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Abstract

A family of velocity-based linearisations is proposed for a nonlinear system.  In contrast to the
conventional series expansion linearisation, a member of the family of velocity-based linearisations is
valid in the vicinity of any operating point, not just an equili brium operating point.  The velocity-based
linearisations facil itate dynamic analysis far from the equili brium operating points and enable the
transient behaviour of the nonlinear system to be investigated.  Using velocity-based linearisations,
stabili ty conditions are derived for both smooth and non-smooth nonlinear systems which avoid the
restrictions, to trajectories lying within an unnecessarily, perhaps excessively, small neighbourhood
about the equili brium operating points, inherent in existing frozen-input theory.  For systems where
there is no restriction on the rate of variation, the velocity-based linearisation analysis is global in
nature.  The analysis techniques developed, whilst quite general, are motivated by the gain-scheduling
design approach and have the potential for direct application to the analysis of gain-scheduled systems.

1. Introduction

Whilst nonlinear dynamic systems are widespread, the analysis and design of such systems remains
relatively difficult.  In contrast, techniques for the analysis and design of linear time-invariant systems
are rather better developed even though systems with genuinely linear time-invariant dynamics do not,
in reali ty, exist.  It is, therefore, attractive to adopt a divide and conquer strategy whereby the
analysis/design of a nonlinear system is decomposed into the analysis/design of a family of linear time-
invariant systems.  This type of strategy forms the basis of one of the most widely, and successfully,
applied techniques for the design of nonlinear controllers; namely, gain-scheduling.

Gain-scheduled controllers are linked by the design approach employed, whereby a nonlinear
controller is constructed by  interpolating, in some manner, between the members of a family of linear
time-invariant controllers.  In the conventional, and most common, gain-scheduling design approach
(see, for example, Astrom & Wittenmark 1989, Hyde & Glover 1993), each linear controller is
typically associated with a specific equili brium operating point of the plant and is designed to ensure
that, locally to the equili brium operating point, the performance requirements are met.  (The existence
of a family of equilibrium operating points, which spans the envelope of plant operation, is central to
most gain-scheduling arrangements and it is not sufficient to restrict consideration to a single, isolated,
equili brium operating point).  By employing a first-order linear approximation which, locally to the
equili brium operating point, has similar dynamics to the plant, linear techniques may be applied to this
local design task.  However, whilst nonlinear controllers designed by this gain-scheduling approach are
widely employed, the theoretical tools for the analysis and design of gain-scheduled controllers are
rather poorly developed.

In this paper, the analysis of nonlinear dynamic systems in terms of associated velocity-based
famili es of linear systems is investigated.  Emphasis is placed on establishing a consistent, unified and
conceptually clear framework for the local and non-local dynamic analysis of nonlinear systems.
Whilst motivated by the gain-scheduling design methodology, the analysis is quite general.  The paper
is organised as follows.  In section 2, the existing theory regarding the relationships between the
dynamics of nonlinear systems and associated linear systems is reviewed.  In section 3, velocity-based
linearisation families are derived for a broad class of nonlinear systems and the abili ty of the former to
approximate the latter is investigated.  In section 4, the relationship between the stabili ty properties of a
nonlinear system and those of its associated family of velocity-based linearisations is investigated.  The
conclusions are summarised in section 5.

2. Extended Review



There exists a wide variety of long-standing theoretical results which, for a broad class of nonlinear
systems, relate the dynamic characteristics of a member of the class to those of an associated family of
linear systems.  However, many of these results have been developed in specific contexts, often
independently of one another.  Moreover, despite this diversity, there is a notable absence from the
literature of a formal survey which considers the relationships between these results.  It is appropriate,
therefore, to present in this section a somewhat extended review.  In sections 2.1 and 2.2, the primary
results from, respectively, series expansion linearisation theory and frozen-time theory are reviewed.
The theory concerning the analysis of the dynamics relative to a family of equili brium operating points
is reviewed in section 2.3.

Before proceeding, the following two stability definitions are stated.

Definition Exponential Stability (see, for example, Khalil 1992 p168)
An unforced dynamic system,�

x = F(x, t)
where x ∈ ℜn, is locally exponentially stable if there exist strictly positive constants γ, a and c such that

|x(t)| ≤ c|)(t|  0,tt    |)(t|e ooo
)t--a(t o <≥≥∀γ xx

where |⋅| denotes an appropriate norm.  The system is globally exponentially stable if this inequali ty is
satisfied with c unbounded.

Definition Bounded Input-Bounded Output (BIBO) Stability
A forced dynamic system�

x = F(x, r , t), y = G(x, r , t)
where r ∈ ℜm, y ∈ ℜp, x ∈ ℜn, is locally BIBO stable if there exist positive constants γ, c and d, with
γ<∞, such that, for r∈Lp

m,
|y|p ≤ γ|r |p + β(|x(to)|, t) ∀ t ≥ to > 0, |x(to)| < c, |r (t)| < d

where p∈[1,∞], |⋅|p denotes the p-norm, Lp
m denotes the normed linear space of functions r :[0,∞)→ℜm

with finite p-norm and β(|x(to)|, t) is a class KL function (β is strictly increasing with respect to |x(to)|
for each fixed t and zero when |x(to)| is zero, and β is strictly decreasing with respect to t for each fixed
|x(to)| and β→0 as t→∞).  The system is globally BIBO stable if this inequality is satisfied with c and d
unbounded.  This definition of BIBO stabili ty is closely related to that of input-to-state stabili ty
(Sontag 1989) and differs slightly from other definitions of BIBO stabili ty (Desoer & Vidyasagar 1975,
Vidyasagar & Vannelli 1982) which require x(to) to be zero.

In the context of the present paper, all references to BIBO stabili ty denote systems where β is of the

exponential form γe (t-a(t-t
o

o ) | )|x , a>0.  It is noted that such systems are exponentially stable when the

input, r , is zero.  Hence, this form of BIBO stabili ty may be interpreted as a direct generalisation of
exponential stabili ty.

2.1Series expansion linear isation theory

Consider the nonlinear system,�
x = F(x, r , t) (1a)
y = G(x, r , t) (1b)

where r ∈ ℜm, y ∈ ℜp, x ∈ ℜn, F(·,·,·) and G(·,·,·) are differentiable with bounded, Lipschitz
continuous derivatives.  Let ( ~x (t), ~r (t), ~y (t)) denote a specific trajectory of the nonlinear system, (1);

that is,
~

�
x = F( ~x , ~r , t), ~y = G( ~x , ~r , t) (2)

The trajectory, ( ~x (t), ~r (t), ~y (t)), could simply be an equili brium operating point of (1), in which case

F( ~x , ~r , t) is identically zero and ~x  is a constant.  The nonlinear system, (1),can be reformulated,
relative to the trajectory ( ~x (t), ~r (t), ~y (t)), as,

δ
�
x = ∇xF( ~x , ~r , t)δx + ∇rF( ~x , ~r , t)δr  + εεF (3a)

δy = ∇xG( ~x , ~r , t)δx + ∇rG( ~x , ~r , t)δr  + εεG (3b)
δr  = r  - ~r , y = δy + ~y , δx = x - ~x (3c)



where,
εεF = F(x, r , t) - F( ~x , ~r , t) - ∇xF( ~x , ~r , t)δx - ∇rF( ~x , ~r , t)δr (4a)

 εεG = G(x, r , t) - G( ~x , ~r , t) - ∇xG( ~x , ~r , t)δx - ∇rG( ~x , ~r , t)δr (4b)
The dynamics, (3a) and (3b), cannot be considered in isolation but must be considered together with the
input, output and state transformations, (3c), in order to maintain the relationship between (3) and (1).
However, the transformations, (3c), are fixed when consideration is confined to a specific trajectory,
( ~x (t), ~r (t), ~y (t)).  Hence, the nonlinear system, (1), is stable provided the linear time-varying

dynamics,
δ

� �
x = ∇xF( ~x , ~r , t)δ

�
x  + ∇rF( ~x , ~r , t)δr (5a)

δ
�
y  = ∇xG( ~x , ~r , t)δ

�
x  + ∇rG( ~x , ~r , t)δr  (5b)

are robustly stable with respect to the perturbation terms, εεF and εεG.  Consequently, analysis of the
nonlinear system, (1), may be reformulated as the analysis of the robust stabili ty of the associated linear
system, (5), which is simply the first-order Taylor series expansion of the nonlinear system, (1),
relative to the trajectory, ( ~x (t), ~r (t), ~y (t)).

From Lyapunov theory, when δr  is zero the internal nonlinear dynamics, (3a), are locally
exponentially stable if and only if the unforced linear time-varying system,

δ
� �
x = ∇xF( ~x , ~r , t)δ

�
x  (6)

is stable (see, for example, Khalil 1992 p184).  When δr  is non-zero, the nonlinear dynamics, (3), are
locally BIBO stable provided (6) is stable, δx is initially zero, δr  is sufficiently small and the
derivatives ∇rF, ∇xG, ∇rG are uniformly bounded (Vidyasagar & Vannelli 1982, Vidyasagar 1993
section 6).  Since this holds for all t ime, it is straightforward to show that the initial conditions need not
be restricted to be zero and the result may be extended to encompass other initial conditions, provided
that they are suff iciently close to the origin.  Of course, for the special case when the system, (6), is in
fact linear time-invariant, simple necessary and sufficient conditions for its stabili ty are well-known
(see, for example, Vidyasagar 1993).  However, in the time-varying case, the stabili ty analysis of (6) is,
in general, not so straightforward.

In addition, the peak absolute difference between the solution, δ
�
x , of the approximate system, (5a),

and the solution, δx, of the nonlinear system, (3a), is bounded provided the approximate system, (5a), is
stable, δr  is sufficiently small and the initial conditions, δx(0) and δ

�
x (0), are zero (Desoer  & Wong,

1968, Desoer & Vidyasagar 1975 section 4.9).  Once again, it is straightforward to extend this result to
encompass non-zero initial conditions which are sufficiently close to the origin.  Nonetheless, even
with this extension, this result is quite weak and is, essentially, a restatement of local BIBO stabili ty;
that is, simply that the solutions of (3a) and (5a) both remain within a bounded region enclosing the
origin provided the input and the initial conditions are sufficiently small .  If the dynamics, (5a), are a
genuine approximation to the nonlinear dynamics, (3a), then it might be expected that, when starting
from the same initial conditions, the solutions of (3a) and (5a) remain correlated for some time; that is,
the difference grows, in some sense, gradually over time.  However, despite the fundamental nature,
and considerable importance, of series expansion approximations, it is emphasised that there do not
appear to be any published results regarding this anticipated stronger property.

2.2Frozen-time theory

Whilst series expansion theory enables a relationship between the stabili ty properties of the
nonlinear system, (1), and the associated linear time-varying system, (6), to be established, frozen-time
theory enables the stabili ty of a broad class of the linear time-varying systems, (6), to be analysed in a
relatively straightforward manner.

Consider the unforced linear time-varying system,�
x = A(t)x (7)

where x ∈ ℜn.  Let the constant matrix, Aτ, denote the value of A(t) at time, τ.  Assume that A(·) is
bounded, differentiable and the eigenvalues of Aτ lie in the left-half complex plane and are uniformly
bounded away from the imaginary axis for every value of τ, then the linear time-varying system, (7), is

globally exponentially stable providedsup |
�

 (t)|
t 0≥

A  is sufficiently small (Desoer 1969).  It should be

noted that this result only establishes a sufficient condition for stabili ty.  The differentiability condition
on A(·) may be relaxed to a requirement for Lipschitz continuity and the restriction on sup |

�
 (t)|

t 0≥
A  may



be replaced by a restriction on the moving average, ∫
+Tt

t ds |s)(|
T

1
A

�
(see, for example, Ilchmann et al.

1987, Khalil 1992 section 4.5).  Furthermore, the requirement for the continuity of A(t) may be relaxed
provided that any discontinuities in A(t) occur sufficiently infrequently (Zhang 1993, Morse 1995 p97).
However, referring back to section 2.1, it should be noted the available results relating the stabili ty of
the nonlinear system, (1), to that of the unforced system, (5), require Lipschitz continuity of ∇xF.

The analysis is extended by Barman (1973) to unforced smoothly-nonlinear time-varying systems
with a single equilibrium operating point (see also Desoer & Vidyasagar 1975 section 4.8, Vidyasagar
1993 section 5.8.2).  By applying this result to the perturbations� �

x = F(
�
x , τ) (8)

of the family of linear time invariant systems,�
x = Aτx (9)

where the frozen-time nonlinear systems, (8), are uniformly exponentially stable and F(0, τ) is zero (so
that the equili brium point is uniformly the origin), it follows immediately that the time-varying
perturbed system,� �

x = F(
�
x , t) (10)

is also exponentially stable provided the rate of time variation is sufficiently slow (in an appropriate
sense).  Consequently, provided the rate of variation is sufficiently slow, the linear time-varying
system, (7), inherits the stabili ty robustness of the family of linear time invariant systems, (8), to
smooth nonlinear dynamic perturbations of arbitrary finite dimension which preserve the origin as the
equili brium point.  In addition, it is shown by Shamma & Athans (1991) that, provided the rate of
variation is sufficiently slow, the linear time-varying system, (7), inherits the stabili ty robustness of the
linear time-invariant systems, (8), to infinite dimensional linear time-invariant perturbations in the
dynamics.

The foregoing results can be applied to the system, (6), which has the same form as (7).  Provided
∇rF, ∇xG and ∇rG are uniformly bounded, local exponential stabili ty of the unforced system ensures
local BIBO stabilit y when the system is forced; that is, BIBO stabili ty for δr and δx(0) sufficiently
small (see, for example, Vidyasagar & Vannelli , 1982, Vidyasagar 1993 section 6).  Consequently,
provided the rate of variation is sufficiently slow, the linear time-varying system, (5), inherits certain
stabili ty properties of the members of the family of linear time-invariant systems,

δ
� �
x = ∇xF( ~xτ , ~rτ , τ)δ

�
x  + ∇rF( ~xτ , ~rτ , τ)δr     (11a)

δ
�
y  = ∇xG( ~xτ , ~rτ , τ)δ

�
x  + ∇rG( ~xτ , ~rτ , τ)δr      (11b)

where τ ≥ 0 is a constant, ~xτ  = ~x (τ), ~rτ = ~r (τ).  The family, (11), consists of the so-called frozen-

time linearisations of the linear time-varying dynamics, (5).

2.3Frozen-input theory

A relationship between certain local stabili ty properties of the nonlinear system, (1), and the
stabili ty properties of the associated family of linear time-invariant systems, (11), is established by the
results of sections 2.1 and 2.2.  However, the results are confined to the dynamic behaviour local to a
single trajectory or equili brium operating point, which is a significant limitation of the series expansion
linearisation theory .  In particular, within a gain-scheduling context, it is almost always required to
consider the behaviour of a system relative to a family of operating points, which spans the envelope of
operation, rather than relative to a single operating point.  The existing theory regarding the behaviour
relative to a family of equilibrium operating points, rather than just the behaviour relative to a single
equili brium operating point, stems primarily from an early lemma by Hoppensteadt (1966) originally
derived in the context of singular perturbation theory.  The conditions required for this result are
satisfied by various combinations of assumptions; the statement of the result presented below is based
on that of Khalil (1992, section 5.3).

Consider the smooth nonlinear system,
x

�
= F(x, r ) (12)

where r ∈ Γ⊂ ℜm, x ∈ ℜn, F(·,·) is continuously differentiable on Γ×ℜn and has a family of
equili brium operating points, (xo, r o), for which

xo = H(r o), F(H(r o), r o) = 0 ∀ r o∈Γ (13)
Assume that there exists an open ball , X, about the origin in ℜn, such that each member of the family of
frozen-input nonlinear systems,�

x = F(x, r o), r o∈Γ (14)



is uniformly exponentiall y stable for initial conditions, x(0), which satisfy x(0)-H(r o) ∈ X.  In addition,
assume that H(·) is differentiable with ∇H uniformly bounded on Γ and that ∇xF(z+H(r ),r ),
∇rF(z+H(r ),r ) are uniformly bounded for all r∈Γ, z∈X.  It follows that there exists a neighbourhood,
Xo ⊂ X, such that the forced nonlinear system, (12), is locally BIBO stable for initial conditions
satisfying x(0)-H(r (0)) ⊂ Xo and inputs, r (t)∈Γ, provided r  is differentiable and || sup

0t
r

�
≥

 is sufficiently

small (Khalil 1992, section 5.3).  It should be noted that the restrictions on the rate of variation of the
input and on the initial condition play two roles: firstly, they restrict the rate at which the frozen-input
systems, (14), are traversed and, secondly, they ensure that the state trajectories remain uniformly
within the neighbourhood, X.

Clearly, the foregoing stabili ty analysis is not confined to the behaviour in the vicinity of a single
trajectory or equili brium operating point.  However, the members of the family of frozen-input

systems, (14), are nonlinear.  From series expansion theory, there exists a neighbourhood, 
�
X (r o), such

that, for initial conditions satisfying x(0)-H(r o) ∈ 
�
X (r o), the trajectories of a member of the family of

frozen-input nonlinear systems, (14), are locally exponentially stable if and only if the corresponding
series expansion linearisation,

δ
� �
x = ∇xF(H(r o), r o)δ

�
x  (15)

is stable.  The neighbourhoods, 
�
X (r o), may be different for each member of the family of frozen-input

nonlinear systems.  Select a region, X, which is suff iciently small that it is encompassed by every�
X (r ); for example, let X be the intersection over all r o∈Γ of the 

�
X (r o).  Some additional conditions

are required to ensure that X contains an open ball about the origin and, thereby, establish a
relationship between the local stabili ty properties of the nonlinear system, (12), and the stabil ity of the
family of unforced linear time-invariant systems, (15) (Lawrence & Rugh 1990, Khalil & Kokotovic
1991).  The additional conditions are relatively mild; for example, Γ is bounded and ∇xF(H(r o), r o) is
differentiable for all r o∈Γ (Lawrence & Rugh 1990), or the somewhat weaker requirement that
∇xF(H(r o), r o) is uniformly Lipschitz (Khalil 1992, section 4.5.1).  Having imposed sufficient
additional conditions that X contains an open ball , a relationship between certain local stabili ty
properties of the nonlinear system, (12), and the stabili ty of the family of unforced linear time-invariant
systems, (15), can be established (Lawrence & Rugh 1990, Khalil & Kokotovic 1991), for example, by
directly applying the result of Hoppensteadt (1966).  (Also, it is immediately evident that, provided the
input varies sufficiently slowly and the initial conditions of the state are suitably restricted, the
nonlinear system, (12), inherits the stabil ity robustness of the frozen-input systems, (15), to smooth
nonlinear dynamic perturbations of arbitrary finite dimension).

The foregoing stabili ty result requires the family of equili brium operating points to be
parameterised by the system input, r , but this is not unduly restrictive in an analysis context (although
it is undesirable in the gain-scheduling design context, where it is more natural to parameterise the
equili brium operating points by the scheduling variable).  However, the systems are also required to be
smooth, thereby excluding discontinuous dynamics.  In addition, conditions on the rate of variation of
the input and on the initial condition are required in order to restrict the rate at which the frozen-input
systems are traversed and also to ensure that the state trajectories remain uniformly within X.  The
latter constraint is required because the information about the plant dynamics employed in the analysis
is derived from the family of series expansion linearisations, (15), relative to the equili brium operating

points.  Furthermore, X can be no larger than the smallest of the neighbourhoods,
�
X (r ), within which

the series expansion linearisations, (15), are valid.  The analysis is, therefore, inherently confined to a
small, perhaps excessively small , neighbourhood enclosing the equilibrium operating points and
consequently is quite conservative.

Shamma & Athans (1990 section 4) apparently attempt to extend this type of analysis to a class of
systems with a particular feedback structure and for which the family of equili brium operating points is
parameterised by the system output, y, rather than the input, r .  The output, y, and the system dynamics
mutuall y interact with one another whereas the input, r , is independent of the system dynamics.
Consequently, the analysis of an output-scheduled nonlinear system is more diff icult than the input-
scheduled case.  Shamma & Athans (1990)  establish stabilit y conditions requiring that |

�
y | is

sufficiently small and, in addition, that the magnitude of the input, r , and initial condition of a certain
transformed state vector, ξξ, are sufficiently small .  The latter conditions confine the analysis, in
general, to trajectories, (ξξ(t), r (t)) which lie within a small region enclosing the origin (see, for
example, Shamma & Athans 1990, theorem 4.4).  Since y, which parameterises the equili brium
operating point, is a subset of the transformed states, ξξ, it follows that y(t) is also confined to a region



enclosing the origin.  Hence, the analysis cannot be applied to an extended family of equilibrium
operating points.

3. Velocity-based linear isation families

It is evident from the foregoing survey that the existing theory, relating the dynamic properties of a
nonlinear system to those of an associated family of linear time-invariant systems, is rather poorly
developed.  Series expansion linearisation theory is well established but is strictly confined to the
dynamic analysis, locally to a single trajectory or equili brium operating point, of smooth nonlinear
systems.  Frozen-input techniques cater for the analysis of smooth nonlinear systems relative to a
family of equili brium operating points and relate the stabili ty of a nonlinear system to the stability of a
family of frozen-input nonlinear systems.  A slow variation requirement is necessary which seems to be
inherent to this type of analysis, implicitly restricting the class of allowable inputs and initial
conditions; that is, implicitly restricting the trajectories to remain sufficiently close to the equili brium
operating points.  In order to relate the stabili ty of the nonlinear system to the properties of a family of
linear time-invariant systems, a further explicit restriction on the allowable trajectories is necessary to
ensure they remain sufficiently close to the equili brium operating points that series expansion
linearisations are valid.  This latter restriction is not a priori necessary yet may be very strong since the
neighbourhoods within which the series expansion linearisations are valid may, in general, be
excessively small.  The utili ty of frozen-input theory is, thus, somewhat diminished since it may imply
a high degree of unnecessary conservativeness.  Series expansion linearisation theory and frozen-input
theory consider only the stabili ty properties of the nonlinear system and provide littl e direct insight into
other dynamic properties, such as the transient response.  When the scheduling is not continuous, few
techniques, other than extensive simulation testing, appear to be available for analysing the dynamic
behaviour of the controlled system.

The requirement is to develop techniques for the dynamic analysis of nonlinear and gain-scheduled
systems which address the main deficiencies of the existing theory.  In particular, the conservativeness
of the analysis techniques should be minimal.  Although, a slow variation requirement of some sort
seems inevitable, it should be as weak as possible; that is, there should be no unnecessary restriction to
small neighbourhoods of the equili brium operating points. In addition, whilst stabili ty is essential, other
dynamics properties are also usually important.  Hence, the analysis should apply to other aspects of
the dynamic behaviour, such as the transient response.  Motivated by the requirement to accommodate
gain-scheduled systems which switch between local controller designs, the analysis should not be
confined to smooth nonlinear systems but should also cater for discontinuous nonlinear systems.

In this section, velocity-based linearisation famili es are proposed with the aim of developing an
appropriate framework for addressing these issues.  Nonlinear systems with dynamics,�

x = F(x, r ), y = G(x, r ) (16)
are considered, where F(·,·) and G(·,·) are continuous with Lipschitz continuous first derivatives, r ∈
ℜm denotes the input to the system, y ∈ ℜp the output and x ∈ ℜn the states.  The set of equilibrium
operating points of the nonlinear system, (16), consists of those points, (xo, yo, r o), for which

F(xo, r o) = 0, yo = G(xo, r o) (17)
Let Φ:ℜn×ℜm denote the space consisting of the union of the states, x, with the inputs, r .  Assume [∇rF
∇xF∇rF …(∇xF)n-1∇rF] is rank n ∀x,r .  The set of equili brium operating points of the nonlinear
system, (16), forms a locus of points, (xo, r o), in Φ and the response of the system to a general time-
varying input, r (t), is depicted by a trajectory in Φ.

3.1 Approximation by first-order series expansion about an equilibr ium operating point

When the dynamic behaviour of a nonlinear system is investigated by analysing an associated
family of linear time-invariant systems, the family is most commonly chosen to consist of the first-
order series expansions relative to the equili brium operating points of the nonlinear system.  In this
section. the extent, to which the solutions of the nonlinear system are approximated by the solutions of
the members of this family, is investigated.

3.1.1 Local to a single equili br ium operating point



Consider the situation when the solutions to the nonlinear system, (16), are restricted to the vicinity
of a single equilibrium operating point, (xo, r o).  Employing a standard series expansion approach
relative to (xo, r o),  the nonlinear system, (20), can be approximated by the linear dynamics

δ
� �
x  = ∇xF(xo, r o) δ

�
x  + ∇rF(xo, r o) δr (18a)

δ
�
y  = ∇xG(xo, r o) δ

�
x  + ∇rG(xo, r o) δr (18b)

together with the algebraic input, output and state transformation

δr  = r  - r o ,   
�
y  = yo + δ

�
y ,   

�
x  = δ

�
x  + xo, 

� �
x  = δ

� �
x (18c)

provided xo+δx ⊆ Nx r o+δr⊆ Nr, where the neighbourhoods, Nx and Nr, of, respectively, xo and r o, are
sufficiently small .  Since the transformations, (18c), are fixed, the system dynamics are, locally,
completely described by the linear time-invariant dynamics, (18a,b).  As observed in section 2.1, even
though the stabili ty of the nonlinear system, (16), can be determined from the linear system, (18) ((16)
being locally exponentiall y stable if and only if (18) is stable), no indication is given of the extent to
which the solution, 

�
x (t), of (18) approximate the solution, x(t), of (16).

Expanding, with respect to time, x(t) relative to an initial time, t1,
x(t) = x(t1) + 

�
x (t1)δt + ½

� �
x (t1)δt2 + εx, δt=t-t1 (19a)

where,
εx = x(t) - { x(t1) + 

�
x (t1)t + ½

� �
x (t1)t

2} (19b)�
x (t1) = F(x(t1), r (t1)) (19c)� �
x (t1) = ∇xF(x(t1), r (t1)) 

�
x ( t1)  + ∇rF(x(t1), r (t1)) 

�
r (t1) (19d)

It should be noted that the approximate series expansion, 
�
x(t) , obtained when εx is neglected in (19a),

satisfies,

)(t=)(t  ),(t=)(t  ),(t=)(t 111111 xxxxxx
���������

(20)

and is, therefore, a second-order approximation to (19).
The solution, 

�
x (t), to (18) may also be expanded with respect to time as,�

x (t) = 
�
x (t1) + 

� �
x (t1)δt + ½

�� �
x (t1)δt2 + 

�
ε x (21a)

where, �
ε x  = 

�
x (t) - {

�
x ( t1) + 

� �
x ( t1)t + ½

�� �
x ( t1)t

2} (21b)

When 
�
x (t1) equals x(t1) so that both (16) and (18) have the same initial conditions, it is evident from

(18) that,� �
x (t1)  = ∇xF(xo, r o) (x(t1)-xo) + ∇rF(xo, r o) (r (t1)-r o) (22a)�� �
x (t1) = ∇xF(xo, r o) 

� �
x ( t1) + ∇rF(xo, r o) 

�
r (t1) (22b)

Clearly, the derivatives, 
� �
x (t1) and 

� � �
x (t1), are not equal to 

�
x (t1) and 

� �
x (t1).  Consequently, the solutions

to (16) and (18) are not tangential at time zero.  Indeed, when there is no restriction on 
�
r , the

difference between 
� �
x (t1) and 

� � �
x (t1) may be unbounded.  Therefore, 

�
x (t) only provides a zeroeth-order

approximation to x(t).  The reason is that, in contrast to 
�
x(t) , the expansion is carried out relative to the

equili brium operating point, (xo, r o), rather than the actual initial condition of the system, (x(t1), r (t1)).
Hence, whilst indicating stabili ty, (18) provides, in general, a somewhat poor indication of the time
response of (16).

This result is perhaps a littl e surprising since the series expansion linearisation relative to a single
equili brium operating point has been in widespread use by control engineers for many years and this
body of experience indicates that it is of great utili ty.  Of course, the approximation error depends on
the strength of the system nonlinearity.  When the nonlinearity is weak, the approximation error may be
small even for system trajectories which do not remain particularly close to a specific equili brium
operating point.  In this situation, the series expansion linearisation relative to an equili brium operating
point may be quite adequate.  Indeed, since linear controller designs are often very successful, it
follows that many systems are, in the foregoing sense, weakly nonlinear.  When the nonlinearity is
stronger, the approximation error also remains bounded and relatively small provided the system
trajectories are for the most part confined to a sufficiently small neighbourhood about the specific
equili brium operating point, (xo, r o).  Hence, despite its relatively poor approximation abilit y, the first
order series expansion, (18), about a single equili brium operating point is indeed of util ity, particularly
since it has the virtue of being linear.

3.1.2 Local to a family of equili br ium operating points



In the context of gain-scheduling it is not sufficient to consider the stabili ty behaviour in the
vicinity of a single equili brium operating point.  Instead, the input and initial condition are assumed to
be restricted such that the solutions to (16) trace trajectories in Φ which remain within a neighbourhood
about the locus of equili brium operating points but are not confined to a neighbourhood about a single
equili brium point; that is, the solution, x(t), to the nonlinear system moves from the vicinity of one
equili brium operating point to the vicinity of another as time evolves.

Since the solution, x(t), to the nonlinear system does not stay in the vicinity of a single equili brium
operating point, it is necessary to consider a family of associated first-order expansions relative to the
equili brium operating points.  By combining the solutions to the members of this family in an
appropriate manner, an approximation to x(t) can be obtained that does not involve solving the
nonlinear dynamics.  Over a time interval, [t1,t2], an approximation is obtained by partitioning the
interval into a number of short sub-intervals. Over each sub-interval, the approximate solution is just
the local solution of the series expansion linearisation corresponding to a nearby equili brium operating
point (with the initial conditions chosen to ensure continuity of the approximate solution).  As the
durations of the sub-intervals are reduced, a greater number of local solutions are used and it might be
expected that, as the sub-intervals become smaller and the number of local solutions employed
increases, the resulting piece-wise continuous approximation might converge to the exact solution, x(t),
of the nonlinear system.  However, from the analysis of section 3.1.1, the local solutions are only
accurate to zeroeth order; that is, the approximation error over each sub-interval is proportional to its
duration.  Hence, although the approximation error for each local solution decreases as the duration of
the sub-intervals is decreased, it is counter-balanced by the corresponding increase in the number of
local approximate solutions employed and the overall approximation error need not decrease (see
Appendix A).  In contrast to the situation considered in section 3.1.1, both the exact solution to the
nonlinear system and the approximate solution are not confined to a small neighbourhood about a
single equilibrium operating point.  Hence, a large difference between them can develop and the
solutions to the family of first-order series expansions relative to the equili brium operating points are,
therefore, a poor approximation to the solution to the nonlinear system (16).

Moreover, the input, output and state transformations, (18c), vary with the equili brium operating
point.  Hence, when the solution to (16) traces a trajectory which is not confined to a neighbourhood
about a single equili brium operating point, the relationship between the non-local dynamics of the
nonlinear system, (16), and the local li near dynamics, (18a,b), is, in fact, no longer straightforward.
Indeed, the first-order series expansion systems, (18), may be reformulated as,�

x  = -{ ∇xF(xo, r o)xo + ∇rF(xo, r o)r o} + ∇xF(xo, r o) x + ∇rF(xo, r o) r (23a)
y = -{ ∇xG(xo, r o)xo + ∇rG(xo, r o)r o} + ∇xG(xo, r o) x + ∇rG(xo, r o) r (23b)

Each member of the family of first-order representations, (23), now has the same input, output and state
at every equilibrium operating point and the input, output and state transformations are no longer
required.  However, they are no longer linear owing to the presence of an inhomogeneous term.  The
main advantage of the first-order series expansions relative to the equili brium operating points, namely
the linearisation of the nonlinear dynamics, is, therefore, lost.

3.2 First-order series expansion about a general operating point

When the solutions to the nonlinear system are not confined to the vicinity of a single equili brium
operating point (such as in gain-scheduling applications), it is evident that the family of first-order
series expansions relative to the equilibrium operating points, (18), or equivalently, (23), offers neither
an accurate approximation to the solution of the nonlinear system nor the benefits of linearity.  An
alternative approach to local representation of the nonlinear system is, therefore, required.

Consider the behaviour of the nonlinear system, (16), when there are no restrictions on the class of
allowable inputs and initial conditions.  The solutions to (16) may trace trajectories anywhere in Φ and
are not confined to the vicinity of either a single equili brium operating point or the locus of equilibrium
operating points.  Suppose that the nonlinear system is evolving along a trajectory, (x(t), r (t)), in Φ and
at time, t1, the trajectory has reached the point, (x1, r 1).  It is emphasised that the point, (x1, r 1), need not
be an equili brium operating point and, indeed, may lie far from the locus of equili brium operating
points.  From Taylor series expansion theory, the subsequent behaviour of the nonlinear system, (16),
can be approximated, locally to (x1, r 1), by the first order representation,

δ
� �
x  = F(x1, r 1) + ∇xF(x1, r 1) δ

�
x  + ∇rF(x1, r 1) δr (24a)

δ
�
y  = ∇xG(x1, r 1) δ

�
x  + ∇rG(x1, r 1) δr (24b)

δr  = r  - r 1 ,   
�
y  = y1 + δ

�
y ,   

�
x  = δ

�
x  + x1, 

� �
x  = δ

� �
x (24c)



provided x1+δ
�
x  ⊆ Nx r 1+δr⊆ Nr, where the neighbourhoods, Nx and Nr, of, respectively,  x1 and r 1 are

sufficiently small .
When (24) and (16) have the same initial conditions, (x1, r 1), the solution to (24) satisfies,� �

x (t1) = F(x1, r 1) = 
�
x (t1) (25a)�� �

x (t1) = ∇xF(x1, r 1) 
�
x (t1)  + ∇rF(x1, r 1) 

�
r (t1) = 

� �
x (t1) (25b)

Hence, the solution to (24) is, initially, tangential to the solution of (16) and, indeed, locally to time t1,
provides a first-order approximation to 

�
x (t) and a second-order approximation to x(t).  The reason is

that, in contrast to the series expansion linearisation, (18), the series expansion, (24), is performed
relative to the actual initial operating point, (x1, r 1), rather than an adjacent equili brium operating point.

The solution to the first-order series expansion, (24), provides a valid approximation only while the
solution, x(t), to the nonlinear system remains in the vicinity the operating point, (x1, r 1).  However, the
solution, x(t), to the nonlinear system need not stay in the vicinity of a single operating point and so it
is necessary to consider a family of first-order series expansions relative to all operating points.
Following a similar approach to that described in section 3.1.2, consider an approximation to x(t) over
a time interval, [t1,t2], obtained by partitioning the interval into a number of short sub-intervals. Over
each sub-interval, the approximate solution is the solution to the first-order series expansion relative to
the operating point reached at the initial time for the sub-interval (with the initial conditions chosen to
ensure continuity of the approximate solution).  As before, the number of local solutions employed is
dependent on the duration of the sub-intervals.  However, the local solutions are now accurate to
second order; that is, the approximation error is proportional to the duration of the sub-interval cubed.
Hence, as the number of sub-intervals increases, the approximation error associated with each rapidly
decreases and the overall approximation error reduces.  Indeed, the overall approximation error tends to
zero as the number of sub-intervals becomes unbounded (see Appendix A).  Hence, in contrast to the
series expansion relative to an equili brium operating point, the first-order series expansion, (24), can
provide an accurate approximation to the solution of the nonlinear system.  Moreover, this
approximation property holds throughout Φ and is not confined to the vicinity of a single equili brium
operating point or even of the locus of equili brium operating points.  Provided some care is taken, in
many circumstances the potential clearly exists with the family of first-order series expansions, (24),
(but not with the family of series expansion linearisations, (18)) to infer the transient response of the
nonlinear system, (16), from the responses to a few members, sometimes one member, of the family.

Combining (24a,b) with the local input, output and state transformations, (24c), each member of the
family of first-order representations, (24), may be reformulated as,� �

x  = { F(x1, r 1) - ∇xF(x1, r 1) x1 - ∇rF(x1, r 1) r 1 } + ∇xF(x1, r 1) 
�
x  + ∇rF(x1, r 1) r (26a)�

y  = { G(x1, r 1) - ∇xG(x1, r 1) x1 + ∇rG(x1, r 1)r 1 } + ∇xG(x1, r 1) 
�
x  + ∇rG(x1, r 1) r (26b)

where the state, input and output is the same at every point in Φ.  It is evident that (26) subsumes the
family of systems, (23), and, also, (18).  Whilst the first-order series expansions, (26), are a better
approximation than (23), their degree of nonlinearity is no greater.

3.3Velocity-based linear isation

The first limitation of first-order series expansions relative to the equili brium operating points,
specifically the inability to provide an accurate local approximation to the solution of the nonlinear
system, (16), is overcome by the first-order series expansions, (26)..  However, the second limitation,
namely its lack of linearity, is not.  This difficulty may be resolved by appropriate transformation of the
system.  By differentiating, (26) may be reformulated in the equivalent velocity-based form,� �

x  = 
�
w     (27a)� �

w = ∇xF(x1, r 1)
�
w  + ∇rF(x1, r 1)

�
r     (27b)� �

y  = ∇xG(x1, r 1)
�
w  + ∇rG(x1, r 1)

�
r     (27c)

With appropriate initial conditions, namely,�
x (t1) = x(t1),

�
w (t1) = 

� �
x (t1) = 

�
x ( t1) = F(x1, r 1),

�
y (t1) = y(t1) = G(x1, r 1)     (27d)

the transformed system, (27), is dynamicall y equivalent to the original system, (26).  In contrast to (26),
the transformed system, (27), is linear.  Associated with every point in Φ is a velocity-based
linearisation, (27).  Hence, a velocity-based linearisation family, with members defined by (27), can be
associated with the nonlinear system, (16).

Differentiating (20), an alternative representation of the nonlinear system is�
x  = w     (28a)



�
w = ∇xF(x, r )w + ∇rF(x, r )

�
r     (28b)�

y  = ∇xG(x, r )w + ∇rG(x, r )
�
r     (28c)

Dynamically, (28), with appropriate initial conditions corresponding to (27d), and (16) are equivalent.
It should be noted that the transformation relating the system, (28), to the system, (16), maps the locus
of equili brium points, (xo, r o) onto the origin, w = 0 = 

�
r .  The relationship between (28) and the

members, (27), of the associated velocity-based linearisation family is direct; indeed, (27) is simply the
frozen form of (28) at the operating point, (x1, r 1).  (When w = F(x, r ), y = G(x, r ) is invertible at every
operating point, (x, r ), in an appropriate neighbourhood enclosing the locus of equilibrium operating
points, so that x may be expressed as a function of w, r  and y, then the transformation relating (28) to
(16) is, in fact, algebraic).  Similarly to the discussion in section 3.2, the solutions to the members of
the family of velocity-based linearisations, (27), can be pieced together to approximate the solution to
the nonlinear system, (28).  In this case, the 

�
x (t) are still second-order approximations to the x(t) but

the 
�
w (t) are first-order approximations to the w(t).  However, with minor amendments to the analysis

of Appendix A, it is straightforward to show that the piece-wise approximation converges to the exact
solution.

The members of the family of conventional series expansion linearisations, (18), are individually
only valid in the vicinity of an equilibrium operating point.  In contrast, a member of the family of
velocity-based linearisations, (27), is valid in the vicinity of any operating point.  Moreover, the time-
evolution of the solution of the nonlinear system is indicated by the solution to the velocity-based
linearisations.  Hence, by means of linearisation at any operating point, the family of velocity-based
linearisations, in addition to facilitating non-local dynamic analysis far from the equili brium operating
points, enables the transient behaviour to be investigated .

4. Stabili ty analysis of gain-scheduled & nonlinear systems

In the previous section, the abili ty of the velocity-based linearisations to provide an indication of
the transient behaviour of a nonlinear system is investigated.  However, the relationship of the stabili ty
of the nonlinear system, (16), to the family of velocity-based linearisations, (27), is yet to be
established.  In particular, it is required to develop stabili ty results which are not unnecessarily
conservative; that is, which do not restrict the trajectories to an unnecessarily, perhaps excessively,
small neighbourhood about the locus of equili brium operating points.  Since the velocity-based
linearisation is valid at any operating point, not just equilibrium operating points, it might be expected
to be of assistance in achieving this objective.  In this section, the relationship between the stabili ty
properties of the nonlinear system and those of its associated family of velocity-based linearisations is
investigated.

The velocity states, w, are related to the states, x, by the nonlinear function, F:(x, r ) �  w.  It is
assumed that the inverse mapping from w to (x, r ) is bounded; that is, x is bounded when w and r  are
bounded.  Provided |w(t)| is suff iciently small , it follows that the states, x(t), remain close to the locus
of equili brium operating points and stabili ty of the full nonlinear system, (28), is guaranteed by
stabili ty of the internal dynamics, (28b). It is, therefore, sufficient to confine consideration to the
behaviour of the dynamics, (27) and (28b).  The assumption, that the inverse mapping is bounded, is
quite weak, particularly in a gain-scheduling context.  For example, when ∇xF(x, r ) exists and is
uniformly invertible, then by the mean value theorem (see, for example, Khalil 1992),

|F(x, r ) - F(x1, r )|2 =|∇xF(z, r )(x-x1)|2 ≥ M|x-x1|2     (29a)
where z lies on the line segment joining x and x1 and M, the minimum singular value of ∇xF(z, r ),
satisfies

M > 0     (29b)
Hence,

|x(t) - xo(r (t))|2 ≤ |w(t)|2/M (30)
where xo(r (t)) is the state associated with the equilibrium operating point at which the input equals r (t).

As noted in section 3.3, the transformation relating the system, (28), to the system, (16), maps the
locus of equilibrium points, (xo, r o) onto the origin, w = 0 = 

�
r ; that is, onto a single equili brium

operating point in the transformed co-ordinates.  Moreover, the velocity-based linearisation is simply
the frozen form of the nonlinear system.  Hence, the analysis framework reduces to a form which is
similar to that employed in conventional frozen-time/frozen-input theory (section 2).  Consequently, it
might be expected that, by employing the velocity transformation, frozen-time/frozen-input theory,
albeit appropriately modified, might be extended to resolve the conservativeness of conventional
theory.  As expected, the Lyapunov-based analysis employed in frozen-time/frozen-input theory can,



indeed, be extended in this manner (Appendix B).  A slow variation condition is required which has the
form of a restriction on the initial velocity conditions, w(0), and rate of variation, 

�
r (t), of the inputs.  It

is clear from (28) that this condition also implicitly restricts the rate of variation of the state, x(t), and
input, r (t).  Equivalently, the condition ensures that the state trajectories are confined to an appropriate
region enclosing the locus of equili brium operating points.  However, in contrast to the results
discussed in section 2.3, this restriction is purely a consequence of the slow variation requirement, with
no additional requirement to constrain the trajectories to be suff iciently close to the equili brium
operating points that series expansion linearisations relative to them are valid.  In this sense, it is as
weak as possible.  Indeed, when, for example, a single Lyapunov function exists which is common to
every member of the velocity-based linearisation family, there is no restriction on the rate of variation
of the system.  In this case, the analysis is global in nature and indicates that the nonlinear system is
stable for any input and initial condition.

However, the Lyapunov-based analysis requires that the nonlinear system is smooth and therefore
excludes, for example, gain-scheduled systems which switch discontinuously between local controller
designs.  Moreover, the stabili ty analysis approach is conceptually quite different from the piecewise-
approximation approach util ised transient analysis in section 3.  To resolve these issues, it is necessary
to adopt an alternative stabil ity analysis approach; in particular, an approach which, in philosophy, is
similar to the piecewise approximation methods of section 3 is attractive

4.1Approximation over an interval

In section 3, a piecewise temporal approximation by the family of velocity-based linearisations,
(27), of the nonlinear system, (16), is investigated.  However, this approach is not appropriate for
analysis of stabili ty properties.  Instead, a spatial piecewise approximation is required.  Consider the
nonlinear dynamics, (28b), and assume that the initial conditions are,

x(t1) = x1, r (t1) = r 1, w(t1) = w1 = F(x1, r 1) (31)
The corresponding velocity-based linearisation is (27b) and the initial conditions are,�

x (t1) = x1,
�
w (t1) = w1 (32)

Let αi denote a positive finite constant and |•|p denote both the p-norm, p=1,2,…∞, and, where
appropriate, the induced p-norm.  The p subscript is dropped when any p-norm may be employed.  In
addition, let • •

∈ +
T

t [t t T)
 denote |

1 1

sup |
,

.

The solution to the velocity-based linearisation, (27b), may be explicitly written as

ds)s(),(e)t(ˆe)t(ˆ t
t

)st)(,(
1

)tt)(,(

1

1 rrxFww 11r
rxFrxF 11x11x

�
∇∫+= −∇−∇ (33)

The nonlinear dynamics, (28b), may be reformulated as the perturbed linear dynamics,�
w = ∇xF(x1, r 1)w + ∇rF(x1, r 1)

�
r + εεF     (34a)

where,
εεF = { ∇xF(x, r ) - ∇xF(x1, r 1)} w + { ∇rF(x, r ) - ∇rF(x1, r 1)}

�
r     (34b)

It follows that the solution to the nonlinear dynamics may be expressed as,

ds)}s(+s)(),({e )(te=(t) r
t
t

)s-)(t,(
1

)t-)(t,(

1

x1x
F11

rxFrxF rrxFww 1111 ε∇∫+ ∇∇ ��
�

(35)

However, owing to the perturbation, εεF, the solution to the nonlinear dynamics might exhibit
characteristics which are quite different from the solution, (33); for example, εεF might be unbounded,
in which case the solution to the nonlinear dynamics is also unbounded and the nonlinear dynamics are
unstable.  In order to investigate the characteristics of the solution to the nonlinear dynamics, it is
necessary to investigate the characteristics of εεF.

Consider the time interval,  [t1, t1+T), and assume that for any δα1
 there exists a δ (which can

depend on T) such that provided
w

To
+

�
r

To
≤ 2δ     (36a)

then

εε F To
 ≤ α1

To { w To
+

�
r To

} ≤ α1{ w To
+

�
r To

} with α1∈[0, δα1
)     (36b)

where To∈[0, T].  Note, x, and so w=
�
x , is arbitrary here and not necessarily a solution to the nonlinear

dynamics.  Whilst α1
To may depend on To, it is emphasised that the δ and α1 are uniform bounds which

may depend on T but are required to be independent of To.  The condition, (36), is essentially a
smoothness requirement on ∇xF(x, r ) and ∇rF(x, r ).  In the context of series expansion analysis, this



type of requirement seems unavoidable.  In fact, the condition, (36), is rather weak; for example,
when∇xF and ∇rF are locally Lipschitz continuous,

|∇xF(x, r ) - ∇xF(
�
x , 

�
r )| ≤ L{ |x-

�
x | + |r -

�
r |} ∀ (x, r ), (

�
x , 

�
r ) ∈ 

�
Φ     (37a)

|∇rF(x, r ) - ∇rF(
�
x , 

�
r )| ≤ L{ |x-

�
x | + |r -

�
r |} ∀ (x, r ), (

�
x , 

�
r ) ∈ 

�
Φ     (37b)

where, �
Φ = { (x, r ): |x-x1| ≤ 2δT, |r -r 1| ≤ 2δT}     (37a)

then it follows from (34b) that,
|εF(t)| ≤ L{ |x(t)-x1| + |r (t)-r 1|} { |w(t)| + |

�
r (t)|} ∀ t ∈ [t1, t1+To) (38)

≤ L{ w
To

To + 
�
r

To
To}{ |w(t)| + |

�
r (t)|} ∀ t ∈ [t1, t1+To) (39)

≤ 2ToLδ{ |w(t)| + |
�
r (t)|} ∀ t ∈ [t1, t1+To) (40)

≤ 2TLδ{ |w(t)| + |
�
r (t)|} ∀ t ∈ [t1, t1+To) (41)

and so, provided δ is sufficiently small (less than δα1
/2TL), (36) is satisfied.

In addition, it is assumed that the solutions to the nonlinear dynamics, (28b), are continuous over
the time interval, [t1, t1+T).  Once again, this is a weak smoothness requirement on∇xF(x, r ) and
∇rF(x,r ) and, from standard theory (see, for example, theorem 2.5, Khalil 1992), it is satisfied by, for
example, the local Lipschitz condition, (37).  Also, assume that |∇xF(x1, r 1)| and |∇rF(x1, r 1)| are
uniformly bounded and the eigenvalues of ∇xF(x1, r 1) lie in the left-half complex plane and are
uniformly bounded away from the imaginary axis; that is,

 |∇xF(x1, r 1)| ≤ α2, Re { eig [∇xF(x1, r 1)] } ≤ -α3 < 0, |∇rF(x1, r 1)| ≤ α4,∀ x1, r 1 (42)
Under these conditions, the dynamics of the velocity-based linearisation, (31b), are uniformly stable
and (Desoer 1969),

| |)( ) )e e- ( , t-t - (t-tx 1 6 1∇ ≤F x r1 1 α α
5 (43)

where the amplification factor, α5, is greater than or equal to one and the exponent, α6, is strictly
greater than zero.  However, it is noted once again that there is no assumption that εεF is bounded and
so, at this point in the analysis, the nonlinear dynamics, (34), may be unstable.  (The requirement that
the solutions are continuous over any finite interval excludes pathological instabilities, such as finite
escape-time behaviour, associated with non-smooth dynamics.  However, as noted previously, in a
series expansion theory context some degree of restriction to smooth behaviour seems unavoidable).

Finally, it is assumed that δα1
 is chosen such that

δα1
≤ α6/α5     (44a)

and that the inputs and initial conditions are restricted to the class satisfying

δ<µ≤
α

α
α
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α
α

+α

1
6

5

T14
6

5
15

-1

)(|)(t| rw
�

    (44b)

and �
r

T
≤ δ,     (44c)

It is noted that (44) implies that,
|w(t1)| < δ,

�
r

To
 ≤ δ (45)

An interval, [t1, t1+To), is selected with To∈(0, T], for which w
To

 is less than δ.  The existence of such

a time interval is guaranteed by (45) and the continuity of w(t).  On this interval, w
To

+
�
r

To
is less

than 2δ and so, substituting (36) and (43) into (35),

w
To

≤ α5|w(t1)| + α5/α6 εε F To
 + α4α5/α6

�
r

To
 ≤ µ < δ (46)

Since µ is independent of the time interval, To, the analysis may be repeated to obtain successively

larger intervals, Ti, for which w rT Ti i
+

�
 is less than 2δ and w

Ti
 is less than or equal to µ.

Consequently,
w

T
 ≤ µ < δ (47)

and
εε F T

 < 2δα1 (48)



The bound, (47), is not particularly tight.  However, it guarantees that w
T

+
�
r

T
is less than 2δ and

so, on substituting (36) and (43) into (35),

|w(t)|≤ α α
5e

- (t-t6 1) |w(t1)|+α5(α4+α1) )e1( )tt( 16 −α−− /α6
�
r

T
+  e | (s)|ds5

- (t-s)
t
t

1
6

1
α αα∫ w ∀t∈[t1,t1+T)

(49)
Applying the Bellman-Gronwall inequality to (49),

|w(t)| ≤ α α α α
5e-( - )(t-t6 5 1 1) |w(t1)| + 

1
6

5

)tt(
14

6

5

1

)e1)(( 16

α
α
α

−

−α+α
α
α −α−

�
r T ∀ t ∈ [t1, t1+T) (50)

The inequali ty, (50), is a much tighter bound than (47) and, in particular, indicates that, under the
foregoing assumptions, when the input, r , is constant, the solution, w, of the nonlinear dynamics, (28b),
is contained within an envelope which decays exponentially over the interval, [t1, t1+T).

It follows from (27b) and (28b) that,� �
w -

�
w = ∇xF(x1, r 1)(

�
w -w) + εεF     (51a)

with the initial conditions,�
w (t1) - w(t1) = 0,     (51b)

Hence, the difference between the solution to the velocity-based linearisation, (27b), and the solution to
the nonlinear dynamics, (28b), is simply the residual, εεF, filtered by the linearised dynamics; that is,�

w (t)-w(t) =  e s dsx

1

( , )(t-s
t
t ∇∫ F x r

F
1 1 ) ( )εε (52)

It is assumed that the inputs and initial conditions belong to the class satisfying (44).  Substituting (36)
and (43) into (52),

�
w w-

To
≤ 

α
α

5

6

α1
To ( w

To
+

�
r

T o
), ∀ To∈[0, T] (53)

and,
�
w w-

T
 ≤ 

α
α

5

6

α1( w
T

+
�
r

T
) ≤ ∆ (54)

where ∆ equals 2
α
α

5

6

α1δ.  The upper bound on the peak difference between the solution to the

velocity-based linearisation and the solution to the exact nonlinear dynamics is proportional to the peak
value of the exact solution but can be made arbitrarily small by suitably restricting the inputs and initial
conditions (and thereby δ).

4.2 Stabili ty analysis

It is established by the analysis of section 4.1 that, over a time-interval of length, T, the solution to
the nonlinear dynamics is approximated by the solution to the velocity-based linearisation with an
accuracy which depends on the initial conditions and the rate of variation of the input; that is, on the
rate of change of the input and the state.  Consider, firstly, the situation when the input is zero; that is,
the unforced case.  Provided that the dynamics of the velocity-based linearisation are stable, then over a
sufficiently long time interval the solution to the linearisation, relative to a specific operating point,
must decrease in magnitude.  Hence, owing to the abili ty of the velocity-based linearisation to
approximate the nonlinear system, when the length of the time interval, T, is sufficiently great, the
solution to the nonlinear dynamics must also decrease over the interval.  In other words, over the time-
interval, T, the ‘gain’ of the nonlinear system is less than unity.  Consequently, over a sequence of such
time-intervals, the solutions to the nonlinear dynamics must decay towards the origin; that is, the
nonlinear system is stable.  This argument may be generalised to the forced situation although the
solution to the nonlinear dynamics converges to a region enclosing the origin rather than to the origin
itself.  Similarly to the Lyapunov-based analysis, the foregoing analysis requires a restriction on the
inputs and initial conditions (to ensure that the interval, T, is sufficiently long) which is simply a slow
variation condition.  This restriction is purely a consequence of the slow variation requirement and, in
the same sense as in the preceding discussion of the Lyapunov-based analysis, is as weak as possible.
Indeed, when, for example, the magnitude of the solution to the linearisation uniformly decreases
monotonically with time (in which case α5 is unity), the length, T, of the time interval may be zero and
there is no restriction on the rate of variation of the system; that is, the analysis is global in nature.



The foregoing argument employs a piecewise-approximation to relate the stabili ty properties of the
nonlinear system to those of the associated velocity-based linearisation family.  The corresponding
rigorous derivation is presented in Appendix C for the situation when the nonlinear system is smooth
(in the sense that F(·,·,·) is differentiable with bounded, Lipschitz continuous, derivatives), and in
Appendix D, for the situation when the nonlinear system contains discontinuities (∇xF and ∇rF need
only be piece-wise continuous with respect to time along trajectories of the nonlinear system).  The
latter analysis accommodates switched and other, discontinuous, forms of scheduling as required.  The
aspect of the analysis of Appendices C and D which primarily differentiates it from previous work is
the use of the linearised dynamics along the solution trajectory of the nonlinear system and not the
linearised dynamics at the equili brium operating points.

The analysis may be extended to investigate stabil ity robustness by suitably augmenting the system
to include a nonlinear dynamic perturbation.  It then follows immediately from the foregoing analysis
that, provided the input and initial condition are appropriately restricted, the nonlinear system is
robustly stable with respect to finite-dimensional dynamic perturbations for which the members of the
family of velocity-based linearisations of the perturbed system are uniformly stable.  Moreover, the
robustness extends to a broad class of distributed/infinite-dimensional dynamic perturbations (by
straightforward application of the results of Appendix E to the analysis of Appendices C and D).  Of
course, this robustness analysis is confined to dynamic perturbations which are smooth or for which the
discontinuities occur sufficiently slowly.  It may be extended to more general perturbations by
employing the small gain theorem.  The analysis in Appendices C and D indicates that the induced
norm, or ‘gain’ , of the nonlinear dynamics is less than or equal to

�
γ  (as defined by (D.5b), Appendix

D).  Consequently, from the small gain theorem, the dynamics are robustly stable with respect to
general perturbations with induced norm less that 1/

�
γ .  Moreover, it is noted that as the restriction on

the class of inputs and initial conditions is tightened (δ reduced), 
�
γ  tends to α4α5/α6 which is simply

the uniform bound on the induced norm of the family of velocity-based linearisations; that is, the
nonlinear system inherits the robustness of the linear family to general perturbations.  (Of course, the
small gain theorem only provides sufficient conditions for stabili ty and both the nonlinear system and
the members of the linear family may well be robust to a wider class of perturbations).

5. Conclusions

The existing theory, relating the dynamic properties of a nonlinear system to those of an associated
family of linear time-invariant systems, is rather poorly developed.  Series expansion linearisation
theory is well established but is strictly confined to the dynamic analysis, locally to a single trajectory
or equili brium operating point, of smooth nonlinear systems.  Frozen-input techniques cater for the
stabili ty analysis of smooth nonlinear systems relative to a family of equili brium operating points but
are confined to an unnecessarily, perhaps excessively, small neighbourhood about the equili brium
operating points.  Series expansion theory and frozen-input theory consider only the stabilit y properties
of the nonlinear system, providing littl e direct insight into other dynamic properties such as the
transient response.

In this paper, a family of velocity-based linearisations for a nonlinear system is proposed.  In
contrast to the conventional series expansion linearisation, a member of the family of velocity-based
linearisations is valid in the vicinity of any operating point, not just an equilibrium operating point.
Moreover, unlike series expansion linearisations relative to equili brium operating points, the solutions
to the members of the family of velocity-based linearisations can be pieced together to approximate the
solution to a nonlinear system.  Hence, the velocity-based linearisations, in addition to facilit ating
dynamic analysis far from the equilibrium operating points, also enable the transient behaviour of the
nonlinear system to be investigated.

The family of velocity-based linearisations is utilised to derive a stabili ty condition for smooth
nonlinear systems which avoids the restrictions, to trajectories lying within an unnecessary, perhaps
excessively, small neighbourhood about the equili brium operating points, inherent in existing frozen-
input theory.  A slow variation condition is required; that is, a restriction on the allowable rate of
change of the input and initial condition.  However, in contrast to previous results, it is emphasised that
this restriction is purely a consequence of the slow variation requirement and, in this sense, is a weak as
possible.  Indeed, for systems where there is no restriction on the rate of variation, the analysis is global
in nature.  The stabili ty analysis is extended to include nonlinear systems with non-smooth dynamics,
and the corresponding conditions for stabili ty are derived.



The analysis techniques developed, whilst quite general, are motivated by the gain-scheduling
design approach and clearly have the potential for direct application to the analysis gain-scheduled
systems.
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Appendix A – Piece-wise approximation

Consider the solution, x(t), to the nonlinear system, (16), over a time interval [0, T], T>0.  Divide
this interval into n smaller sub-intervals, [Ti-1, Ti], i=1,2,..n, Ti=iT/n, and consider the piece-wise
approximation, x̂ (t),
δ

� �
x (t) = F( x̂ (Ti-1), r (Ti-1)) + ∇xF( x̂ (Ti-1), r (Ti-1)) δ

�
x (t) + ∇rF( x̂ (Ti-1), r (Ti-1)) δr (t) t∈[Ti-1, Ti](A.1a)

δr (t) = r (t)– r (Ti-1),
�
x (t) = δ

�
x (t) + x̂ (Ti-1), 

� �
x (t) = δ

� �
x (t) t∈[Ti-1, Ti] (A.1b)

with the initial condition
x̂ (0) = x(0) (A.1c)

Let χχi(t) denote the state solution to the nonlinear dynamics, (16), starting from time, Ti-1, and with the
initial condition,

χχi(Ti-1) = x̂ (Ti-1) (A.2)
Integrating (A.1a), it follows that



�
x(t) = χχ χχ χχ εεi i-1 i i -1 i -1 i i -1 i-1T T )(t - T T )(t - T( )

�
( )

� �
( )+ + +1

2
2 t∈[Ti-1, Ti] (A.3a)

where,
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(A.3b)

Assume that F(•,•) is twice continuously differentiable.  From Taylor series expansion theory, there
exists a finite constant, ko, such that

|
�
(

� �
) ) , ( )

�
) )δ δ δ δx x r rs) - (T s|< k (s- T        | s (T s|< k (s- Ti-1 o i-1 i -1 o i-1

2 2− (A.4)

Hence, there exists a finite constant, k1, such that
|εε(t)| < k1(t-Ti-1)

3 t∈[Ti-1, Ti] (A.5)
From Taylor series expansion theory, the solution obtained by truncating (A.3a) before εε is a second
order approximation to χχi(t).  Hence, it follows from (A..5) that x̂ (t) is also a second-order
approximation to χχi(t); that is, there exists a finite constant, k2 such that

|χχi(t)- 
�
x (t)| < k2(t-Ti-1)

3 (A.6)
Since F(•,•) is continuous and differentiable, the solutions to the nonlinear system depend continuously
on the initial conditions and, for some positive finite constant K (see, for example, Khalil 1992
Theorem 2.5),

|χχi(t)- x(t)| < |χχi(Ti-1)-x(Ti-1)|
)Tt(K 1ie −− t∈[Ti-1, Ti] (A.7)

Hence, applying inequalities, (A.6) and (A.7), to the recursive definition, (A.1),
| x̂ (T)-x(T)| < k2(T/n)3(1-eKT)/(1-eKT/n) (A.8)

Since
lim
n ∞→

 k2(T/n)3(1-eKT)/(1-eKT/n) = 0 (A.9)

it follows that,
0  |(T)-(T)ˆ|lim

n
=

∞→
xx (A.10)

and so the piece-wise approximation, (A.1), can be made arbitrarily accurate by increasing the number
of sub-intervals employed.

In comparison, consider the situation when a zeroeth-order approximation is employed over each
sub-interval, [Ti-1, Ti] (e.g. when the series expansion linearisation about an adjacent equilibrium
operating point is employed); that is,

|χχi(t)- x̂ (t)| < k(t-Ti-1) t∈[Ti-1, Ti] (A.11)
In this case,

| x̂ (T)-x(T)| < k(T/n)(1-eKT)/(1-eKT/n) (A.12)
and since,

lim
n ∞→

 k(T/n)(1-eKT)/(1-eKT/n) = k(eKT-1)/K ≠ 0 (A.13)

it follows that the approximation error need not converge to zero as the number of sub-intervals is
increased.

Appendix B - Lyapunov-based analysis

When the solution, w, to the nonlinear system, (28), is continuous, Lyapunov theory may be
employed to analyse the stabili ty.  Consider the candidate Lyapunov function, V,

V = wTP(x,r )w   (B.1a)
with P(x,r ) positive definite and

P(x, r ) ∇xF(x, r ) + ∇xF
T(x, r ) P(x, r ) = -I ∀ x,r   (B.1b)

Provided the (linear time-invariant) members of the velocity-based linearisation family, (27), are stable,
the existence of P(x, r ) satisfying (B.1b) for each (x, r ) is guaranteed (see, for example, theorem 3.6 in
Khalil 1992).  Let βi denote a positive finite constant.  Assume ∇xF(x, r ) is continuous, uniformly
bounded and that the eigenvalues of ∇xF(x, r ) are uniformly bounded away from the imaginary axis;
that is,

|∇xF(x, r )| ≤ β1, Re{ λ [∇xF(x, r )]} ≤ -β2 < 0 ∀x, r     (B.2)
These conditions ensure that

|e  e( , ) t - t4∇ ≤xF x r | β β
3 ∀ t >0     (B.3)

for some finite constants β3≥1, β4>0 which are independent of x, r  (Desoer 1969).  It follows that
P(x,r ) is uniformly bounded and V is positive definite, decrescent,



|P(x,r )|2 ≤ β5 ∀ x, r   (B.4a)
 β6|w|2

2 ≤ V ≤ β7|w|2
2   (B.4b)

with β6 > 0.  When P(x, r ) is differentiable, the derivative of V with respect to time, along the
trajectories of (28), is�

V  = -wT(I  -
�
P )w + wTP(x, r )∇rF(x, r )

�
r +∇rF

T(x, r )
�
r TP(x, r )w     (B.5)

Expand 
�
P  as�

( , ) ( , )
�

P P x r P x r= ∇∑ + ∇∑ w  rx
i

i r
j

ji j
    (B.6)

and assume that the partial derivatives of P with respect to the elements of the state vector, x, and input
vector, r , are uniformly bounded,

sup     sup    
i

x
j

ri j
| ( , )| , | ( , )|∇ ≤ ∇ ≤P x r P x r2 8 2 9β β ∀ x, r   (B.7a)

and that∇rF(x, r ) is uniformly bounded,
|∇rF(x, r )|2 ≤ β10 ∀ x,r   (B.7b)

It follows that,�
V  ≤ β8|w|2

3 - (1-β9|
�
r |2)|w|2

2 + 2β5β10|
�
r |2 |w|2     (B.8)

which, using (B.4b) and letting W denote V½, may be reformulated as�
W  ≤ β8/(2β6

3/2) W2 - (1-β9|
�
r |2)/2β7W + β5β10|

�
r |2/β6

1/2     (B.9)
where it is assumed, for the moment, that 1-β9|

�
r |2  is positive.  Provided

|
�
r |2 ≤ β11 ≤ (1-4β7λ)/β9 (B.10a)

|
�
r |2 ≤ β11 ≤ 2λ2β6

5/2/(β5β8β10) (B.10b)
W(0) ≤ 2λ β6

3/2/β8 (B.10c)
for some λ∈[0, 1/4β7), then 1-β9|

�
r |2  is positive and , from (B.9),�

W  ≤ β8/(2β6
3/2) W2 - 2λW + β5β10|

�
r |2/β6

1/2 ≤ -λW + β5β10β11/β6
1/2   (B.11)

Conditions (B.10a) and (B.10c) may be interpreted as restricting the rate of variation of the system
trajectories, (x(t), r (t)), to ensure the existence, within some region enclosing the origin, of stable
solutions to the dynamics, (B.8), with the parameter, λ, quantifying the relationship between the size of
the region and the rate of variation of the input (qualitatively, as the input varies more rapidly the
region becomes smaller, and vice versa).  Condition (B.10b) is required to ensure that the input does
not drive the state trajectories outside this stabili ty region.

It follows from (B.11) that,

W W(0)e e / ds W(0)e- t - (t-s)t - t≤ + ∫ ≤ +λ λ λβ β β β β β β

λβ
5 10 11 60

5 10 11

6

1

2

1 2/   (B.12)

and, therefore,

|w| e |w(0)|2
- t

2≤ +γ δλ ∀ t >0   (B.13)

with γ = (β7/β6)
1/2, δ=β5β10β11/λβ6

1/2
.  Hence, provided the family of linear systems, (27), satisfies the

mild conditions, (B.2) and (B.7), and the system inputs and initial conditions are restricted to the class
satisfying condition (B.10), the states of the nonlinear system, (28), are uniformly ultimately bounded.
Moreover, the ultimate bound, δ, is proportional to the rate of change, 

�
r , of the input and the system

is, therefore, exponentiall y stable for constant inputs.  It is noted that a similar approach to that of
Appendix D may be employed to extend this analysis to encompass non-smooth scheduling.

Appendix C Stabili ty of smooth nonlinear systems

Assume that the nonlinear system satisfies the conditions of section 4.1.  The analysis of section 4.1
then establishes a bound on the solution to the nonlinear system over a time interval, T; namely,

|w(t)| ≤ α α
5e- (t-t8 1) |w(t1)| + )( 14

7

5 α+α
α
α

)e1( )tt( 16 −α−−
�
r T ∀ t ∈ [t1, t1+T) (C.1)

where,
α7 = α6 - α5 α1

provided the initial conditions and inputs satisfy (44).  Since the solution, w(t), of the nonlinear system
is continuous; (C.1) holds for t ∈ [t1,t1+T].

Let

T = 2
lnα

α η
5

6 − o

(C.2)



for some ηo∈(0, α6).  Assume that the inputs and initial conditions satisfy,�
r ≤ δr ≤ δ, |w(0)| ≤ δw -γδr (C.3a)

(where • denotes ||sup
t

• ) with

δ<δα+α+δα
α
α

))(( r14w6
7

5 , γ = ( )T-

2/

14
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e1

)1(
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η

α−

−
−α+α

α
α Te

,η = ½(ηo-α1α5) (C.3b)

and δ, δr are chosen sufficiently small that,
δα1

< ηo/α5, δw -γδr ≥ 0 (C.3c)

It is noted that, with these choices, for any To∈ [T/2, T],

η > 0, δα1
< α6/α5, δw ≤ δ, 1e  e T-T-

5
o7 <≤α ηα (C.4a)

( )e (0)| e e- kT
r

- T - T i

i=0

k-1η η ηγδ| ( )w + − ∑ ≤1  δw ∀ k >0 (C.4b)

where in (C.4b) the following identity is employed,

( )γδ η η
r

- T T i

i=0

k-1
e e( )1− ∑ − = ( )γδ η

r
- kTe1− ∀ k > 0 (C.4c)

The conditions, (C.3), ensure that the inputs and initial conditions satisfy (44) for t∈[0,T].  Hence,
for any To∈ [T/2, T],

|w(To)| ≤ )e1( + |0)(|e T-T-
5

o7 ηα −γα rw
�

 ≤ e- Tη |w(0)| + ( )γδ η
r

- Te1−  ≤ δw (C.5)

and w To
≤ δ.  It follow that the conditions, (44), are also satisfied for t ∈ [To, 2To] and

|w(2To)| ≤  |)T(|e o
T-

5
o7 wαα + ( ) r

�T-e1 η−γ ≤ T-2e η |w(0)|+ ( )γδ η
r

- Te1− (1+ e- Tη ) ≤ δw (C.6)

Repeating this analysis for further time intervals, it follows that
|w(kTo)| ≤ δw ∀ k ≥ 0 (C.7)

and, consequently,

|w(t)| ≤ α α
5e kT )| - (t kT

o
8 o− ) | (w + ( ) r

�)kT-(t- o6e1 α−γ ∀ t ∈ [kTo, (k+1)To], k ≥ 0 (C.8)

Let k denote the largest integer such that t-kT/2 is positive. When t is less than T/2, k is zero and

|w(t)| ≤  + |0)(|e t-
5

7 wαα ( )r
�t-e1 η−γ  ∀ 0 ≤ t < T/2 (C.9)

Otherwise, k is greater than zero.  Selecting To equal to t/k ensures that To lies in the interval [T/2,T]
and
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−γ+−γ+−αα≤

ηηα−ηα−
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(C.10)

Employing (C.9) and (C.10), it follows that,

| ( )| | )|w wt e (0t≤ +−α γη
5 (1-e-ηt)

�
r ∀t ≥ 0 (C.11)

and the nonlinear dynamics, (28b), are, under the foregoing conditions, BIBO stable.  Moreover, the
nonlinear dynamics are exponentially stable for constant inputs, r .

Appendix D Stabili ty of non-smooth nonlinear systems

In Appendix C, it is assumed that the nonlinear system is smooth, in the sense that F(·,·,·) is
differentiable with bounded, Lipschitz continuous, derivatives.  The stabili ty analysis is extended in
this appendix to encompass non-smooth nonlinear systems for which ∇xF and ∇rF need only be piece-
wise Lipschitz continuous with respect to time along the trajectories of the nonlinear system.  Hence,
switched and other, discontinuous, forms of scheduling may be accommodated.

Assume that w(t) is continuous and ∇xF(x(t),r (t)) and ∇rF(x(t),r (t)) are uniformly bounded and
piece-wise Lipschitz continuous with respect to time, t.  Moreover, assume that the eigenvalues of
∇xF(x(t),r (t)) lie in the left-half complex plane and are uniformly bounded away from the imaginary
axis.  Let { tk} denote the sequence of times, with tk+1 > tk, at which ∇xF(x(t),r (t)) and ∇rF(x(t),r (t)) are
discontinuous.  In addition, assume that, when w(t) and 

�
r (t) are of finite magnitude, the intervals

satisfy,
tk+1 - tk ≥  α8 > 0 ∀ k (D.1)



Condition (D.1) prevents infinite discontinuities occurring in finite time and ensures the existence of
solutions to (28b) when w(t) and 

�
r (t) are finite.  Moreover, it is assumed that the minimum interval,

α8, increases as the magnitudes of w(t) and 
�
r (t) become smaller, with α8 →∞ as w(t),

�
r (t) →0; that is,

α8 increases as x(t)and r (t) vary more slowly.  In a gain-scheduling context, these conditions are quite
mild; for example, when non-smooth scheduling is achieved by switching between linear time-
invariant controllers as some scheduling variable crosses different thresholds, the conditions are
satisfied when the thresholds are spaced a finite distance apart, the switching incorporates hysteresis to
prevent chatter and the scheduling variable is a continuous function of the inputs, r , and/or states, x, of
the system.

Under the foregoing assumptions, ∇xF(x(t),r (t)), ∇rF(x(t),r (t)) are Lipschitz continuous only over
each open time interval, (tk, tk+1).  Nevertheless, since the nonlinear and approximate systems have the
same initial conditions at the state of each interval, the residual, εF(tk), is zero at the start of each
interval and the condition, (36), is satisfied.  Consequently, by similar analysis to that of Appendix C,
the system states are bounded over each interval, [tk, tk+1], by.

rww
�

)e1(|)(t|e|)t(| )tt(
k

)t-t(
5

kk −η−η− −γ+α≤ ∀ t ∈  [tk, tk+1] (D.2)

provided the input and initial condition are restricted to the class satisfying (C.3).  For the class of
nonlinear systems considered in this section, there exist constants, α9 and α10, such that

ηη
α

≥α
ˆ-

ln 5
8 (D.3)

for any 
�
η ∈(0, η) provided,

w  ≤ α9,
�
r ≤ α10 (D.4)

Employing a similar approach to that of Appendix C, it is straightforward to show that, provided the
inputs and initial conditions jointly satisfy (C.3) and,

δ ≤ α9, δr ≤ α10, |w(0)| ≤ δw -
�
γ δr , 0ˆ rw ≥δγ−δ (D.5a)

where,

Tˆ-e1

)1(
ˆ

8

η

ηα−

−
−γ=γ e

(D.5b)

then,

|w(t)| rw
�

)e1(ˆ|)(0|e tˆtˆ
5

η−η− −γ+α≤ ∀t ≥ 0 (D.6)

and the class of non-smooth nonlinear systems considered is, under the foregoing conditions, BIBO
stable.  Moreover, the nonlinear dynamics are exponentially stable for constant inputs, r .

Appendix E Infinite dimensional dynamics

Although the analysis of section 4.1 is restricted to systems with finite dimensional dynamics, it
may be easil y extended to encompass distributed/infinite dimensional dynamics.  In this appendix, the
notation, in particular the subscripts for the constants, αi, is selected to indicate the close relationship
between the analysis here and that of section 4.1.  However, in order to encompass infinite dimensional
systems the constants are defined somewhat differently from those in section 4.1.

Suppose that the velocity-based linearisation is linear time-invariant but may be infinite
dimensional; that is, the linearised dynamics can be represented as the convolution operator,�

( )
�

w rt = (t - s) (s)ds0
t φφ∫ (E.1)

where 
�
w  is the output of the linear dynamics (and need no longer be the state), (E.1) is reachable.

Consider the time interval, [t1, t1+T), and assume that nonlinear dynamics are sufficiently smooth that
for any δα1

 there exists a δ such that,

w(t) = φφ(t - s)( (s) + (s))ds0
t �

r ε∫ ∀ t ∈[t1, t1+To] (E.2a)

provided
w To

+
�
r To

≤ 2δ (E.2b)

with the residual satisfying,
|εεF(t)| = α4|εε(t)| ≤ α1{ |w(t)|+|

�
r (t)|} with α1 ∈[0, δα1

) ∀ t ∈[t1, t1+To] (E.2c)

The foregoing requirement is similar to that in section 4.1 and is simply a second-order condition on
the approximation residual which ensures that



εε F To
 ≤ α1{ w To

+
�
r To

} (E.2)

Assume that φφ(•) is exponentially bounded,

|φφ(τ)| ≤ α α α τ
4 5

-e 6 (E.4)

It then follows from (E.2a) that

|w(t)| ≤ α α
5e- (t-t6 1) w1 + α4α5 )e1( )tt( 16 −α−− /α6
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where,

w1 =  e | (s)|+| (s)|} ds- (t -s)
o
t 6 11 α α

4 {
�
r∫ εε (E.5b)

embodies the dependence of the present solution on the previous behaviour (owing to the ‘memory’ of
the dynamics) and, essentially, provides a bound on the initial conditions of the dynamics.

Hence,

w To
≤ α5w

1 + α5/α6 εε F To
 + α4α5/α6

�
r To

(E.6)

and so, employing a similar approach to that in section 4.1, it may therefore be shown that, provided
the inputs and initial conditions are suitably restricted, the conditions, (E.2b), is satisfied over the
interval [t1, t1+T).  Consequently, substituting (E.2c) into (E.5),

|w(t)| ≤ α α
5e- (t-t6 1) w1 + α5(α4+α1) )e1( )tt( 16 −α−− /α6

�
r T +  e | (s)|ds5

- (t-s)
t
t 6

1
α α∫ w ∀t∈[t1,t1+T) (E.7)

which has the same form as (49).  Applying the Bellman-Gronwall i nequali ty to (E.7), an expression
similar to (50) is obtained and the solution, w, of the nonlinear dynamics, (E.2a), is bounded and
decays exponentiall y when 

�
r  is zero; that is, for constant inputs, r .

Furthermore, it follows from (E.1) and (E.2) that,�
w (t)-w(t) =  (t - s) s dst

t

1
φφ εε∫ ( ) ∀t∈[t1,t1+T) (E.8)

Hence, similarly to the analysis of section 4.2 for finite dimensional dynamics, it may be seen that in
the infinite dimensional case the error between the solution to the approximate dynamics, (E.1), and the
exact dynamics, (E.2), is also simply the residual, εε, filtered by the linearised dynamics.


