
A(k)A(k − 1) . . . A(0). Consequently, the behaviour of W(k),
as well as the network fairness and convergence properties,
are governed by the properties of the infinite matrix product
�(k). The objective of this section is to analyse the average
behaviour of �(k) with a view to making concrete statements
about important network properties.
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3.1. Constant drop-probabilities

Here, we make two simplifying assumptions.

Assumption 3.1. The probability that A(k) = Ai in (15) is
independent of k and equals �i .

In other words Assumption 3.1 says that the probability
that the network dynamics are described by W(k + 1) =
A(k)W(k), A(k) = Ai over the kth congestion epoch is �i and
that the random variables A(k), k ∈ N are independent and
identically distributed (i.i.d.).

Given the probabilities �i for i ∈ {1, . . . , 2n − 1}, one may
then define the probability �j that source j experiences a back-
off at the kth congestion event as follows:

�j =
∑

�i ,

where the summation is taken over those i which correspond
to a matrix in which the j th source sees a drop. Or to put it
another way, the summation is over those indices i for which
the matrix Ai is defined with a value of �j �= 1.

Assumption 3.2. We assume that �j > 0 for all j ∈ {1, . . . , n}.

Simply stated, Assumption 3.2 states that almost surely all
flows must see a drop at some time (provided that they persist
for a long enough time). A consequence of the above assump-
tions is that the probability that source j experiences a drop at
the kth congestion event is not independent of the other sources.
For example, if the first n − 1 sources do not see a drop then
this implies that source n must see a drop (in accordance with
the usual notion of a congestion event, we require at least one
flow to see a drop at each congestion event). Hence, the events
cannot be independent.

Under the foregoing assumptions we have the following key
result.

Theorem 3.1. Consider the stochastic system defined in the
above preamble. Let �(k) be the random matrix product arising
from the evolution of the first k steps of this system:

�(k) = A(k)A(k − 1) . . . , A(0).

Then, the expectation of �(k) is given by

E(�(k)) =
(

m∑
i=1

�iAi

)k

; (18)

and the asymptotic behaviour of E(�(k)) satisfies

lim
k→∞ E(�(k)) = xpyT

p , (19)

where the vector xp is given by xT
p = �(�1/�1(1 −

�1), �2/�2(1 − �2), . . . , �n/�n(1 − �n)), yT
p = (�1, . . . , �n).

Here � ∈ R is chosen such that Eq. (12) is satisfied if wi is
replaced by xpi = ��i/(�i (1 − �i )).

Corollary 3.1. For given W(0) define random variable W(k)

with

W(k) := 1

k + 1

k∑
i=0

W(i).

Then expectation of W(k) is given by

E(W(k)) = 1

k + 1
(I + E(A(1)) + E(A(1))2

+ · · · + E(A(1))k)W(0).

And since E(A(1))k → xpyT as k → ∞,

lim
k→∞ E(W(k)) = xpyTW(0).

The following facts follow immediately from Theorem 3.1.
(i) Convergence: The congestion window vector W(k) con-

verges, on average, to the unique value Wss = �xp where �
is a positive constant such that the constraint (12) is satisfied.
When the �i , i=1, . . . , n are equal, xp is identical to the Perron
eigenvector obtained in the case of synchronised networks; that
is, the ensemble average in the unsynchronised case is identical
to the fixed point in the deterministic situation where packet
drops are synchronised.

(ii) Fairness: Window fairness is achieved, on average, when
the vector xp is a scalar multiple of the vector [1, . . . , 1]; that
is, when the ratio �i/�i (1−�i ) does not depend on i. Observe
that unlike in the synchronised case, fairness now depends on
the relative drop probability of each flow. When the flows have
equal drop probability �i then the foregoing fairness condition
is identical to that in the synchronised case.

(iii) Network responsiveness: The magnitude of the second
largest eigenvalue 	2 of the matrix

∑m
i=1 �iAi bounds the con-

vergence properties of the network.

3.2. Place dependent drop-probabilities

We now relax the assumption that flows are dropped with
constant probabilities at congestion events. Instead, we allow
the drop probabilities to depend on the current state of the
system, that is the set of current window sizes W(k) at the kth
congestion event. As an example, it is reasonable to expect at a
congestion event that flows with larger window sizes are more
likely to be dropped, and this can be realised in our model
by making the drop probabilities increasing functions of the
current window size.

Mathematically, our model is a discrete time Markov chain
whose state space is the simplex S = {w = (w1, . . . , wn) :
wi �0,

∑
wi = C} where C is the link capacity. The

state of the system W(k) evolves according to the rule
W(k + 1) = A(k)W(k), where A(k) ∈ A is chosen ran-
domly using a place-dependent probability distribution on A.
Specifically, for each w ∈ S there is a probability distribution
{p1(w), p2(w), . . . , pm(w)} on A, and A(k) is chosen ran-
domly with probability P(A(k) = Ai) = pi(W(k)). With the
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following mild assumptions on the drop probability functions
we will show that this model is ergodic.

Assumption 3.3. The distribution pi(w) is uniformly Lipschitz
on S with respect to the l1-norm. That is, we assume there is
a constant K such that for all w, v ∈ S and all i = 1, . . . , m,

|pi(w) − pi(v)|�K‖w − v‖1 = K

n∑
j=1

|wj − vj |. (20)

To set up the notation for the statement of the second assump-
tion, let s=(i1, i2, . . . , iM) be a M-string of indices, labelling a
sequence of congestion matrices Ai1 , Ai2 , . . . at M successive
congestion events, and define the corresponding matrix prod-
uct

∏
M (s)=AiM AiM−1 . . . Ai1 . Given an initial vector w ∈ S,

the Markov chain defines a probability distribution p∗(·; w) on
these M-strings by

p∗(s; w) = pi1(w)pi2(Ai1w) . . . piM (AiM · · · Ai1w). (21)

As before we let A1 denote the matrix corresponding to a con-
gestion event where all flows experience a drop.

Assumption 3.4. (A) There is q > 0 and a subset H ⊂ S,
such that H is mapped into itself by A1, and p1(w)�q for
every w ∈ H.

(B) There is an integer N �1, and q ′ > 0, such that for any
v, w ∈ S, there is a (N − 1)-string s for which p∗(s; w)�q ′,
and

∏
N−1 (s)w,

∏
N−1 (s)v ∈ H.

The following theorem extends results in Wirth, Stanojevic,
Shorten, and Leith (2006) and presents an alternative treatment
of the results in Leizarowitz, Stanojevic, and Shorten (2006).

Theorem 3.2. Assume that the place-dependent drop proba-
bilities {pi(w)} satisfy Assumptions 3.3 and 3.4. Then (i) there
is an attractive, unique stationary probability measure for the
Markov process {W(k)}; (ii) for any continuous function f (w)

on S, the conditional expectations, E[f (W(k))|W(0) = w]
converge uniformly to a constant as k → ∞; (iii) for
any continuous function f (w) on S, the time average
(1/K)

∑K
k=1 f (W(k)) converges almost surely to the ensemble

average of f (W) with respect to the stationary measure.

We will prove Theorem 3.2 in the Appendix using results of
Isaac (1962), Barnsley, Demko, Elton, and Geronimo (1988),
and Stenflo (2002), who established general conditions for er-
godicity of Markov chains with place-dependent probabilities.
Theorem 3.2 implies that the process {W(k)} converges almost
surely as k → ∞, and that the limiting distribution is indepen-
dent of the initial conditions. This ergodic property allows us
to relate time averages to ensemble averages, and hence to use
pathwise calculations to compute average quantities. Using this
method we will show that a version of the result (19) derived
in the case of constant drop-probabilities continues to hold for
the place-dependent model. Our result will involve the average
window size for the ith flow computed only at the congestion
events where it experiences a drop. To set up the notation, let

D(k) ⊂ {1, . . . , m} denote the set of flows which experience a
drop at the kth congestion event, and define


i (k) = 1 if i ∈ D(k), (22)

= 0 if i /∈ D(k). (23)

Theorem 3.3. Under the conditions for Theorem 3.2, the fol-
lowing limits exist and are independent of initial conditions:

〈wi〉 = lim
k→∞ E[wi(k)|i ∈ D(k)], �i = lim

k→∞ E[
i (k)]. (24)

Furthermore these quantities are related by

〈wi〉 = �i

�i (1 − �i )
E[T ], (25)

where E[T ] is the average time between congestion events.

Proof. For any k�1

E[wi(k)|i ∈ D(k)] = E[wi(k)
i (k)]
E[
i (k)] . (26)

Furthermore

E[wi(k)
i (k)] = E[wi(k)
∑
j∈�i

pj (W(k))], (27)

where �i ⊂ {1, . . . , m} is the list of all subsets for which
the ith flow experiences a drop. Applying Theorem 3.2 we
conclude that (27) converges uniformly to a value independent
of initial conditions as k → ∞. The same argument applies to
the denominator in (26), hence the left side of (26) converges
to a limit which we define to be 〈wi〉. Similar reasoning applies
to define �i .

Considering a sample path of the process, we see that the ith
window sizes wi , w′

i at two successive events where flow i is
dropped are related by

w′
i = �iwi + �iTi (28)

where Ti is the time between these events. Define the long-run
time averages

〈wi〉K =
∑K

k=1 wi(k)
i (k)∑K
k=1 
i (k)

, 〈Ti〉K =
∑K

k=1 T (k)∑K
k=1 
i (k)

, (29)

where T (k) is the time between the kth and (k+1)th congestion
events. Then (28) implies

〈wi〉K = �i

1 − �i

〈Ti〉K + O

(
1

K

)
, (30)

where the error term O(1/K) takes care of the mismatches in
the sums at k = 1 and K (recall that wi and T (k) are uni-
formly bounded, so this term is bounded by a constant times
1/K). Therefore (25) follows from part (iii) of Theorem 3.2,
which states that time averages converge to ensemble averages,
and hence 〈wi〉K converges to 〈wi〉 and 〈Ti〉K converges to
E[T ]/�i . �
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Our next result involves the throughput for the ith flow, which
is defined by the pathwise expression

�i = lim
T →∞

1

T

∫ T

0
wi(t) dt . (31)

Theorem 3.4. Under the conditions for Theorem 3.2, with
probability one the expression (31) exists and is independent
of the sample path, and is given by

�i = �i (1 − �2
i )

2�i

E[T ]〈w2
i 〉, (32)

where 〈w2
i 〉 = limk→∞ E[wi(k)2|i ∈ D(k)]. It satisfies the

bounds

〈wi〉1 + �i

2
��i �〈wi〉1 + �i

2

(
1 + VAR[T ]

E[T ]2

)
, (33)

where VAR[T ] is the variance of the time between congestion
events.

Proof. We will write {1, 2, . . .} to denote the times of the
congestion events where flow i experiences a reduction, and
{wi(1), wi(2), . . .} its window sizes at these events. The evo-
lution equation for wi between congestion events is

wi(k + 1) = �iwi(k) + �i (k+1 − k). (34)

Elementary calculations along the sample path show that∫
wi(t) dt can be expressed as a sum of the squares of win-

dow sizes at congestion events where the ith flow is dropped.
Ergodicity then relates this time average to the ensemble
average, and this gives (32).

We now use upper and lower bounds on 〈w2
i 〉 to derive (33).

For the lower bound we just use

〈w2
i 〉�(〈wi〉)2. (35)

For the upper bound we square (34) and take the expected value
to get

E[wi(k + 1)2] = �2
i E[wi(k)2] + �2

i E[(k+1 − k)
2]

+ 2�i�iE[wi(k)(k+1 − k)]. (36)

We use the bound 2wi(k)(k+1 − k)�xwi(k)2 + x−1(k+1 −
k)

2, which holds for every x�0; inserting into (36) gives

E[wi(k + 1)2]�(�2
i + �i�ix)E[wi(k)2]

+ (�2
i + �i�ix

−1)E[(k+1 − k)
2]. (37)

Taking k → ∞ and using the ergodic property gives

〈w2
i 〉�

�2
i + �i�ix

−1

1 − �2
i − �i�ix

E[T 2] (38)

where T is the time between congestion events. Using the op-
timal value x = �−1

i (1 − �i ) we find

〈w2
i 〉�

�2
i

(1 − �i )
2 E[T 2] (39)

Finally, we use E[T 2] = VAR[T ] + (E[T ])2 to get the
result. �

3.3. General capacity constraints

A network of routers is described by a collection of flows
with general capacity constraints of the form

∑
i∈Ra

wi �Ca ,
where Ca is the capacity of the router Ra . We consider the case
where each router drops flows at its congestion events according
to some random protocol, which may or may not depend on the
present or past state of the flow window sizes at the router. We
can analyse the behaviour of this network of flows by assuming
ergodicity of the process, and then using pathwise calculations
to deduce average properties of the process. Since the pathwise
computations are identical to the ones used in the previous
case of the single-router Markov model, we find that the same
relations (25) hold between ensemble averages in the general
case.

4. Conclusions

In this paper we have presented a random matrix model that
describes the behaviour of a network of n AIMD flows that
compete for shared bandwidth via a bottleneck router employ-
ing drop-tail queuing. We have used this model to relate sev-
eral important network properties to properties of sets of non-
negative matrices that arise in the study of such networks. We
have also derived under simplifying assumptions a number of
analytic results that characterise the ensemble-average through-
put of such networks. Finally, we note that we have also vali-
dated our results against packet-level simulations for networks
many flows and the results are presented in Shorten, Wirth, and
Leith (2006).
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Appendix A. Proof of mathematical results

A.1. Constant probabilities

It was noted before that the matrices in the set A are not col-
umn stochastic. However, the matrices in this set are simulta-
neously similar to a set of column stochastic matrices under the
transformation � = diag[�1, . . . , �n]. The corresponding trans-
formed dynamics are given by (16) and define the evolution
of the vector W �(k). The corresponding results for the system
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(15) are directly deduced from these results by similarity. In
the following it will be convenient to introduce a notation that
identifies each matrix A ∈ A with the sources that do not see
a drop in that congestion event. Let I ⊂ {1, 2, . . . , n} be the
index set of sources not experiencing congestion at a conges-
tion event. (Clearly, I = {1, 2, . . . , n} can be ignored, as this
means that there is no congestion.) The matrix corresponding
to an index set I is given by

AI = diag(�1(I), . . . , �n(I))

+ c��[1 − �1(I), . . . , 1 − �n(I)],
where �i (I)=1, if i ∈ I and �i (I)=�s

i otherwise and c� :=
(
∑n

j=1 �j�j )
−1 and �T =[�1�1, . . . , �n�n]. We now recover our

set of possible matrices by

A := {AI|I�{1, 2, . . . , n}}, (40)

which results in a set of 2n−1 matrices, as it should. Note that all
A ∈ A are column stochastic, so that they have an eigenvalue
equal to 1 equal to the spectral radius. In the following we will
use the notation AI = �I + c���(I)T, where �I denotes the
diagonal matrix and �(I) is the vector with entries 1 − �i (I).
We denote by �(k) products of length k of matrices A ∈ A.

Lemma 4.1. Consider the random system (15) subject to As-
sumptions 3.1 and 3.2. The expectation of �(k) is

E(�(k)) =
(∑

I

�IAI

)k

. (41)

Proof. Expanding the power relation on the left-hand side, by
independence we have that the expectation of the product is the
product of the expectations. This implies the equality. �

Lemma 4.2. Assume that �i > 0 for i = 1, . . . , n then the ex-
pectation

E(A) =
∑
I

�IAI

is positive, column stochastic, and a Perron eigenvector for it
is given by

xT
p =

(
�1

�1(1 − �1)
,

�2

�2(1 − �2)
, . . . ,

�n

�n(1 − �n)

)
. (42)

Proof. By definition of the expectation we have

E(A) =
∑
I

�IAI =
∑
I

�I�I + c�

m∑
i=1

�I��(I)T

= E(�) + c��E(�)T. (43)

The ith diagonal entry of the diagonal matrix E(�) is

E(�i,i ) = �i�i + (1 − �i ) (44)

and the ith entry of E(�) is

E(�i ) = �i (1 − �i ). (45)

Hence, the matrix E(A) is of the form of A1, with the same
vector � and where �i replaced by �̃i := 1 − 	i (1 − �i ) ∈
(0, 1). It follows by Theorem 2.1 that a Perron eigen-
vector of E(A) is given by xT

p = (�1/�1(1−�1), �2/�2
(1−�2), . . . , �n/�n(1−�n)). �

Theorem 3.1 follows immediately from the above two Lem-
mas and Theorem 2.1.

A.2. Place dependent probabilities

Proof of Theorem 3.2. Barnsley et al. (1988) have derived a
general condition for ergodicity of Markov chains with place-
dependent probabilities, and their results are summarised in
Stenflo’s (2002) paper. The version closest to our model (com-
pact state space, Lipschitz continuous transition functions) was
considered earlier by Isaac (1962). Elton (1990) extended these
results by proving almost sure convergence of time averages to
ensemble averages under the same conditions. The conditions
which guarantee ergodicity in our case are contained in the fol-
lowing lemma. These conditions state that the N -step transition
probabilities satisfy an average contractivity property.

Lemma 4.3. Assume the drop probabilities satisfy the Assump-
tions 3.3 and 3.4. Then there is r < 1 such that for all v, w ∈ S,∑

s

p∗(s; w)‖�N(s)v − �N(s)w‖1 �r‖v − w‖1. (46)

Furthermore, given any � > 0, there is an integer M , and � > 0,
such that for any v, w ∈ S∑
s,t :‖�M(s)v−�M(t)w‖1<�

p∗(s; v)p∗(t; w) > �. (47)

Proof. As noted in Comment 1, we can use a similarity trans-
formation to ensure that each matrix Ai is column stochastic.
Hence Ai is a contraction with respect to the l1 norm, that is
for any vector x and index i we have

‖Aix‖1 �‖x‖1. (48)

Also, recall that A1 is the matrix corresponding to the case
where all flows are dropped. Then A1 is an entrywise positive
column stochastic matrix, and hence is a strict contraction with
respect to the l1 norm, so there is r ′ < 1 such that

‖A1x‖1 �r ′‖x‖1. (49)

From (48) we get ‖�M(s)v−�M(s)w‖1 �‖v−w‖1 for all M-
strings s, all M and all v, w ∈ S. Furthermore if some index
in s is 1, then (49) implies that

‖�M(s)v − �M(s)w‖1 �r ′‖v − w‖1. (50)

For fixed v, w ∈ S, let s be the (N − 1)-string described
in Assumption 3.4(B), and let s′ be the N -string obtained by
adding the last index iN = 1 to s, so that all flows are dropped
at the last congestion event in this sequence. Then Assumption
3.4 implies that p∗(s′; w)�qq ′. Combining this with (50) we
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deduce that∑
s

p∗(s′; w)‖�N(s)v − �N(s)w‖1

= p∗(s′; w)‖�N(s′)v − �N(s′)w‖1

+
∑
s �=s′

p∗(s; w)‖�N(s)v − �N(s)w‖1

�(r ′p∗(s′; w) + 1 − p∗(s′; w))‖v − w‖1

�(1 − (1 − r ′)qq ′)‖v − w‖1 (51)

and this establishes (46). To prove (47), let G = supv,w∈S
‖v − w‖1, and take M ′ large enough so that

(r ′)M ′
G < �. (52)

We lower bound the left side of (47) by the single term
p∗(s′; v)p∗(t ′; w). Here s′ and t ′ are (N − 1 + M ′)-strings.
The first N − 1 indices in s′ are those described in Assumption
3.4(B), where the starting point is v. The remaining M ′ indices
are all 1, corresponding to repeated applications of the matrix
A1. It follows from Assumption 3.4 that p∗(s′; v)�q ′qM ′

. The
string t ′ is defined similarly with starting point w. Then taking
M = M ′ + N − 1 gives (47) with � = (q ′qM ′

)2. �

We now apply Theorem 2.1 of Barnsley et al. (1988), which
states that under the conditions of Lemma 4.3 there is an at-
tractive, unique invariant probability measure for the Markov
chain. In their proof of this result, Barnsley et al. assume aver-
age contractivity at each step of the process, that is they assume
N = 1. However, as they remark the proof extends to the case
where there is average contractivity over some fixed number of
steps N (independent of the initial points) as in our Lemma 4.3.
In fact as noted before the proof in our case is simpler, as we
have a compact state space and we assume uniform Lipschitz
regularity for the drop probability functions. This establishes (i)
and (ii). Property (iii) follows by Elton’s (1990) result, which
states that time averages converge almost surely to ensemble
averages for this model.
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