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Abstract
The shortcomings of a popular LPV gain-scheduling
design approach are demonstrated by a simple counter-
example.  It is shown that, for a very general class of
nonlinear systems, such an ad hoc design approach is
unnecessary since soundly-based methods exist for
transforming the plant dynamics into LPV/quasi-LPV
form.

1. Introduction
Gain-scheduled controllers are generally linked by

the design approach employed, whereby a nonlinear
controller is constructed by interpolating, in some
manner, between the members of a family of linear
time-invariant controllers.  In the conventional, and
most common, gain-scheduling design approach, each
linear controller is typically associated with a specific
equilibrium operating point of the plant and is designed
to ensure that, locally to the equilibrium operating point,
the performance requirements are met.  Under
appropriate conditions (typically including some form
of slow variation requirement) the stability of such a
controller is guaranteed by long standing results (see,
for example, Hoppensteadt 1966, Khalil & Kokotovic
1991).

Recently, a number of interesting alternative
approaches have been proposed in the context of gain-
scheduling design.  Since these approaches employ
various types of so-called linear parameter-varying
(LPV) plant representation, they are commonly referred
to as LPV gain-scheduling methods.  The term “ linear
parameter-varying”  is widely employed in the literature
to refer to any system of the form

�
x =A(θ)x+B(θ)r,

y=C(θ)x+D(θ)r where θ is a parameter belonging to
some class Ω.  When θ is permitted to depend on the
state, x1 (a situation widely considered in the literature,
see examples in Shamma 1988, Shamma & Cloutier
1993, Coetsee 1994, Apkarian et al. 1995, Scherer et al.

                                                       
1 It should be noted that, in order to apply LPV gain-
scheduling methods in such circumstances, it is usually
necessary to restrict the input and initial conditions of
the state such that the solution x(t) is confined to some
bounded operating region Χ ⊂ ℜn thereby ensuring that
the “parameter” θ is bounded.

1997, Apkarian & Adams 1998, Huzmezan &
Maciejowski 1998, Lim & How 1998, Wu &
Grigoriadis 1998, Johansen 1999) the dependence of the
A and B matrices on the state introduces, of course,
nonlinear feedback not present in linear time-
invariant/time-varying systems. Use of the term linear
parameter-varying to describe such nonlinear systems
is, therefore, potentially misleading.  In the context of
the present paper, a generalisation of the terminology of
Shamma (1988) is thus adopted and systems where θ
may depend on the state, x, are hereafter referred to as
quasi-LPV systems while the term LPV is reserved for
systems where θ is a strictly exogenous time-varying
quantity (strictly independent of the state x of the
system).

A considerable body of results now exists relating to
the design of controllers for plants which are in LPV or
quasi-LPV form.  However, the literature typically takes
the existence of a plant in LPV/quasi-LPV form as its
starting point, largely neglecting the critical issue of
how general nonlinear dynamics might be transformed
to LPV/quasi-LPV form.  Apparently lacking practical,
generally applicable methods for carrying out such a
transformation, a number of ad hoc approaches have
been proposed in the literature.  This paper considers
one such popular approach whereby an LPV/quasi-LPV
system is derived from the equilibrium linearisations of
a nonlinear plant.

2. Design Approach & Counter-Example
Combining ideas from conventional and LPV/quasi-

LPV gain-scheduling, the following hybrid control
design procedure is similar to ad hoc approaches
proposed in the literature (see, for example, Apkarian et
al. 1995, Spillman et al. 1996, Fialho et al.  1997, Lee
& Spillman 1997).  Consider the nonlinear system, �

x = F(x, r),  y = G(x, r) (1)
where r ∈ ℜm, y ∈ ℜp, x ∈ ℜn, F(·,·) and G(·,·) are
differentiable.  The series expansion linearisation of (1)
about an equilibrium point (xo,ro) is
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where
δx = x-x0, δr = r-r0, δy = y- G(xo, ro) (3)



Assume that the locus of equilibrium operating points is
parameterised by some quantity, θ(x,r).  In order to
transform the control design task into a form amenable
to LPV/quasi-LPV methods, the following quasi-LPV
system associated with the linearisation family defined
by (2)-(3) is considered�
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Standard LPV/quasi-LPV design methods can be
applied to obtain a controller for the dynamics, (4)-(5).
The controller obtained may then applied to the original
nonlinear plant, (1).

Example
Consider the nonlinear system with dynamics
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(It should be noted that systems with similar types of
nonlinearity are frequently encountered in practice, see,
for example, Nichols et al. 1993).  The requirement is to
design an output-feedback controller which ensures a
step response settling time of less than 2 seconds with
zero steady-state error (this is, of course, not a complete
performance specification but is sufficient in the present
context). The series expansion linearisation of (6) about
an equilibrium point (x10, x20, ro, yo) is
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where

δx1 = x1-x10, δx2 = x2-x20, δr = r-r0, δy = y-y0 (8)
The associated quasi-LPV system is00 ( ) ,
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and θ equals |z2|.  Assume, for the moment, that 0≤θ≤10
and θ may vary arbitrarily within this range (this
assumption amounts to a restriction on the class of
allowable initial conditions and inputs to the system
such that |z2|≤10).   Using standard software from the
MATLAB LMI toolbox (Gahinet et al. 1995) and a
conventional L2 objective function with performance
weighting, w1, and control weighting, w2, transfer
functions2

                                                       
2 The performance requirement specifies zero steady-
state error which implies that the magnitude of the
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the controller obtained for this system isO
( ) ( ,x A x B C xc c c c c= + − =θ y y)   rref (12)

where Ac(θ)=αAo+(1-α)A1 , α=(10-θ)/10,
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The response to step change in demand from –3.16 units
to 0 units of the closed-loop system, consisting of the
Jacobean-based quasi-LPV plant, (9)-(10), and
controller, (12)-(13), is shown by the dashed-line in
figure 1. (Note that θ (i.e. |y|) lies in the required range
[0,10]).  The settling time requirement is evidently
satisfied.  Nevertheless, when the same controller, (12)-
(13), is applied to the original nonlinear system, (6), the
corresponding response is as shown by the solid line in
figure 1.  It can be seen that the performance
requirement is clearly not met and, indeed, that the
nonlinear closed-loop system appears to be unstable.

Remark It is interesting to note that the performance
requirement is in fact met for larger step demands; for
example, a step change from –3.16 units to 6 units.  This
is perhaps unexpected, since larger steps are associated
with excursions into operating regions further from
equilibrium and with faster parameter variations, and
clearly indicates that the behaviour observed is not
associated with any restriction to near equilibrium
operation arising from the use of equilibrium
linearisations for the controller design.  Indeed, the
system in this example is intentionally selected to be
benign in the sense that it satisfies the extended local
linear equivalence condition of Leith & Leithead
(1996,1998c); that is, the neighbourhood of validity of
each equilibrium linearisation is unbounded and the
union of these neighbourhoods covers the entire
operating space.  Hence, control design approaches
based on the equilibrium linearisations are not a priori

                                                                                      
transfer function of w1 should be infinite at d.c. ; for
example, by including an integrator term.  However,
the transfer functions here specify the actual values used
in the numerical calculations, with approximate rather
than exact integral action present in w1.



restricted to near equilibrium operation.  Further loss of
performance associated with deviations from
equilibrium operation can, of course, be anticipated for
systems which do not satisfy such a condition.

The poor performance achieved in the foregoing
example is perhaps unsurprising since no direct
relationship is established between the quasi-LPV
system, (9), used for control design and the nonlinear
system which is actually of interest, (6).  It is
emphasised that the family of linear systems defined by
the equilibrium linearisations of (6), being a collection
of  individual dynamic systems (each with its own
distinct state, input and output defined by the
transformations (8)) rather than a single dynamic
system, is conceptually quite different from the quasi-
LPV system, (9).  Of course, controllers designed by
approaches similar to that here may sometimes
inadvertently achieve acceptable performance.
Nevertheless, the foregoing example indicates that this
is certainly not the case in general.

3. Velocity-based Design Approach
For a large class of nonlinear systems the foregoing

ad hoc approach for transforming the plant dynamics
into LPV/quasi-LPV form is unnecessary since soundly-
based transformation methods exist.  One such method
considered here is based on the velocity-based
framework recently developed by Leith & Leithead
(1998a,b).

Before proceeding, it is useful to reformulate the
nonlinear system, (1), ash

( ), ( )x Ax Br f y Cx Dr g= + + = + +ρ ρ  (14)

where A, B, C, D are appropriately dimensioned
constant matrices, f(•) and g(•) are nonlinear functions
and ρ(x,r)∈ℜq, q≤m+n, embodies the nonlinear
dependence of the dynamics on the state and input with
∇xρ, ∇rρ functions of ρ alone.  Trivially, this
reformulation can always be achieved by letting ρ = [xT

rT]T, in which case q=m+n.  However, the nonlinearity
of the system is frequently dependent on only a subset
of the states and inputs, in which case the dimension, q,
of ρ is less than m+n.  Since ∇xρ, ∇rρ are functions of ρ
alone, the variable, ρ(x,r), equals the constant value, ρ1,
upon a surface of co-dimension q in Φ and ∇xρ and ∇rρ
are constant over each surface.  Hence, the normal to
each surface is identical at every point on the surface
and each surface is, therefore, affine.  Moreover, to
ensure that ρ is a unique function of x and r, these
surfaces must be parallel for all ρ.  Consequently, it may
in fact be assumed, without loss of generality, that ∇xρ
and ∇rρ are constant.

Differentiating (14), an alternative representation of
the nonlinear system is

i
ρ  = ∇xρw + ∇rρ jr (15)k
w = (A+∇f(ρ) ∇xρ )w + (B+∇f(ρ) ∇rρ ) lr (16)m
y  = (C+∇g(ρ) ∇xρ )w + (D+∇g(ρ) ∇rρ ) nr (17)

Dynamically, (15)-(17), with appropriate initial
conditions, and (1) are equivalent  (have the same
solution, x).   While (14) and (18)-(20) are equivalent in
the sense that they both embody the dynamics of the
nonlinear system, they are not equivalent in other
respects.  In particular, the velocity representation, (15)-
(17), may be trivially reformulated as the quasi-LPV
system o

ρ  = ∇xρw + ∇rρ z,    pr  = z (18)q
w =  (A+∇f(ρ) ∇xρ )w + (B+∇f(ρ) ∇rρ )z (19)r
y  = (C+∇g(ρ) ∇xρ )w + (D+∇g(ρ) ∇rρ )z (20)

where z is the input to the transformed system.  Hence,
it follows immediately that every nonlinear system, (14)
, (and so every nonlinear system, (1)) can be rigorously
reformulated as a quasi-LPV system, (18)-(20) to which
the developed LPV/quasi-LPV control design methods
may be brought to bear.  When ρ depends only on the
input, r, to the system (18)-(20) is an LPV rather than
quasi-LPV system.  When w = Ax+B r+f(ρ), y =
Cx+Dr+g(ρ) is invertible for every (x, r), so that x may
be expressed as a function of w, r and y, then the
transformation relating (18)-(20) to (14) is algebraic.
The reformulation, (18)-(20), is clearly valid for a very
general class of nonlinear systems.  Moreover, it is
emphasised that the velocity-based LPV/quasi-LPV
representation is valid globally with no restriction
whatsoever to a neighbourhood of the equilibrium
operating points.

The relationship between (15)-(17) and (14) is
evidently direct and it is argued that this directness is, in
fact, a significant strength of this particular approach.
Moreover, the directness of the relationship extends
rather more deeply than might initially be expected.
Consider the linear system, obtained by “ freezing”  (15)-
(17) at an operating point at which ρ equals ρ1,s t

w =  (A+∇f(ρ1) ∇xρ ) uw  + (B+∇f(ρ1) ∇rρ ) vr (21)w x
y  = (C+∇g(ρ1) ∇xρ ) yw  +  (D+∇g(ρ1) ∇rρ ) zr (22)

The system (21)-(22) is referred to as the velocity-based
linearisation of (14) associated with the operating point.
It may be shown that when {w (t1) =  w(t1), |y (t1) = y(t1)
then the solutions to the linear system (21)-(22) are an
accurate approximation to the solutions of the nonlinear
system, (14), locally to the operating point (Leith &
Leithead 1998a).  Furthermore, while the solution to an
individual velocity-based linearisation is only a locally
accurate approximation, there exists a velocity-based
linearisation, (21)-(22), for every operating point (x,r)
and thus a velocity-based linearisation family, with
members defined by (21)-(22), can be associated with
the nonlinear system, (14).  The solutions to the
members of the family of velocity-based linearisations
may be pieced together to approximate the solution to



the nonlinear system (14) to an arbitrary degree of
accuracy (Leith & Leithead 1998a).   It is emphasised
that, unlike conventional series expansion linearisation
approaches, no restriction to near equilibrium operation
is involved.  This direct relationship between the
nonlinear quasi-LPV systems and the linear system
obtained by simply “ freezing”  the system at a particular
parameter value is an important aspect of the velocity-
based quasi-LPV formulation in the context of gain-
scheduling.

Example (cont)  The nonlinear system, (6), can be
reformulated by differentiating, as}
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The system, (23), is in quasi-LPV form and existing
quasi-LPV control design methods may be brought to
bear.  Of course, practical issues associated with the
increased order of (23) in comparison to (6) and the
presence of the derivative operator at the input to the
reformulated plant remain to be adequately resolved.
With regard to the order of the quasi-LPV
representation, it is noted from (6) that
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Hence, the x and w states are related by a non-singular
algebraic mapping with x2=T2

-1(w1-r,w2).   The
velocity-based system, (23), may therefore be
reformulated as the reduced-order system
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With regard to the derivative operator at the plant input,
it is noted that the steady-state performance
specification requires that the controller contain pure
integral action.  Hence, by explicitly partitioning the
controller into a pure integral term plus additional
dynamics, say Co, the velocity-based control loop
depicted in figure 2a may, for design purposes, be
reformulated as shown in figure 2b.   The design task
may now proceed by determining quasi-LPV controller
dynamics, Co, which achieve the required performance
when applied with the reformulated plant augmented
with an integrator at the output.  The controller for the
original nonlinear system, (6), is realised as the
dynamics, Co, followed by a pure integrator (see figure
2a).  Using standard design software from the
MATLAB LMI toolbox and an L2 objective function
with performance weighting w1 and weighting w2 on the
control input r, as defined by (11), the controller
dynamics, Co, obtained for this system is´

( ) ( , ( )x A x B C xc c c c c= + − =θ θy y)   rref (26)

where Ac(θ)=αAo+(1-α)A1 , Cc(θ)=αCo+(1-α)C1,
α=(10-θ)/10,
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The response of the nonlinear closed-loop system to a
step change in demand from –3.16 units to 0 units is
shown in figure 3.  In contrast to the results obtained
with an ad hoc quasi-LPV reformulation approach, it
can be seen that the closed-loop system is stable and
achieves the required performance (similar responses
are also obtained for other magnitudes of step demand).

4. Summary
The shortcomings of a popular LPV gain-scheduling
design approach are demonstrated by a simple counter-
example.  It is shown that, for a very general class of
nonlinear systems, such an ad hoc design approach is
unnecessary since soundly-based methods exist for
transforming the plant dynamics into LPV/quasi-LPV
form.
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Figure 1 Nonlinear step responses for Jacobian-based
quasi-LPV controller
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Figure 3 Nonlinear step response with velocity-based
quasi-LPV controller
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Figure 2a  Velocity-based quasi-LPV control loop
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Figure 2b  Reformulated velocity-based quasi-LPV control loop.


