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On Linear Copositive Lyapunov Functions and the
Stability of Switched Positive Linear Systems

O. Mason and R. Shorten

Abstract—We consider the problem of common linear copositive Lya-
punov function existence for positive switched linear systems. In particular,
we present a necessary and sufficient condition for the existence of such a
function for switched systems with two constituent linear time-invariant
systems. Several applications of this result are also given.

Index Terms—Copositive Lyapunov functions, positive linear systems,
switched linear systems.

I. INTRODUCTION

An outstanding problem in systems theory concerns the basic sta-
bility properties of dynamic systems whose states are confined to the
positive orthant. Such systems are generally referred to as positive sys-
tems and arise frequently in a number of important applications in bi-
ology, communications, probability, economics, and in other fields. In
particular, many applications in communication networks involve al-
gorithms that lead to extremely complex positive systems, typically in-
volving significant nonlinearity, abrupt parameter switching, and state
resets. These applications, which include networks employing TCP
and other congestion control applications [10], synchronisation prob-
lems [5], wireless power control applications [8], and applications of
learning automata to distributed coloring problems [6], typically re-
quire advanced analysis tools to prove their stability and convergence
properties. Given the widespread application of positive systems, it is
surprising that only recently has the stability of switched and nonlinear
positive system become a topic of major interest to the systems theory
community [3]. We continue this line of work in the current paper.
Specifically, we consider the question of the existence of it copositive
linear Lyapunov functions, defined below, for a class of switched posi-
tive systems. We give an elegant necessary and sufficient condition for
determining when such a function exists and provide a number of ap-
plications of this condition to special cases.

II. NOTATION AND MATHEMATICAL BACKGROUND

Throughout, denotes the field of real numbers, n stands for the
vector space of all n-tuples of real numbers and m�n is the space
of m � n matrices with real entries. For x in n; xi denotes the ith
component of x, and the notation x � 0(x � 0) means that xi >
0(xi � 0) for 1 � i � n. The notations x � 0 and x � 0 are
defined in the obvious manner. n

+ denotes the closed positive orthant
of n; n

+ = fx 2 n : x � 0g, and Int( n
+) denotes its interior,

Int( n
+) = fx 2 n : x � 0g. Similarly, for a matrix A in n�n; aij

denotes the element in the (i; j) position of A, and A � 0(A � 0)
means that aij > 0(aij � 0) for 1 � i; j � n.

We write AT for the transpose of A and we shall occasionally abuse
notation by writing A�T for the inverse of AT . For P in n�n the
notation P > 0 means that the matrix P is positive definite.
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The spectral radius of a matrix A is the maximum modulus of the
eigenvalues of A and is denoted by �(A). Also we shall denote the
maximal real part of any eigenvalue of A by �(A). If �(A) < 0 (all
the eigenvalues of A are in the open left half plane) A is said to be it
Hurwitz.

For a real number x, we define the function sign(x) by

sign(x) =

1; if x > 0

0; if x = 0

�1; if x < 0:

Note that if a matrix A 2 n�n is Hurwitz, then sign(det(A)) =
(�1)n.

Throughout this paper, we shall be concerned with the stability of
switched positive linear systems _x = A(t)x;A(t) 2 fA1; . . . ; Amg
constructed by switching between positive LTI systems. Before
proceeding, we shall now recall some basic facts about positive LTI
systems.

Positive LTI systems and Metzler Matrices

The LTI system

�A : _x(t) = Ax(t); x(0) = x0

is said to be positive if x0 � 0 implies that x(t) � 0 for all t �
0. Basically, if the system starts in the non-negative orthant of n, it
remains there for all time. See [2] for a description of the basic theory
and several applications of positive linear systems.

It is well known [2] that the system �A is positive if and only if the
off-diagonal entries of the matrix A are non-negative. Matrices of this
form are known as it Metzler matrices. If A is Metzler we can write
A = N � �I for some non-negative N and a scalar � � 0. Note that
if the eigenvalues ofN are �1; . . . ; �n, then the eigenvalues ofN��I
are �1 ��; . . . ; �n ��. Thus, the Metzler matrix N ��I is Hurwitz
if and only if � > �(N).

There are a number of equivalent conditions for a Metzler matrix to
be Hurwitz [1], [4]. The following result records two of these condi-
tions which are relevant for the work of this paper.

Theorem 2.1: Let A 2 n�n be Metzler. Then the following are
equivalent.

i) A is Hurwitz.
ii) There is some vector v � 0 in n with Av � 0.

iii) A�1 � 0.

Convex Cones and Separation Theorems

Much of the work presented later in the paper is concerned with
determining conditions for the intersection of two convex cones in n.
Recall that a set 
 in n is a it convex cone if for all x; y 2 
, and
all � � 0; � � 0 in ; �x + �y is in 
. The convex cone 
 is said
to be it open (it closed) if it is open (closed) with respect to the usual
Euclidean topology on n. For an open convex cone 
, we denote the
closure of 
 by �
.

Given a set of points, fx1; . . . ; xmg in n, we shall use the notation
CO(x1; . . . ; xm) to denote the convex hull of x1; . . . ; xm. Formally

CO(x1; . . . ; xm)

=

m

i=1

�ixi : �i � 0; 1 � i � m; and

m

i=1

�i = 1 :

The theory of finite-dimensional convex sets is a well established
branch of mathematical analysis [9]. In the next section, we shall make
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use of the following special case of more general results [9] on the
existence of separating hyperplanes for disjoint convex cones.

Theorem 2.2: Let 
1;
2 be open convex cones in n. Suppose that
�
1 \ �
2 = f0g. Then there is some vector v 2 n such that

v
T
x <0 for all x 2 
1

and

v
T
x >0 for all x 2 
2:

III. PRELIMINARIES ON LINEAR COPOSITIVE LYAPUNOV FUNCTIONS

The linear function V (x) = vTx defines a linear copositive Lya-
punov function for the positive LTI system �A is and only if the vector
v 2 n satisfies:

i) v � 0;
ii) AT v � 0.

It follows from Theorem 2.1 that a positive LTI system is asymptoti-
cally stable if and only if it has a linear copositive Lyapunov function.
The primary contribution of this paper is to derive a simple algebraic
necessary and sufficient condition for a pair of asymptotically stable
positive LTI systems, �A ;�A to have a common linear copositive
Lyapunov function V (x) = vTx, where v � 0 and AT

i v � 0 for
i = 1; 2. This condition is given in Theorem 4.1 below and our deriva-
tion will be based on the following preliminary result.

Theorem 3.1: Let A1; A2 2
n�n be Metzler, Hurwitz matrices

such that there exists no nonzero vector v � 0 with AT
i v � 0 for

i = 1; 2. Then there exist w1 � 0; w2 � 0 in n such that

A1w1 +A2w2 = 0:

Proof: For i = 1; 2, let VA be given by

VA = v � 0 : AT
i v � 0 : (1)

ThenVA ;VA are open convex cones and it follows from Theorem 2.1
that

VA = �A�Ti (Int( n
+)) (2)

for i = 1; 2.
By hypothesis, VA \ VA = f0g. Thus, from Theorem 2.2, there

is some vector v 2 n with vTA�T1 w < 0 and vTA�T2 w > 0 for
all w � 0. But this implies that w1 = �A�11 v; w2 = A�12 v are both
positive, w1 � 0; w2 � 0, and that

A1w1 +A2w2 = �v + v = 0:

IV. MAIN RESULTS

Given A 2 n�n and an integer i with 1 � i � n; A(i) denotes the
ith column of A. Thus, A(i) denotes the vector in n whose jth entry
is aji for 1 � j � n.

For a positive integer n, we denote the set of all mappings � :
f1; . . . ; ng ! f1; 2g by Cn;2. Now, given two matrices A1; A2 in
n�n and a mapping � 2 Cn;2, we define the matrix A�(A1; A2) by

A�(A1; A2) = A
(1)
�(1)A

(2)
�(2) . . .A

(n)
�(n) : (3)

Thus, A�(A1; A2), is the matrix in n�n whose ith column is the ith
column of A�(i) for 1 � i � n. We shall denote the set of all matrices
that can be formed in this way by S(A1; A2)

S(A1; A2) = fA�(A1; A2) : � 2 Cn;2g: (4)

Theorem 4.1: Let A1; A2 be Metzler, Hurwitz matrices in n�n.
Then the following statements are equivalent.

i) The positive LTI systems �A ;�A have a common linear
copositive Lyapunov function.

ii) The finite set S(A1; A2) consists entirely of Hurwitz matrices.
Proof: (i)) (ii): As �A ; �A have a common linear copositive

Lyapunov function, there is some vector v � 0 in n with vTAi �

0 for i = 1; 2. This immediately implies that vTA(j)
i < 0 for i =

1; 2; 1 � j � n, and, hence, we have

v
T
A � 0 for all A 2 S(A1; A2): (5)

Now note that, as A1; A2 are Metzler, all matrices belonging to the
set S(A1; A2) are also Metzler. It follows immediately from (5) and
Theorem 2.1 that each matrix in S(A1; A2) must be Hurwitz.

ii) ) i): We shall show that if �A ;�A do not have a common
linear copositive Lyapunov function, then at least one matrix belonging
to the set S(A1; A2) must be non-Hurwitz.

First of all, we make the stronger assumption (than nonexistence of a
common linear copositive Lyapunov function) that there is no nonzero
vector v � 0 with vTAi � 0 for i = 1; 2. It follows from Theorem
3.1 that there are vectors w1; w2 such that w1 � 0; w2 � 0 and

A1w1 + A2w2 = 0: (6)

As w1 � 0; w2 � 0, there is some positive definite diagonal matrix
D = diag(d1; d2; . . . ; dn) in n�n with w2 = Dw1. It follows from
(6) that, for this D

det(A1 + A2D) = 0: (7)

Now, for the n-tuple, (d1; . . . ; dn)T 2 n and a mapping � 2 Cn;2,
we shall use (d1; . . . ; dn)��1 to denote the product of d1; . . . ; dn given
by

(d1; . . . ; dn)
��1 =

n

i=1

d
�(i)�1
i : (8)

In terms of this notation, we can now write

det(A1 + A2D) =
�2C

det(A�(A1; A2))(d1; . . . ; dn)
��1

: (9)

Now if all matrices in the set S(A1; A2) were Hurwitz, then
det(A�(A1; A2)) > 0 for all � 2 Cn;2 if n is even and
det(A�(A1; A2)) < 0 for all � 2 Cn;2 if n is odd. In either
case, this would contradict (7) which implies that for the positive real
numbers d1; . . . ; dn

�2C

det(A�(A1; A2))(d1; . . . ; dn)
��1 = 0: (10)

Hence, there must exist at least one � 2 Cn;2 for which A�(A1; A2)
is non-Hurwitz.

For the remainder of the proof, we shall assume that the dimension
n is even. In this case, for a Hurwitz A 2 n�n;det(A) > 0. The
case of odd n follows in an identical manner.

We have shown that if VA \ VA = f0g, then at least one matrix
belonging to S(A1; A2) must be non-Hurwitz. In fact, as both A1 and
A2 are Hurwitz, in this case, it follows from (9) and (7) that det(A) < 0
for at least one A belonging to S(A1; A2). Next, suppose that there is
some nonzero v � 0 in VA \VA but that the intersection of the open
cones

VA \ VA (11)

is empty.
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Now, denote by 1n the matrix in n�n consisting entirely of ones
(1n(i; j) = 1 for 1 � i; j � n) and for all � > 0, write Ai(�) =
Ai + �1n for i = 1; 2. Then it is straightforward to see that

VA (�) \ VA (�) = f0g

for all � > 0. Thus, if we choose any � > 0 sufficiently small to ensure
that A1(�) and A2(�) are Hurwitz and Metzler, it follows from the
above argument that there must be at least one non-Hurwitz matrix in
the set S(A1(�); A2(�)). A limiting argument now shows that at least
one matrix in the set S(A1; A2) is non-Hurwitz. This completes the
proof of the theorem.

We now present a simple example to illustrate the use of the above
theorem.

Example 4.1: Consider the Metzler, Hurwitz matrices in 2�2 given
by

A1 =
�0:7125 0:7764

0:5113 �0:9397

A2 =
�1:3768 0:8066

0:9827 �1:3738
:

Then it is easy to see that both of the matrices

�0:7125 0:8066

0:5113 �1:3738
;

�1:3768 0:7764

0:9827 �0:9397

are Hurwitz. It now follows from Theorem 4.1 that the systems
�A ;�A have a common linear copositive Lyapunov function. In
fact, for v = (1:1499; 1:1636)T , it can be checked that AT

i v � 0 for
i = 1; 2.

Remarks:
i) Note that the result of Theorem 4.1 relates the existence of a

common Lyapunov function for a pair of positive LTI systems,
and the asymptotic stability of the associated switched linear
system, to the stability of a finite set of positive LTI systems.
Formally, the existence of a common linear copositive Lyapunov
function for �A ;�A is equivalent to the stability of each of the
2n positive LTI systems, �A for A 2 S(A1; A2). Of course,
it follows that the asymptotic stability of this finite family of
systems is sufficient for the asymptotic stability of the switched
system _x = A(t)x;A(t) 2 fA1; A2g.

ii) A common linear copositive Lyapunov function for �A ;�A

will also define a linear copositive Lyapunov function for each
of the systems �A with A 2 S(A1; A2).

iii) In the Proof of Theorem 4.1, the nonexistence of a common
linear copositive Lyapunov function is related to the existence of
a diagonal matrix D > 0 such that A1 + A2D is singular. It is
interesting to compare this with the recent result in [7], which es-
tablished that the nonexistence of a common diagonal Lyapunov
function for a pair of positive LTI systems implied the existence
of a diagonal D > 0 such that A1+DA2D is singular. The pre-
cise relationship between copositive Lyapunov functions, diag-
onal Lyapunov functions and quadratic Lyapunov functions for
general switched positive linear systems is in itself an interesting
question, and the above result may prove useful in clarifying this
relationship.

The next result follows easily from the above remarks and The-
orem 4.1

Corollary 4.1: Let A1; A2 be Metzler, Hurwitz matrices in n�n.
Then, the following statements are equivalent.

i) There exists a common linear copositive Lyapunov function for
the systems �A ;�A .

ii) There is a common linear copositive Lyapunov function for the
set of systems

f�A : A 2 CO(S(A1; A2))g:

iii) All matrices in the convex hull CO(S(A1; A2)) are Hurwitz.
iv) All matrices in S(A1; A2) are Hurwitz.
The previous corollary shows that the Hurwitz-stability of the finite

collection of matrices S(A1; A2) is sufficient to ensure the asymptotic
stability under arbitrary switching of the system

_x = A(t)x A(t) 2 CO(S(A1; A2)):

Also, the equivalence of points iii) and iv) above means that the Hur-
witz-stability of the set S(A1; A2) is necessary and sufficient for the
Hurwitz-stability of its convex hull.

A close examination of the Proof of Theorem 4.1 shows that the fol-
lowing characterisation of linear copositive Lyapunov function exis-
tence also holds.

Corollary 4.2: Let A1; A2 2
n�n be Metzler, Hurwitz matrices.

Then the systems �A ;�A have a common linear copositive Lya-
punov function if and only if

sign(det(A)) = (�1)n

for all A 2 S(A1; A2).

V. APPLICATIONS TO SYSTEMS DIFFERING BY RANK ONE

We next present two corollaries to Theorem 4.1 for the special case of
a pair of Hurwitz, Metzler matrices A1; A2 in n�n with rank(A2 �
A1) = 1. Before we formally state the following simple corollaries
to Theorem 4.1, recall that for a matrix B in n�n and an integer
i 2 f1; . . . ; ng, we write B(i) for the column vector given by the ith
column of B.

Corollary 5.1: Let A1; A2 = A1+B be Hurwitz, Metzler matrices
in n�n with rank(B) = 1. Furthermore, suppose that there is some i
with 1 � i � n such that B(i) is the only nonzero column in B. Then
the positive LTI systems �A ;�A have a common linear copositive
Lyapunov function.

Proof: From Theorem 4.1, �A ;�A have a common linear
copositive Lyapunov function if and only if all matrices belonging to
the set S(A1; A2) are Hurwitz. However, under the hypotheses of the
corollary, it is easy to see that

S(A1; A2) = fA1; A2g: (12)

The result now follows immediately.
The previous result establishes that for Metzler, Hurwitz matrices

A1; A2 which differ in only one column, the associated LTI systems
�A ;�A must have a common linear copositive Lyapunov function.
Moreover, it follows that the associate switched linear system

_x = A(t)x A(t) 2 fA1; A2g

must be uniformly asymptotically stable under arbitrary switching. It
might seem reasonable to expect that a similar result to Corollary 5.1
would also hold for the case of matrices differing by a general rank
one matrix. However, the following example shows that this is unfor-
tunately not the case.

Example 5.1: Consider the 3� 3 Metzler, Hurwitz matrices,
A1; A2 = A1 + bcT where

A1 =

�1:4528 0:6435 0:7266

0:4983 �1:5714 0:4120

0:2140 0:9601 �1:1469

b =

0:0589

�0:4251

�0:1798

c =

1

�1:1802

�0:448

:
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It is simple to check that the matrix (A
(1)
1 A

(2)
2 A

(3)
2 ) is not Hurwitz,

and, hence, it follows from Theorem 4.1 that the systems �A ;�A do
not have a common linear copositive Lyapunov function.

The above example shows that two stable positive LTI systems
whose system matrices differ by a rank one matrix need not in general
have a common linear copositive Lyapunov function. However, the
next corollary provides a simple sufficient condition for the existence
of a common linear copositive Lyapunov function for this case.

Corollary 5.2: Let A1; A2 = A1+B be Metzler, Hurwitz matrices
in n�n, with rank(B) = 1. For each i 2 f1; . . . ; ng, let Ti 2 n�n

be the matrix given by

T
(j)
i =

B(j); if j = i

A
(j)
1 ; if j 6= i:

Then the positive LTI systems, �A ;�A have a common linear copos-
itive Lyapunov function if for 1 � i � n, either sign(det(Ti)) =
(�1)n or sign(det(Ti)) = 0.

Proof: Suppose that for 1 � i � n, either sign(det(Ti)) =
(�1)n or sign(det(Ti)) = 0. As rank(B) = 1, we can write B =
bcT for column vectors b; c 2 n. (Thus, all columns of B are scalar
multiples of each other). It follows from this, and the linear depen-
dence of the determinant function on each column, that for any A 2
S(A1; A2), there is some set of indices fi1; . . . ; ikg � f1; . . . ; ng
such that

det(A) = det(A1) +

k

j=1

det(Ti ): (13)

Hence, as sign(det(Ti)) is either (�1)n or 0 for 1 � i � n, it follows
that sign(det(A)) = (�1)n for all A 2 S(A1; A2). Corollary 4.2
immediately implies that �A ;�A have a common linear copositive
Lyapunov function as claimed.

VI. CONCLUSION

In this paper, we have presented a method for determining whether
or not a given switched positive continuous time linear system is ex-
ponentially stable. Our approach is based upon determining verifiable
conditions for the existence of a common copositive linear Lyapunov
function for a pair of positive LTI systems. Future work will involve
extending this result to arbitrary finite sets of such LTI systems, and
developing synthesis procedures to exploit our result for the design of
stable switched positive systems.
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Recursive Learning Automata Approach to Markov
Decision Processes

Hyeong Soo Chang, Michael C. Fu, Jiaqiao Hu, and
Steven I. Marcus

Abstract—In this note, we present a sampling algorithm, called recur-
sive automata sampling algorithm (RASA), for control of finite-horizon
Markov decision processes (MDPs). By extending in a recursive manner
Sastry’s learning automata pursuit algorithm designed for solving nonse-
quential stochastic optimization problems, RASA returns an estimate of
both the optimal action from a given state and the corresponding optimal
value. Based on the finite-time analysis of the pursuit algorithm by Ra-
jaraman and Sastry, we provide an analysis for the finite-time behavior of
RASA. Specifically, for a given initial state, we derive the following proba-
bility bounds as a function of the number of samples: 1) a lower bound on
the probability that RASA will sample the optimal action and 2) an upper
bound on the probability that the deviation between the true optimal value
and the RASA estimate exceeds a given error.

Index Terms—Learning automata, Markov decision process (MDP),
sampling.

I. INTRODUCTION

Consider the following finite-horizon (H < 1) Markov
decision processes (MDP) model (see, e.g., [7] and [10]):
xi+1 = f(xi; ai; wi) for i = 0; 1; 2; . . . ; H � 1; where xi is a
random variable ranging over a (possibly infinite) state set X giving
the state at stage i; ai is the control to be chosen from a finite action set
A at stage i; wi is a random disturbance uniformly and independently
selected from [0; 1] at stage i, representing the uncertainty in the
system, and f : X � A � [0; 1]! X is the next-state function.
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